1
|
Powis G, Meuillet EJ, Indarte M, Booher G, Kirkpatrick L. Pleckstrin Homology [PH] domain, structure, mechanism, and contribution to human disease. Biomed Pharmacother 2023; 165:115024. [PMID: 37399719 DOI: 10.1016/j.biopha.2023.115024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
The pleckstrin homology [PH] domain is a structural fold found in more than 250 proteins making it the 11th most common domain in the human proteome. 25% of family members have more than one PH domain and some PH domains are split by one, or several other, protein domains although still folding to give functioning PH domains. We review mechanisms of PH domain activity, the role PH domain mutation plays in human disease including cancer, hyperproliferation, neurodegeneration, inflammation, and infection, and discuss pharmacotherapeutic approaches to regulate PH domain activity for the treatment of human disease. Almost half PH domain family members bind phosphatidylinositols [PIs] that attach the host protein to cell membranes where they interact with other membrane proteins to give signaling complexes or cytoskeleton scaffold platforms. A PH domain in its native state may fold over other protein domains thereby preventing substrate access to a catalytic site or binding with other proteins. The resulting autoinhibition can be released by PI binding to the PH domain, or by protein phosphorylation thus providing fine tuning of the cellular control of PH domain protein activity. For many years the PH domain was thought to be undruggable until high-resolution structures of human PH domains allowed structure-based design of novel inhibitors that selectively bind the PH domain. Allosteric inhibitors of the Akt1 PH domain have already been tested in cancer patients and for proteus syndrome, with several other PH domain inhibitors in preclinical development for treatment of other human diseases.
Collapse
Affiliation(s)
- Garth Powis
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA.
| | | | - Martin Indarte
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA
| | - Garrett Booher
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA
| | - Lynn Kirkpatrick
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Aspenström P. The Role of Fast-Cycling Atypical RHO GTPases in Cancer. Cancers (Basel) 2022; 14:cancers14081961. [PMID: 35454871 PMCID: PMC9029563 DOI: 10.3390/cancers14081961] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary For many years, cancer-associated mutations in RHO GTPases were not identified and observations suggesting roles for RHO GTPases in cancer were sparse. Instead, RHO GTPases were considered primarily to regulate cell morphology and cell migration, processes that rely on the dynamic behavior of the cytoskeleton. This notion is in contrast to the RAS proteins, which are famous oncogenes and found to be mutated at high incidence in human cancers. Recent advancements in the tools for large-scale genome analysis have resulted in a paradigm shift and RHO GTPases are today found altered in many cancer types. This review article deals with the recent views on the roles of RHO GTPases in cancer, with a focus on the so-called fast-cycling RHO GTPases. Abstract The RHO GTPases comprise a subfamily within the RAS superfamily of small GTP-hydrolyzing enzymes and have primarily been ascribed roles in regulation of cytoskeletal dynamics in eukaryotic cells. An oncogenic role for the RHO GTPases has been disregarded, as no activating point mutations were found for genes encoding RHO GTPases. Instead, dysregulated expression of RHO GTPases and their regulators have been identified in cancer, often in the context of increased tumor cell migration and invasion. In the new landscape of cancer genomics, activating point mutations in members of the RHO GTPases have been identified, in particular in RAC1, RHOA, and CDC42, which has suggested that RHO GTPases can indeed serve as oncogenes in certain cancer types. This review describes the current knowledge of these cancer-associated mutant RHO GTPases, with a focus on how their altered kinetics can contribute to cancer progression.
Collapse
Affiliation(s)
- Pontus Aspenström
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology (IGP), Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
3
|
Activated Rho GTPases in Cancer-The Beginning of a New Paradigm. Int J Mol Sci 2018; 19:ijms19123949. [PMID: 30544828 PMCID: PMC6321241 DOI: 10.3390/ijms19123949] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 12/26/2022] Open
Abstract
Involvement of Rho GTPases in cancer has been a matter of debate since the identification of the first members of this branch of the Ras superfamily of small GTPases. The Rho GTPases were ascribed important roles in the cell, although these were restricted to regulation of cytoskeletal dynamics, cell morphogenesis, and cell locomotion, with initially no clear indications of direct involvement in cancer progression. This paradigm has been challenged by numerous observations that Rho-regulated pathways are often dysregulated in cancers. More recently, identification of point mutants in the Rho GTPases Rac1, RhoA, and Cdc42 in human tumors has finally given rise to a new paradigm, and we can now state with confidence that Rho GTPases serve as oncogenes in several human cancers. This article provides an exposé of current knowledge of the roles of activated Rho GTPases in cancers.
Collapse
|
4
|
Croisé P, Brunaud L, Tóth P, Gasman S, Ory S. Inhibition of Cdc42 and Rac1 activities in pheochromocytoma, the adrenal medulla tumor. Small GTPases 2016; 8:122-127. [PMID: 27355516 DOI: 10.1080/21541248.2016.1202634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Altered Rho GTPase signaling has been linked to many types of cancer. As many small G proteins, Rho GTPases cycle between an active and inactive state thanks to specific regulators that catalyze exchange of GDP into GTP (Rho-GEF) or hydrolysis of GTP into GDP (Rho-GAP). Recent studies have shown that alteration takes place either at the level of Rho proteins themselves (expression levels, point mutations) or at the level of their regulators, mostly RhoGEFs and RhoGAPs. Most reports describe Rho GTPases gain of function that may participate to the tumorigenesis processes. In contrast, we have recently reported that decreased activities of Cdc42 and Rac1 as well as decreased expression of 2 Rho-GEFs, FARP1 and ARHGEF1, correlate with pheochromocytomas, a tumor developing in the medulla of the adrenal gland (Croisé et al., Endocrine Related Cancer, 2016). Here we highlight the major evidence and further study the correlation between Rho GTPases activities and expression levels of ARHGEF1 and FARP1. Finally we also discuss how the decrease of Cdc42 and Rac1 activities may help human pheochromocytomas to develop and comment the possible relationship between FARP1, ARHGEF1 and the 2 Rho GTPases Cdc42 and Rac1 in tumorigenesis.
Collapse
Affiliation(s)
- Pauline Croisé
- a Institut des Neurosciences Cellulaires et Intégratives (INCI) , Strasbourg , France.,b Centre National de la Recherche Scientifique (CNRS UPR 3212) , Strasbourg , France.,c Université de Strasbourg , Strasbourg , France
| | - Laurent Brunaud
- d Service de Chirurgie Digestive , Hépato-bilaire et Endocrinienne, CHRU Nancy-Brabois , Vandoeuvre les Nancy, France
| | - Petra Tóth
- a Institut des Neurosciences Cellulaires et Intégratives (INCI) , Strasbourg , France.,b Centre National de la Recherche Scientifique (CNRS UPR 3212) , Strasbourg , France.,c Université de Strasbourg , Strasbourg , France
| | - Stéphane Gasman
- a Institut des Neurosciences Cellulaires et Intégratives (INCI) , Strasbourg , France.,b Centre National de la Recherche Scientifique (CNRS UPR 3212) , Strasbourg , France.,c Université de Strasbourg , Strasbourg , France
| | - Stéphane Ory
- a Institut des Neurosciences Cellulaires et Intégratives (INCI) , Strasbourg , France.,b Centre National de la Recherche Scientifique (CNRS UPR 3212) , Strasbourg , France.,c Université de Strasbourg , Strasbourg , France
| |
Collapse
|
5
|
Gerovska D, Araúzo-Bravo MJ. Does mouse embryo primordial germ cell activation start before implantation as suggested by single-cell transcriptomics dynamics? Mol Hum Reprod 2016; 22:208-25. [PMID: 26740066 DOI: 10.1093/molehr/gav072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 12/07/2015] [Indexed: 12/19/2022] Open
Abstract
STUDY HYPOTHESIS Does primordial germ cell (PGC) activation start before mouse embryo implantation, and does the possible regulation of the DNA (cytosine-5-)-methyltransferase 3-like (Dnmt3l) by transcription factor AP-2, gamma (TCFAP2C) have a role in this activation and in the primitive endoderm (PE)-epiblast (EPI) lineage specification? STUDY FINDING A burst of expression of PGC markers, such as Dppa3/Stella, Ifitm2/Fragilis, Fkbp6 and Prdm4, is observed from embryonic day (E) 3.25, and some of them, together with the late germ cell markers Zp3, Mcf2 and Morc1, become restricted to the EPI subpopulation at E4.5, while the dynamics analysis of the PE-EPI transitions in the single-cell data suggests that TCFAP2C transitorily represses Dnmt3l in EPI cells at E3.5 and such repression is withdrawn with reactivation of Dnmt3l expression in PE and EPI cells at E4.5. WHAT IS KNOWN ALREADY In the mouse preimplantation embryo, cells with the same phenotype take different fates based on the orchestration between topological clues (cell polarity, positional history and division orientation) and gene regulatory rules (at transcriptomics and epigenomics level), prompting the proposal of positional, stochastic and combined models explaining the specification mechanism. PGC specification starts at E6.0-6.5 post-implantation. In view of the important role of DNA methylation in developmental events, the cross-talk between some transcription factors and DNA methyltransferases is of particular relevance. TCFAP2C has a CpG DNA methylation motif that is not methylated in pluripotent cells and that could potentially bind on DNMT3L, the stimulatory DNA methyltransferase co-factor that assists in the process of de novo DNA methylation. Chromatin-immunoprecipitation analysis has demonstrated that Dnmt3l is indeed a target of TCFAP2C. STUDY DESIGN, SAMPLES/MATERIALS, METHODS We aimed to assess the timing of early preimplantation events and to understand better the segregation of the inner cell mass (ICM) into PE and EPI. We designed a single-cell transcriptomics dynamics computational study to identify markers of the PE-EPI bifurcation in ICM cells through searching for statistically significant (using the Student's t-test method) differently expressed genes (DEGs) between PE and EPI cells from E3.5 to E4.5. The DEGs common for E3.5 and E4.5 were used as the markers defining the steady states. We collected microarray and next-generation sequencing transcriptomics data from public databases from bulk populations and single cells from mice at E3.25, E3.5 and E4.5. The results are based on three independent single-cell transcriptomics data sets, with a fold change of 3 and P-value <0.01 for the DEG selection. MAIN RESULTS AND THE ROLE OF CHANCE The dynamics analysis revealed new transitory E3.5 and steady PE and EPI markers. Among the transitory E3.5 PE markers (Dnmt3l, Dusp4, Cpne8, Akap13, Dcaf12l1, Aaed1, B4galt6, BC100530, Rnpc3, Tfpi, Lgalsl, Ckap4 and Fbxl20), several (Dusp4, Akap13, Cpn8, Dcaf12l1 and Tfpi) are related to the extracellular regulated kinase pathway. We also identified new transitory E3.5 EPI markers (Sgk1, Mal, Ubxn2a, Atg16l2, Gm13102, Tcfap2c, Hexb, Slc1a1, Svip, Liph and Mier3), six new stable PE markers (Sdc4, Cpn1, Dkk1, Havcr1, F2r/Par1 and Slc7a6os) as well as three new stable EPI markers (Zp3, Mcf2 and Hexb), which are known to be late stage germ cell markers. We found that mouse PGC marker activation starts at least at E3.25 preimplantation. The transcriptomics dynamics analyses support the regulation of Dnmt3l expression by TCFAP2C. LIMITATIONS, REASONS FOR CAUTION Since the regulation of Dnmt3l by TCFAP2C is based on computational prediction of DNA methylation motifs, Chip-Seq and transcriptomics data, functional studies are required to validate this result. WIDER IMPLICATIONS OF THE FINDINGS We identified a collection of previously undescribed E3.5-specific PE and EPI markers, and new steady PE and EPI markers. Identification of these genes, many of which encode cell membrane proteins, will facilitate the isolation and characterization of early PE and EPI populations. Since it is so well established in the literature that mouse PGC specification is a post-implantation event, it was surprising for us to see activation of PGC markers as early as E3.25 preimplantation, and identify the newly found steady EPI markers as late germ cell markers. The discovery of such early activation of PGC markers has important implications in the derivation of germ cells from pluripotent cells (embryonic stem cells or induced pluripotent stem cells), since the initial stages of such derivation resemble early development. The early activation of PGC markers points out the difficulty of separating PGC cells from pluripotent populations. Collectively, our results suggest that the combining of the precision of single-cell omics data with dynamic analysis of time-series data can establish the timing of some developmental stages as earlier than previously thought. LARGE-SCALE DATA Not applicable. STUDY FUNDING AND COMPETING INTERESTS This work was supported by grants DFG15/14 and DFG15/020 from Diputación Foral de Gipuzkoa (Spain), and grant II14/00016 from I + D + I National Plan 2013-2016 (Spain) and FEDER funds. The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Daniela Gerovska
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, Calle Doctor Beguiristain s/n, 20014 San Sebastián - Donostia, Spain
| | - Marcos J Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, Calle Doctor Beguiristain s/n, 20014 San Sebastián - Donostia, Spain IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
6
|
Vanni C, Ognibene M, Finetti F, Mancini P, Cabodi S, Segalerba D, Torrisi MR, Donnini S, Bosco MC, Varesio L, Eva A. Dbl oncogene expression in MCF-10 A epithelial cells disrupts mammary acinar architecture, induces EMT and angiogenic factor secretion. Cell Cycle 2015; 14:1426-37. [PMID: 25723869 DOI: 10.1080/15384101.2015.1021516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The proteins of the Dbl family are guanine nucleotide exchange factors (GEFs) of Rho GTPases and are known to be involved in cell growth regulation. Alterations of the normal function of these proteins lead to pathological processes such as developmental disorders, neoplastic transformation, and tumor metastasis. We have previously demonstrated that expression of Dbl oncogene in lens epithelial cells modulates genes encoding proteins involved in epithelial-mesenchymal-transition (EMT) and induces angiogenesis in the lens. Our present study was undertaken to investigate the role of Dbl oncogene in epithelial cells transformation, providing new insights into carcinoma progression.To assess how Dbl oncogene can modulate EMT, cell migration, morphogenesis, and expression of pro-apoptotic and angiogenic factors we utilized bi- and 3-dimensional cultures of MCF-10 A cells. We show that upon Dbl expression MCF-10 A cells undergo EMT. In addition, we found that Dbl overexpression sustains Cdc42 and Rac activation inducing morphological alterations, characterized by the presence of lamellipodia and conferring a high migratory capacity to the cells. Moreover, Dbl expressing MCF-10 A cells form altered 3D structures and can induce angiogenesis by producing proangiogenic factors such as CCL2. These results support a role for Dbl oncogene in epithelial cell differentiation and transformation and suggest the relevance of GEF deregulation in tumor onset and progression.
Collapse
Affiliation(s)
- Cristina Vanni
- a Laboratory of Molecular Biology ; Istituto Giannina Gaslini ; Genova , Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Banerjee S, Jha HC, Robertson ES. Regulation of the metastasis suppressor Nm23-H1 by tumor viruses. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:207-24. [PMID: 25199839 DOI: 10.1007/s00210-014-1043-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/21/2014] [Indexed: 12/16/2022]
Abstract
Metastasis is the most common cause of cancer mortality. To increase the survival of patients, it is necessary to develop more effective methods for treating as well as preventing metastatic diseases. Recent advancement of knowledge in cancer metastasis provides the basis for development of targeted molecular therapeutics aimed at the tumor cell or its interaction with the host microenvironment. Metastasis suppressor genes (MSGs) are promising targets for inhibition of the metastasis process. During the past decade, functional significance of these genes, their regulatory pathways, and related downstream effector molecules have become a major focus of cancer research. Nm23-H1, first in the family of Nm23 human homologues, is a well-characterized, anti-metastatic factor linked with a large number of human malignancies. Mounting evidence to date suggests an important role for Nm23-H1 in reducing virus-induced tumor cell motility and migration. A detailed understanding of the molecular association between oncogenic viral antigens with Nm23-H1 may reveal the underlying mechanisms for tumor virus-associated malignancies. In this review, we will focus on the recent advances to our understanding of the molecular basis of oncogenic virus-induced progression of tumor metastasis by deregulation of Nm23-H1.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA
| | | | | |
Collapse
|
8
|
Gupta M, Qi X, Thakur V, Manor D. Tyrosine phosphorylation of Dbl regulates GTPase signaling. J Biol Chem 2014; 289:17195-202. [PMID: 24778185 DOI: 10.1074/jbc.m114.573782] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rho GTPases are molecular "switches" that cycle between "on" (GTP-bound) and "off" (GDP-bound) states and regulate numerous cellular activities such as gene expression, protein synthesis, cytoskeletal rearrangements, and metabolic responses. Dysregulation of GTPases is a key feature of many diseases, especially cancers. Guanine nucleotide exchange factors (GEFs) of the Dbl family are activated by mitogenic cell surface receptors and activate the Rho family GTPases Cdc42, Rac1, and RhoA. The molecular mechanisms that regulate GEFs from the Dbl family are poorly understood. Our studies reveal that Dbl is phosphorylated on tyrosine residues upon stimulation by growth factors and that this event is critical for the regulated activation of the GEF. These findings uncover a novel layer of complexity in the physiological regulation of this protein.
Collapse
Affiliation(s)
- Meghana Gupta
- From the Departments of Pharmacology, and Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Xiaojun Qi
- Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Varsha Thakur
- Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Danny Manor
- From the Departments of Pharmacology, and Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
9
|
Ognibene M, Vanni C, Blengio F, Segalerba D, Mancini P, De Marco P, Torrisi MR, Bosco MC, Varesio L, Eva A. Identification of a novel mouse Dbl proto-oncogene splice variant: evidence that SEC14 domain is involved in GEF activity regulation. Gene 2014; 537:220-9. [PMID: 24412292 DOI: 10.1016/j.gene.2013.12.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/23/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
Abstract
The Rho guanine nucleotide exchange factor protoDbl is involved in different biochemical pathways affecting cell proliferation and migration. The N-terminal sequence of protoDbl contains negative regulatory elements that restrict the catalytic activity of the DH-PH module. Here, we report the identification of a new mouse protoDbl splice variant lacking exon 3. We found that the splice variant mRNA is expressed in the spleen and bone marrow lymphocytes, adrenal gland, gonads and brain. The protoDbl variant protein was detectable in the brain. The newly identified variant displays the disruption of the SEC14 domain, positioned on exons 2 and 3 in the protoDbl N-terminal region. We show here that an altered SEC14 sequence leads to enhanced Dbl translocation to the plasma membrane and to augmented transforming and exchange activity.
Collapse
Affiliation(s)
- Marzia Ognibene
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Cristina Vanni
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Fabiola Blengio
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Daniela Segalerba
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Patrizia Mancini
- Department of Experimental Medicine, Università di Roma "La Sapienza", 00161 Roma, Italy
| | - Patrizia De Marco
- Laboratory of Neurosurgery, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Maria R Torrisi
- Department of Experimental Medicine, Università di Roma "La Sapienza", 00161 Roma, Italy; S. Andrea Hospital, 00161 Roma, Italy
| | - Maria C Bosco
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Luigi Varesio
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, 16147 Genova, Italy.
| |
Collapse
|
10
|
Marino N, Marshall JC, Steeg PS. Protein-protein interactions: a mechanism regulating the anti-metastatic properties of Nm23-H1. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2011. [PMID: 21713383 DOI: 10.07/s00210-011-0646-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nm23-H1, also known as NDPK-A, was the first of a class of metastasis suppressor genes to be identified. Overexpression of Nm23-H1 in metastatic cell lines (melanoma, breast carcinoma, prostate, colon, hepatocellular, and oral squamous cell carcinoma) reduced cell motility in in vitro assays and metastatic potential in xenograft models, without a significant effect on primary tumor size. The mechanism of Nm23-H1 suppression of metastasis, however, is incompletely understood. Nm23-H1 has been reported to bind proteins, including those in small G-protein complexes, transcriptional complexes, the Map kinase, the TGF-β signaling pathways and the cytoskeleton. Evidence supporting these associations is presented together with evidence of resultant biochemical and phenotypic consequences of association. Cumulatively, the data suggest that part of the anti-metastatic function of Nm23-H1 lies in pathways that it interrupts via binding and inactivation of proteins.
Collapse
Affiliation(s)
- Natascia Marino
- Women's Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
11
|
Mutational analysis of proto-oncogene Dbl on Xq27 in testicular germ cell tumors reveals a rare SNP in a patient with bilateral undescended testis. World J Urol 2011; 27:811-5. [PMID: 19373475 DOI: 10.1007/s00345-009-0408-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 03/23/2009] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES An abundance of X chromosomes in testicular germ cell tumors (TGCTs), and a candidate TGCTs susceptibility gene (TGCT1) on Xq27 highlight the potential involvement of X chromosomes in TGCT pathogenesis. However, the TGCT1 on Xq27 has so far not been identified. We hypothesized that a somatic mutation of dbl oncogene on Xq27 may play a role for the development of TGCTs. METHODS We have screened 41 TGCT tissues for dbl mutations using single-strand conformation polymorphism (SSCP) analysis. These tissues are composed of 25 seminomatous TGCTs tissues and 16 non-seminomatous TGCTs tissues, including two cases with a rhabdomyosarcoma component. RESULTS Somatic mutations were not detected in the 25 exons of dbl in these TGCTs. However, we found a rare single nucleotide polymorphism (SNP) (T to C nucleotide change) within intron 22 in one out of the 41 TGCTs cases (2%). Furthermore, the sample with the rare SNP was identified as the sole TGCTs case associated with bilateral undescended testis in our series. CONCLUSIONS Our results indicate that proto-oncogene dbl is not a major target for sporadic TGCTs. However, the rare SNP in dbl may affect the susceptibility to undescended testis. Determining the frequency of this SNP in patients with various types of undescended testis in different ethnic groups is a warranted study.
Collapse
|
12
|
Marino N, Marshall JC, Steeg PS. Protein-protein interactions: a mechanism regulating the anti-metastatic properties of Nm23-H1. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:351-62. [PMID: 21713383 DOI: 10.1007/s00210-011-0646-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 03/14/2011] [Indexed: 01/12/2023]
Abstract
Nm23-H1, also known as NDPK-A, was the first of a class of metastasis suppressor genes to be identified. Overexpression of Nm23-H1 in metastatic cell lines (melanoma, breast carcinoma, prostate, colon, hepatocellular, and oral squamous cell carcinoma) reduced cell motility in in vitro assays and metastatic potential in xenograft models, without a significant effect on primary tumor size. The mechanism of Nm23-H1 suppression of metastasis, however, is incompletely understood. Nm23-H1 has been reported to bind proteins, including those in small G-protein complexes, transcriptional complexes, the Map kinase, the TGF-β signaling pathways and the cytoskeleton. Evidence supporting these associations is presented together with evidence of resultant biochemical and phenotypic consequences of association. Cumulatively, the data suggest that part of the anti-metastatic function of Nm23-H1 lies in pathways that it interrupts via binding and inactivation of proteins.
Collapse
Affiliation(s)
- Natascia Marino
- Women's Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
13
|
Stengel K, Zheng Y. Cdc42 in oncogenic transformation, invasion, and tumorigenesis. Cell Signal 2011; 23:1415-23. [PMID: 21515363 DOI: 10.1016/j.cellsig.2011.04.001] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 04/04/2011] [Indexed: 12/23/2022]
Abstract
The Rho family of GTPases represents a class of Ras-related signaling molecules often deregulated in cancer. Rho GTPases switch from a GDP-bound, inactive state to a GTP-bound, active state in response to extracellular stimuli such as mitogens and extracellular matrix. In addition, Rho GTPase signaling can be altered in response to cell intrinsic factors such as changes in oncogenic or tumor suppressor signaling. In their active form, these proteins bind to a number of effector molecules, activating signaling cascades which regulate a variety of cellular processes including cytoskeletal reorganization, cell cycle progression, cell polarity and transcription. Here, we focus on one Rho family member, Cdc42, which is overexpressed in a number of human cancers. Consistent with a role in the promotion of tumorigenesis, activating mutations in Cdc42 and guanine nucleotide exchange factors are transforming, while inhibition of Cdc42 activity can impinge on cellular transformation following the activation of oncoproteins or loss of tumor suppressor function. Furthermore, Cdc42 activity has been implicated in the invasive phenotype which characterizes tumor metastasis, further suggesting that Cdc42 may be a useful target for therapeutic intervention. However, several recent studies in mice have unveiled a putative tumor suppressor function of Cdc42 in several tissue types which may involve cell polarity maintenance, suggesting that the role of Cdc42 in cancer development is complex and may be cell type specific.
Collapse
Affiliation(s)
- Kristy Stengel
- Division of Experimental Hematology and Cancer Biology, Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | |
Collapse
|
14
|
High frequency of development of B cell lymphoproliferation and diffuse large B cell lymphoma in Dbl knock-in mice. J Mol Med (Berl) 2011; 89:493-504. [PMID: 21221514 DOI: 10.1007/s00109-010-0712-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 12/07/2010] [Accepted: 12/15/2010] [Indexed: 01/03/2023]
Abstract
Dbl is the prototype of a large family of GDP-GTP exchange factors for small GTPases of the Rho family. In vitro, Dbl is known to activate Rho, Rac, and Cdc42 and to induce a transformed phenotype in murine fibroblasts. We previously reported that Dbl-null mice are viable and fertile but display defective dendrite elongation of distinct subpopulations of cortical neurons, suggesting a role of Dbl in controlling dendritic growth. To gain deeper insights into the role of Dbl in development and disease, we attempted a knock-in approach to create an endogenous allele that encodes a missense-mutation-mediated loss of function in the DH domain. We generated, by gene targeting technology, a mutant mouse strain by inserting a mutagenized human proto-Dbl cDNA clone expressing only the Dbl N terminus regulatory sequence at the starting codon of murine exon 1. Animals were monitored over a 21-month period, and necropsy specimens were collected for histological examination and immunohistochemistry analysis. Dbl knock-in mice are viable and did not manifest either decreased reproductive performances or gross developmental phenotype but revealed a reduced lifespan compared to wild-type (w.t.) mice and showed, with aging, a B cell lymphoproliferation that often has features of a frank diffuse large B cell lymphoma. Moreover, Dbl knock-in male mice displayed an increased incidence of lung adenoma compared to w.t. mice. These data indicate that Dbl is a tumor susceptibility gene in mice and that loss of function of Dbl DH domain by genetic missense mutations is responsible for induction of diffuse large B cell lymphoma.
Collapse
|
15
|
Ha SA, Kim HK, Yoo J, Kim S, Shin SM, Lee YS, Hur SY, Kim YW, Kim TE, Chung YJ, Jeun SS, Kim DW, Park YG, Kim J, Shin SY, Lee YH, Kim JW. Transdifferentiation-inducing HCCR-1 oncogene. BMC Cell Biol 2010; 11:49. [PMID: 20591135 PMCID: PMC2909153 DOI: 10.1186/1471-2121-11-49] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 06/30/2010] [Indexed: 11/25/2022] Open
Abstract
Background Cell transdifferentiation is characterized by loss of some phenotypes along with acquisition of new phenotypes in differentiated cells. The differentiated state of a given cell is not irreversible. It depends on the up- and downregulation exerted by specific molecules. Results We report here that HCCR-1, previously shown to play an oncogenic role in human cancers, induces epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) in human and mouse, respectively. The stem cell factor receptor CD117/c-Kit was induced in this transdifferentiated (EMT) sarcoma tissues. This MET occurring in HCCR-1 transfected cells is reminiscent of the transdifferentiation process during nephrogenesis. Indeed, expression of HCCR-1 was observed during the embryonic development of the kidney. This suggests that HCCR-1 might be involved in the transdifferentiation process of cancer stem cell. Conclusions Therefore, we propose that HCCR-1 may be a regulatory factor that stimulates morphogenesis of epithelia or mesenchyme during neoplastic transformation.
Collapse
Affiliation(s)
- Seon-Ah Ha
- Molecular Genetic Laboratory, Catholic Medical Research Institute, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Scheele JS, Kolanczyk M, Gantert M, Zemojtel T, Dorn A, Sykes DB, Sykes DP, Möbest DCC, Kamps MP, Räpple D, Duchniewicz M. The Spt-Ada-Gcn5-acetyltransferase complex interaction motif of E2a is essential for a subset of transcriptional and oncogenic properties of E2a-Pbx1. Leuk Lymphoma 2009; 50:816-28. [PMID: 19399691 DOI: 10.1080/10428190902836107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The oncogene E2a-Pbx1 is formed by the t(1;19) translocation, which joins the N-terminal transactivation domain of E2a with the C-terminal homeodomain of PBX1. The goal of this work was to elucidate the mechanisms by which E2a-Pbx1 can lead to deregulated target gene expression. For reporter constructs it was shown that E2a-Pbx1 can activate transcription through homodimer elements (TGATTGAT) or through heterodimer elements with Hox proteins (e.g. TGATTAAT). We show a novel mechanism by which E2a-Pbx1 activates transcription of EF-9 using a promoter in intron 1 of the EF-9 gene, resulting in an aminoterminal truncated transcript. Our results indicate that the LDFS motif of E2a is essential for the transactivation of EF-9, but dispensable for transactivation of fibroblast growth factor 15. The E2a LDFS motif was also essential for proliferation of NIH3T3 fibroblasts but was dispensable for the E2a-Pbx1-induced differentiation arrest of myeloid progenitors.
Collapse
Affiliation(s)
- Jürgen S Scheele
- Department of Medicine I and Pharmacology I, University Hospital Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Murakami M, Meneses PI, Knight JS, Lan K, Kaul R, Verma SC, Robertson ES. Nm23-H1 modulates the activity of the guanine exchange factor Dbl-1. Int J Cancer 2008; 123:500-10. [PMID: 18470881 DOI: 10.1002/ijc.23568] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cytoskeleton rearrangement is necessary for tumor invasion and metastasis. Cellular molecules whose role is to regulate components of the cytoskeletal structure can dictate changes in cellular morphology. One of these molecules is the suppressor of tumor metastasis Nm23-H1. The level of Nm23-H1 expression has been linked to the invasiveness and metastatic potential of human cancers including melanoma and breast cancer. In this report, we demonstrate an interaction between the suppressor of tumor metastasis Nm23-H1, and Dbl-1, an oncoprotein which is associated with guanine exchange and belongs to a family of Guanine Exchange Factors (GEF). Nm23-H1 also was shown to bind pDbl which is the proto-oncoprotein of Dbl. Interestingly, the interaction between Nm23-H1 and Dbl-1 rescues the suppression of the cell motility activity Nm23-H1. Moreover, this interaction results in loss of the ability of the Dbl-1 oncoprotein to function as a GEF for the critical Rho-GTPase family member Cdc42. The loss of GTP loading onto Cdc42 resulted in a dramatic reduction in adhesion stimulated ruffles and suggests that Nm23-H1 can negatively regulate cell migration and tumor metastasis by modulating the activity of Cdc42 through direct interaction with Dbl-1.
Collapse
Affiliation(s)
- Masanao Murakami
- Department of Microbiology, Tumor Virology Program of the Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Kamynina E, Kauppinen K, Duan F, Muakkassa N, Manor D. Regulation of proto-oncogenic dbl by chaperone-controlled, ubiquitin-mediated degradation. Mol Cell Biol 2006; 27:1809-22. [PMID: 17178836 PMCID: PMC1820456 DOI: 10.1128/mcb.01051-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dbl proto-oncogene product is a prototype of a growing family of guanine nucleotide exchange factors (GEFs) that stimulate the activation of small GTP-binding proteins from the Rho family. Mutations that result in the loss of proto-Dbl's amino terminus produce a variant with constitutive GEF activity and high oncogenic potential. Here, we show that proto-Dbl is a short-lived protein that is kept at low levels in cells by efficient ubiquitination and degradation. The cellular fate of proto-Dbl is regulated by interactions with the chaperones Hsc70 and Hsp90 and the protein-ubiquitin ligase CHIP, and these interactions are mediated by the spectrin domain of proto-Dbl. We show that CHIP is the E3 ligase responsible for ubiquitination and proteasomal degradation of proto-Dbl, while Hsp90 functions to stabilize the protein. Onco-Dbl, lacking the spectrin homology domain, cannot bind these regulators and therefore accumulates in cells at high levels, leading to persistent stimulation of its downstream signaling pathways.
Collapse
Affiliation(s)
- Elena Kamynina
- Case School of Medicine, WG-48, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | |
Collapse
|
19
|
Blangy A, Bouquier N, Gauthier-Rouvière C, Schmidt S, Debant A, Leonetti JP, Fort P. Identification of TRIO-GEFD1 chemical inhibitors using the yeast exchange assay. Biol Cell 2006; 98:511-22. [PMID: 16686599 DOI: 10.1042/bc20060023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND INFORMATION Rho GTPases are involved in many biological processes and participate in cancer development. Their activation is catalysed by exchange factors [RhoGEFs (Rho GTPase guanine nucleotide-exchange factor)] of the Dbl family. RhoGEFs display proto-oncogenic features, thus appearing as candidate targets for anticancer drugs. Dominant-negative Rho GTPase mutants have been widely used to block RhoGEF signalling. However, these tools suffer from limitations, due to the high number of RhoGEFs and the complex mechanisms that control Rho GTPase activation. RESULTS RhoG-T17N is a poor inhibitor of its exchange factor TRIO-GEFD1 (first exchange domain of the exchange factor TRIO) in vivo: although it binds to TRIO-GEFD1, RhoG-T17N does not block the downstream signalling. Using the yeast exchange assay, we show that in the presence of TRIO-GEFD1, RhoG-T17N can bind to its effectors, which illustrates how negative mutants may produce misleading interpretations and emphasizes the need for new types of RhoGEF inhibitors. In that prospect, we adapted the yeast exchange assay method to identify RhoGEF inhibitors. Using this novel approach, we screened a 3500-chemical-compound library and identified a potential inhibitor of TRIO-GEFD1. This molecule inhibited TRIO-GEFD1 in vitro. Among the chemical analogues of this compound, we identified two molecules with better inhibitory activity. The three TRIO-GEFD1 inhibitors had no effect on ARHGEF17 and ARNO [ARF (ADP-ribosylation factor) nucleotide-binding-site opener], two exchange factors for RhoA and Arf1 respectively. CONCLUSIONS The development of RhoGEF inhibitors appears as a valuable tool for the study of Rho GTPase signalling pathways. The yeast exchange assay adaptation we present here is suitable to screen for chemical or peptide libraries and identify candidate inhibitors.
Collapse
Affiliation(s)
- Anne Blangy
- Centre de Recherches en Biochimie Macromoléculaire, CNRS (Centre National de la Recherche Scientifique) FRE2593, 1919 route de Mende, 34293 Montpellier Cedex 5, France.
| | | | | | | | | | | | | |
Collapse
|
20
|
Ziv I, Fuchs Y, Preger E, Shabtay A, Harduf H, Zilpa T, Dym N, Ron D. The human sef-a isoform utilizes different mechanisms to regulate receptor tyrosine kinase signaling pathways and subsequent cell fate. J Biol Chem 2006; 281:39225-35. [PMID: 17035228 DOI: 10.1074/jbc.m607327200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Negative feedback is among the key mechanisms for regulating receptor tyrosine kinase (RTK) signaling. Human Sef, a recently identified inhibitor of RTK signaling, encodes different isoforms, including a membrane spanning (hSef-a) and a cytosolic (hSef-b) isoform. Previously, we reported that hSef-b inhibited fibroblast proliferation and prevented the activation of mitogen-activated protein kinase (MAPK), without affecting protein kinase B/Akt or p38 MAPK. Conflicting results were reported concerning hSef-a inhibition of MAPK activation, and the effect of hSef-a on other RTK-induced signaling pathways is unknown. Here we show that, in fibroblasts, similar to hSef-b, ectopic expression of hSef-a inhibited fibroblast growth factor-induced cell proliferation. Unlike hSef-b, however, the growth arrest was mediated via a MAPK-independent mechanism, and was accompanied by elevated p38 MAPK phosphorylation and inhibition of protein kinase B/Akt. In addition, hSef-a, but not hSef-b, mediated apoptosis in fibroblast growth factor-stimulated cells. Chemical inhibitor of p38 MAPK abrogated the effect of hSef-a on apoptosis. In epithelial cells, ectopic expression of hSef-a inhibited the activation of MAPK, whereas down-regulation of endogenous hSef-a significantly increased MAPK activation and accelerated growth factor-dependent cell proliferation. These results indicate that hSef-a is a multifunctional negative modulator of RTK signaling and clearly demonstrate that hSef-a can inhibit the activation of MAPK, although in a cell type-specific manner. Moreover, the differences between the activities of hSef-a and hSef-b suggest that hSef isoforms can control signal specificity and subsequent cell fate by utilizing different mechanisms to modulate RTK signaling.
Collapse
Affiliation(s)
- Inbal Ziv
- Department of Biology, Technion Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Andrew Nesbit M, Bowl MR, Harding B, Schlessinger D, Whyte MP, Thakker RV. X-linked hypoparathyroidism region on Xq27 is evolutionarily conserved with regions on 3q26 and 13q34 and contains a novel P-type ATPase. Genomics 2005; 84:1060-70. [PMID: 15533723 DOI: 10.1016/j.ygeno.2004.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 08/03/2004] [Indexed: 11/19/2022]
Abstract
X-linked hypoparathyroidism (HPT) has been mapped to a 988-kb region on chromosome Xq27 that contains three genes, MCF2/DBL, SOX3, and U7snRNA homologue, and a partial cDNA, AS6. We isolated the full-length AS6 cDNA, determined its genomic organization, and sought for abnormalities in HPT patients. AS6 was identified as the 3' UTR of ATP11C, a novel member of the P-type ATPases, which consists of 31 exons with alternative transcripts. The colocalization of ATP11C with SOX3 and MCF2/DBL on Xq27 mirrors that of ATP11A with SOX1 and MCF2L on 13q34 and ATP11B with SOX2 on 3q26. These colocalizations are evolutionarily conserved in mouse, and analyses indicate that SOX2 divergence likely occurred before the separation of SOX1 and SOX3. Analyses of ATP11C, MCF2, SOX3, and U7snRNA in HPT patients did not reveal mutations, implicating regulatory changes or mutation of an as yet unidentified gene in the etiology of X-linked hypoparathyroidism.
Collapse
Affiliation(s)
- M Andrew Nesbit
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | | | | | | | | | | |
Collapse
|
22
|
Ueda S, Kataoka T, Satoh T. Role of the Sec14-like domain of Dbl family exchange factors in the regulation of Rho family GTPases in different subcellular sites. Cell Signal 2004; 16:899-906. [PMID: 15157669 DOI: 10.1016/j.cellsig.2004.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Accepted: 01/08/2004] [Indexed: 10/26/2022]
Abstract
Mechanisms underlying subcellular region-specific regulation of Rho family GTPases through Dbl family guanine nucleotide exchange factors (GEFs) remain totally unknown. Here we show that the Sec14-like domain, which lies in the N-terminus of the Dbl family GEFs Dbl and Ost, directs the subcellular localization of these GEFs and also their substrate Cdc42. When coexpressed with Cdc42 in human adenocarcinoma HeLa cells, Dbl-I and Ost-I, which lack the Sec14-like domain, translocated Cdc42 to the plasma membrane, where Dbl-I or Ost-I was colocalized. In marked contrast, Dbl-II and Ost-II, which contain the Sec14-like domain, were colocalized with Cdc42 in endomembrane compartments. Furthermore, ruffle membrane formation upon epidermal growth factor treatment was mediated by Dbl-I or Ost-I, but neither Dbl-II nor Ost-II, supporting a notion that GEFs with or without the Sec14-like domain are linked to different upstream signals. By employing a novel method to detect the active GTP-bound form of Cdc42 in situ, we demonstrate that Dbl-I and Ost-I, but neither Dbl-II nor Ost-II, indeed activate colocalized Cdc42.
Collapse
Affiliation(s)
- Shuji Ueda
- Division of Molecular Biology, Department of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo, Kobe 650-0017, Japan
| | | | | |
Collapse
|
23
|
Preger E, Ziv I, Shabtay A, Sher I, Tsang M, Dawid IB, Altuvia Y, Ron D. Alternative splicing generates an isoform of the human Sef gene with altered subcellular localization and specificity. Proc Natl Acad Sci U S A 2004; 101:1229-34. [PMID: 14742870 PMCID: PMC337035 DOI: 10.1073/pnas.0307952100] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) control a multitude of biological processes and are therefore subjected to multiple levels of regulation. Negative feedback is one of the mechanisms that provide an effective means to control RTK-mediated signaling. Sef has recently been identified as a specific antagonist of fibroblast growth factor (FGF) signaling in zebrafish and subsequently in mouse and human. Sef encodes a putative type I transmembrane protein that antagonizes the Ras/mitogen-activated protein kinase pathway in all three species. Mouse Sef was also shown to inhibit the phosphatidylinositol 3-kinase pathway. We show here that an alternative splicing mechanism generates an isoform of human Sef, hSef-b, which unlike the previously reported Sef (hSef-a) is a cytosolic protein. Contrary to hSef-a, which is ubiquitously expressed, hSef-b transcripts display a restricted pattern of expression in human tissues. hSef-b inhibits FGF-induced cell proliferation and prevents the activation of mitogen-activated protein kinase without affecting the upstream component MAPK kinase. Furthermore, hSef-b does not antagonize FGF induction of the phosphatidylinositol 3-kinase pathway. In addition to the effects on FGF signaling, hSef-b inhibited cellular response to platelet-derived growth factor but not other RTK ligands. Therefore, alternative splicing of the hSef gene expands the Sef feedback inhibition repertoire of RTK signaling.
Collapse
Affiliation(s)
- Ella Preger
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Komai K, Okayama R, Kitagawa M, Yagi H, Chihara K, Shiozawa S. Alternative splicing variants of the human DBL (MCF-2) proto-oncogene. Biochem Biophys Res Commun 2002; 299:455-8. [PMID: 12445822 DOI: 10.1016/s0006-291x(02)02645-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The DBL (MCF-2) proto-oncogene is a prototype guanine nucleotide exchange factor (GEF) that modulates the Rho family of GTPases. In this communication we describe the isolation of three novel splicing variants of Dbl. The prototype Dbl gene (designated var.1 here) contains 25 exons, while splicing variant 2 (var.2) lacks exons 23 and 24. Var.3 contains additional 3 exons from 5(')-UTR in place of exon 1, while var.4, var.2, and var.3 contain a 48bp insertion between exons 10 and 11, resulting in the insertion of 16 amino acids. We found that var.1 was expressed only in brain, whereas var.3 was expressed in heart, kidney, spleen, liver, and testis, and var.4 in brain, heart, kidney, testis, placenta, stomach, and peripheral blood. The Dbl protein was detectable in brain, heart, kidney, intestine, muscle, lung, and testis. An assay for GEF activity revealed that the var.2 exhibits decreased GEF activity towards Cdc42, var.3 exhibits a weak but significant activity toward Rac1 and Cdc42, var.4 exhibits significant activity toward RhoA and Cdc42, while var.1 exhibits no activity toward RhoA, Rac1, or Cdc42. In summary, we describe 4 splicing variants of the human DBL proto-oncogene that show different tissue distributions and GEF specificities.
Collapse
Affiliation(s)
- Koichiro Komai
- Department of Rheumatology, Kobe University, FHS School of Medicine, 7-10-2 Tomogaoka Suma, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Vanni C, Mancini P, Gao Y, Ottaviano C, Guo F, Salani B, Torrisi MR, Zheng Y, Eva A. Regulation of proto-Dbl by intracellular membrane targeting and protein stability. J Biol Chem 2002; 277:19745-53. [PMID: 11907027 DOI: 10.1074/jbc.m111025200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pleckstrin homology (PH) domain of onco-Dbl, a guanine nucleotide exchange factor (GEF) for Cdc42 and RhoA GTPases, interacts with phosphoinositides (PIPs). This interaction modulates both the GEF activity and the targeting to the plasma membrane of onco-Dbl. Conversely, we have previously shown that in proto-Dbl an intramolecular interaction between the N-terminal domain and the PH domain imposes a negative regulation on both the DH and PH functions, suppressing its transforming activity. Here we have further investigated the mode of regulation of proto-Dbl by generating proto-Dbl mutants deleted of the last C-terminal 50 amino acids, which contain a PEST motif, and/or unable to bind to PIPs due to substitutions of the positively charged residues of the PH domain. The PH mutants of proto-Dbl retained a relative weak GEF activity toward Cdc42 and RhoA in vitro, but their RhoA activating potential was impaired in vivo. Further, these mutants lost both the plasma membrane targeting and the transforming activities, contrary to the PH mutants of onco-Dbl that retained the exchange activity both in vitro and in vivo and showed significant, but partially, reduced transforming activity. Deletion of the C-terminal sequences from onco-Dbl did not affect its function, whereas similar deletion of proto-Dbl led to an increase of transforming activity. Analysis of the half-life of the proto-Dbl mutants revealed that deletion of the C-terminal sequences increases the stability of the protein. Overall, the transformation potential of proto-Dbl mutants was associated with an augmented localization of the protein to the plasma membrane and a strong activation of Jun N-terminal kinase activity and transcription of cyclin D1. Together with previous observations, these data suggest that the biological activity of proto-Dbl is tightly regulated by a combination of mechanisms that involve intramolecular interaction, PH binding to PIPs, and the N- and C-terminal domain-dependent turnover of the protein.
Collapse
Affiliation(s)
- Cristina Vanni
- Laboratorio di Biologia Molecolare, Istituto G. Gaslini, Largo Gaslini 5, 16147 Genova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hirsch E, Pozzato M, Vercelli A, Barberis L, Azzolino O, Russo C, Vanni C, Silengo L, Eva A, Altruda F. Defective dendrite elongation but normal fertility in mice lacking the Rho-like GTPase activator Dbl. Mol Cell Biol 2002; 22:3140-8. [PMID: 11940671 PMCID: PMC133768 DOI: 10.1128/mcb.22.9.3140-3148.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dbl is the prototype of a large family of GDP-GTP exchange factors for small GTPases of the Rho family. In vitro, Dbl is known to activate Rho and Cdc42 and to induce a transformed phenotype. Dbl is specifically expressed in brain and gonads, but its in vivo functions are largely unknown. To assess its role in neurogenesis and gametogenesis, targeted deletion of the murine Dbl gene was accomplished in embryonic stem cells. Dbl-null mice are viable and did not show either decreased reproductive performances or obvious neurological defects. Histological analysis of mutant testis showed normal morphology and unaltered proliferation and survival of spermatogonia. Dbl-null brains indicated a correct disposition of the major neural structures. Analysis of cortical stratification indicated that Dbl is not crucial for neuronal migration. However, in distinct populations of Dbl-null cortical pyramidal neurons, the length of dendrites was significantly reduced, suggesting a role for Dbl in dendrite elongation.
Collapse
Affiliation(s)
- Emilio Hirsch
- Dipartimento di Genetica, Biologia e Biochimica, Università di Torino, 10126 Turin, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liberto M, Cobrinik D, Minden A. Rho regulates p21(CIP1), cyclin D1, and checkpoint control in mammary epithelial cells. Oncogene 2002; 21:1590-9. [PMID: 11896588 DOI: 10.1038/sj.onc.1205242] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2001] [Revised: 11/30/2001] [Accepted: 12/06/2001] [Indexed: 11/08/2022]
Abstract
The small GTPase Rho is important for cell cycle progression and Ras transformation in fibroblasts. However, it is unclear whether Rho is needed for proliferation in other cell types, and its targets in promoting normal cell cycle progression are unknown. Here, we demonstrate that Rho is required for G1 to S progression in MCF10A mammary epithelial cells, both in response to EGF and in response to oncogenic Ras. We describe two effects of Rho, the repression of p21(CIP1) and the induction of cyclin D1, that may underlie its role in promoting S phase entry. The Rho inhibitor, C3 exotransferase, induced p21(CIP1) both in EGF-stimulated and V12Ras-expressing cells. In addition, C3 blocked EGF-stimulated cyclin D1 promoter activity whereas V14RhoA induced the cyclin D1 promoter and cooperated with V12Ras in cyclin D1 induction. Finally, a high proportion of cells co-expressing V14RhoA and V12Ras displayed lobulated, polyploid nuclei that were actively synthesizing DNA. Our results demonstrate that Rho plays a fundamental role in promoting Ras-dependent S phase entry in mammary epithelial cells, whether in response to normal or oncogenic signaling, and indicate that in cells expressing oncogenic Ras, the activation of Rho diminishes p21(CIP1) expression, increases cyclin D1 promoter activity, and uncouples DNA synthesis from mitosis.
Collapse
Affiliation(s)
- Muriel Liberto
- Columbia University, Biological Sciences MC 2460, Sherman Fairchild Center, Room 813, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | | | | |
Collapse
|
28
|
Hansel DE, Quiñones ME, Ronnett GV, Eipper BA. Kalirin, a GDP/GTP exchange factor of the Dbl family, is localized to nerve, muscle, and endocrine tissue during embryonic rat development. J Histochem Cytochem 2001; 49:833-44. [PMID: 11410608 DOI: 10.1177/002215540104900704] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Kalirin, a homologue of trio and UNC-73, has been previously demonstrated to cause cytoskeletal rearrangements, enhanced outgrowth of neuritic processes, and altered secretion. In the adult rat, kalirin is specifically localized to the central nervous system, with the main adult isoform, kalirin-7, concentrated in neuronal postsynaptic densities. In this study we examined the expression of kalirin in rat tissue from embryonic Day 10 (E10) through E18, using an antibody that detects all known kalirin isoforms. Kalirin expression in the embryo was more widespread than in the adult, with localization of kalirin protein to both neuronal and non-neuronal tissue, such as muscle, lung, intestinal epithelium, and pancreas. In neurons, kalirin was localized both in cell bodies and axon processes; in muscle tissue, kalirin was highly localized to migrating myogenic cells and at muscle attachment sites. Western blotting analysis indicated that kalirin-7, the major adult isoform, was a minor component of embryonic kalirin; the main isoform expressed in the embryo was kalirin-9. This is the first identification of kalirin expression in embryonic tissue and the first demonstration of non-neuronal expression of kalirin. (J Histochem Cytochem 49:833-844, 2001)
Collapse
Affiliation(s)
- D E Hansel
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
29
|
Yang HY, Wilkening S, Iadarola MJ. Spinal cord genes enriched in rat dorsal horn and induced by noxious stimulation identified by subtraction cloning and differential hybridization. Neuroscience 2001; 103:493-502. [PMID: 11246163 DOI: 10.1016/s0306-4522(00)00573-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Persistent nociceptive input increases neuronal excitability and induces a program of gene expression in the dorsal spinal cord. The alteration in gene expression commences with phosphorylation and induction of immediate early genes and proceeds to target genes. Only a few target genes have been identified as yet. The present report uses a polymerase chain reaction-based subtraction cloning procedure to obtain an "anatomically focused" complementary DNA library enriched in transcripts related to sensory spinal cord (rat dorsal horn minus ventral horn). A subset of clones from this library (n=158) was screened to verify dorsal horn enrichment and to identify those regulated by carrageenan-induced peripheral inflammation. Molecular classes which displayed enriched expression included a proto-oncogene not previously associated with sensory processes, two regulators of the Rho/Rac pathway which controls cell shape, and three genes involved in cytoskeletal regulation and scaffolding. Additional transcripts coded for proteins involved in intercellular communication or intracellular function. Within the set of 158 transcripts, one known and two unknown genes were induced by persistent noxious input. The known gene codes for the secreted cysteine proteinase inhibitor, cystatin C, suggesting that modulation of extracellular proteolytic activity occurs. Since it is secreted, cystatin C may also provide a cerebrospinal fluid bio-marker for persistent pain states. Using a combined anatomical and functional approach, we have extended the molecular repertoire of genes expressed and induced in second-order neurons or supporting glial cells in several new directions, with particular emphasis on regulation of cell morphology and plasma membrane dynamics. Some of these proteins reveal new pathways for information signaling in the sensory half of the spinal cord and require further research to understand their role in the adult spinal cord. The induced genes may provide new molecular targets for therapeutic development and provide new probes for investigating the dynamic state of cellular activity that occurs during persistent pain states.
Collapse
Affiliation(s)
- H Y Yang
- Neuronal Gene Expression Unit, Pain and Neurosensory Mechanisms Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 49, 49 Convent Drive, MSC 4410, Bethesda, MD 20892-4410, USA.
| | | | | |
Collapse
|
30
|
Kato-Stankiewicz J, Ueda S, Kataoka T, Kaziro Y, Satoh T. Epidermal growth factor stimulation of the ACK1/Dbl pathway in a Cdc42 and Grb2-dependent manner. Biochem Biophys Res Commun 2001; 284:470-7. [PMID: 11394904 DOI: 10.1006/bbrc.2001.5004] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tyrosine kinase ACK1 phosphorylates and activates the guanine nucleotide exchange factor Dbl, which in turn directs the Rho family GTP-binding proteins. However, the regulatory mechanism of ACK1/Dbl signaling in response to extracellular stimuli remains poorly understood. Here we describe that epidermal growth factor stimulates the ACK1/Dbl pathway, leading to actin cytoskeletal rearrangements. The role of the two ACK1-binding proteins Cdc42 and Grb2 was assessed by overexpression of the Cdc42/Rac interactive binding domain and a dominant-negative Grb2 mutant, respectively. Specific inhibition of the interaction of ACK1 with Cdc42 or Grb2 by the use of these constructs diminished tyrosine phosphorylation of both ACK1 and Dbl in response to EGF. Therefore, the activation of ACK1 and subsequent downstream signaling require both Cdc42-dependent and Grb2-dependent processes within the cell. In addition, we show that EGF transiently induces formation of the focal complex and stress fibers when ACK1 was ectopically expressed. The induction of these structures was totally sensitive to the action of botulinum toxin C from Clostridium botulinum, suggesting a pivotal role of Rho. These results provide evidence that ACK1 acts as a mediator of EGF signals to Rho family GTP-binding proteins through phosphorylation and activation of GEFs such as Dbl.
Collapse
Affiliation(s)
- J Kato-Stankiewicz
- Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | | | | | | | | |
Collapse
|
31
|
Abstract
The dbl oncogene encodes a prototype member of the Rho GTPase guanine nucleotide exchange factor (GEF) family. Oncogenic activation of proto-Dbl occurs through truncation of the N-terminal 497 residues. The C-terminal half of proto-Dbl includes residues 498 to 680 and 710 to 815, which fold into the Dbl homology (DH) domain and the pleckstrin homology (PH) domain, respectively, both of which are essential for cell transformation via the Rho GEF activity or cytoskeletal targeting function. Here we have investigated the mechanism of the apparent negative regulation of proto-Dbl imposed by the N-terminal sequences. Deletion of the N-terminal 285 or C-terminal 100 residues of proto-Dbl did not significantly affect either its transforming activity or GEF activity, while removal of the N-terminal 348 amino acids resulted in a significant increase in both transformation and GEF potential. Proto-Dbl displayed a mostly perinuclear distribution pattern, similar to a polypeptide derived from its N-terminal sequences, whereas onco-Dbl colocalized with actin stress fibers, like the PH domain. Coexpression of the N-terminal 482 residues with onco-Dbl resulted in disruption of its cytoskeletal localization and led to inhibition of onco-Dbl transforming activity. The apparent interference with the DH and PH functions by the N-terminal sequences can be rationalized by the observation that the N-terminal 482 residues or a fragment containing residues 286 to 482 binds specifically to the PH domain, limiting the access of Rho GTPases to the catalytic DH domain and masking the intracellular targeting function of the PH domain. Taken together, our findings unveiled an autoinhibitory mode of regulation of proto-Dbl that is mediated by the intramolecular interaction between its N-terminal sequences and PH domain, directly impacting both the GEF function and intracellular distribution.
Collapse
Affiliation(s)
- F Bi
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | |
Collapse
|
32
|
van Horck FP, Ahmadian MR, Haeusler LC, Moolenaar WH, Kranenburg O. Characterization of p190RhoGEF, a RhoA-specific guanine nucleotide exchange factor that interacts with microtubules. J Biol Chem 2001; 276:4948-56. [PMID: 11058585 DOI: 10.1074/jbc.m003839200] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Rho family GTPases control numerous cellular processes including cytoskeletal reorganization and transcriptional activation. Rho GTPases are activated by guanine nucleotide exchange factors (GEFs) which stimulate the exchange of bound GDP for GTP. We recently isolated a putative GEF, termed p190RhoGEF that binds to RhoA and, when overexpressed in neuronal cells, induces cell rounding and inhibits neurite outgrowth. Here we show that the isolated tandem Dbl homology/pleckstrin homology domain of p190RhoGEF activates RhoA in vitro, but not Rac1 or Cdc42, as determined by GDP release and protein binding assays. In contrast, full-length p190RhoGEF fails to activate RhoA in vitro. When overexpressed in intact cells, however, p190RhoGEF does activate RhoA with subsequent F-actin reorganization and serum response factor-mediated transcription. Immunofluorescence studies show that endogenous p190RhoGEF localizes to distinct RhoA-containing regions at the plasma membrane, to the cytosol and along microtubules. In vitro and in vivo binding experiments show that p190RhoGEF directly interacts with microtubules via its C-terminal region adjacent to the catalytic Dbl homology/pleckstrin homology domain. Our results indicate that p190RhoGEF is a specific activator of RhoA that requires as yet unknown binding partners to unmask its GDP/GTP exchange activity in vivo, and they suggest that p190RhoGEF may provide a link between microtubule dynamics and RhoA signaling.
Collapse
Affiliation(s)
- F P van Horck
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
33
|
Palmieri G, de Franciscis V, Casamassimi A, Romano G, Torino A, Pingitore P, Califano D, Santelli G, Eva A, Vecchio G, D'Urso M, Ciccodicola A. Human dbl proto-oncogene in 85 kb of xq26, and determination of the transcription initiation site. Gene 2000; 253:107-15. [PMID: 10925207 DOI: 10.1016/s0378-1119(00)00212-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The dbl oncogene is generated by substitution of the 5' portion of its normal counterpart with an unrelated human sequence. To analyze the genomic structure and transcriptional regulation of the dbl proto-oncogene, we have isolated human genomic clones containing the entire human proto-dbl gene, localized in Xq26. Restriction mapping of a 600kb YAC clone (yWXD311) placed proto-dbl about 50kb telomeric to the coagulation Factor IX gene. The genomic DNA fragment containing the 5' end of proto-dbl was subcloned into plasmid vectors and the nucleotide sequences of exon 1, the flanking intronic region and genomic DNA 5' of the first codon were determined. Sequence analysis of 85119bp from the region revealed the genomic structure of proto-dbl. It contains 25 exons coding for a 4.7kb transcript including large 5'- and 3'- (1218bp and 701bp, respectively) untranslated regions (UTRs). RNase protection and primer extension assays on RNA from medullary thyroid carcinoma (TT) cells, which normally express dbl, revealed a transcription start site 1218bp upstream of the ATG of the first exon. A 1.6kb genomic 5' of the translation start sites drives the expression of a CAT-reporter in transient transfections in the TT cell line, though lacking TATA or CAAT boxes.
Collapse
Affiliation(s)
- G Palmieri
- International Institute of Genetics and Biophysics, C.N.R., Via Marconi 10, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Penzes P, Johnson RC, Alam MR, Kambampati V, Mains RE, Eipper BA. An isoform of kalirin, a brain-specific GDP/GTP exchange factor, is enriched in the postsynaptic density fraction. J Biol Chem 2000; 275:6395-403. [PMID: 10692441 DOI: 10.1074/jbc.275.9.6395] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Communication between membranes and the actin cytoskeleton is an important aspect of neuronal function. Regulators of actin cytoskeletal dynamics include the Rho-like small GTP-binding proteins and their exchange factors. Kalirin is a brain-specific protein, first identified through its interaction with peptidylglycine-alpha-amidating monooxygenase. In this study, we cloned rat Kalirin-7, a 7-kilobase mRNA form of Kalirin. Kalirin-7 contains nine spectrin-like repeats, a Dbl homology domain, and a pleckstrin homology domain. We found that the majority of Kalirin-7 protein is associated with synaptosomal membranes, but a fraction is cytosolic. We also detected higher molecular weight Kalirin proteins. In rat cerebral cortex, Kalirin-7 is highly enriched in the postsynaptic density fraction. In primary cultures of neurons, Kalirin-7 is detected in spine-like structures, while other forms of Kalirin are visualized in the cell soma and throughout the neurites. Kalirin-7 and its Dbl homology-pleckstrin homology domain induce formation of lamellipodia and membrane ruffling, when transiently expressed in fibroblasts, indicative of Rac1 activation. Using Rac1, the Dbl homology-pleckstrin homology domain catalyzed the in vitro exchange of bound GDP with GTP. Kalirin-7 is the first guanine-nucleotide exchange factor identified in the postsynaptic density, where it is positioned optimally to regulate signal transduction pathways connecting membrane proteins and the actin cytoskeleton.
Collapse
Affiliation(s)
- P Penzes
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
35
|
Kato J, Kaziro Y, Satoh T. Activation of the guanine nucleotide exchange factor Dbl following ACK1-dependent tyrosine phosphorylation. Biochem Biophys Res Commun 2000; 268:141-7. [PMID: 10652228 DOI: 10.1006/bbrc.2000.2106] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Signals triggered by diverse receptors modulate the activity of Rho family proteins, although the regulatory mechanism remains largely unknown. On the basis of their biochemical activity as guanine nucleotide exchange factors (GEFs), Dbl family proteins are believed to be implicated in the regulation of Rho family GTP-binding proteins in response to a variety of extracellular stimuli. Here we show that GEF activity of full-length proto-Dbl is enhanced upon tyrosine phosphorylation. When transiently coexpressed with the activated form of the non-receptor tyrosine kinase ACK1, a downstream target of Cdc42, Dbl became tyrosine-phosphorylated. In vitro GEF activity of Dbl toward Rho and Cdc42 was augmented following tyrosine phosphorylation. Moreover, accumulation of the GTP-bound form of Rho and Rac within the cell paralleled ACK-1-dependent tyrosine phosphorylation of Dbl. Consistently, activation of c-Jun N-terminal kinase downstream of Rho family GTP-binding proteins was also enhanced when Dbl was tyrosine-phosphorylated. Collectively, these findings suggest that the tyrosine kinase ACK1 may act as a regulator of Dbl, which in turn activates Rho family proteins.
Collapse
Affiliation(s)
- J Kato
- Faculty of Bioscience, Tokyo Institute of Technology, Tokyohama, 226-8501, Japan
| | | | | |
Collapse
|
36
|
Kwon T, Kwon DY, Chun J, Kim JH, Kang SS. Akt protein kinase inhibits Rac1-GTP binding through phosphorylation at serine 71 of Rac1. J Biol Chem 2000; 275:423-8. [PMID: 10617634 DOI: 10.1074/jbc.275.1.423] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A putative Akt kinase phosphorylation site ((64)ydRIRplSYp(73)) was found in Rac1/CDC42 and Rho family proteins (RhoA, RhoB, RhoC, and RhoG). Phosphorylation of Rac1 by Akt kinase was assayed with recombinant Rac1 protein and the fluorescein-labeled Rac1 peptide. It was shown that the Rac1 peptide and the recombinant protein were phosphorylated by the activated recombinant Akt kinase and the lysate of SK-MEL28 cells, a human melanoma cell line. The phosphorylation of Rac1 inhibited its GTP-binding activity without any significant change in GTPase activity. Both the GTP-binding and GTPase activities of Rac1 S71A protein (with the serine residue to be phosphorylated replaced with alanine) were abolished regardless of the treatment of Akt kinase. Akt kinase activity and Rac1 peptide phosphorylation were down-regulated by the treatment of SK-MEL28 cells with wortmannin or LY294002 (a phosphoinositide 3-kinase inhibitor), but JNK/SAPK kinase activity was up-regulated. Thus, the results suggest that Akt kinase of the phosphoinositide 3-kinase signal transduction pathway phosphorylates serine 71 of Rac1 as one of its authentic substrates and modulates the Rac1 signal transduction pathway through phosphorylation.
Collapse
Affiliation(s)
- T Kwon
- Clinical Research Center, Samsung Biomedical Research Institute, Seoul 135-230, Republic of Korea
| | | | | | | | | |
Collapse
|
37
|
Nishida K, Kaziro Y, Satoh T. Association of the proto-oncogene product dbl with G protein betagamma subunits. FEBS Lett 1999; 459:186-90. [PMID: 10518015 DOI: 10.1016/s0014-5793(99)01244-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Rho family of GTP-binding proteins has been implicated in the regulation of various cellular functions including actin cytoskeleton-dependent morphological change. Its activity is directed by intracellular signals mediated by various types of receptors such as G protein-coupled receptors. However, the mechanisms underlying receptor-dependent regulation of Rho family members remain incompletely understood. The guanine nucleotide exchange factor (GEF) Dbl targets Rho family proteins thereby stimulating their GDP/GTP exchange, and thus is believed to be involved in receptor-mediated regulation of the proteins. Here, we show the association of Dbl with G protein betagamma subunits (Gbetagamma) in transient co-expression and cell-free systems. An amino-terminal portion conserved among a subset of Dbl family proteins is sufficient for the binding of Gbetagamma. In fact, Ost and Kalirin, which contain this Gbetagamma-binding motif, also associate with Gbetagamma. c-Jun N-terminal kinase was synergistically activated upon co-expression of Dbl and Gbeta in a dominant-negative Rho-sensitive manner. However, GEF activity of Dbl toward Rho as measured by in vitro GDP binding assays remained unaffected following Gbetagamma binding, suggesting that additional signals may be required for the regulation of Dbl.
Collapse
Affiliation(s)
- K Nishida
- Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | | | | |
Collapse
|
38
|
Lin R, Cerione RA, Manor D. Specific contributions of the small GTPases Rho, Rac, and Cdc42 to Dbl transformation. J Biol Chem 1999; 274:23633-41. [PMID: 10438546 DOI: 10.1074/jbc.274.33.23633] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dbl is a representative prototype of a growing family of oncogene products that contain the Dbl homology/pleckstrin homology elements in their primary structures and are associated with a variety of neoplastic pathologies. Members of the Dbl family have been shown to function as physiological activators (guanine nucleotide exchange factors) of the Rho-like small GTPases. Although the expression of GTPase-defective versions of Rho proteins has been shown to induce a transformed phenotype under different conditions, their transformation capacity has been typically weak and incomplete relative to that exhibited by dbl-like oncogenes. Moreover, in some cases (e.g. NIH3T3 fibroblasts), expression of GTPase-defective Cdc42 results in growth inhibition. Thus, in attempting to reconstitute dbl-induced transformation of NIH3T3 fibroblasts, we have generated spontaneously activated ("fast-cycling") mutants of Cdc42, Rac1, and RhoA that mimic the functional effects of activation by the Dbl oncoprotein. When stably expressed in NIH3T3 cells, all three mutants caused the loss of serum dependence and showed increased saturation density. Furthermore, all three stable cell lines were tumorigenic when injected into nude mice. Our data demonstrate that all three Dbl targets need to be activated to promote the full complement of Dbl effects. More importantly, activation of each of these GTP-binding proteins contributes to a different and distinct facet of cellular transformation.
Collapse
Affiliation(s)
- R Lin
- Department of Molecular Medicine, Veterinary Medical Center, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
39
|
Aravind L, Neuwald AF, Ponting CP. Sec14p-like domains in NF1 and Dbl-like proteins indicate lipid regulation of Ras and Rho signaling. Curr Biol 1999; 9:R195-7. [PMID: 10209105 DOI: 10.1016/s0960-9822(99)80127-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Sterpetti P, Hack AA, Bashar MP, Park B, Cheng SD, Knoll JH, Urano T, Feig LA, Toksoz D. Activation of the Lbc Rho exchange factor proto-oncogene by truncation of an extended C terminus that regulates transformation and targeting. Mol Cell Biol 1999; 19:1334-45. [PMID: 9891067 PMCID: PMC116062 DOI: 10.1128/mcb.19.2.1334] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/1998] [Accepted: 11/03/1998] [Indexed: 11/20/2022] Open
Abstract
The human lbc oncogene product is a guanine nucleotide exchange factor that specifically activates the Rho small GTP binding protein, thus resulting in biologically active, GTP-bound Rho, which in turn mediates actin cytoskeletal reorganization, gene transcription, and entry into the mitotic S phase. In order to elucidate the mechanism of onco-Lbc transformation, here we report that while proto- and onco-lbc cDNAs encode identical N-terminal dbl oncogene homology (DH) and pleckstrin homology (PH) domains, proto-Lbc encodes a novel C terminus absent in the oncoprotein that includes a predicted alpha-helical region homologous to cyto-matrix proteins, followed by a proline-rich region. The lbc proto-oncogene maps to chromosome 15, and onco-lbc represents a fusion of the lbc proto-oncogene N terminus with a short, unrelated C-terminal sequence from chromosome 7. Both onco- and proto-Lbc can promote formation of GTP-bound Rho in vivo. Proto-Lbc transforming activity is much reduced compared to that of onco-Lbc, and a significant increase in transforming activity requires truncation of both the alpha-helical and proline-rich regions in the proto-Lbc C terminus. Deletion of the chromosome 7-derived C terminus of onco-Lbc does not destroy transforming activity, demonstrating that it is loss of the proto-Lbc C terminus, rather than gain of an unrelated C-terminus by onco-Lbc, that confers transforming activity. Mutations of onco-Lbc DH and PH domains demonstrate that both domains are necessary for full transforming activity. The proto-Lbc product localizes to the particulate (membrane) fraction, while the majority of the onco-Lbc product is cytosolic, and mutations of the PH domain do not affect this localization. The proto-Lbc C-terminus alone localizes predominantly to the particulate fraction, indicating that the C terminus may play a major role in the correct subcellular localization of proto-Lbc, thus providing a mechanism for regulating Lbc oncogenic potential.
Collapse
MESH Headings
- A Kinase Anchor Proteins
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Animals
- Base Sequence
- COS Cells
- Cell Transformation, Neoplastic/genetics
- Chimera/genetics
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 7/genetics
- Cricetinae
- DNA Primers/genetics
- DNA, Complementary/genetics
- GTP-Binding Proteins/genetics
- Gene Expression Regulation
- Gene Rearrangement
- Humans
- Minor Histocompatibility Antigens
- Molecular Sequence Data
- Proto-Oncogene Mas
- Proto-Oncogene Proteins/genetics
- Proto-Oncogenes
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Deletion
- Sequence Homology, Amino Acid
- Tissue Distribution
- Transfection
Collapse
Affiliation(s)
- P Sterpetti
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Velasco JA, Avila MA, Notario V. The product of the cph oncogene is a truncated, nucleotide-binding protein that enhances cellular survival to stress. Oncogene 1999; 18:689-701. [PMID: 9989819 DOI: 10.1038/sj.onc.1202324] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cph was isolated from neoplastic Syrian hamster embryo fibroblasts initiated by 3-methylcholanthrene (MCA), and was shown to be a single copy gene in the hamster genome, conserved from yeast to human cells, expressed in fetal cells and most adult tissues, and acting synergistically with H-ras in the transformation of murine NIH3T3 fibroblasts. We have now isolated Syrian hamster full-length cDNAs for the cph oncogene and proto-oncogene. Nucleotide sequence analysis revealed that cph was activated in MCA-treated cells by a point-mutational deletion at codon 214, which caused a shift in the normal open reading frame (ORF) and brought a translation termination codon 33 amino acids downstream. While proto-cph encodes a protein (pcph) of 469 amino acids, cph encodes a truncated protein (cph) of 246 amino acids with a new, hydrophobic C-terminus. Similar mechanisms activated cph in other MCA-treated Syrian hamster cells. The cph and proto-cph proteins have partial sequence homology with two protein families: GDP/GTP exchange factors and nucleotide phosphohydrolases. In vitro translated, gel-purified cph proteins did not catalyze nucleotide exchange for H-ras, but were able to bind nucleotide phosphates, in particular ribonucleotide diphosphates such as UDP and GDP. Steady-state levels of cph mRNA increased 6.7-fold in hamster neoplastic cells, relative to a 2.2-fold increase in normal cells, when they were subjected to a nutritional stress such as serum deprivation. Moreover, cph-transformed NIH3T3 cells showed increased survival to various forms of stress (serum starvation, hyperthermia, ionizing radiation), strongly suggesting that cph participates in cellular mechanisms of response to stress.
Collapse
Affiliation(s)
- J A Velasco
- Department of Radiation Medicine, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | |
Collapse
|
42
|
Zhou K, Wang Y, Gorski JL, Nomura N, Collard J, Bokoch GM. Guanine nucleotide exchange factors regulate specificity of downstream signaling from Rac and Cdc42. J Biol Chem 1998; 273:16782-6. [PMID: 9642235 DOI: 10.1074/jbc.273.27.16782] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rac and Cdc42 GTPases regulate diverse cellular behaviors involving the actin cytoskeleton, gene transcription, and the activity of multiple protein and lipid kinases. All of these pathways can potentially become activated when GTP-Rac or GTP-Cdc42 is formed in response to external cell signals, yet it is evident that each activity must also be able to be controlled individually. The mechanisms by which such specificity of GTPase signaling in response to upstream stimuli is achieved remains unclear. We investigated the action of several well characterized guanine nucleotide exchange factors (GEFRho) to activate Rac- and/or Cdc42-dependent kinase pathways. Coexpression studies in COS-7 cells revealed that the ability of individual guanine nucleotide exchange factors (GEFs) to activate the p21-activated kinase PAK1 could be dissociated from activation of c-Jun amino-terminal kinase, even though activation of both pathways requires the action of the GEFs on Rac and/or Cdc42. In contrast, expression of constitutively active forms of Rac or Cdc42 effectively stimulated both downstream kinases. We conclude that GEFs can be important determinants of downstream signaling specificity for members of the Rho GTPase family.
Collapse
Affiliation(s)
- K Zhou
- Departments of Immunology and Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- M A Lemmon
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia 19104-6089, USA
| | | |
Collapse
|
44
|
Satou Y, Satoh N. Posterior end mark 2 (pem-2), pem-4, pem-5, and pem-6: maternal genes with localized mRNA in the ascidian embryo. Dev Biol 1997; 192:467-81. [PMID: 9441682 DOI: 10.1006/dbio.1997.8730] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The posterior-vegetal cytoplasm of an ascidian egg contains maternal factors required for pattern formation and cell specification of the embryo. We report here the isolation and characterization of cDNA clones for novel maternal genes, posterior end mark 2 (pem-2), pem-4, pem-5, and pem-6. We obtained these clones from a cDNA library of Ciona savignyi fertilized egg mRNAs subtracted with gastrula mRNAs by examining the localization of the corresponding mRNAs of randomly selected clones by whole-mount in situ hybridization. As in the case of pem, all of these mRNAs were localized in the posterior-vegetal cytoplasm of the egg, and they later marked the posterior end of early embryos. The predicted amino acid sequence suggested that PEM-2 contains a signal for nuclear localization, an src homology 3 (SH3) domain, and a consensus sequence of the CDC24 family guanine nucleotide dissociation stimulators (GDSs). PEM-4 has a signal for nuclear localization and three C2H2-type zinc finger motifs, while PEM-5 and PEM-6 show no similarity to known proteins. These results provide further evidence that the ascidian egg contains maternal messages that are localized in the posterior-vegetal cytoplasm.
Collapse
Affiliation(s)
- Y Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Japan
| | | |
Collapse
|
45
|
Alam MR, Johnson RC, Darlington DN, Hand TA, Mains RE, Eipper BA. Kalirin, a cytosolic protein with spectrin-like and GDP/GTP exchange factor-like domains that interacts with peptidylglycine alpha-amidating monooxygenase, an integral membrane peptide-processing enzyme. J Biol Chem 1997; 272:12667-75. [PMID: 9139723 DOI: 10.1074/jbc.272.19.12667] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although the integral membrane proteins that catalyze steps in the biosynthesis of neuroendocrine peptides are known to contain routing information in their cytosolic domains, the proteins recognizing this routing information are not known. Using the yeast two-hybrid system, we previously identified P-CIP10 as a protein interacting with the cytosolic routing determinants of peptidylglycine alpha-amidating monooxygenase (PAM). P-CIP10 is a 217-kDa cytosolic protein with nine spectrin-like repeats and adjacent Dbl homology and pleckstrin homology domains typical of GDP/GTP exchange factors. In the adult rat, expression of P-CIP10 is most prevalent in the brain. Corticotrope tumor cells stably expressing P-CIP10 and PAM produce longer and more highly branched neuritic processes than nontransfected cells or cells expressing only PAM. The turnover of newly synthesized PAM is accelerated in cells co-expressing P-CIP10. P-CIP10 binds to selected members of the Rho subfamily of small GTP binding proteins (Rac1, but not RhoA or Cdc42). P-CIP10 (kalirin), a member of the Dbl family of proteins, may serve as part of a signal transduction system linking the catalytic domains of PAM in the lumen of the secretory pathway to cytosolic factors regulating the cytoskeleton and signal transduction pathways.
Collapse
Affiliation(s)
- M R Alam
- Departments of Neuroscience and Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
46
|
Freshney NW, Goonesekera SD, Feig LA. Activation of the exchange factor Ras-GRF by calcium requires an intact Dbl homology domain. FEBS Lett 1997; 407:111-5. [PMID: 9141492 DOI: 10.1016/s0014-5793(97)00309-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ras-GRF is a guanine nucleotide exchange factor that activates Ras proteins. Its activity on Ras in cells is enhanced upon calcium influx. Activation follows calcium-induced binding of calmodulin to an IQ motif near the N-terminus of Ras-GRF. Ras-GRF also contains a Dbl homology (DH) domain C-terminal to the IQ motif. In many proteins, DH domains act as exchange factors for Rho-GTPase family members. However, we failed to detect exchange activity of this domain on well characterized Rho family members. Instead, we found that mutations analogous to those that block exchange activity of Dbl prevented Ras-GRF activation by calcium/ calmodulin in vivo. All DH domains are followed immediately by a pleckstrin homology (PH) domain. We found that a mutation at a conserved site within the PH domain following the DH domain also prevented Ras-GRF activation by calcium in vivo. These results suggest that in addition to playing a role as activators of Rho proteins, DH domains can also contribute to the coupling of cellular signals to Ras activation.
Collapse
Affiliation(s)
- N W Freshney
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
47
|
Werner LA, Manseau LJ. A Drosophila gene with predicted rhoGEF, pleckstrin homology and SH3 domains is highly expressed in morphogenic tissues. Gene 1997; 187:107-14. [PMID: 9073073 DOI: 10.1016/s0378-1119(96)00732-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have identified a Drosophila gene that has substantial sequence homology to a distinct class of proto-oncogenes that includes DBL, VAV, Tiam-1, ost and ect-2. It has predicted Rho or Rac guanine exchange factor (Rho/RacGEF) and pleckstin homology (PH) domains with the PH immediately downstream of the Rho/RacGEF. Rho/RacGEFs catalyze the dissociation of GDP from the Rho/Rac subfamily of Ras-like GTPases, thus activating the target Rho/Rac (Takai et al. (1995) Trends Biochem. Sci. 20, 227-231]. Members of the Rho/Rac subfamily regulate organization of the actin cytoskeleton, which controls the morphology, adhesion and motility of cells (Nobes et al. (1995) J. Cell Sci. 108, 225 233; Ridley and Hall (1992) Cell 70, 389-399; Ridley et al. (1992) Cell 70, 401-410]. Message from this gene is found throughout oogenesis and embryogenesis. Of particular interest, message is most abundant in furrows and folds of the embryo where cell shapes are changing and the cytoskeleton is likely to be undergoing reorganization.
Collapse
Affiliation(s)
- L A Werner
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721, USA
| | | |
Collapse
|
48
|
Abstract
Genetic screening and biochemical studies during the past few years have led to the discovery of a family of cell growth regulatory proteins and oncogene products for which the Dbl oncoprotein is a prototype. These putative guanine nucleotide exchange factors for Rho family small GTP-binding proteins (G proteins) all contain a Dbl homology domain in tandem with a pleckstrin homology domain, and seem to activate specific members of the Rho family of proteins to elicit various biological functions in cells. The Dbl homology domain is directly responsible for binding and activating the small G proteins to mediate downstream signaling events, whereas the pleckstrin homology domain may serve to target these positive regulators of G proteins to specific cellular locations to carry out the signaling task. Despite the increasing interest in the Dbl family of proteins, there is still a good deal to learn regarding the biochemical mechanisms that underlie their diverse biological functions.
Collapse
Affiliation(s)
- R A Cerione
- Department of Pharmacology, Cornell University, Ithaca, NY 14853-6401, USA
| | | |
Collapse
|
49
|
Harris PE, Colovai AI, Maffei A, Liu Z, Foca NS. Major histocompatibility complex class I presentation of exogenous and endogenous protein-derived peptides by a transfected human monocyte cell line. Immunol Suppl 1995; 86:606-11. [PMID: 8567028 PMCID: PMC1384062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Monocyte/macrophages are professional antigen-presenting cells of the cellular immune system, serving to generate peptides for major histocompatibility complex (MHC) class II-restricted recognition by CD4+ T-lymphocyte effector cells. Antigen presentation by these cells involves the internalization of extracellular proteins and their fragmentation within vacuolar compartments. The resulting peptides become associated with MHC class II molecules. The final destination of exogenous peptide antigens, however, is not absolute in monocytes. Processed peptides, derived from exogenous proteins, can also associate with MHC class I molecules. To study simultaneous presentation of peptides derived from exogenous and endogenous proteins by human leucocyte antigen (HLA) class I molecules, we isolated the peptides from a human immunodeficiency virus nef transfected U937 monocytic cell line. The HLA class I-bound peptides were separated by reverse phase-high performance liquid chromatography. Comparison of the peptide sequence data with protein databases revealed that the peptides derived from extracellular, as well as intracellular, proteins, suggesting that monocytes have a more generalized MHC class I antigen-processing pathway than previously documented.
Collapse
Affiliation(s)
- P E Harris
- Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | | | | | | | | |
Collapse
|
50
|
Coso OA, Chiariello M, Yu JC, Teramoto H, Crespo P, Xu N, Miki T, Gutkind JS. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 1995; 81:1137-46. [PMID: 7600581 DOI: 10.1016/s0092-8674(05)80018-2] [Citation(s) in RCA: 1377] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
c-Jun amino-terminal kinases (JNKs) and mitogen-activated protein kinases (MAPKs) are closely related; however, they are independently regulated by a variety of environmental stimuli. Although molecules linking growth factor receptors to MAPKs have been recently identified, little is known about pathways controlling JNK activation. Here, we show that in COS-7 cells, activated Ras effectively stimulates MAPK but poorly induces JNK activity. In contrast, mutationally activated Rac1 and Cdc42 GTPases potently activate JNK without affecting MAPK, and oncogenic guanine nucleotide exchange factors for these Rho-like proteins selectively stimulate JNK activity. Furthermore, expression of inhibitory molecules for Rho-related GTPases and dominant negative mutants of Rac1 and Cdc42 block JNK activation by oncogenic exchange factors or after induction by inflammatory cytokines and growth factors. Taken together, these findings strongly support a critical role for Rac1 and Cdc42 in controlling the JNK signaling pathway.
Collapse
Affiliation(s)
- O A Coso
- Molecular Signaling Unit, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|