1
|
Cousido-Siah A, Ayoub D, Berberián G, Bollo M, Van Dorsselaer A, Debaene F, DiPolo R, Petrova T, Schulze-Briese C, Olieric V, Esteves A, Mitschler A, Sanglier-Cianférani S, Beaugé L, Podjarny A. Structural and functional studies of ReP1-NCXSQ, a protein regulating the squid nerve Na+/Ca2+ exchanger. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1098-107. [PMID: 22948910 DOI: 10.1107/s090744491202094x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/08/2012] [Indexed: 11/10/2022]
Abstract
The protein ReP1-NCXSQ was isolated from the cytosol of squid nerves and has been shown to be required for MgATP stimulation of the squid nerve Na(+)/Ca(2+) exchanger NCXSQ1. In order to determine its mode of action and the corresponding biologically active ligand, sequence analysis, crystal structures and mass-spectrometric studies of this protein and its Tyr128Phe mutant are reported. Sequence analysis suggests that it belongs to the CRABP family in the FABP superfamily. The X-ray structure at 1.28 Å resolution shows the FABP β-barrel fold, with a fatty acid inside the barrel that makes a relatively short hydrogen bond to Tyr128 and shows a double bond between C9 and C10 but that is disordered beyond C12. Mass-spectrometric studies identified this fatty acid as palmitoleic acid, confirming the double bond between C9 and C10 and establishing a length of 16 C atoms in the aliphatic chain. This acid was caught inside during the culture in Escherichia coli and therefore is not necessarily linked to the biological activity. The Tyr128Phe mutant was unable to activate the Na(+)/Ca(2+) exchanger and the corresponding crystal structure showed that without the hydrogen bond to Tyr128 the palmitoleic acid inside the barrel becomes disordered. Native mass-spectrometric analysis confirmed a lower occupancy of the fatty acid in the Tyr128Phe mutant. The correlation between (i) the lack of activity of the Tyr128Phe mutant, (ii) the lower occupancy/disorder of the bound palmitoleic acid and (iii) the mass-spectrometric studies of ReP1-NCXSQ suggests that the transport of a fatty acid is involved in regulation of the NCXSQ1 exchanger, providing a novel insight into the mechanism of its regulation. In order to identify the biologically active ligand, additional high-resolution mass-spectrometric studies of the ligands bound to ReP1-NCXSQ were performed after incubation with squid nerve vesicles both with and without MgATP. These studies clearly identified palmitic acid as the fatty acid involved in regulation of the Na(+)/Ca(2+) exchanger from squid nerve.
Collapse
Affiliation(s)
- Alexandra Cousido-Siah
- Department of Structural Biology and Genomics, IGBMC, CNRS, INSERM, Université de Strasbourg, Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Abstract
One of the most exciting recent discoveries in the area of intracellular protein transport is the finding that many organelles involved in exocytic and endocytic membrane traffic have one or more Ras-like GTP-binding proteins on their cytoplasmic face that are specific for each membranous compartment. These proteins are attractive candidates for regulators of transport vesicle formation and the accurate delivery of transport vesicles to their correct targets.
Collapse
Affiliation(s)
- S R Pfeffer
- Deparment of Biochemistry, Standford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Griffiths G, Gruenberg J. The arguments for pre-existing early and late endosomes. Trends Cell Biol 2004; 1:5-9. [PMID: 14731803 DOI: 10.1016/0962-8924(91)90047-d] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The past decade has seen the elucidation of many of the events and processes responsible for receptor-mediated endocytosis. However, a fundamental question about the endocytic pathway remains unresolved: do early endosomes mature into late endosomes, or are these two distinct and pre-existing cellular organelles? General opinion tends to favour the former possibility, to the point where one poster session at the recent American Society for Cell Biology meeting was entitled 'Maturation of Endosomes'. This article draws together new data arguing in favour of pre-existing early and late endosomes, between which transport occurs by vesicle budding and fusion.
Collapse
Affiliation(s)
- G Griffiths
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-6900 Heidelberg, FRG
| | | |
Collapse
|
4
|
Calero M, Chen CZ, Zhu W, Winand N, Havas KA, Gilbert PM, Burd CG, Collins RN. Dual prenylation is required for Rab protein localization and function. Mol Biol Cell 2003; 14:1852-67. [PMID: 12802060 PMCID: PMC165082 DOI: 10.1091/mbc.e02-11-0707] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2002] [Revised: 01/01/2003] [Accepted: 01/13/2003] [Indexed: 12/14/2022] Open
Abstract
The majority of Rab proteins are posttranslationally modified with two geranylgeranyl lipid moieties that enable their stable association with membranes. In this study, we present evidence to demonstrate that there is a specific lipid requirement for Rab protein localization and function. Substitution of different prenyl anchors on Rab GTPases does not lead to correct function. In the case of YPT1 and SEC4, two essential Rab genes in Saccharomyces cerevisiae, alternative lipid tails cannot support life when present as the sole source of YPT1 and SEC4. Furthermore, our data suggest that double geranyl-geranyl groups are required for Rab proteins to correctly localize to their characteristic organelle membrane. We have identified a factor, Yip1p that specifically binds the di-geranylgeranylated Rab and does not interact with mono-prenylated Rab proteins. This is the first demonstration that the double prenylation modification of Rab proteins is an important feature in the function of this small GTPase family and adds specific prenylation to the already known determinants of Rab localization.
Collapse
Affiliation(s)
- Monica Calero
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853-6401, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Qanbar R, Bouvier M. Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol Ther 2003; 97:1-33. [PMID: 12493533 DOI: 10.1016/s0163-7258(02)00300-5] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G-protein-coupled receptors (GPCRs) constitute one of the largest protein families in the human genome. They are subject to numerous post-translational modifications, including palmitoylation. This review highlights the dynamic nature of palmitoylation and its role in GPCR expression and function. The palmitoylation of other proteins involved in GPCR signaling, such as G-proteins, regulators of G-protein signaling, and G-protein-coupled receptor kinases, is also discussed.
Collapse
Affiliation(s)
- Riad Qanbar
- Département de Biochimie, Université de Montréal, C.P. 6128 Succursale Centre-Ville, 2900 Edouard Montpetit, Montreál, Quebec, Canada H3C 3J7
| | | |
Collapse
|
6
|
|
7
|
Götte M, Lazar T, Yoo JS, Scheglmann D, Gallwitz D. The full complement of yeast Ypt/Rab-GTPases and their involvement in exo- and endocytic trafficking. Subcell Biochem 2000; 34:133-73. [PMID: 10808333 DOI: 10.1007/0-306-46824-7_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- M Götte
- Department of Molecular Genetics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | |
Collapse
|
8
|
Faergeman NJ, Ballegaard T, Knudsen J, Black PN, DiRusso C. Possible roles of long-chain fatty Acyl-CoA esters in the fusion of biomembranes. Subcell Biochem 2000; 34:175-231. [PMID: 10808334 DOI: 10.1007/0-306-46824-7_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Affiliation(s)
- N J Faergeman
- Department of Biochemistry and Molecular Biology, Albany Medical College, New York 12208, USA
| | | | | | | | | |
Collapse
|
9
|
Zuk PA, Elferink LA. Rab15 mediates an early endocytic event in Chinese hamster ovary cells. J Biol Chem 1999; 274:22303-12. [PMID: 10428799 DOI: 10.1074/jbc.274.32.22303] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab GTPases comprise a large family of monomeric proteins that regulate a diverse number of membrane trafficking events, including endocytosis. In this paper, we examine the subcellular distribution and function of the GTPase Rab15. Our biochemical and confocal immunofluorescence studies demonstrate that Rab15 associates with the transferrin receptor, a marker for the early endocytic pathway, but not with Rab7 or the cation-independent mannose 6-phosphate receptor, markers for late endosomal membranes. Furthermore, Rab15 colocalizes with Rab4 and -5 on early/sorting endosomes, as well as Rab11 on pericentriolar recycling endosomes. Consistent with its localization to early endosomal membranes, overexpression of the constitutively active mutant HArab15Q67L reduces receptor-mediated and fluid phase endocytosis. Therefore, our functional studies suggest that Rab15 may function as an inhibitory GTPase in early endocytic trafficking.
Collapse
Affiliation(s)
- P A Zuk
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
10
|
Janoo R, Musoke A, Wells C, Bishop R. A Rab1 homologue with a novel isoprenylation signal provides insight into the secretory pathway of Theileria parva. Mol Biochem Parasitol 1999; 102:131-43. [PMID: 10477182 DOI: 10.1016/s0166-6851(99)00093-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
As a first step in developing compartment-specific markers for protein trafficking within Theileria parva, we have isolated cDNAs encoding homologues of the small GTP binding proteins Rab1 and Rab4. The T. parva homologue of Rab1 (TpRab1), a protein which regulates vesicular transport between the endoplasmic reticulum and cis golgi in other organisms, was unusual in that it contained a unique 17 amino acid C-terminal extension. The C-terminal motif sequence KCT (XCX) contrasted with the CXC or XCC motifs which act as as signals for isoprenylation by geranylgeranyl in most Rab proteins, including all known Rab1 homologues, in containing only a single cysteine. [C14]mevalonic acid lactone and [H3]geranylgeranyl pyrophosphate were specifically incorporated into recombinant TpRab1 in vitro, demonstrating that the novel motif was functional for isoprenylation. Recombinant TpRab1 bound radiolabeled GTP, and this binding was inhibited by excess unlabeled GTP and GDP and also partially by ATP. The TpRab1 gene contained four short (34-67 bp) introns with a distinct pattern of occurrence within the protein sequence as compared to the introns of other lower eukaryote Rab1 genes. Immunofluorescence microscopy using antiserum specific for the novel C-terminal peptide in combination with labelling of cells using the nucleic acid-staining dye DAPI, indicated that TpRab1 was located in the vicinity of the schizont nucleus within the infected lymphocyte.
Collapse
Affiliation(s)
- R Janoo
- International Livestock Research Institute, Nairobi, Kenya
| | | | | | | |
Collapse
|
11
|
O'Mahony PJ, Oliver MJ. Characterization of a desiccation-responsive small GTP-binding protein (Rab2) from the desiccation-tolerant grass Sporobolus stapfianus. PLANT MOLECULAR BIOLOGY 1999; 39:809-21. [PMID: 10350094 DOI: 10.1023/a:1006183431854] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have used differential display to detect altering mRNA levels in response to desiccation and rehydration in leaves of the desiccation tolerant grass Sporobolus stapfianus. One of the RT-PCR products identified was used to isolate a cDNA of 999 bp which encodes a protein of 210 amino acids (predicted size 23 kDa). This protein displays considerable sequence similarity to mammalian and plant Rab2, a small GTP-binding protein, possessing several conserved motifs common to these regulatory proteins. Sporobolus Rab2 was expressed in Escherichia coli yielding a protein with an apparent molecular mass of ca. 30 kDa which was shown to have the ability to bind GTP. Rab2 transcript accumulated early in response to a decrease in relative water content (RWC) and remained high even in dried leaves. Rehydration of desiccated leaves resulted in a decrease in levels within 3 h of rewetting, with a brief increase at ca. 12 h. Accumulation of Rab2 transcript was also evident during drying and rehydration of the roots of S. stapfianus, as well as in leaves of the desiccation-sensitive grass Sporobolus pyramidalis. Earlier work on S. stapfianus concluded that the plant hormone ABA has little effect on inducing desiccation tolerance, however Rab2 transcript does exhibit a small increase in accumulation in response to exogenous ABA. A possible role for Rab2 with respect to desiccation tolerance and damage repair is discussed.
Collapse
Affiliation(s)
- P J O'Mahony
- Plant Stress and Water Conservation Laboratory, USDA ARS, Lubbock, TX 79401, USA
| | | |
Collapse
|
12
|
Richardson CJ, Jones S, Litt RJ, Segev N. GTP hydrolysis is not important for Ypt1 GTPase function in vesicular transport. Mol Cell Biol 1998; 18:827-38. [PMID: 9447979 PMCID: PMC108794 DOI: 10.1128/mcb.18.2.827] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/1997] [Accepted: 11/05/1997] [Indexed: 02/05/2023] Open
Abstract
GTPases of the Ypt/Rab family play a key role in the regulation of vesicular transport. Their ability to cycle between the GTP- and the GDP-bound forms is thought to be crucial for their function. Conversion from the GTP- to the GDP-bound form is achieved by a weak endogenous GTPase activity, which can be stimulated by a GTPase-activating protein (GAP). Current models suggest that GTP hydrolysis and GAP activity are essential for vesicle fusion with the acceptor compartment or for timing membrane fusion. To test this idea, we inactivated the GTPase activity of Ypt1p by using the Q67L mutation, which targets a conserved residue that helps catalyze GTP hydrolysis in Ras. We demonstrate that the mutant Ypt1-Q67L protein is severely impaired in its ability to hydrolyze GTP both in the absence and in the presence of GAP and consequently is restricted mostly to the GTP-bound form. Surprisingly, a strain with ypt1-Q67L as the only YPT1 gene in the cell has no observable growth phenotypes at temperatures ranging from 14 to 37 degrees C. In addition, these mutant cells exhibit normal rates of secretion and normal membrane morphology as determined by electron microscopy. Furthermore, the ypt1-Q67L allele does not exhibit dominant phenotypes in cell growth and secretion when overexpressed. Together, these results lead us to suggest that, contrary to current models for Ypt/Rab function, GTP hydrolysis is not essential either for Ypt1p-mediated vesicular transport or as a timer to turn off Ypt1p-mediated membrane fusion but only for recycling of Ypt1p between compartments. Finally, the ypt1-Q67L allele, like the wild type, is inhibited by dominant nucleotide-free YPT1 mutations. Such mutations are thought to exert their dominant phenotype by sequestration of the guanine nucleotide exchange factor (GNEF). These results suggest that the function of Ypt1p in vesicular transport requires not only the GTP-bound form of the protein but also the interaction of Ypt1p with its GNEF.
Collapse
Affiliation(s)
- C J Richardson
- Department of Biochemistry and Molecular Biology, The University of Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
13
|
|
14
|
Kim WY, Cheong NE, Je DY, Kim MG, Lim CO, Bahk JD, Cho MJ, Lee SY. The presence of a Sar1 gene family in Brassica campestris that suppresses a yeast vesicular transport mutation Sec12-1. PLANT MOLECULAR BIOLOGY 1997; 33:1025-1035. [PMID: 9154984 DOI: 10.1023/a:1005731209124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Two new members (Bsar1a and Bsar1b) of the Sar1 gene family have been identified from a flower bud cDNA library of Brassica campestris and their functional characteristics were analyzed. The two clones differ from each other at 14 positions of the 193 amino acid residues deduced from their coding region. The amino acid sequences of Bsar1a and Bsar1b are most closely related to the Sar1 family, genes that function early in the process of vesicle budding from the endoplasmic reticulum (ER). The sequences contain all the conserved motifs of the Ras superfamily (G1-G4 motifs) as well as the distinctive structural feature near the C-terminus that is Sar1 specific. Our phylogenetic analysis confirmed that these two clones can indeed be considered members of the Sar1 family and that they have a close relationship to the ARF family. The Bsar1 proteins, expressed in Escherichia coli, cross-reacted with a polyclonal antibody prepared against Saccharomyces cerevisiae Sar1 protein. It also exhibited GTP-binding activity. Genomic Southern blot analysis, using the 3'-gene-specific regions of the Bsar1 cDNAs as probes, revealed that the two cDNA clones are members of a B. campestris Sar1 family that consists of 2 to 3 genes. RNA blot analysis, using the same gene-specific probes, showed that both genes are expressed with similar patterns in most tissues of the plant, including leaf, stem, root, and flower buds. Furthermore, when we placed the two Bsar1 genes under the control of the yeast pGK1 promoter into the temperature-sensitive mutant yeast strain S. cerevisiae Sec12-1, they suppressed the mutation which consists of a defect in vesicle transport. The amino acid sequence similarity, the GTP-binding activity, and the functional suppression of the yeast mutation suggest that the Bsar1 proteins are functional homologues of the Sar1 protein in S. cerevisiae and that they may perform similar biological functions.
Collapse
Affiliation(s)
- W Y Kim
- Department of Biochemistry, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Moore I, Diefenthal T, Zarsky V, Schell J, Palme K. A homolog of the mammalian GTPase Rab2 is present in Arabidopsis and is expressed predominantly in pollen grains and seedlings. Proc Natl Acad Sci U S A 1997; 94:762-7. [PMID: 9012859 PMCID: PMC19588 DOI: 10.1073/pnas.94.2.762] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Vesicle traffic between the endoplasmic reticulum and the Golgi apparatus in mammals requires the small GTP-binding protein Rab2, but Saccharomyces cerevisiae appears not to have a Rab2 homolog. Here it is shown that the higher plant, Arabidopsis thaliana, contains a gene, At-RAB2, whose predicted product shares 79% identity with human Rab2 protein. Transgenic plants containing fusions between beta-glucuronidase and sequences upstream of At-RAB2 demonstrated histochemical staining predominantly in maturing pollen and rapidly growing organs of germinating seedlings. beta-glucuronidase activity in pollen is first detectable at microspore mitosis and increases thereafter. In this respect, the promoter of At-RAB2 behaves like those of class II pollen-specific genes, whose products are often required after germination for pollen tube growth. Seedling germination and pollen tube growth are notable for their unusually high rates of cell wall and membrane biosynthesis. These results are consistent with a role for At-RAB2 in secretory activity.
Collapse
Affiliation(s)
- I Moore
- Max-Planck-Institut für Züchtungsforschung, Cologne, Germany
| | | | | | | | | |
Collapse
|
16
|
Shen F, Seabra MC. Mechanism of digeranylgeranylation of Rab proteins. Formation of a complex between monogeranylgeranyl-Rab and Rab escort protein. J Biol Chem 1996; 271:3692-8. [PMID: 8631982 DOI: 10.1074/jbc.271.7.3692] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Rab proteins are Ras-related small GTPases that are digeranylgeranylated at carboxyl-terminal cysteines, a modification essential for their action as molecular switches regulating intracellular vesicular transport. Geranylgeranylation of Rabs is a complex reaction that requires a catalytic Rab geranylgeranyl transferase (GGTase) and a Rab escort protein (REP). REP binds unprenylated Rab and presents it to Rab GGTase. After GG transfer, REP remains associated with diGG-Rab, which leads to insertion of the Rab into a specific membrane. We used recombinant Rab1a single cysteine mutants that accept only one GG group to study the mechanism of the digeranylgeranylation reaction. Using the prenylation assay, gel filtration chromatography, and density ultracentrifugation, we show that REP, but not Rab GGTase, forms a stable complex with unprenylated, monoGG- and diGG-Rab1a. The REP.monoGG-Rab1a complex is stable in the presence of detergents or phospholipids, whereas the REP.diGG-Rab1a complex partially dissociates under these conditions. The stoichiometry of the REP.Rab complex appears to be 1:1 before prenylation. Prenylation induces a change in complex stoichiometry, with the formation of a 2:2 or 2:1 REP.Rab complex. A possible mechanism by which Rab proteins are digeranylgeranylated is suggested by the current studies. We propose that each geranylgeranyl addition is an independent reaction that leads to the production of monoGG-Rab and diGG-Rab, respectively. The stability of the REP.monoGG-Rab complex prevents monoGG-Rab from dissociating from REP prior to the second geranylgeranylation reaction, ensuring efficient digeranylgeranylation of Rab substrates.
Collapse
Affiliation(s)
- F Shen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | |
Collapse
|
17
|
Naitou M, Ozawa M, Sasanuma S, Kobayashi M, Hagiwara H, Shibata T, Hanaoka F, Watanabe K, Ono A, Yamazaki M. Sequencing of an 18.8 kb fragment from Saccharomyces cerevisiae chromosome VI. Yeast 1995; 11:1525-32. [PMID: 8750241 DOI: 10.1002/yea.320111508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The nucleotide sequence of lambda phage clone 4121, which contains the 18.8 kb fragment of Saccharomyces cerevisiae chromosome VI left arm, was determined. This sequence had seven open reading frames (ORFs), four of which were identical to known genes (ACT1, YPT1, TUB2 and RPO41). Another three ORFs (4121orfR003, 4121orfR004 and 4121orfRN001) were highly homologous to FET3 multi-copper oxidase, glucose transport protein, and hypothetical protein of YIL106w on chromosome IX, respectively. 4121orfRN01 is suggested to contain an intron.
Collapse
Affiliation(s)
- M Naitou
- Division of Human Genome Research, Tsukuba Life Science Center, Institute of Physical and Chemical Research (RIKEN), Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Giner JL, Rando RR. Novel methyltransferase activity modifying the carboxy terminal bis(geranylgeranyl)-Cys-Ala-Cys structure of small GTP-binding proteins. Biochemistry 1994; 33:15116-23. [PMID: 7999771 DOI: 10.1021/bi00254a022] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Proteins containing CX3, CXC, and CC (where C is cysteine and X is undefined) undergo posttranslational isoprenylation at their cysteine residues. In the case of proteins which terminate in CX3, proteolytic removal of X3 is followed by the carboxymethylation of the isoprenylated cysteine residue. CXC proteins also undergo C-terminal methylation. The present study addresses the question of whether this methylation is catalyzed by a different isoprenylated protein methyltransferase than that previously described for CX3 proteins. The S-adenosylmethionine (AdoMet) dependent methylation of a small peptide-N-acetyl-S-geranylgeranyl-L-cysteinyl-L-alanyl-S-geranylgeranyl- L- cysteine (Ac(GG)CysAla(GG)Cys)--was investigated using membranes from a variety of bovine tissues as sources of enzyme. Ac(GG)CysAla(GG)Cys was a substrate for methylation, while Ac(GG)Cys(GG)Cys was not. Reciprocal inhibition studies on the methylation reactions of the CXC peptide and of N-acetyl-S-farnesyl-L-cysteine (AFC), a previously described methyltransferase substrate, suggested that these reactions are catalyzed by distinct enzymatic activities. Farnesylthioacetic acid (FTA), a potent competitive inhibitor of the methylation of AFC, did not inhibit the methylation of the CXC peptide. Moreover the KI values for S-adenosylhomocysteine and S-adenosylethionine inhibition differed for the two enzymatic activities. These data indicate that more than one AdoMet-dependent methyltransferase is involved in the carboxymethylation of isoprenylated proteins.
Collapse
Affiliation(s)
- J L Giner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
19
|
Benito-Moreno RM, Miaczynska M, Bauer BE, Schweyen RJ, Ragnini A. Mrs6p, the yeast homologue of the mammalian choroideraemia protein: immunological evidence for its function as the Ypt1p Rab escort protein. Curr Genet 1994; 27:23-5. [PMID: 7750142 DOI: 10.1007/bf00326574] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Saccharomyces cerevisiae MRS6 gene belongs to the same gene family as that responsible for the mammalian Rab escort protein (REP) and the Rab GDP dissociation inhibitor protein (GDI). Both REP and GDI are regulators of the Ras-related small G-proteins Rab/YPT1 which are involved in intracellular vesicular trafficking in yeast and in mammals. Here we characterize an antiserum directed against Mrs6p and show that it specifically inhibits the geranylation of the YPT1 protein in an in vitro assay. These findings provide direct evidence for the role of Mrs6p as the REP component of the yeast Rab geranylgeranyl transferase enzyme.
Collapse
Affiliation(s)
- R M Benito-Moreno
- Vienna Biocenter, Institute of Microbiology and Genetics, University of Vienna, Austria
| | | | | | | | | |
Collapse
|
20
|
Ragnini A, Teply R, Waldherr M, Voskova A, Schweyen RJ. The yeast protein Mrs6p, a homologue of the rabGDI and human choroideraemia proteins, affects cytoplasmic and mitochondrial functions. Curr Genet 1994; 26:308-14. [PMID: 7882424 DOI: 10.1007/bf00310494] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
MRS6 is a newly-identified gene in the yeast Saccharomyces cerevisiae. Its product Mrs6p shows significant homology to the mammalian GDP dissociation inhibitor (GDI) of Rab/Ypt-type small G proteins and to the human choroideraemia protein (CHM), the component A of Rab-specific GGTase II. The interaction of Mrs6p with G proteins is indicated by our observation that the MRS6 gene suppresses the effect of a temperature-sensitive ypt1 mutation. Disruption of the MRS6 gene is lethal to haploid yeast cells. This is consistent with the notion that Mrs6p is interacting with Rab/Ypt-type small G proteins, which are known to have essential functions in vesicular transport. Unexpectedly, the MRS6 gene product also affects mitochondrial functions as revealed by the facts that high-copy numbers of MRS6 (1) suppress the pet- phenotype of mrs2-1 mutant strains and (2) cause a weak pet- phenotype in wild-type strains. We conclude from these results that the MRS6 gene product has a vital function in connection with Rab/Ypt-type proteins in the cytoplasm and, in addition, affects mitochondrial functions.
Collapse
Affiliation(s)
- A Ragnini
- Vienna Biocenter, Institute of Microbiology and Genetics, University of Vienna, Austria
| | | | | | | | | |
Collapse
|
21
|
A prenylation motif is required for plasma membrane localization and biochemical function of casein kinase I in budding yeast. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32163-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Cheon CI, Lee NG, Siddique AB, Bal AK, Verma DP. Roles of plant homologs of Rab1p and Rab7p in the biogenesis of the peribacteroid membrane, a subcellular compartment formed de novo during root nodule symbiosis. EMBO J 1993; 12:4125-35. [PMID: 8223429 PMCID: PMC413705 DOI: 10.1002/j.1460-2075.1993.tb06096.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The peribacteroid membrane (PBM) in legume root nodules is derived from plasma membrane following endocytosis of Rhizobium by fusion of newly synthesized vesicles. We studied the roles of plant Rab1p and Rab7p homologs, the small GTP-binding proteins involved in vesicular transport, in the biogenesis of the PBM. Three cDNAs encoding legume homologs of mammalian Rab1p and Rab7p were isolated from soybean (sRab1p, sRab7p) and Vigna aconitifolia (vRab7p). sRab1p was confirmed to be a functional counterpart of yeast Ypt1p (Rab1p) by complementation of a yeast ypt1-1 mutant. Both srab1 and vrab7 genes are induced during nodulation with the level of vrab7 mRNA being 12 times higher than that in root meristem and leaves. This induction directly correlates with membrane proliferation in nodules. Antisense constructs of srab1 and vrab7, under a nodule-specific promoter (leghemoglobin, Lbc3), were made in a binary vector and transgenic nodules were developed on soybean hairy roots obtained through Agrobacterium rhizogenes-mediated transformation. Both antisense srab1 and vrab7 nodules were smaller in size and showed lower nitrogenase activity than controls. The antisense srab1 nodules showed lack of expansion of infected cells, fewer bacteroids per cell and their frequent release into vacuoles. In contrast, antisense vrab7 expressing nodules showed accumulation of late endosomal structure and multivesicular bodies in the perinuclear region. These data suggest that both Rab1p and Rab7p are essential for the development of the PBM compartment in effective symbiosis.
Collapse
Affiliation(s)
- C I Cheon
- Department of Molecular Genetics, Ohio State University, Columbus 43210
| | | | | | | | | |
Collapse
|
23
|
Post-translational processing of Schizosaccharomyces pombe YPT5 protein. In vitro and in vivo analysis of processing mutants. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80549-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Newman CM, Magee AI. Posttranslational processing of the ras superfamily of small GTP-binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1155:79-96. [PMID: 8504132 DOI: 10.1016/0304-419x(93)90023-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- C M Newman
- Laboratory of Eukaryotic Molecular Genetics, National Institute for Medical Research, Mill Hill, London, UK
| | | |
Collapse
|
25
|
|
26
|
Youssefian S, Nakamura M, Sano H. Molecular characterization of rgp2, a gene encoding a small GTP-binding protein from rice. MOLECULAR & GENERAL GENETICS : MGG 1993; 237:187-92. [PMID: 8455556 DOI: 10.1007/bf00282800] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We previously reported the isolation of rgp1, a gene from rice, which encodes a ras-related GTP-binding protein, and subsequently showed that the gene induces specific morphological changes in transgenic tobacco plants. Here, we report the isolation and characterization of an rgp1 homologue, rgp2, from rice. The deduced rgp2 protein sequence shows 53% identity with the rice rgp1 protein, but 63% identity with both the marine ray ora3 protein, which is closely associated with synaptic vesicles of neuronal tissue, and the mammalian rab11 protein. Conservation of particular amino acid sequence motifs places rgp2 in the rab/ypt subfamily, which has been implicated in vesicular transport. Northern blot analysis of rgp1 and rgp2 suggests that both genes show relatively high, but differential, levels of expression in leaves, stems and panicles, but low levels in roots. In addition, whereas rgp1 shows maximal expression at a particular stage of plantlet growth, rgp2 is constitutively expressed during the same period. Southern blot analysis suggests that, in addition to rgp1 and rgp2, several other homologues exist in rice and these may constitute a small multigene family.
Collapse
Affiliation(s)
- S Youssefian
- Laboratory of Molecular Genetics, Akita Prefectural College of Agriculture, Japan
| | | | | |
Collapse
|
27
|
Khosravi-Far R, Clark G, Abe K, Cox A, McLain T, Lutz R, Sinensky M, Der C. Ras (CXXX) and Rab (CC/CXC) prenylation signal sequences are unique and functionally distinct. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35774-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Magee T, Newman C. The role of lipid anchors for small G proteins in membrane trafficking. Trends Cell Biol 1992; 2:318-23. [PMID: 14731509 DOI: 10.1016/0962-8924(92)90172-j] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Small GTP-binding proteins of the Ras superfamily play diverse roles in intracellular trafficking. In order to perform these functions, the proteins must associate with specific donor vesicles and be recycled after fusion of these vesicles with their acceptor membrane target. Recent results have identified a number of lipid modifications of these proteins, occurring at the N- or C-termini, that contribute to their membrane binding. Recycling appears, in some cases, to be mediated by soluble proteins that bind the lipid-modified tails, removing them from the membrane and allowing their reutilization via the cytosol.
Collapse
Affiliation(s)
- T Magee
- Laboratory of Eukaryotic Molecular Genetics, National Institute for Medical Research, Mill Hill, London, UK
| | | |
Collapse
|
29
|
Abstract
Each intracellular compartment involved in the biosynthetic/secretory pathway of eukaryotic cells bears at its surface at least one small GTP-binding protein. Most of them belong to a distinct branch of the p21ras superfamily, the Sec4/Ypt1/rab family. Other proteins are members of the ARF family. They play a key role in the regulation of budding and targeting/fusion events occurring during protein transport.
Collapse
Affiliation(s)
- B Goud
- Unité de Génétique Somatique (URA CNRS 361), Institut Pasteur, Paris, France
| |
Collapse
|
30
|
|
31
|
Abstract
Secretory, vacuolar and membrane protein transport in yeast occurs by processes that are highly conserved in eukaryotic cells. Recent years have seen a proliferation of approaches to the study of vesicular traffic, and in certain instances key breakthroughs have been achieved through the application of genetic and biochemical methods that are well suited to yeast as an experimental organism. The availability of the genetic approach has led to molecular insights concerning the mechanisms of vesicle biogenesis, targeting and fusion.
Collapse
|
32
|
Dallmann G, Sticher L, Marshallsay C, Nagy F. Molecular characterization of tobacco cDNAs encoding two small GTP-binding proteins. PLANT MOLECULAR BIOLOGY 1992; 19:847-57. [PMID: 1643285 DOI: 10.1007/bf00027080] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
We have isolated two cDNAs encoding small GTP-binding proteins from leaf cDNA libraries. These cDNAs encode distinct proteins which show considerable homology to members of the ras superfamily. Np-ypt3, a 1044 bp long Nicotiana plumbaginifolia cDNA, encodes a 24.4 kDa protein which shows 65% amino acid sequence similarity to the Schizosaccharomyces pombe ypt3 protein. The N-ypt3 gene is differentially expressed in mature flowering plants. Expression of this gene is weak in leaves, higher in stems and roots, but highest in petals, stigmas and stamens. Nt-rab5, a 712 bp long Nicotiana tabacum SR1 cDNA, encodes a 21.9 kDa protein which displays 65% amino acid sequence similarity to mammalian rab5 proteins. The expression pattern of the Nt-rab5 gene is very similar to that of the Np-ypt3 gene. The Nt-rab5 gene is virtually not expressed in leaves, higher in stems and roots, and highest in flowers. Both the Nt-rab5 and Np-ypt3 proteins were expressed in Escherichia coli and shown to bind GTP.
Collapse
Affiliation(s)
- G Dallmann
- Friedrich-Miescher Institute, Basel, Switzerland
| | | | | | | |
Collapse
|
33
|
Newman C, Giannakouros T, Hancock J, Fawell E, Armstrong J, Magee A. Post-translational processing of Schizosaccharomyces pombe YPT proteins. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49914-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
Kinsella B, Maltese W. rab GTP-binding proteins with three different carboxyl-terminal cysteine motifs are modified in vivo by 20-carbon isoprenoids. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50616-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Rexach M, d'Enfert C, Wuestehube L, Schekman R. Genes and proteins required for vesicular transport from the endoplasmic reticulum. Antonie Van Leeuwenhoek 1992; 61:87-92. [PMID: 1580619 DOI: 10.1007/bf00580612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- M Rexach
- Department of Molecular and Cell Biology, Howard Hughes Research Institute, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
36
|
|
37
|
Affiliation(s)
- P Wagner
- Department of Molecular Genetics, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
| | | | | |
Collapse
|
38
|
Abstract
A genetic analysis of secretory pathway function in yeast was initiated some 12 years ago in the laboratory of Randy Schekman. These mutants held great promise in terms of providing an experimental system with which molecular participants of secretory pathway function could be investigated. This early promise has not failed. For the last five years, analysis of yeast secretory pathway function has been at the cutting edge of our understanding of the mechanisms by which proteins travel between intracellular compartments. In some cases, Sacch. cerevisiae has provided a valuable in vivo corroboration of the concepts derived from biochemical studies of mammalian intercompartmental protein transport in vitro. In other cases, studies conducted in the yeast system have defined previously unanticipated involvements for known catalytic activities in the secretory process. It is clear that yeast will continue to play a major role in setting the pace of research directed towards a detailed molecular understanding of protein secretion. Since it is now apparent that the basic strategies that underlie secretory pathway function have been conserved among eukaryotes, further exploitation of the powerful and complementary yeast and mammalian experimental systems guarantees that the next decade will see even greater progress towards our understanding of protein secretion in eukaryotic cells than did the first.
Collapse
Affiliation(s)
- A E Cleves
- Department of Microbiology, University of Illinois, Urbana
| | | |
Collapse
|
39
|
Takai Y, Kaibuchi K, Kikuchi A, Kawata M. Small GTP-binding proteins. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 133:187-230. [PMID: 1577587 DOI: 10.1016/s0074-7696(08)61861-6] [Citation(s) in RCA: 275] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Y Takai
- Department of Biochemistry, Kobe University School of Medicine, Japan
| | | | | | | |
Collapse
|
40
|
Anai T, Hasegawa K, Watanabe Y, Uchimiya H, Ishizaki R, Matsui M. Isolation and analysis of cDNAs encoding small GTP-binding proteins of Arabidopsis thaliana. Gene 1991; 108:259-64. [PMID: 1748311 DOI: 10.1016/0378-1119(91)90442-e] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We previously isolated a DNA fragment from Arabidopsis thaliana homologous to the mammalian ras gene and named it ara [Matsui et al., Gene 76 (1989) 313-319]. Screening of cDNA clones homologous to ara in A. thaliana resulted in the isolation of four homologous genes. The products of these genes, ARA-2, ARA-3, ARA-4 and ARA-5, showed conservation of amino acids (aa) in four regions, all of which are present in small GTP-binding proteins, and are important for GTPase/GTP-binding activities. These products were highly homologous to those of the YPT genes of Saccharomyces cerevisiae and the ypt gene of Schizosaccharomyces pombe in the regions around aa 45, which is thought to be the site interacting with effector molecules. The products of these four genes showed characteristic aa sequence at their C termini, Cys-Cys-Xaa-Xaa. Another characteristic of this family is presence of Ser in place of Gly in the first conserved region (Gly12 of mammalian GTP-binding Ras protein).
Collapse
Affiliation(s)
- T Anai
- Faculty of Science, Kagoshima University, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Chavrier P, Gorvel JP, Stelzer E, Simons K, Gruenberg J, Zerial M. Hypervariable C-terminal domain of rab proteins acts as a targeting signal. Nature 1991; 353:769-72. [PMID: 1944536 DOI: 10.1038/353769a0] [Citation(s) in RCA: 300] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mammalian cells express many ras-like low molecular mass GTP-binding proteins (rab proteins) that are highly homologous to the Ypt1 and Sec4 proteins involved in controlling secretion in yeast. Owing to their structural similarity and to their variety, rab proteins have been postulated to act as specific regulators of membrane traffic in exocytosis and endocytosis, and rab5 has been shown to be involved in early endosome fusion in vitro. In agreement with their postulated functions, all rab proteins studied so far have been found in distinct subcompartments along the exocytic or endocytic pathways. To define the region mediating their specific localization, we transiently expressed rab2, rab5 and rab7 hybrid proteins in BHK cells, and determined their intracellular localization by immunofluorescence confocal microscopy and subcellular fractionation. Here we present evidence that the highly variable C-terminal domain contains structural elements necessary for the association of rab proteins with their specific target membranes in the endocytic pathway.
Collapse
Affiliation(s)
- P Chavrier
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Peterson JB. Small GTP-binding proteins associated with secretory vesicles of Paramecium. THE JOURNAL OF PROTOZOOLOGY 1991; 38:495-501. [PMID: 1920149 DOI: 10.1111/j.1550-7408.1991.tb04823.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
GTP-binding proteins act as molecular switches in a variety of membrane-associated processes, including secretion. One group of GTP-binding proteins, 20-30 kDa, is related to the product of the ras proto-oncogene. In Saccharomyces cerevisiae, ras-like GTP-binding proteins regulate vesicular traffic in secretion. The ciliate protist Paramecium tetraurelia contains secretory vesicles (trichocysts) whose protein contents are released by regulated exocytosis. Using [alpha-32P]GTP and an on-blot assay for GTP-binding, we detected at least seven GTP-binding proteins of low molecular mass (22-31 kDa) in extracts of Paramecium tetraurelia. Subcellular fractions contained characteristic subsets of these seven; cilia were enriched for the smallest (22 kDa). The pattern of GTP-binding proteins was altered in two mutants defective in the formation or discharge of trichocysts. Trichocysts isolated with their surrounding membranes intact contained two minor GTP-binding proteins (23.5 and 29 kDa) and one major GTP-binding protein (23 kDa) that were absent from demembranated trichocysts. This differential localization of GTP-binding proteins suggests functional specialization of specific GTP-binding proteins in ciliary motility and exocytosis.
Collapse
Affiliation(s)
- J B Peterson
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706
| |
Collapse
|
43
|
Sano H, Youssefian S. A novel ras-related rgp1 gene encoding a GTP-binding protein has reduced expression in 5-azacytidine-induced dwarf rice. MOLECULAR & GENERAL GENETICS : MGG 1991; 228:227-32. [PMID: 1715972 DOI: 10.1007/bf00282470] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Exposure of normal, tall rice (Oryza sativa) seedlings to 5-azacytidine, a powerful inhibitor of DNA methylation in vivo, induced both demethylation of genomic DNA and dwarf plants. Genes that had been affected by treatment were identified by differential screening of a cDNA library, and a ras-related gene, rgp1, was subsequently isolated. The cDNA of rgp1 was found to encode a deduced protein sequence of 226 amino acids with a relative molecular mass of 24850, which was most closely related to the ras-related ypt3 protein of fission yeast, Schizosaccharomyces pombe. The rgp1 protein, expressed in transformed Escherichia coli, clearly showed GTP-binding activity. During seedling rgp1 expression was first observed 14 days after germination, reaching a maximum level between 28 and 42 days, and gradually decreased thereafter until 63 days when it attained the same level of expression as in 14-day-old seedlings. Expression of rgp1 was found to be markedly reduced throughout the growth period of both 5-azacytidine-induced dwarf plants and their progenies, relative to levels in untreated tall control plants. These results suggest that expression of rgp1 may be influenced, either directly or indirectly, by DNA methylation, and that the rgp1 protein may play an important role in plant growth and development.
Collapse
Affiliation(s)
- H Sano
- Biotechnology Institute, Akita Prefectural College of Agriculture, Japan
| | | |
Collapse
|
44
|
Moores S, Schaber M, Mosser S, Rands E, O'Hara M, Garsky V, Marshall M, Pompliano D, Gibbs J. Sequence dependence of protein isoprenylation. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98729-6] [Citation(s) in RCA: 275] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Nishikawa S, Nakano A. The GTP-binding Sar1 protein is localized to the early compartment of the yeast secretory pathway. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1093:135-43. [PMID: 1907491 DOI: 10.1016/0167-4889(91)90114-d] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SAR1, the yeast gene which encodes a novel type of small GTP-binding protein, has been shown to be required for protein transport from the endoplasmic reticulum (ER) to the Golgi apparatus. To further the understanding of the function of its product, a lacZ-SAR1 hybrid gene was constructed and a polyclonal antibody was raised against the hybrid protein. This antibody specifically recognizes the SAR1 gene product (Sar1p) as a 23-kDa protein in the yeast cell lysate. We examined the subcellular localization of Sar1p using this antibody. In wild-type cells, Sar1p was predominantly recovered in a rapidly sedimenting membrane fraction that includes the ER. The soluble form of Sar1p was also detected when the protein was overproduced. Immunofluorescence microscopy with the anti-Sar1p antibody showed perinuclear staining that was exaggerated in the ER-accumulating sec18 mutant. Membrane association of Sar1p was shown to be very light. Sar1p was not extracted from the membrane by treatment with alkaline sodium carbonate, and only 1% deoxycholic acid solubilized Sar1p completely. From these results, we suggest that Sar1p is firmly located on the ER membrane where it regulates the ER-Golgi traffic.
Collapse
Affiliation(s)
- S Nishikawa
- Department of Biology, Faculty of Science, University of Tokyo, Japan
| | | |
Collapse
|
46
|
Johnston PA, Archer BT, Robinson K, Mignery GA, Jahn R, Südhof TC. rab3A attachment to the synaptic vesicle membrane mediated by a conserved polyisoprenylated carboxy-terminal sequence. Neuron 1991; 7:101-9. [PMID: 1648935 DOI: 10.1016/0896-6273(91)90078-e] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
rab3A is a small neuronal GTP-binding protein specifically localized to synaptic vesicles. Membrane-bound rab3A behaves like an intrinsic membrane protein in vitro, but reversibly dissociates from synaptic vesicles after exocytosis in vivo. Here we demonstrate that rab3A is attached to synaptic vesicle membranes by a carboxy-terminal Cys-X-Cys sequence that is posttranslationally modified. This modification is inhibited by compactin in a mevalonate-dependent manner, suggesting that the Cys-X-Cys sequence represents a novel polyisoprenylation sequence. Isolation of a rab3 homolog from D. melanogaster reveals high evolutionary conservation of rab3A, including its carboxy-terminal Cys-X-Cys sequence. The posttranslational modifications of soluble and membrane-bound rab3A are biochemically different, but both require the carboxy-terminal Cys-X-Cys sequence and are faithfully reproduced in nonneuronal cells. Our results suggest that the carboxy-terminal Cys-X-Cys sequence of rab3A is polyisoprenylated and is used as its regulatable membrane anchor. Furthermore, the hydrophobic modification of rab3A and its correct intracellular targeting to synaptic vesicles are independent, presumably consecutive events.
Collapse
Affiliation(s)
- P A Johnston
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas 75235
| | | | | | | | | | | |
Collapse
|
47
|
Rossi G, Yu JA, Newman AP, Ferro-Novick S. Dependence of Ypt1 and Sec4 membrane attachment on Bet2. Nature 1991; 351:158-61. [PMID: 1903184 DOI: 10.1038/351158a0] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many small GTP-binding proteins are synthesized as soluble proteins that are post-translationally modified as a prerequisite for membrane attachment. Ypt1 and Sec4 are homologous Raslike GTP-binding proteins that have been proposed to regulate the specificity of vesicular traffic at different stages of the secretory pathway by cycling on and off membranes. Here we show that BET2, initially identified as a gene required for transport from endoplasmic reticulum to Golgi apparatus in yeast, encodes a factor that is needed for the membrane attachment of Ypt1 and Sec4. DNA sequence analysis has revealed that Bet2 is homologous to Dpr1 (Ram1), an essential component of a protein prenyltransferase that modifies Ras, enabling it to attach to membranes. We propose that Bet2 modifies Ypt1 and Sec4 in an analogous manner.
Collapse
Affiliation(s)
- G Rossi
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | |
Collapse
|
48
|
Kinsella B, Maltese W. rab GTP-binding proteins implicated in vesicular transport are isoprenylated in vitro at cysteines within a novel carboxyl-terminal motif. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)93008-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
49
|
Abstract
The small GTP-binding protein rab5 was previously localized on early endosomes and on the cytoplasmic face of the plasma membrane. Using a cell-free assay, we have now tested whether rab5 is involved in controlling an early endocytic fusion event. Fusion could be inhibited by cytosol containing the overexpressed mutant rab5lle133, which does not bind GTP on blots, and by antibodies against rab5, but not against rab2 or rab7. In contrast, fusion was stimulated with cytosol containing overexpressed wild-type rab5. Cytosols containing high levels of rab2 or mutant rab5 with the 9 carboxy-terminal amino acids deleted, which bind GTP on blots, had no effects. Finally, the inhibition mediated by anti-rab5 antibodies could be overcome by complementing the assay with the cytosol containing wild-type rab5, but not with the same cytosol depleted of rab5, nor with cytosol containing the rab5 mutants or rab2. These in vitro findings strongly suggest that rab5 is involved in the process of early endosome fusion.
Collapse
Affiliation(s)
- J P Gorvel
- European Molecular Biology Laboratory, Heidelberg, Federal Republic of Germany
| | | | | | | |
Collapse
|
50
|
Abstract
Many newly synthesized proteins must be translocated across one or more membranes to reach their destination in the individual organelles or membrane systems. Translocation, mostly requiring an energy source, a signal on the protein itself, loose conformation of the protein and the presence of cytosolic and/or membrane receptor-like proteins, is often accompanied by covalent modifications of transported proteins. In this review I discuss these aspects of protein transport via the classical secretory pathway and/or special translocation mechanisms in the unicellular eukaryotic organism Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- J Horák
- Institute of Physiology, Czechoslovak Academy of Sciences, Prague
| |
Collapse
|