1
|
Zhang B, Jia W, Lin K, Lv S, Guo Z, Xie W, He Y, Li Y. Integrative analysis of the ABC gene family in sorghum revealed SbABCB11 participating in translocation of cadmium from roots to shoots. PLANTA 2025; 261:62. [PMID: 39979492 DOI: 10.1007/s00425-025-04644-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
MAIN CONCLUSION This study identified a SbABCB11 gene in sorghum that could enhance Cd translocation from roots to shoots, thus increasing Cd accumulation in shoots. Cadmium (Cd) is a widespread soil contaminant threatening human health. As an energy plant, sorghum (Sorghum bicolor (L.) Moench) has great potential in phytoremediation of Cd-polluted soils. ATP-binding cassette (ABC) transporters perform critical roles in transport of Cd. However, there has not yet been a comprehensive analysis of the ABC gene family in sorghum. In this study, 142 ABC genes in sorghum were identified. Transcriptome study showed 41 SbABCs with differential expression patterns under Cd treatment. Candidate gene-based association study for Cd translocation factors identified five significant SNPs inside the annotated gene SbABCB11. Sequence analysis in different haplotypes demonstrated there were multiple long indel variations in the coding region of SbABCB11. Expression study indicated that SbABCB11-Hap3 was upregulated in roots after Cd treatment. Yeast complementary assay proved that SbABCB11 participated in the efflux of Cd, which was further supported by the localization of SbABCB11 on the plasma membrane. Transient suppression of SbABCB11 via antisense oligodeoxyribonucleotide (asODN) method reduced Cd accumulation in the shoots of sorghum by decreasing the release of Cd into the xylem. Our results provide new insights into the potential roles of SbABCs in sorghum. We revealed that SbABCB11 participated in translocation of Cd from roots to shoots, and there were significant variations in the translocation ability among different haplotypes of SbABCB11. These findings will be of help for the molecular breeding of sorghum germplasms suitable for the phytoremediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Forage Breeding-by-Design and Utilization; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- China National Botanical Garden, Beijing, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Weitao Jia
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 401122, People's Republic of China
| | - Kangqi Lin
- State Key Laboratory of Forage Breeding-by-Design and Utilization; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- China National Botanical Garden, Beijing, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Sulian Lv
- State Key Laboratory of Forage Breeding-by-Design and Utilization; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- China National Botanical Garden, Beijing, People's Republic of China
| | - Zijing Guo
- State Key Laboratory of Forage Breeding-by-Design and Utilization; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- China National Botanical Garden, Beijing, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wenzhu Xie
- State Key Laboratory of Forage Breeding-by-Design and Utilization; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- China National Botanical Garden, Beijing, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yingjiao He
- State Key Laboratory of Forage Breeding-by-Design and Utilization; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- China National Botanical Garden, Beijing, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yinxin Li
- State Key Laboratory of Forage Breeding-by-Design and Utilization; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China.
- China National Botanical Garden, Beijing, People's Republic of China.
| |
Collapse
|
2
|
Gololobova A, Legostaeva Y. Potentially Toxic Elements Uptake and Distribution in Betula middendorffii T. and Duschekia fruticosa R. Growing on Diamond Mining Area (Yakutia, Russia). PLANTS (BASEL, SWITZERLAND) 2024; 13:2440. [PMID: 39273924 PMCID: PMC11397553 DOI: 10.3390/plants13172440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
This study was conducted in the territory of the industrial site of the Udachny Mining and Processing Division (Yakutia, Russia). The objects of study were permafrost soils and two species of shrubs (Betula middendorffii T. and Duschekia fruticose R.). Soil and plant samples were analyzed by atomic absorption spectrometry for the presence of potentially toxic elements (Pb, Ni, Mn, Cd, Co, Co, Cr, Zn, Cu, and As). The bioaccumulation factor for each element was also calculated. In the studied plants, the investigated elements were arranged in the following descending row in terms of their content: Mn > Zn > Cr > Ni > Cu > Pb > As > Co > Cd, but in terms of bioaccumulation degree, they decrease in the following row: Cr > Zn > Ni > Mn > Pb > Cu > Cd > Co-for Betula middendorffii, Cr > Zn > Ni > Pb > Cu > Mn > Mn > Cd > Co-for Duschekia fruticose. The bioaccumulation factor results confirmed that Betula middendorffiii and Duschekia fruticosa are resistant to high concentrations of Cr, Ni, Co, Cu, Mn, and Zn elements coherent to kimberlites.
Collapse
Affiliation(s)
- Anna Gololobova
- Diamond and Precious Metal Geology Institute, Siberian Branch of the Russian Academy of Sciences, Yakutsk 67700, Russia
| | - Yana Legostaeva
- Diamond and Precious Metal Geology Institute, Siberian Branch of the Russian Academy of Sciences, Yakutsk 67700, Russia
| |
Collapse
|
3
|
Choi SH, Lee SS, Lee HY, Kim S, Kim JW, Jin MS. Cryo-EM structure of cadmium-bound human ABCB6. Commun Biol 2024; 7:672. [PMID: 38822018 PMCID: PMC11143254 DOI: 10.1038/s42003-024-06377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/23/2024] [Indexed: 06/02/2024] Open
Abstract
ATP-binding cassette transporter B6 (ABCB6), a protein essential for heme biosynthesis in mitochondria, also functions as a heavy metal efflux pump. Here, we present cryo-electron microscopy structures of human ABCB6 bound to a cadmium Cd(II) ion in the presence of antioxidant thiol peptides glutathione (GSH) and phytochelatin 2 (PC2) at resolutions of 3.2 and 3.1 Å, respectively. The overall folding of the two structures resembles the inward-facing apo state but with less separation between the two halves of the transporter. Two GSH molecules are symmetrically bound to the Cd(II) ion in a bent conformation, with the central cysteine protruding towards the metal. The N-terminal glutamate and C-terminal glycine of GSH do not directly interact with Cd(II) but contribute to neutralizing positive charges of the binding cavity by forming hydrogen bonds and van der Waals interactions with nearby residues. In the presence of PC2, Cd(II) binding to ABCB6 is similar to that observed with GSH, except that two cysteine residues of each PC2 molecule participate in Cd(II) coordination to form a tetrathiolate. Structural comparison of human ABCB6 and its homologous Atm-type transporters indicate that their distinct substrate specificity might be attributed to variations in the capping residues situated at the top of the substrate-binding cavity.
Collapse
Affiliation(s)
- Seung Hun Choi
- School of Life Sciences, GIST, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea
| | - Sang Soo Lee
- School of Life Sciences, GIST, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea
| | - Hyeon You Lee
- School of Life Sciences, GIST, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea
| | - Subin Kim
- School of Life Sciences, GIST, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea
| | - Ji Won Kim
- Department of Life Sciences, POSTECH, 77 Cheongam-Ro, Nam-gu, Pohang, Republic of Korea
| | - Mi Sun Jin
- School of Life Sciences, GIST, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea.
| |
Collapse
|
4
|
Zhang Z, Zhong L, Xiao W, Du Y, Han G, Yan Z, He D, Zheng C. Transcriptomics combined with physiological analysis reveals the mechanism of cadmium uptake and tolerance in Ligusticum chuanxiong Hort. under cadmium treatment. FRONTIERS IN PLANT SCIENCE 2023; 14:1263981. [PMID: 37810396 PMCID: PMC10556529 DOI: 10.3389/fpls.2023.1263981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023]
Abstract
Introduction Ligusticum chuanxiong Hort. is a widely used medicinal plant, but its growth and quality can be negatively affected by contamination with the heavy metal cadmium (Cd). Despite the importance of understanding how L. chuanxiong responds to Cd stress, but little is currently known about the underlying mechanisms. Methods To address this gap, we conducted physiological and transcriptomic analyses on L. chuanxiong plants treated with different concentrations of Cd2+ (0 mg·L-1, 5 mg·L-1, 10 mg·L-1, 20 mg·L-1, and 40 mg·L-1). Results Our findings revealed that Cd stress inhibited biomass accumulation and root development while activating the antioxidant system in L. chuanxiong. Root tissues were the primary accumulation site for Cd in this plant species, with Cd being predominantly distributed in the soluble fraction and cell wall. Transcriptomic analysis demonstrated the downregulation of differential genes involved in photosynthetic pathways under Cd stress. Conversely, the plant hormone signaling pathway and the antioxidant system exhibited positive responses to Cd regulation. Additionally, the expression of differential genes related to cell wall modification was upregulated, indicating potential enhancements in the root cell wall's ability to sequester Cd. Several differential genes associated with metal transport proteins were also affected by Cd stress, with ATPases, MSR2, and HAM3 playing significant roles in Cd passage from the apoplast to the cell membrane. Furthermore, ABC transport proteins were found to be key players in the intravesicular compartmentalization and efflux of Cd. Discussion In conclusion, our study provides preliminary insights into the mechanisms underlying Cd accumulation and tolerance in L. chuanxiong, leveraging both physiological and transcriptomic approaches. The decrease in photosynthetic capacity and the regulation of plant hormone levels appear to be major factors contributing to growth inhibition in response to Cd stress. Moreover, the upregulation of differential genes involved in cell wall modification suggests a potential mechanism for enhancing root cell wall capabilities in isolating and sequestering Cd. The involvement of specific metal transport proteins further highlights their importance in Cd movement within the plant.
Collapse
Affiliation(s)
- Zhanling Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lele Zhong
- Evaluation and Utilization of Strategic Rare Metals and Rare Earth Resource Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Chengdu Analytical & Testing Center, Sichuan Bureau of Geology & Mineral Resources, Chengdu, Sichuan, China
| | - Wanting Xiao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yaping Du
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Guiqi Han
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhuyun Yan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Dongmei He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chuan Zheng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Adaptation of Proteome and Metabolism in Different Haplotypes of Rhodosporidium toruloides during Cu(I) and Cu(II) Stress. Microorganisms 2023; 11:microorganisms11030553. [PMID: 36985127 PMCID: PMC10056549 DOI: 10.3390/microorganisms11030553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Rhodosporidium toruloides is a carotenogenic, oleogenic yeast that is able to grow in diverse environments. In this study, the proteomic and metabolic responses to copper stress in the two haplotypes IFO0559 and IFO0880 were assessed. 0.5 mM Cu(I) extended the lag phase of both strains significantly, while only a small effect was observed for Cu(II) treatment. Other carotenogenic yeasts such as Rhodotorula mucilaginosa are known to accumulate high amounts of carotenoids as a response to oxidative stress, posed by excess copper ion activity. However, no significant increase in carotenoid accumulation for both haplotypes of R. toruloides after 144 h of 0.5 mM Cu(I) or Cu(II) stress was observed. Yet, an increase in lipid production was detected, when exposed to Cu(II), additionally, proteins related to fatty acid biosynthesis were detected in increased amounts under stress conditions. Proteomic analysis revealed that besides the activation of the enzymatic oxidative stress response, excess copper affected iron–sulfur and zinc-containing proteins and caused proteomic adaptation indicative of copper ion accumulation in the vacuole, mitochondria, and Golgi apparatus.
Collapse
|
6
|
Seregin IV, Kozhevnikova AD. Phytochelatins: Sulfur-Containing Metal(loid)-Chelating Ligands in Plants. Int J Mol Sci 2023; 24:2430. [PMID: 36768751 PMCID: PMC9917255 DOI: 10.3390/ijms24032430] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Phytochelatins (PCs) are small cysteine-rich peptides capable of binding metal(loid)s via SH-groups. Although the biosynthesis of PCs can be induced in vivo by various metal(loid)s, PCs are mainly involved in the detoxification of cadmium and arsenic (III), as well as mercury, zinc, lead, and copper ions, which have high affinities for S-containing ligands. The present review provides a comprehensive account of the recent data on PC biosynthesis, structure, and role in metal(loid) transport and sequestration in the vacuoles of plant cells. A comparative analysis of PC accumulation in hyperaccumulator plants, which accumulate metal(loid)s in their shoots, and in the excluders, which accumulate metal(loid)s in their roots, investigates the question of whether the endogenous PC concentration determines a plant's tolerance to metal(loid)s. Summarizing the available data, it can be concluded that PCs are not involved in metal(loid) hyperaccumulation machinery, though they play a key role in metal(loid) homeostasis. Unraveling the physiological role of metal(loid)-binding ligands is a fundamental problem of modern molecular biology, plant physiology, ionomics, and toxicology, and is important for the development of technologies used in phytoremediation, biofortification, and phytomining.
Collapse
Affiliation(s)
- Ilya V. Seregin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St., 35, 127276 Moscow, Russia
| | | |
Collapse
|
7
|
Cai H, Zhang H, Guo DH, Wang Y, Gu J. Genomic Data Mining Reveals Abundant Uncharacterized Transporters in Coccidioides immitis and Coccidioides posadasii. J Fungi (Basel) 2022; 8:jof8101064. [PMID: 36294626 PMCID: PMC9604845 DOI: 10.3390/jof8101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/01/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Coccidioides immitis and Coccidioides posadasii are causative agents of coccidioidomycosis, commonly known as Valley Fever. The increasing Valley Fever cases in the past decades, the expansion of endemic regions, and the rising azole drug-resistant strains have underscored an urgent need for a better understanding of Coccidioides biology and new antifungal strategies. Transporters play essential roles in pathogen survival, growth, infection, and adaptation, and are considered as potential drug targets. However, the composition and roles of transport machinery in Coccidioides remain largely unknown. In this study, genomic data mining revealed an abundant, uncharacterized repertoire of transporters in Coccidioides genomes. The catalog included 1288 and 1235 transporter homologs in C. immitis and C. posadasii, respectively. They were further annotated to class, subclass, family, subfamily and range of substrates based on the Transport Classification (TC) system. They may play diverse roles in nutrient uptake, metabolite secretion, ion homeostasis, drug efflux, or signaling. This study represents an initial effort for a systems-level characterization of the transport machinery in these understudied fungal pathogens.
Collapse
Affiliation(s)
- Hong Cai
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Daniel H. Guo
- Strake Jesuit College Preparatory, Houston, TX 77036, USA
| | - Yufeng Wang
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
- Correspondence: (Y.W.); (J.G.)
| | - Jianying Gu
- Department of Biology, College of Staten Island, City University of New York, Staten Island, New York, NY 10314, USA
- Correspondence: (Y.W.); (J.G.)
| |
Collapse
|
8
|
Salaskar DA, Padwal MK, Gupta A, Basu B, Kale SP. Proteomic Perspective of Cadmium Tolerance in Providencia rettgeri Strain KDM3 and Its In-situ Bioremediation Potential in Rice Ecosystem. Front Microbiol 2022; 13:852697. [PMID: 35558133 PMCID: PMC9086847 DOI: 10.3389/fmicb.2022.852697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, a multi-metal-tolerant natural bacterial isolate Providencia rettgeri strain KDM3 from an industrial effluent in Mumbai, India, showed high cadmium (Cd) tolerance. Providencia rettgeri grew in the presence of more than 100 ppm (880 μM) Cd (LD50 = 100 ppm) and accumulated Cd intracellularly. Following Cd exposure, a comparative proteome analysis revealed molecular mechanisms underlying Cd tolerance. Among a total of 69 differentially expressed proteins (DEPs) in Cd-exposed cells, de novo induction of ahpCF operon proteins and L-cysteine/L-cystine shuttle protein FliY was observed, while Dps and superoxide dismutase proteins were overexpressed, indicating upregulation of a robust oxidative stress defense. ENTRA1, a membrane transporter showing homology to heavy metal transporter, was also induced de novo. In addition, the protein disaggregation chaperone ClpB, trigger factor, and protease HslU were also overexpressed. Notably, 46 proteins from the major functional category of energy metabolism were found to be downregulated. Furthermore, the addition of P. rettgeri to Cd-spiked soil resulted in a significant reduction in the Cd content [roots (11%), shoot (50%), and grains (46%)] of the rice plants. Cd bioaccumulation of P. rettgeri improved plant growth and grain yield. We conclude that P. rettgeri, a highly Cd-tolerant bacterium, is an ideal candidate for in-situ bioremediation of Cd-contaminated agricultural soils.
Collapse
Affiliation(s)
- Darshana A Salaskar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Mahesh K Padwal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Alka Gupta
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sharad P Kale
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
9
|
Wang Y, Kang Y, Yu W, Lyi SM, Choi HW, Xiao E, Li L, Klessig DF, Liu J. AtTIP2;2 facilitates resistance to zinc toxicity via promoting zinc immobilization in the root and limiting root-to-shoot zinc translocation in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113333. [PMID: 35203006 DOI: 10.1016/j.ecoenv.2022.113333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Zinc (Zn) is an essential micronutrient for plants. However, excess Zn is toxic to non-accumulating plants like Arabidopsis thaliana. To cope with Zn toxicity, non-accumulating plants need to keep excess Zn in the less sensitive root tissues and restrict its translocation to the vulnerable shoot tissues, a process referred to as Zn immobilization in the root. However, the mechanism underlying Zn immobilization is not fully understood. In Arabidopsis, sequestration of excess Zn to the vacuole of root cells is crucial for Zn immobilization, facilitated by distinct tonoplast-localized transporters. As some members of the aquaporin superfamily have been implicated in transporting metal ions besides polar but non-charged small molecules, we tested whether Arabidopsis thaliana tonoplast intrinsic proteins (AtTIPs) could be involved in Zn immobilization and resistance. We found that AtTIP2;2 is involved in retaining excess Zn in the root, limiting its translocation to the shoot, and facilitating its accumulation in the leaf trichome. Furthermore, when expressed in yeast, the tonoplast-localized AtTIP2;2 renders glutathione (GSH)-dependent Zn resistance to yeast cells, suggesting that AtTIP2;2 facilitates the across-tonoplast transport of GSH-Zn complexes. Our findings provide new insights into aquaporins' roles in heavy metal resistance and detoxification in plants.
Collapse
Affiliation(s)
- Yuqi Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Yan Kang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010021, China
| | - Wancong Yu
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Medical Plant Laboratory, Tianjin Research Center of Agricultural Biotechnology, Tianjin, China
| | - Sangbom M Lyi
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Hyong Woo Choi
- Boyce Thompson Institute, Ithaca, NY 14853, USA; Department of Plant Medicals, Andong National University, Andong 36729, South Korea
| | - Enzong Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Daniel F Klessig
- Boyce Thompson Institute, Ithaca, NY 14853, USA; Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Jiping Liu
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
10
|
Ranjbar S, Malcata FX. Is Genetic Engineering a Route to Enhance Microalgae-Mediated Bioremediation of Heavy Metal-Containing Effluents? Molecules 2022; 27:1473. [PMID: 35268582 PMCID: PMC8911655 DOI: 10.3390/molecules27051473] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/19/2022] Open
Abstract
Contamination of the biosphere by heavy metals has been rising, due to accelerated anthropogenic activities, and is nowadays, a matter of serious global concern. Removal of such inorganic pollutants from aquatic environments via biological processes has earned great popularity, for its cost-effectiveness and high efficiency, compared to conventional physicochemical methods. Among candidate organisms, microalgae offer several competitive advantages; phycoremediation has even been claimed as the next generation of wastewater treatment technologies. Furthermore, integration of microalgae-mediated wastewater treatment and bioenergy production adds favorably to the economic feasibility of the former process-with energy security coming along with environmental sustainability. However, poor biomass productivity under abiotic stress conditions has hindered the large-scale deployment of microalgae. Recent advances encompassing molecular tools for genome editing, together with the advent of multiomics technologies and computational approaches, have permitted the design of tailor-made microalgal cell factories, which encompass multiple beneficial traits, while circumventing those associated with the bioaccumulation of unfavorable chemicals. Previous studies unfolded several routes through which genetic engineering-mediated improvements appear feasible (encompassing sequestration/uptake capacity and specificity for heavy metals); they can be categorized as metal transportation, chelation, or biotransformation, with regulation of metal- and oxidative stress response, as well as cell surface engineering playing a crucial role therein. This review covers the state-of-the-art metal stress mitigation mechanisms prevalent in microalgae, and discusses putative and tested metabolic engineering approaches, aimed at further improvement of those biological processes. Finally, current research gaps and future prospects arising from use of transgenic microalgae for heavy metal phycoremediation are reviewed.
Collapse
Affiliation(s)
- Saeed Ranjbar
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Francisco Xavier Malcata
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| |
Collapse
|
11
|
Seregin IV, Kozhevnikova AD. Low-molecular-weight ligands in plants: role in metal homeostasis and hyperaccumulation. PHOTOSYNTHESIS RESEARCH 2021; 150:51-96. [PMID: 32653983 DOI: 10.1007/s11120-020-00768-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Mineral nutrition is one of the key factors determining plant productivity. In plants, metal homeostasis is achieved through the functioning of a complex system governing metal uptake, translocation, distribution, and sequestration, leading to the maintenance of a regulated delivery of micronutrients to metal-requiring processes as well as detoxification of excess or non-essential metals. Low-molecular-weight ligands, such as nicotianamine, histidine, phytochelatins, phytosiderophores, and organic acids, play an important role in metal transport and detoxification in plants. Nicotianamine and histidine are also involved in metal hyperaccumulation, which determines the ability of some plant species to accumulate a large amount of metals in their shoots. In this review we extensively summarize and discuss the current knowledge of the main pathways for the biosynthesis of these ligands, their involvement in metal uptake, radial and long-distance transport, as well as metal influx, isolation and sequestration in plant tissues and cell compartments. It is analyzed how diverse endogenous ligand levels in plants can determine their different tolerance to metal toxic effects. This review focuses on recent advances in understanding the physiological role of these compounds in metal homeostasis, which is an essential task of modern ionomics and plant physiology. It is of key importance in studying the influence of metal deficiency or excess on various physiological processes, which is a prerequisite to the improvement of micronutrient uptake efficiency and crop productivity and to the development of a variety of applications in phytoremediation, phytomining, biofortification, and nutritional crop safety.
Collapse
Affiliation(s)
- I V Seregin
- K.A. Timiryazev Institute of Plant Physiology RAS, IPPRAS, Botanicheskaya st., 35, Moscow, Russian Federation, 127276.
| | - A D Kozhevnikova
- K.A. Timiryazev Institute of Plant Physiology RAS, IPPRAS, Botanicheskaya st., 35, Moscow, Russian Federation, 127276
| |
Collapse
|
12
|
Comparative transcriptome analysis of the hyperaccumulator plant Phytolacca americana in response to cadmium stress. 3 Biotech 2021; 11:327. [PMID: 34194911 DOI: 10.1007/s13205-021-02865-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
To study the molecular mechanism of the hyperaccumulator plant Phytolacca americana against cadmium (Cd) stress, the leaves of P. americana treated with 400 μM Cd for 0, 2, 12, and 24 h were harvested for comparative transcriptome analysis. In total, 110.07 Gb of clean data were obtained, and 63,957 unigenes were acquired after being assembled. Due to the lack of P. americana genome information, only 24,517 unigenes were annotated by public databases. After Cd treatment, 5054 differentially expressed genes (DEGs) were identified. KEGG pathway enrichment analysis of DEGs showed that genes involved in the flavonoid biosynthesis and antenna proteins of photosynthesis were significantly down-regulated, while genes related to the lignin biosynthesis pathway were remarkably up-regulated, indicating that P. americana could synthesize more lignin to cope with Cd stress. Moreover, genes related to heavy metal accumulation, sulfur metabolism and glutathione metabolism were also significantly up-regulated. The gene expression pattern of several key genes related to distinct metabolic pathways was verified by qRT-PCR. The results indicated that the immobilization of lignin in cell wall, chelation, vacuolar compartmentalization, as well as the increase of thiol compounds content may be the important mechanisms of Cd detoxification in hyperaccumulator plant P. americana. Accession numbers: the raw data of P. americana transcriptome presented in this study are openly available in NCBI SRA database, under the BioProject of PRJNA649785. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02865-x.
Collapse
|
13
|
Yang G, Fu S, Huang J, Li L, Long Y, Wei Q, Wang Z, Chen Z, Xia J. The tonoplast-localized transporter OsABCC9 is involved in cadmium tolerance and accumulation in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 307:110894. [PMID: 33902855 DOI: 10.1016/j.plantsci.2021.110894] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/15/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a highly toxic element to living organisms, and its accumulation in the edible portions of crops poses a potential threat for human health. The molecular mechanisms underlying Cd detoxification and accumulation are not fully understood in plants. In this study, the involvement of a C-type ABC transporter, OsABCC9, in Cd tolerance and accumulation in rice was investigated. The expression of OsABCC9 was rapidly induced by Cd treatment in a concentration-dependent manner in the root. The transporter, localized on the tonoplast, was mainly expressed in the root stele under Cd stress. OsABCC9 knockout mutants were more sensitive to Cd and accumulated more Cd in both the root and shoot compared to the wild-type. Moreover, the Cd concentrations in the xylem sap and grain were also significantly increased in the knockout lines, suggesting that more Cd was distributed from root to shoot and grain in the mutants. Heterologous expression of OsABCC9 in yeast enhanced Cd tolerance along with an increase of intracellular Cd content. Taken together, these results indicated that OsABCC9 mediates Cd tolerance and accumulation through sequestration of Cd into the root vacuoles in rice.
Collapse
Affiliation(s)
- Guangzhe Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Shan Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China; College of Life Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Jingjing Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Longying Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yan Long
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Qiuxing Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zhigang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zhiwei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jixing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
14
|
Khunweeraphong N, Kuchler K. Multidrug Resistance in Mammals and Fungi-From MDR to PDR: A Rocky Road from Atomic Structures to Transport Mechanisms. Int J Mol Sci 2021; 22:4806. [PMID: 33946618 PMCID: PMC8124828 DOI: 10.3390/ijms22094806] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Multidrug resistance (MDR) can be a serious complication for the treatment of cancer as well as for microbial and parasitic infections. Dysregulated overexpression of several members of the ATP-binding cassette transporter families have been intimately linked to MDR phenomena. Three paradigm ABC transporter members, ABCB1 (P-gp), ABCC1 (MRP1) and ABCG2 (BCRP) appear to act as brothers in arms in promoting or causing MDR in a variety of therapeutic cancer settings. However, their molecular mechanisms of action, the basis for their broad and overlapping substrate selectivity, remains ill-posed. The rapidly increasing numbers of high-resolution atomic structures from X-ray crystallography or cryo-EM of mammalian ABC multidrug transporters initiated a new era towards a better understanding of structure-function relationships, and for the dynamics and mechanisms driving their transport cycles. In addition, the atomic structures offered new evolutionary perspectives in cases where transport systems have been structurally conserved from bacteria to humans, including the pleiotropic drug resistance (PDR) family in fungal pathogens for which high resolution structures are as yet unavailable. In this review, we will focus the discussion on comparative mechanisms of mammalian ABCG and fungal PDR transporters, owing to their close evolutionary relationships. In fact, the atomic structures of ABCG2 offer excellent models for a better understanding of fungal PDR transporters. Based on comparative structural models of ABCG transporters and fungal PDRs, we propose closely related or even conserved catalytic cycles, thus offering new therapeutic perspectives for preventing MDR in infectious disease settings.
Collapse
Affiliation(s)
| | - Karl Kuchler
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Medical University of Vienna, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria;
| |
Collapse
|
15
|
Ukai Y, Inoue K, Kamada M, Teramura H, Yanagisawa S, Kitazaki K, Shoji K, Goto F, Mochida K, Yoshihara T, Shimada H. De novo transcriptome analysis reveals an unperturbed transcriptome under high cadmium conditions in the Cd-hypertolerant fern Athyrium yokoscense. Genes Genet Syst 2020; 95:65-74. [PMID: 32389921 DOI: 10.1266/ggs.19-00056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Athyrium yokoscense shows strong tolerance to cadmium exposure, even at levels that are many times greater than the toxic levels in ordinary plants. To determine the mechanism of Cd tolerance in A. yokoscense, we grew these plants under high Cd conditions and observed the tissue-specific accumulation of Cd and generation of reactive oxygen species, which is one of the major physiological responses to Cd stress. Fuchsin staining indicated the existence of a casparian strip in A. yokoscense roots, which may participate in Cd hypertolerance in A. yokoscense. Moreover, we performed RNA-seq of RNA samples from A. yokoscense plants treated with or without Cd exposure and obtained comprehensive RNA sequences as well as the Cd-responsive expression patterns of individual genes. Through de novo transcriptome assembly and gene expression analysis, we found that A. yokoscense showed normal features with no significant change in the expression levels of any transporter genes, even under high Cd exposure conditions. Our results demonstrate that A. yokoscense has an unusual mechanism that allows the invading Cd to partition into the distal roots, thus avoiding translocation of Cd into the xylem.
Collapse
Affiliation(s)
- Yuko Ukai
- Department of Biological Science and Technology, Tokyo University of Science
| | | | - Manaka Kamada
- Department of Biological Science and Technology, Tokyo University of Science
| | - Hiroshi Teramura
- Department of Biological Science and Technology, Tokyo University of Science
| | - Shunsuke Yanagisawa
- Department of Biological Science and Technology, Tokyo University of Science
| | - Kazuyoshi Kitazaki
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry
| | - Kazuhiro Shoji
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry
| | - Fumiyuki Goto
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry
| | - Keiichi Mochida
- RIKEN Center for Sustainable Resource Science.,Kihara Institute for Biological Research, Yokohama City University.,Graduate School of Nanobioscience, Yokohama City University.,RIKEN Baton Zone Program.,Institute of Plant Science and Resources, Okayama University
| | - Toshihiro Yoshihara
- Department of Biological Science and Technology, Tokyo University of Science.,Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry
| | - Hiroaki Shimada
- Department of Biological Science and Technology, Tokyo University of Science
| |
Collapse
|
16
|
Choi HY, Bae JH, Hasegawa Y, An S, Kim IS, Lee H, Kim M. Thiol-functionalized cellulose nanofiber membranes for the effective adsorption of heavy metal ions in water. Carbohydr Polym 2020; 234:115881. [DOI: 10.1016/j.carbpol.2020.115881] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/01/2020] [Accepted: 01/13/2020] [Indexed: 01/25/2023]
|
17
|
Huang X, Duan S, Wu Q, Yu M, Shabala S. Reducing Cadmium Accumulation in Plants: Structure-Function Relations and Tissue-Specific Operation of Transporters in the Spotlight. PLANTS (BASEL, SWITZERLAND) 2020; 9:E223. [PMID: 32050442 PMCID: PMC7076666 DOI: 10.3390/plants9020223] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 01/11/2023]
Abstract
Cadmium (Cd) is present in many soils and, when entering the food chain, represents a major health threat to humans. Reducing Cd accumulation in plants is complicated by the fact that most known Cd transporters also operate in the transport of essential nutrients such as Zn, Fe, Mn, or Cu. This work summarizes the current knowledge of mechanisms mediating Cd uptake, radial transport, and translocation within the plant. It is concluded that real progress in the field may be only achieved if the transport of Cd and the above beneficial micronutrients is uncoupled, and we discuss the possible ways of achieving this goal. Accordingly, we suggest that the major focus of research in the field should be on the structure-function relations of various transporter isoforms and the functional assessment of their tissue-specific operation. Of specific importance are two tissues. The first one is a xylem parenchyma in plant roots; a major "controller" of Cd loading into the xylem and its transport to the shoot. The second one is a phloem tissue that operates in the last step of a metal transport. Another promising and currently underexplored avenue is to understand the role of non-selective cation channels in Cd uptake and reveal mechanisms of their regulation.
Collapse
Affiliation(s)
- Xin Huang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China; (X.H.); (S.D.); (Q.W.); (M.Y.)
| | - Songpo Duan
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China; (X.H.); (S.D.); (Q.W.); (M.Y.)
| | - Qi Wu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China; (X.H.); (S.D.); (Q.W.); (M.Y.)
| | - Min Yu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China; (X.H.); (S.D.); (Q.W.); (M.Y.)
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China; (X.H.); (S.D.); (Q.W.); (M.Y.)
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart TAS 7001, Australia
| |
Collapse
|
18
|
Khatiwada B, Hasan MT, Sun A, Kamath KS, Mirzaei M, Sunna A, Nevalainen H. Probing the Role of the Chloroplasts in Heavy Metal Tolerance and Accumulation in Euglena gracilis. Microorganisms 2020; 8:E115. [PMID: 31947612 PMCID: PMC7023027 DOI: 10.3390/microorganisms8010115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/11/2020] [Accepted: 01/12/2020] [Indexed: 12/02/2022] Open
Abstract
The E. gracilis Zm-strain lacking chloroplasts, characterized in this study, was compared with the earlier assessed wild type Z-strain to explore the role of chloroplasts in heavy metal accumulation and tolerance. Comparison of the minimum inhibitory concentration (MIC) values indicated that both strains tolerated similar concentrations of mercury (Hg) and lead (Pb), but cadmium (Cd) tolerance of the Z-strain was twice that of the Zm-strain. The ability of the Zm-strain to accumulate Hg was higher compared to the Z-strain, indicating the existence of a Hg transportation and accumulation mechanism not depending on the presence of chloroplasts. Transmission electron microscopy (TEM) showed maximum accumulation of Hg in the cytosol of the Zm-strain and highest accumulation of Cd in the chloroplasts of the Z-strain indicating a difference in the ability of the two strains to deposit heavy metals in the cell. The highly abundant heavy metal transporter MTP2 in the Z-strain may have a role in Cd transportation to the chloroplasts. A multidrug resistance-associated protein highly increased in abundance in the Zm-strain could be a potential Hg transporter to either cytosol or mitochondria. Overall, the chloroplasts appear to have major role in the tolerance and accumulation of Cd in E. gracilis.
Collapse
Affiliation(s)
- Bishal Khatiwada
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.K.); (M.T.H.); (A.S.); (K.S.K.); (M.M.)
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Mafruha T. Hasan
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.K.); (M.T.H.); (A.S.); (K.S.K.); (M.M.)
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Angela Sun
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.K.); (M.T.H.); (A.S.); (K.S.K.); (M.M.)
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Karthik Shantharam Kamath
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.K.); (M.T.H.); (A.S.); (K.S.K.); (M.M.)
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia
| | - Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.K.); (M.T.H.); (A.S.); (K.S.K.); (M.M.)
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.K.); (M.T.H.); (A.S.); (K.S.K.); (M.M.)
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Helena Nevalainen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.K.); (M.T.H.); (A.S.); (K.S.K.); (M.M.)
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
19
|
Jain KK, Kumar A, Shankar A, Pandey D, Chaudhary B, Sharma KK. De novo transcriptome assembly and protein profiling of copper-induced lignocellulolytic fungus Ganoderma lucidum MDU-7 reveals genes involved in lignocellulose degradation and terpenoid biosynthetic pathways. Genomics 2020; 112:184-198. [DOI: 10.1016/j.ygeno.2019.01.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/07/2019] [Accepted: 01/20/2019] [Indexed: 12/23/2022]
|
20
|
Cao GH, He S, Chen D, Li T, Zhao ZW. EpABC Genes in the Adaptive Responses of Exophiala pisciphila to Metal Stress: Functional Importance and Relation to Metal Tolerance. Appl Environ Microbiol 2019; 85:e01844-19. [PMID: 31540987 PMCID: PMC6856334 DOI: 10.1128/aem.01844-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 09/14/2019] [Indexed: 11/20/2022] Open
Abstract
Exophiala pisciphila is one of the dominant dark septate endophytes (DSEs) colonizing metal-polluted slag heaps in southwest China. It shows numerous super-metal-tolerant characteristics, but the molecular mechanisms involved remain largely unknown. In the present study, the functional roles of a specific set of ATP-binding cassette (ABC) transporters in E. pisciphila were characterized. In total, 26 EpABC genes belonging to 6 subfamilies (ABCA to ABCG) were annotated in previous transcriptome sequencing libraries, and all were regulated by metal ions (Pb, Zn, and Cd), which was dependent on the metal species and/or concentrations tested. The results from the heterologous expression of 3 representative EpABC genes confirmed that the expression of EpABC2.1, EpABC3.1, or EpABC4.1 restored the growth of metal-sensitive mutant Saccharomyces cerevisiae strains and significantly improved the tolerance of Arabidopsis thaliana to Pb, Zn, and Cd. Interestingly, the expression of the 3 EpABC genes further altered metal (Pb, Zn, and Cd) uptake and accumulation and promoted growth by alleviating the inhibitory activity in yeast and thale cress caused by toxic ions. These functions along with their vacuolar location suggest that the 3 EpABC transporters may enhance the detoxification of vacuolar compartmentation via transport activities across their membranes. In conclusion, the 26 annotated EpABC transporters may play a major role in maintaining the homeostasis of various metal ions in different cellular compartments, conferring an extreme adaptative advantage to E. pisciphila in metal-polluted slag heaps.IMPORTANCE Many ABC transporters and their functions have been identified in animals and plants. However, little is known about ABC genes in filamentous fungi, especially DSEs, which tend to dominantly colonize the roots of plants growing in stressed environments. Our results deepen the understanding of the function of the ABC genes of a super-metal-tolerant DSE (E. pisciphila) in enhancing its heavy metal resistance and detoxification. Furthermore, the genetic resources of DSEs, e.g., numerous EpABC genes, especially from super-metal-tolerant strains in heavy metal-polluted environments, can be directly used for transgenic applications to improve tolerance and phytoextraction potential.
Collapse
Affiliation(s)
- Guan-Hua Cao
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, Yunnan, China
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sen He
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Di Chen
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Tao Li
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, Yunnan, China
| | - Zhi-Wei Zhao
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
21
|
Rakvács Z, Kucsma N, Gera M, Igriczi B, Kiss K, Barna J, Kovács D, Vellai T, Bencs L, Reisecker JM, Szoboszlai N, Szakács G. The human ABCB6 protein is the functional homologue of HMT-1 proteins mediating cadmium detoxification. Cell Mol Life Sci 2019; 76:4131-4144. [PMID: 31053883 PMCID: PMC6785578 DOI: 10.1007/s00018-019-03105-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/31/2022]
Abstract
ABCB6 belongs to the family of ATP-binding cassette (ABC) transporters, which transport various molecules across extra- and intra-cellular membranes, bearing significant impact on human disease and pharmacology. Although mutations in the ABCB6 gene have been linked to a variety of pathophysiological conditions ranging from transfusion incompatibility to pigmentation defects, its precise cellular localization and function is not understood. In particular, the intracellular localization of ABCB6 has been a matter of debate, with conflicting reports suggesting mitochondrial or endolysosomal expression. ABCB6 shows significant sequence identity to HMT-1 (heavy metal tolerance factor 1) proteins, whose evolutionarily conserved role is to confer tolerance to heavy metals through the intracellular sequestration of metal complexes. Here, we show that the cadmium-sensitive phenotype of Schizosaccharomyces pombe and Caenorhabditis elegans strains defective for HMT-1 is rescued by the human ABCB6 protein. Overexpression of ABCB6 conferred tolerance to cadmium and As(III) (As2O3), but not to As(V) (Na2HAsO4), Sb(V), Hg(II), or Zn(II). Inactivating mutations of ABCB6 abolished vacuolar sequestration of cadmium, effectively suppressing the cadmium tolerance phenotype. Modulation of ABCB6 expression levels in human glioblastoma cells resulted in a concomitant change in cadmium sensitivity. Our findings reveal ABCB6 as a functional homologue of the HMT-1 proteins, linking endolysosomal ABCB6 to the highly conserved mechanism of intracellular cadmium detoxification.
Collapse
Affiliation(s)
- Zsófia Rakvács
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Nóra Kucsma
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Melinda Gera
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Barbara Igriczi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Kiss
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - János Barna
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Dániel Kovács
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Tibor Vellai
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - László Bencs
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
| | - Johannes M Reisecker
- Department of Medicine I, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Norbert Szoboszlai
- Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Gergely Szakács
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
- Department of Medicine I, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
22
|
Park HC, Hwang JE, Jiang Y, Kim YJ, Kim SH, Nguyen XC, Kim CY, Chung WS. Functional characterisation of two phytochelatin synthases in rice (Oryza sativa cv. Milyang 117) that respond to cadmium stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:854-861. [PMID: 30929297 PMCID: PMC6766863 DOI: 10.1111/plb.12991] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/26/2019] [Indexed: 05/20/2023]
Abstract
Cadmium (Cd) is one of the most toxic heavy metals and a non-essential element to all organisms, including plants; however, the genes involved in Cd resistance in plants remain poorly characterised. To identify Cd resistance genes in rice, we screened a rice cDNA expression library treated with CdCl2 using a yeast (Saccharomyces cerevisiae) mutant ycf1 strain (DTY167) and isolated two rice phytochelatin synthases (OsPCS5 and OsPCS15). The genes were strongly induced by Cd treatment and conferred increased resistance to Cd when expressed in the ycf1 mutant strain. In addition, the Cd concentration was twofold higher in yeast expressing OsPCS5 and OsPCS15 than in vector-transformed yeast, and OsPCS5 and OsPCS15 localised in the cytoplasm. Arabidopsis thaliana plants overexpressing OsPCS5/-15 paradoxically exhibited increased sensitivity to Cd, suggesting that overexpression of OsPCS5/-15 resulted in toxicity due to excess phytochelatin production in A. thaliana. These data indicate that OsPCS5 and OsPCS15 are involved in Cd tolerance, which may be related to the relative abundances of phytochelatins synthesised by these phytochelatin synthases.
Collapse
Affiliation(s)
- H. C. Park
- Division of Ecological ConservationBureau of Ecological ResearchNational Institute of EcologySeocheonRepublic of Korea
| | - J. E. Hwang
- Division of Ecological ConservationBureau of Ecological ResearchNational Institute of EcologySeocheonRepublic of Korea
| | - Y. Jiang
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Y. J. Kim
- Division of Ecological ConservationBureau of Ecological ResearchNational Institute of EcologySeocheonRepublic of Korea
| | - S. H. Kim
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - X. C. Nguyen
- Faculty of BiotechnologyVietnam National University of AgricultureHanoiVietnam
| | - C. Y. Kim
- Biological Resource CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)JeongeupRepublic of Korea
| | - W. S. Chung
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| |
Collapse
|
23
|
Preliminary Classification of the ABC Transporter Family in Betula halophila and Expression Patterns in Response to Exogenous Phytohormones and Abiotic Stresses. FORESTS 2019. [DOI: 10.3390/f10090722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
ATP-binding cassette (ABC) transporters comprise a transport system superfamily which is ubiquitous in eukaryotic and prokaryotic cells. In plants, ABC transporters play important roles in hormone transport and stress tolerance. In this study, 15 BhABC transporters encoded by genes identified from the transcriptome of Betula halophila were categorized into four subfamilies (ABCB, ABCF, ABCG, and ABCI) using structural domain and phylogenetic analyses. Upon B. halophila exposure to exogenous phytohormones and abiotic stressors, gene expression patterns and transcriptional responses for each subfamily of genes were obtained using semi-quantitative RT-PCR analysis. The results demonstrated that expression of most genes belonging to ABCB and ABCG subfamilies changed in response to exogenous phytohormone exposures and abiotic stress. These results suggest that BhABC genes may participate in hormone transport and that their expression may be influenced by ABA-dependent signaling pathways involved in abiotic stress responses to various stressors.
Collapse
|
24
|
Luo JS, Gu T, Yang Y, Zhang Z. A non-secreted plant defensin AtPDF2.6 conferred cadmium tolerance via its chelation in Arabidopsis. PLANT MOLECULAR BIOLOGY 2019; 100:561-569. [PMID: 31053987 DOI: 10.1007/s11103-019-00878-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/25/2019] [Indexed: 05/27/2023]
Abstract
Plant defensin AtPDF2.6 is not secreted to the apoplast and localized in cytoplasm. AtPDF2.6 is mainly expressed in root vascular bundles of xylem parenchyma cell, and significantly induced by Cd stress. AtPDF2.6 detoxicate cytoplasmic Cd via chelation, thus enhanced Cd tolerance in Arabidopsis. In order to detoxify the heavy metal cadmium (Cd), plants have evolved several mechanisms, among which chelation represents the major Cd-detoxification mechanism. In this study, we aimed to identify a new defensin protein involved in cytoplasmic Cd detoxification by using plant molecular genetics and physiological methods. The results of bioinformatic analysis showed that the Arabidopsis thaliana defensin gene AtPDF2.6 has a signal peptide that may mediate its secretion to the cell wall. Subcellular localization analysis revealed that AtPDF2.6 is localized to the cytoplasm and is not secreted to the apoplast, whereas histochemical analysis indicated that AtPDF2.6 is mainly expressed in the root xylem parenchyma cells and that its expression is significantly induced by Cd. An in vitro Cd-binding assay revealed that AtPDF2.6 has Cd-chelating activity. Heterologous overexpression of AtPDF2.6 increased Cd tolerance in Escherichia coli and yeast, and AtPDF2.6 overexpression significantly enhanced Cd tolerance in Arabidopsis, whereas functional disruption of AtPDF2.6 decreased Cd tolerance. These data suggest that AtPDF2.6 detoxifies cytoplasmic Cd via chelation and thereby enhances Cd tolerance in Arabidopsis. Our findings accordingly challenge the commonly accepted view of defensins as secreted proteins.
Collapse
Affiliation(s)
- Jin-Song Luo
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, 410128, China
| | - Tianyu Gu
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yong Yang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, 410128, China
| | - Zhenhua Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, 410128, China.
| |
Collapse
|
25
|
Deng F, Yu M, Martinoia E, Song WY. Ideal Cereals With Lower Arsenic and Cadmium by Accurately Enhancing Vacuolar Sequestration Capacity. Front Genet 2019; 10:322. [PMID: 31024630 PMCID: PMC6467212 DOI: 10.3389/fgene.2019.00322] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/22/2019] [Indexed: 12/29/2022] Open
Abstract
Cereals are a staple food for many people around the world; however, they are also a major dietary source of toxic metal(loid)s. Many agricultural regions throughout the world are contaminated with toxic metal(loid)s, which can accumulate to high levels in the grains of cereals cultivated in these regions, posing serious health risks to consumers. Arsenic (As) and cadmium (Cd) are efficiently accumulated in cereals through metal transport pathways. Therefore, there is an urgent need to develop crops that contain greatly reduced levels of toxic metal(loid)s. Vacuolar sequestration of toxic metal(loid)s is a primary strategy for reducing toxic metal(loid)s in grains. However, until recently, detailed strategies and mechanisms for reducing toxic metal(loid)s in grain were limited by the lack of experimental data. New strategies to reduce As and Cd in grain by enhancing vacuolar sequestration in specific tissues are critical to develop crops that lower the daily intake of As and Cd, potentially improving human health. This review provides insights and strategies for developing crops with strongly reduced amounts of toxic metal(loid)s without jeopardizing agronomic traits.
Collapse
Affiliation(s)
- Fenglin Deng
- Department of Horticulture, Foshan University, Foshan, China
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Min Yu
- Department of Horticulture, Foshan University, Foshan, China
| | - Enrico Martinoia
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Won-Yong Song
- Department of Horticulture, Foshan University, Foshan, China
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|
26
|
Liu XM, Yamasaki A, Du XM, Coffman VC, Ohsumi Y, Nakatogawa H, Wu JQ, Noda NN, Du LL. Lipidation-independent vacuolar functions of Atg8 rely on its noncanonical interaction with a vacuole membrane protein. eLife 2018; 7:41237. [PMID: 30451685 PMCID: PMC6279349 DOI: 10.7554/elife.41237] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/18/2018] [Indexed: 11/18/2022] Open
Abstract
The ubiquitin-like protein Atg8, in its lipidated form, plays central roles in autophagy. Yet, remarkably, Atg8 also carries out lipidation-independent functions in non-autophagic processes. How Atg8 performs its moonlighting roles is unclear. Here we report that in the fission yeast Schizosaccharomyces pombe and the budding yeast Saccharomyces cerevisiae, the lipidation-independent roles of Atg8 in maintaining normal morphology and functions of the vacuole require its interaction with a vacuole membrane protein Hfl1 (homolog of human TMEM184 proteins). Crystal structures revealed that the Atg8-Hfl1 interaction is not mediated by the typical Atg8-family-interacting motif (AIM) that forms an intermolecular β-sheet with Atg8. Instead, the Atg8-binding regions in Hfl1 proteins adopt a helical conformation, thus representing a new type of AIMs (termed helical AIMs here). These results deepen our understanding of both the functional versatility of Atg8 and the mechanistic diversity of Atg8 binding.
Collapse
Affiliation(s)
- Xiao-Man Liu
- National Institute of Biological Sciences, Beijing, China
| | | | - Xiao-Min Du
- National Institute of Biological Sciences, Beijing, China.,College of Life Sciences, Beijing Normal University, Beijing, China
| | | | - Yoshinori Ohsumi
- Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hitoshi Nakatogawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Jian-Qiu Wu
- The Ohio State University, Columbus, United States
| | | | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China
| |
Collapse
|
27
|
Lauterbach A, Geissler AJ, Eisenbach L, Behr J, Vogel RF. Novel diagnostic marker genes differentiate Saccharomyces
with respect to their potential application. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alexander Lauterbach
- Lehrstuhl für Technische Mikrobiologie; Technische Universität München; Gregor-Mendel Str. 4 85354 Freising Germany
| | - Andreas J. Geissler
- Lehrstuhl für Technische Mikrobiologie; Technische Universität München; Gregor-Mendel Str. 4 85354 Freising Germany
| | - Lara Eisenbach
- Lehrstuhl für Technische Mikrobiologie; Technische Universität München; Gregor-Mendel Str. 4 85354 Freising Germany
| | - Jürgen Behr
- Lehrstuhl für Technische Mikrobiologie; Technische Universität München; Gregor-Mendel Str. 4 85354 Freising Germany
- Bavarian Center for Biomolecular Mass Spectrometry; Gregor-Mendel Str. 4 85354 Freising Germany
| | - Rudi F. Vogel
- Lehrstuhl für Technische Mikrobiologie; Technische Universität München; Gregor-Mendel Str. 4 85354 Freising Germany
| |
Collapse
|
28
|
Dube G, Kadoo N, Prashant R. Exploring the biological roles of Dothideomycetes ABC proteins: Leads from their phylogenetic relationships with functionally-characterized Ascomycetes homologs. PLoS One 2018; 13:e0197447. [PMID: 30071023 PMCID: PMC6071951 DOI: 10.1371/journal.pone.0197447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/02/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The ATP-binding cassette (ABC) superfamily is one of the largest, ubiquitous and diverse protein families in nature. Categorized into nine subfamilies, its members are important to most organisms including fungi, where they play varied roles in fundamental cellular processes, plant pathogenesis or fungicide tolerance. However, these proteins are not yet well-understood in the class Dothideomycetes, which includes several phytopathogens that infect a wide range of food crops including wheat, barley and maize and cause major economic losses. RESULTS We analyzed the genomes of 14 Dothideomycetes fungi (Test set) and seven well-known Ascomycetes fungi (Model set- that possessed gene expression/ functional analysis data about the ABC genes) and predicted 578 and 338 ABC proteins from each set respectively. These proteins were classified into subfamilies A to I, which revealed the distribution of the subfamily members across the Dothideomycetes and Ascomycetes genomes. Phylogenetic analysis of Dothideomycetes ABC proteins indicated evolutionary relationships among the subfamilies within this class. Further, phylogenetic relationships among the ABC proteins from the Model and the Test fungi within each subfamily were analyzed, which aided in classifying these proteins into subgroups. We compiled and curated functional and gene expression information from the previous literature for 118 ABC genes and mapped them on the phylogenetic trees, which suggested possible roles in pathogenesis and/or fungicide tolerance for the newly identified Dothideomycetes ABC proteins. CONCLUSIONS The present analysis is one of the firsts to extensively analyze ABC proteins from Dothideomycetes fungi. Their phylogenetic analysis and annotating the clades with functional information indicated a subset of Dothideomycetes ABC genes that could be considered for experimental validation for their roles in plant pathogenesis and/or fungicide tolerance.
Collapse
Affiliation(s)
- Gaurav Dube
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
| | - Narendra Kadoo
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Ramya Prashant
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- MIT School of Bioengineering Sciences & Research, MIT-Art, Design and Technology University, Pune, India
| |
Collapse
|
29
|
Kim S, Sharma AK, Vatamaniuk OK. N-Terminal Extension and C-Terminal Domains Are Required for ABCB6/HMT-1 Protein Interactions, Function in Cadmium Detoxification, and Localization to the Endosomal-Recycling System in Caenorhabditis elegans. Front Physiol 2018; 9:885. [PMID: 30104978 PMCID: PMC6077975 DOI: 10.3389/fphys.2018.00885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 01/30/2023] Open
Abstract
The chronic exposure of humans to toxic metals such as cadmium from food and air causes dysfunction of vital organs, neurodegenerative conditions, and cancer. In this regard, members of the ABCB sub-family of the ATP-binding cassette (ABC) transporter superfamily, ABCB6/HMT-1, are acutely required for the detoxification of heavy metals and are present in genomes of many organisms including the nematode worm, Caenorhabditis elegans and humans. We showed previously that C. elegans ABCB6/HMT-1 detoxifies cadmium, copper, and arsenic, and is expressed in liver-like cells, the coelomocytes, head neurons and intestinal cells, which are the cell types that are affected by heavy metal poisoning in humans. The subcellular localization of ABCB6/HMT-1 proteins is unclear. ABCB6/HMT-1 proteins have a distinguishing topology: in addition to one transmembrane domain and one nucleotide-binding domain, they possess a hydrophobic N-terminal extension (NTE) domain encompassing five to six transmembrane spans. The role of the NTE domain in the function of ABCB6/HMT-1 in the native organism remains to be investigated. We used a versatile, multicellular model system, C. elegans, to establish the subcellular localization of ABCB6/HMT-1 and refine its structure-function studies in the native organism. We show that ABCB6/HMT-1 localizes mainly to the apical recycling endosomes and, in part, to early and late endosomes of intestinal cells. We also show that ABCB6/HMT-1 lacking the NTE domain is mistargeted to the plasma membrane and is unable to confer cadmium resistance. Although the NTE domain is essential for ABCB6/HMT-1 interaction with itself, the absence of NTE does not fully prevent this interaction. As a result, ABCB6/HMT-1 lacking the NTE domain, and expressed in wild-type worms or co-expressed with the full-length polypeptide, inactivates and mistargets the full-length ABCB6/HMT-1. We also show that the 43 amino acid residue stretch at the COOH-terminus is required for the ABCB6/HMT-1 interaction with itself and cadmium detoxification function. These results suggest that both NTE and COOH-terminus must be present to allow the protein to interact with itself and confer cadmium resistance. Considering that ABCB6/HMT-1 proteins are highly conserved, this study advances our understanding of how these proteins function in cadmium resistance in different species. Furthermore, these studies uncover the role of the endosomal-recycling system in cadmium detoxification.
Collapse
Affiliation(s)
- Sungjin Kim
- Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Anuj K. Sharma
- Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Olena K. Vatamaniuk
- Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
30
|
Sun L, Yang J, Fang H, Xu C, Peng C, Huang H, Lu L, Duan D, Zhang X, Shi J. Mechanism study of sulfur fertilization mediating copper translocation and biotransformation in rice (Oryza sativa L.) plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 226:426-434. [PMID: 28461082 DOI: 10.1016/j.envpol.2017.03.080] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/04/2017] [Accepted: 03/11/2017] [Indexed: 06/07/2023]
Abstract
Metabolism of sulfur (S) is suggested to be an important factor for the homeostasis and detoxification of Cu in plants. We investigated the effects of S fertilizers (S0, Na2SO4) on Cu translocation and biotransformation in rice plants by using multiple synchrotron-based techniques. Fertilization of S increased the biomass and yield of rice plants, as well as the translocation factor of Cu from root to shoot and shoot to grain, resulting in enhanced Cu in grain. Sulfur K-edge X-ray near edge structure (XANES) analysis showed that fertilization of S increased the concentration of glutathione in different rice tissues, especially in rice stem and leaf. Copper K-edge XANES results indicated that a much higher proportion of Cu (I) species existed in rice grain than husk and leaf, which was further confirmed by soft X-ray scanning transmission microscopy results. Sulfur increased the proportion of Cu (I) species in rice grain, husk and leaf, suggesting the inducing of Cu (II) reduction in rice tissues by S fertilization. These results suggested that fertilization of S in paddy soils increased the accumulation of Cu in rice grain, possibly due to the reduction of Cu (II) to Cu (I) by enhancing glutathione synthesis and increasing the translocation of Cu from shoot to grain.
Collapse
Affiliation(s)
- Lijuan Sun
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianjun Yang
- Institute of Environmental and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huaxiang Fang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Chen Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Bestwa Environmental Protection Sci-Tech Co. Ltd, Hangzhou 310015, China
| | - Cheng Peng
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Haomin Huang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; School of Environment and Energy, South China University of Technology, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Dechao Duan
- Bestwa Environmental Protection Sci-Tech Co. Ltd, Hangzhou 310015, China
| | - Xiangzhi Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
31
|
Kovalchuk A, Lee YH, Asiegbu FO. Diversity and evolution of ABC proteins in basidiomycetes. Mycologia 2017; 105:1456-70. [DOI: 10.3852/13-001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Andriy Kovalchuk
- Department of Forest Sciences, P.O. Box 27, Latokartanonkaari 7, 00014 University of Helsinki, Helsinki, Finland
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University Seoul 151-921, Korea
| | - Fred O. Asiegbu
- Department of Forest Sciences, P.O. Box 27, Latokartanonkaari 7, 00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
32
|
Biochemistry and Physiology of Heavy Metal Resistance and Accumulation in Euglena. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:91-121. [PMID: 28429319 DOI: 10.1007/978-3-319-54910-1_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Free-living microorganisms may become suitable models for removal of heavy metals from polluted water bodies, sediments, and soils by using and enhancing their metal accumulating abilities. The available research data indicate that protists of the genus Euglena are a highly promising group of microorganisms to be used in bio-remediation of heavy metal-polluted aerobic and anaerobic acidic aquatic environments. This chapter analyzes the variety of biochemical mechanisms evolved in E. gracilis to resist, accumulate and remove heavy metals from the environment, being the most relevant those involving (1) adsorption to the external cell pellicle; (2) intracellular binding by glutathione and glutathione polymers, and their further compartmentalization as heavy metal-complexes into chloroplasts and mitochondria; (3) polyphosphate biosynthesis; and (4) secretion of organic acids. The available data at the transcriptional, kinetic and metabolic levels on these metabolic/cellular processes are herein reviewed and analyzed to provide mechanistic basis for developing genetically engineered Euglena cells that may have a greater removal and accumulating capacity for bioremediation and recycling of heavy metals.
Collapse
|
33
|
Global Fitness Profiling Identifies Arsenic and Cadmium Tolerance Mechanisms in Fission Yeast. G3-GENES GENOMES GENETICS 2016; 6:3317-3333. [PMID: 27558664 PMCID: PMC5068951 DOI: 10.1534/g3.116.033829] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heavy metals and metalloids such as cadmium [Cd(II)] and arsenic [As(III)] are widespread environmental toxicants responsible for multiple adverse health effects in humans. However, the molecular mechanisms underlying metal-induced cytotoxicity and carcinogenesis, as well as the detoxification and tolerance pathways, are incompletely understood. Here, we use global fitness profiling by barcode sequencing to quantitatively survey the Schizosaccharomyces pombe haploid deletome for genes that confer tolerance of cadmium or arsenic. We identified 106 genes required for cadmium resistance and 110 genes required for arsenic resistance, with a highly significant overlap of 36 genes. A subset of these 36 genes account for almost all proteins required for incorporating sulfur into the cysteine-rich glutathione and phytochelatin peptides that chelate cadmium and arsenic. A requirement for Mms19 is explained by its role in directing iron–sulfur cluster assembly into sulfite reductase as opposed to promoting DNA repair, as DNA damage response genes were not enriched among those required for cadmium or arsenic tolerance. Ubiquinone, siroheme, and pyridoxal 5′-phosphate biosynthesis were also identified as critical for Cd/As tolerance. Arsenic-specific pathways included prefoldin-mediated assembly of unfolded proteins and protein targeting to the peroxisome, whereas cadmium-specific pathways included plasma membrane and vacuolar transporters, as well as Spt–Ada–Gcn5-acetyltransferase (SAGA) transcriptional coactivator that controls expression of key genes required for cadmium tolerance. Notable differences are apparent with corresponding screens in the budding yeast Saccharomyces cerevisiae, underscoring the utility of analyzing toxic metal defense mechanisms in both organisms.
Collapse
|
34
|
He Y, Chen Y, Song W, Zhu L, Dong Z, Ow DW. A Pap1-Oxs1 signaling pathway for disulfide stress in Schizosaccharomyces pombe. Nucleic Acids Res 2016; 45:106-114. [PMID: 27664222 PMCID: PMC5224502 DOI: 10.1093/nar/gkw818] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 01/06/2023] Open
Abstract
We describe a Pap1–Oxs1 pathway for diamide-induced disulfide stress in Schizosaccharomyces pombe, where the nucleocytoplasmic HMG protein Oxs1 acts cooperatively with Pap1 to regulate transcription. Oxs1 and Pap1 form a complex when cells are exposed to diamide or Cd that causes disulfide stress. When examined for promoters up-regulated by diamide, effective Pap1 binding to these targets requires Oxs1, and vice versa. With some genes, each protein alone enhances transcription, but the presence of both exerts an additive positive effect. In other genes, although transcription is induced by diamide, Oxs1 or Pap1 plays a negative role with full de-repression requiring loss of both proteins. In a third class of genes, Oxs1 positively regulates expression, but in its absence, Pap1 plays a negative role. The Oxs1–Pap1 regulatory interaction appears evolutionarily conserved, as heterologous (human, mouse and Arabidopsis) Oxs1 and Pap1-homologues can bind interchangeably with each other in vitro, and at least in the fission yeast, heterologous Oxs1 and Pap1-homologues can substitute for S. pombe Oxs1 and Pap1 to enhance stress tolerance.
Collapse
Affiliation(s)
- Yumei He
- Plant Gene Engineering Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yan Chen
- Plant Gene Engineering Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Song
- Plant Gene Expression Center, USDA/UC Berkeley, Albany, CA 94710, USA
| | - Lei Zhu
- Plant Gene Engineering Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhicheng Dong
- Plant Gene Engineering Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - David W Ow
- Plant Gene Engineering Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China .,Plant Gene Expression Center, USDA/UC Berkeley, Albany, CA 94710, USA
| |
Collapse
|
35
|
García-García JD, Sánchez-Thomas R, Moreno-Sánchez R. Bio-recovery of non-essential heavy metals by intra- and extracellular mechanisms in free-living microorganisms. Biotechnol Adv 2016; 34:859-873. [PMID: 27184302 DOI: 10.1016/j.biotechadv.2016.05.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 01/29/2023]
Abstract
Free-living microorganisms may become suitable models for recovery of non-essential and essential heavy metals from wastewater bodies and soils by using and enhancing their accumulating and/or leaching abilities. This review analyzes the variety of different mechanisms developed mainly in bacteria, protists and microalgae to accumulate heavy metals, being the most relevant those involving phytochelatin and metallothionein biosyntheses; phosphate/polyphosphate metabolism; compartmentalization of heavy metal-complexes into vacuoles, chloroplasts and mitochondria; and secretion of malate and other organic acids. Cyanide biosynthesis for extra-cellular heavy metal bioleaching is also examined. These metabolic/cellular processes are herein analyzed at the transcriptional, kinetic and metabolic levels to provide mechanistic basis for developing genetically engineered microorganisms with greater capacities and efficiencies for heavy metal recovery, recycling of heavy metals, biosensing of metal ions, and engineering of metalloenzymes.
Collapse
Affiliation(s)
- Jorge D García-García
- Departamento de Bioquímica, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F. 14080, México.
| | - Rosina Sánchez-Thomas
- Departamento de Bioquímica, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F. 14080, México
| | - Rafael Moreno-Sánchez
- Departamento de Bioquímica, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F. 14080, México
| |
Collapse
|
36
|
Abstract
Here, we summarize the composition and uses of Schizosaccharomyces pombe media and discuss key issues for consideration in the generation of S. pombe cultures. We discuss the concept of "culture memory," in which the growth state and stress experienced by a strain during storage, propagation, and starter culture preparation can alter experimental outcomes at later stages. We also describe the triggers that are widely used to manipulate signaling through the environment sensing pathways.
Collapse
Affiliation(s)
- Janni Petersen
- Flinders University, Flinders Centre for Innovation in Cancer, School of Medicine, FMST, Bedford Park, SA 5042, Adelaide Australia
| | - Paul Russell
- Department of Cell and Molecular Biology. The Scripps Research Institute 10550 N. Torrey Pines Road, MB3, La Jolla, CA 92037 – USA
| |
Collapse
|
37
|
Baral B, Kovalchuk A, Asiegbu FO. Genome organisation and expression profiling of ABC protein-encoding genes in Heterobasidion annosum s.l. complex. Fungal Biol 2016; 120:376-84. [DOI: 10.1016/j.funbio.2015.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/05/2015] [Accepted: 11/12/2015] [Indexed: 11/29/2022]
|
38
|
Singh S, Parihar P, Singh R, Singh VP, Prasad SM. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. FRONTIERS IN PLANT SCIENCE 2016; 6:1143. [PMID: 26904030 PMCID: PMC4744854 DOI: 10.3389/fpls.2015.01143] [Citation(s) in RCA: 468] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/02/2015] [Indexed: 05/18/2023]
Abstract
Heavy metal contamination of soil and water causing toxicity/stress has become one important constraint to crop productivity and quality. This situation has further worsened by the increasing population growth and inherent food demand. It has been reported in several studies that counterbalancing toxicity due to heavy metal requires complex mechanisms at molecular, biochemical, physiological, cellular, tissue, and whole plant level, which might manifest in terms of improved crop productivity. Recent advances in various disciplines of biological sciences such as metabolomics, transcriptomics, proteomics, etc., have assisted in the characterization of metabolites, transcription factors, and stress-inducible proteins involved in heavy metal tolerance, which in turn can be utilized for generating heavy metal-tolerant crops. This review summarizes various tolerance strategies of plants under heavy metal toxicity covering the role of metabolites (metabolomics), trace elements (ionomics), transcription factors (transcriptomics), various stress-inducible proteins (proteomics) as well as the role of plant hormones. We also provide a glance of some strategies adopted by metal-accumulating plants, also known as "metallophytes."
Collapse
Affiliation(s)
- Samiksha Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Parul Parihar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Rachana Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Vijay P. Singh
- Department of Botany, Government Ramanuj Pratap Singhdev Post Graduate College, Sarguja UniversityBaikunthpur, India
| | - Sheo M. Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| |
Collapse
|
39
|
Kovalchuk A, Kohler A, Martin F, Asiegbu FO. Diversity and evolution of ABC proteins in mycorrhiza-forming fungi. BMC Evol Biol 2015; 15:249. [PMID: 26707138 PMCID: PMC4692070 DOI: 10.1186/s12862-015-0526-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/28/2015] [Indexed: 11/22/2022] Open
Abstract
Background Transporter proteins are predicted to have an important role in the mycorrhizal symbiosis, due to the fact that this type of an interaction between plants and fungi requires a continuous nutrient and signalling exchange. ABC transporters are one of the large groups of transporter proteins found both in plants and in fungi. The crucial role of plant ABC transporters in the formation of the mycorrhizal symbiosis has been demonstrated recently. Some of the fungal ABC transporter-encoding genes are also induced during the mycorrhiza formation. However, no experimental evidences of the direct involvement of fungal ABC transporters in this process are available so far. To facilitate the identification of fungal ABC proteins with a potential role in the establishment of the mycorrhizal symbiosis, we have performed an inventory of the ABC protein-encoding genes in the genomes of 25 species of mycorrhiza-forming fungi. Results We have identified, manually annotated and curated more than 1300 gene models of putative ABC protein-encoding genes. Out of those, more than 1000 models are predicted to encode functional proteins, whereas about 300 models represent gene fragments or putative pseudogenes. We have also performed the phylogenetic analysis of the identified sequences. The sets of ABC proteins in the mycorrhiza-forming species were compared to the related saprotrophic or plant-pathogenic fungal species. Our results demonstrate the high diversity of ABC genes in the genomes of mycorrhiza-forming fungi. Via comparison of transcriptomics data from different species, we have identified candidate groups of ABC transporters that might have a role in the process of the mycorrhiza formation. Conclusions Results of our inventory will facilitate the identification of fungal transporters with a role in the mycorrhiza formation. We also provide the first data on ABC protein-coding genes for the phylum Glomeromycota and for orders Pezizales, Atheliales, Cantharellales and Sebacinales, contributing to the better knowledge of the diversity of this protein family within the fungal kingdom. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0526-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andriy Kovalchuk
- Department of Forest Sciences, University of Helsinki, P.O. Box 27, FIN-00014, Helsinki, Finland.
| | - Annegret Kohler
- UMR 1136, INRA/Université de Lorraine, Interactions Arbres/Microorganismes, INRA, Institut National de la Recherche Agronomique, Centre INRA de Nancy, 54280, Champenoux, France.
| | - Francis Martin
- UMR 1136, INRA/Université de Lorraine, Interactions Arbres/Microorganismes, INRA, Institut National de la Recherche Agronomique, Centre INRA de Nancy, 54280, Champenoux, France.
| | - Fred O Asiegbu
- Department of Forest Sciences, University of Helsinki, P.O. Box 27, FIN-00014, Helsinki, Finland.
| |
Collapse
|
40
|
Wenzel WW, Adriano DC, Salt D, Smith R. Phytoremediation: A Plant-Microbe-Based Remediation System. AGRONOMY MONOGRAPHS 2015. [DOI: 10.2134/agronmonogr37.c18] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Walter W. Wenzel
- Institute of Soil Science; Universität für Bodenkultur; Vienna Austria
| | - Domy C. Adriano
- Savannah River Ecology Laboratory; University of Georgia; Aiken South Carolina
| | - David Salt
- Chemistry Department; Northern Arizona University; Flagstaff Arizona
| | - Robert Smith
- AgBiotech Center; Rutgers University; New Brunswick New Jersey
| |
Collapse
|
41
|
Gupta DK, Chatterjee S, Datta S, Veer V, Walther C. Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals. CHEMOSPHERE 2014; 108:134-144. [PMID: 24560283 DOI: 10.1016/j.chemosphere.2014.01.030] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 06/03/2023]
Abstract
As a nonrenewable resource, phosphorus (P) is the second most important macronutrient for plant growth and nutrition. Demand of phosphorus application in the agricultural production is increasing fast throughout the globe. The bioavailability of phosphorus is distinctively low due to its slow diffusion and high fixation in soils which make phosphorus a key limiting factor for crop production. Applications of phosphorus-based fertilizers improve the soil fertility and agriculture yield but at the same time concerns over a number of factors that lead to environmental damage need to be addressed properly. Phosphate rock mining leads to reallocation and exposure of several heavy metals and radionuclides in crop fields and water bodies throughout the world. Proper management of phosphorus along with its fertilizers is required that may help the maximum utilization by plants and minimum run-off and wastage. Phosphorus solubilizing bacteria along with the root rhizosphere of plant integrated with root morphological and physiological adaptive strategies need to be explored further for utilization of this extremely valuable nonrenewable resource judiciously. The main objective of this review is to assess the role of phosphorus in fertilizers, their uptake along with other elements and signaling during P starvation.
Collapse
Affiliation(s)
- D K Gupta
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), Herrenhäuser Str. 2, Gebäude 4113, D-30419 Hannover, Germany.
| | - S Chatterjee
- Defence Research Laboratory, DRDO, Post Bag 2, Tezpur 784001, Assam, India
| | - S Datta
- Defence Research Laboratory, DRDO, Post Bag 2, Tezpur 784001, Assam, India
| | - V Veer
- Defence Research Laboratory, DRDO, Post Bag 2, Tezpur 784001, Assam, India
| | - C Walther
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), Herrenhäuser Str. 2, Gebäude 4113, D-30419 Hannover, Germany
| |
Collapse
|
42
|
Moulis JM, Bourguignon J, Catty P. Cadmium. BINDING, TRANSPORT AND STORAGE OF METAL IONS IN BIOLOGICAL CELLS 2014. [DOI: 10.1039/9781849739979-00695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cadmium is not an essential element for life. It is geologically marginal but anthropogenic activities have contributed significantly to its dispersion in the environment and to cadmium exposure of living species. The natural speciation of the divalent cation Cd2+ is dominated by its high propensity to bind to sulfur ligands, but Cd2+ may also occupy sites providing imidazole and carboxylate ligands. It binds to cell walls by passive adsorption (bio-sorption) and it may interact with surface receptors. Cellular uptake can occur by ion mimicry through a variety of transporters of essential divalent cations, but not always. Once inside cells, Cd2+ preferentially binds to thiol-rich molecules. It can accumulate in intracellular vesicles. It may also be transported over long distances within multicellular organisms and be trapped in locations devoid of efficient excretion systems. These locations include the renal cortex of animals and the leaves of hyper-accumulating plants. No specific regulatory mechanism monitors Cd2+ cellular concentrations. Thiol recruitment by cadmium is a major interference mechanism with many signalling pathways that rely on thiolate-disulfide equilibria and other redox-related processes. Cadmium thus compromises the antioxidant intracellular response that relies heavily on molecules with reactive thiolates. These biochemical features dominate cadmium toxicity, which is complex because of the diversity of the biological targets and the consequent pleiotropic effects. This chapter compares the cadmium-handling systems known throughout phylogeny and highlights the basic principles underlying the impact of cadmium in biology.
Collapse
Affiliation(s)
- Jean-Marc Moulis
- CEA, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire Chimie et Biologie des Métaux 17 rue des Martyrs F-38054 Grenoble France
- CNRS UMR5249 F-38054 Grenoble France
- Université Joseph Fourier-Grenoble I UMR5249 F-38041 Grenoble France
| | - Jacques Bourguignon
- CEA, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire Physiologie Cellulaire et Végétale F-38054 Grenoble France
- CNRS UMR5168 F-38054 Grenoble France
- Université Joseph Fourier-Grenoble I UMR5168 F-38041 Grenoble France
- INRA USC1359 F-38054 Grenoble France
| | - Patrice Catty
- CEA, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire Chimie et Biologie des Métaux 17 rue des Martyrs F-38054 Grenoble France
- CNRS UMR5249 F-38054 Grenoble France
- Université Joseph Fourier-Grenoble I UMR5249 F-38041 Grenoble France
| |
Collapse
|
43
|
A Simple and Specific Procedure to Permeabilize the Plasma Membrane ofSchizosaccharomyces pombe. Biosci Biotechnol Biochem 2014; 73:2090-5. [DOI: 10.1271/bbb.90319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Song WY, Mendoza-Cózatl DG, Lee Y, Schroeder JI, Ahn SN, Lee HS, Wicker T, Martinoia E. Phytochelatin-metal(loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis. PLANT, CELL & ENVIRONMENT 2014; 37:1192-201. [PMID: 24313707 PMCID: PMC4123957 DOI: 10.1111/pce.12227] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 05/18/2023]
Abstract
Cadmium (Cd) and arsenic (As) are toxic to all living organisms, including plants and humans. In plants, Cd and As are detoxified by phytochelatins (PCs) and metal(loid)-chelating peptides and by sequestering PC-metal(loid) complexes in vacuoles. Consistent differences have been observed between As and Cd detoxification. Whereas chelation of Cd by PCs is largely sufficient to detoxify Cd, As-PC complexes must be sequestered into vacuoles to be fully detoxified. It is not clear whether this difference in detoxification pathways is ubiquitous among plants or varies across species. Here, we have conducted a PC transport study using vacuoles isolated from Arabidopsis and barley. Arabidopsis vacuoles accumulated low levels of PC2 -Cd, and vesicles from yeast cells expressing either AtABCC1 or AtABCC2 exhibited negligible PC2 -Cd transport activity compared with PC2 -As. In contrast, barley vacuoles readily accumulated comparable levels of PC2 -Cd and PC2 -As. PC transport in barley vacuoles was inhibited by vanadate, but not by ammonium, suggesting the involvement of ABC-type transporters. Interestingly, barley vacuoles exhibited enhanced PC2 transport activity when essential metal ions, such as Zn(II), Cu(II) and Mn(II), were added to the transport assay, suggesting that PCs might contribute to the homeostasis of essential metals and detoxification of non-essential toxic metal(loid)s.
Collapse
Affiliation(s)
- Won-Yong Song
- POSTECH-UZH Cooperative Laboratory, Department of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Suman J, Kotrba P, Macek T. Putative P1B-type ATPase from the bacterium Achromobacter xylosoxidans A8 alters Pb2+/Zn2+/Cd2+-resistance and accumulation in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1338-43. [DOI: 10.1016/j.bbamem.2014.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 11/30/2022]
|
46
|
Gigolashvili T, Kopriva S. Transporters in plant sulfur metabolism. FRONTIERS IN PLANT SCIENCE 2014; 5:442. [PMID: 25250037 PMCID: PMC4158793 DOI: 10.3389/fpls.2014.00442] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/18/2014] [Indexed: 05/02/2023]
Abstract
Sulfur is an essential nutrient, necessary for synthesis of many metabolites. The uptake of sulfate, primary and secondary assimilation, the biosynthesis, storage, and final utilization of sulfur (S) containing compounds requires a lot of movement between organs, cells, and organelles. Efficient transport systems of S-containing compounds across the internal barriers or the plasma membrane and organellar membranes are therefore required. Here, we review a current state of knowledge of the transport of a range of S-containing metabolites within and between the cells as well as of their long distance transport. An improved understanding of mechanisms and regulation of transport will facilitate successful engineering of the respective pathways, to improve the plant yield, biotic interaction and nutritional properties of crops.
Collapse
Affiliation(s)
- Tamara Gigolashvili
- Department of Plant Molecular Physiology, Botanical Institute and Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of CologneCologne Germany
- *Correspondence: Tamara Gigolashvili, Department of Plant Molecular Physiology, Botanical Institute and Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, Zülpicher Street 47 B, 50674 Cologne, Germany e-mail:
| | - Stanislav Kopriva
- Plant Biochemistry Department, Botanical Institute and Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of CologneCologne Germany
| |
Collapse
|
47
|
Guo H, Chen C, Lee DJ, Wang A, Ren N. Proteomic analysis of sulfur-nitrogen-carbon removal by Pseudomonas sp. C27 under micro-aeration condition. Enzyme Microb Technol 2013; 56:20-7. [PMID: 24564898 DOI: 10.1016/j.enzmictec.2013.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/21/2013] [Accepted: 12/16/2013] [Indexed: 11/29/2022]
Abstract
Pseudomonas sp. C27 is a facultative autotrophic bacterium (FAB) that can effectively conduct mixotrophic and heterotrophic denitrifying sulfide removal (DSR) reactions under anaerobic condition using organic matters and sulfide as electron donors. Micro-aeration was proposed to enhance DSR reaction by FAB; however, there is no experimental proof on the effects of micro-aeration on capacity of denitrifying sulfide removal of FAB on proteomic levels. The proteome in total C27 cell extracts was observed by two-dimensional gel electrophoresis. Differentially expressed protein spots and specifically expressed protein spots were identified by MALDI TOF/TOF MS. We identified 55 microaerobic-responsive protein spots, representing 55 unique proteins. Hierarchical clustering analysis revealed that 75% of the proteins were up-regulated, and 5% of the proteins were specifically expressed under micro-aerobic conditions. These enzymes were mainly involved in membrane transport, protein folding and metabolism. The noted expression changes of the microaerobic-responsive proteins suggests that C27 strain has a highly efficient enzyme system to conduct DSR reactions under micro-aerobic condition. Additionally, micro-aeration can increase the rates of protein synthesis and cell growth, and enhance cell defensive system of the strain.
Collapse
Affiliation(s)
- Hongliang Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Duu-Jong Lee
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
48
|
Higuchi K, Tsuchiya M, Nakata S, Tanabe A, Fukawa S, Kanai M, Miwa E. Detoxification of cadmium (Cd) by a novel Cd-associated and Cd-induced molecule in the stem of common reed. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1553-1560. [PMID: 23850031 DOI: 10.1016/j.jplph.2013.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 06/17/2013] [Accepted: 06/17/2013] [Indexed: 06/02/2023]
Abstract
Common reed (Phragmites australis) is a phytoremediator tolerant to heavy metals. In this study, we found that 70% of the cadmium (Cd) found in the stem of common reed exists in a soluble form, with more than half of the soluble Cd in the 10- to 50-kDa fraction. Based on an enzyme degradation assay, the major component of the Cd-associated molecule is assumed to be an amylopectin-like α-glucan. This molecule may associate with Cd via the carboxyl group, rather than the thiol group. The conditions required for the disengagement of Cd from the 10- to 50-kDa fraction indicated that disulfide bonds and other intramolecular interactions may contribute to maintaining the proper conformation of the molecule and to stabilizing its association with Cd. Accumulation of the Cd-associated molecule was induced by Cd stress, and the molecule was found to be also associated with Cu and Fe. Thus, we have identified a novel mechanism of Cd-pooling, namely, the association of Cd with an α-glucan-like molecule in reed stem.
Collapse
Affiliation(s)
- Kyoko Higuchi
- Department of Applied Biology and Chemistry, Faculty of Applied Bio-Science, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan.
| | | | | | | | | | | | | |
Collapse
|
49
|
Gutiérrez-Escobedo G, Orta-Zavalza E, Castaño I, De Las Peñas A. Role of glutathione in the oxidative stress response in the fungal pathogen Candida glabrata. Curr Genet 2013; 59:91-106. [PMID: 23455613 DOI: 10.1007/s00294-013-0390-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/07/2013] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
Abstract
Candida glabrata, an opportunistic fungal pathogen, accounts for 18-26 % of all Candida systemic infections in the US. C. glabrata has a robust oxidative stress response (OSR) and in this work we characterized the role of glutathione (GSH), an essential tripeptide-like thiol-containing molecule required to keep the redox homeostasis and in the detoxification of metal ions. GSH is synthesized from glutamate, cysteine, and glycine by the sequential action of Gsh1 (γ-glutamyl-cysteine synthetase) and Gsh2 (glutathione synthetase) enzymes. We first screened for suppressor mutations that would allow growth in the absence of GSH1 (gsh1∆ background) and found a single point mutation in PRO2 (pro2-4), a gene that encodes a γ-glutamyl phosphate reductase and catalyzes the second step in the biosynthesis of proline. We demonstrate that GSH is important in the OSR since the gsh1∆ pro2-4 and gsh2∆ mutant strains are more sensitive to oxidative stress generated by H2O2 and menadione. GSH is also required for Cadmium tolerance. In the absence of Gsh1 and Gsh2, cells show decreased viability in stationary phase. Furthermore, C. glabrata does not contain Saccharomyces cerevisiae high affinity GSH transporter ortholog, ScOpt1/Hgt1, however, our genetic and biochemical experiments show that the gsh1∆ pro2-4 and gsh2∆ mutant strains are able to incorporate GSH from the medium. Finally, GSH and thioredoxin, which is a second redox system in the cell, are not essential for the catalase-independent adaptation response to H2O2.
Collapse
Affiliation(s)
- Guadalupe Gutiérrez-Escobedo
- IPICYT, Camino a la Presa San José 2055, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, 78216, San Luis Potosí, San Luis Potosí, México
| | | | | | | |
Collapse
|
50
|
Kiss K, Brozik A, Kucsma N, Toth A, Gera M, Berry L, Vallentin A, Vial H, Vidal M, Szakacs G. Shifting the paradigm: the putative mitochondrial protein ABCB6 resides in the lysosomes of cells and in the plasma membrane of erythrocytes. PLoS One 2012; 7:e37378. [PMID: 22655043 PMCID: PMC3360040 DOI: 10.1371/journal.pone.0037378] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/18/2012] [Indexed: 11/19/2022] Open
Abstract
ABCB6, a member of the adenosine triphosphate–binding cassette (ABC) transporter family, has been proposed to be responsible for the mitochondrial uptake of porphyrins. Here we show that ABCB6 is a glycoprotein present in the membrane of mature erythrocytes and in exosomes released from reticulocytes during the final steps of erythroid maturation. Consistent with its presence in exosomes, endogenous ABCB6 is localized to the endo/lysosomal compartment, and is absent from the mitochondria of cells. Knock-down studies demonstrate that ABCB6 function is not required for de novo heme biosynthesis in differentiating K562 cells, excluding this ABC transporter as a key regulator of porphyrin synthesis. We confirm the mitochondrial localization of ABCB7, ABCB8 and ABCB10, suggesting that only three ABC transporters should be classified as mitochondrial proteins. Taken together, our results challenge the current paradigm linking the expression and function of ABCB6 to mitochondria.
Collapse
Affiliation(s)
- Katalin Kiss
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anna Brozik
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Nora Kucsma
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Alexandra Toth
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Melinda Gera
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Laurence Berry
- Unité Mixte de Recherche 5235 (Dynamique des Interactions Membranaires Normales et Pathologiques), Centre National de la Recherche Scientifique, Université Montpellier II, Montpellier, France
| | - Alice Vallentin
- Unité Mixte de Recherche 5235 (Dynamique des Interactions Membranaires Normales et Pathologiques), Centre National de la Recherche Scientifique, Université Montpellier II, Montpellier, France
| | - Henri Vial
- Unité Mixte de Recherche 5235 (Dynamique des Interactions Membranaires Normales et Pathologiques), Centre National de la Recherche Scientifique, Université Montpellier II, Montpellier, France
| | - Michel Vidal
- Unité Mixte de Recherche 5235 (Dynamique des Interactions Membranaires Normales et Pathologiques), Centre National de la Recherche Scientifique, Université Montpellier II, Montpellier, France
| | - Gergely Szakacs
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|