1
|
Tiwari A, Verma N, Shukla H, Mishra S, Kennedy K, Chatterjee T, Kuldeep J, Parwez S, Siddiqi MI, Ralph SA, Mishra S, Habib S. DNA N-glycosylases Ogg1 and EndoIII as components of base excision repair in Plasmodium falciparum organelles. Int J Parasitol 2024; 54:675-689. [PMID: 38964640 DOI: 10.1016/j.ijpara.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/31/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
The integrity of genomes of the two crucial organelles of the malaria parasite - an apicoplast and mitochondrion in each cell - must be maintained by DNA repair mediated by proteins targeted to these compartments. We explored the localisation and function of Plasmodium falciparum base excision repair (BER) DNA N-glycosylase homologs PfEndoIII and PfOgg1. These N-glycosylases would putatively recognise DNA lesions prior to the action of apurinic/apyrimidinic (AP)-endonucleases. Both Ape1 and Apn1 endonucleases have earlier been shown to function solely in the parasite mitochondrion. Immunofluorescence localisation showed that PfEndoIII was exclusively mitochondrial. PfOgg1 was not seen clearly in mitochondria when expressed as a PfOgg1leader-GFP fusion, although chromatin immunoprecipitation assays showed that it could interact with both mitochondrial and apicoplast DNA. Recombinant PfEndoIII functioned as a DNA N-glycosylase as well as an AP-lyase on thymine glycol (Tg) lesions. We further studied the importance of Ogg1 in the malaria life cycle using reverse genetic approaches in Plasmodium berghei. Targeted disruption of PbOgg1 resulted in loss of 8-oxo-G specific DNA glycosylase/lyase activity. PbOgg1 knockout did not affect blood, mosquito or liver stage development but caused reduced blood stage infection after inoculation of sporozoites in mice. A significant reduction in erythrocyte infectivity by PbOgg1 knockout hepatic merozoites was also observed, thus showing that PbOgg1 ensures smooth transition from liver to blood stage infection. Our results strengthen the view that the Plasmodium mitochondrial genome is an important site for DNA repair by the BER pathway.
Collapse
Affiliation(s)
- Anupama Tiwari
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Neetu Verma
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Himadri Shukla
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shivani Mishra
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kit Kennedy
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Tribeni Chatterjee
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Jitendra Kuldeep
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shahid Parwez
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - M I Siddiqi
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Stuart A Ralph
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Saman Habib
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Flores-Vega JJ, Puente-Rivera J, Sosa-Mondragón SI, Camacho-Nuez M, Alvarez-Sánchez ME. RAD51 recombinase and its paralogs: Orchestrating homologous recombination and unforeseen functions in protozoan parasites. Exp Parasitol 2024; 267:108847. [PMID: 39414114 DOI: 10.1016/j.exppara.2024.108847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024]
Abstract
The DNA of protozoan parasites is highly susceptible to damage, either induced by environmental agents or spontaneously generated during cellular metabolism through reactive oxygen species (ROS). Certain phases of the cell cycle, such as meiotic recombination, and external factors like ionizing radiation (IR), ultraviolet light (UV), or chemical genotoxic agents further increase this susceptibility. Among the various types of DNA damage, double-stranded breaks (DSBs) are the most critical, as they are challenging to repair and can result in genetic instability or cell death. DSBs caused by environmental stressors are primarily repaired via one of two major pathways: non-homologous end joining (NHEJ) or homologous recombination (HR). In multicellular eukaryotes, NHEJ predominates, but in unicellular eukaryotes such as protozoan parasites, HR seems to be the principal mechanism for DSB repair. The HR pathway is orchestrated by proteins from the RAD52 epistasis group, including RAD51, RAD52, RAD54, RAD55, and the MRN complex. This review focuses on elucidating the diverse roles and significance of RAD51 recombinase and its paralogs in protozoan parasites, such as Acanthamoeba castellanii, Entamoeba histolytica (Amoebozoa), apicomplexan parasites (Chromalveolata), Naegleria fowleri, Giardia spp., Trichomonas vaginalis, and trypanosomatids (Excavata), where they primarily function in HR. Additionally, we analyze the diversity of proteins involved in HR, both upstream and downstream of RAD51, and discuss the implications of these processes in parasitic protozoa.
Collapse
Affiliation(s)
- Jose Jesús Flores-Vega
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo #290, Col. Del Valle, CP 03100, Mexico City, Mexico
| | - Jonathan Puente-Rivera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo #290, Col. Del Valle, CP 03100, Mexico City, Mexico; División de Investigación. Hospital Juárez de México, Ciudad de México, 07760, Mexico.
| | - Sharon Itzel Sosa-Mondragón
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo #290, Col. Del Valle, CP 03100, Mexico City, Mexico
| | - Minerva Camacho-Nuez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo #290, Col. Del Valle, CP 03100, Mexico City, Mexico
| | - María Elizbeth Alvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo #290, Col. Del Valle, CP 03100, Mexico City, Mexico.
| |
Collapse
|
3
|
Li XM, Wu ZJ, Fan JY, Liu MQ, Song CG, Chen HQ, Yin Y, Li A, Wang YH, Gao SL, Xu ZL, Liu G, Wu K. Role of 8-hydroxyguanine DNA glycosidase 1 deficiency in exacerbating diabetic cardiomyopathy through the regulation of insulin resistance. J Mol Cell Cardiol 2024; 194:3-15. [PMID: 38844061 DOI: 10.1016/j.yjmcc.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/24/2024]
Abstract
Diabetic cardiomyopathy (DCM) is a heart failure syndrome, and is one of the major causes of morbidity and mortality in diabetes. DCM is mainly characterized by ventricular dilation, myocardial hypertrophy, myocardial fibrosis and cardiac dysfunction. Clinical studies have found that insulin resistance is an independent risk factor for DCM. However, its specific mechanism of DCM remains unclear. 8-hydroxyguanine DNA glycosylase 1(OGG1)is involved in DNA base repair and the regulation of inflammatory genes. In this study, we show that OGG1 was associated with the occurrence of DCM. for the first time. The expression of OGG1 was increased in the heart tissue of DCM mice, and OGG1 deficiency aggravated the cardiac dysfunction of DCM mice. Metabolomics show that OGG1 deficiency resulted in obstruction of glycolytic pathway. At the molecular level, OGG1 regulated glucose uptake and insulin resistance by interacting with PPAR-γ in vitro. In order to explore the protective effect of exogenous OGG1 on DCM, OGG1 adeno-associated virus was injected into DCM mice through tail vein in the middle stage of the disease. We found that the overexpression of OGG1 could improve cardiac dysfunction of DCM mice, indicating that OGG1 had a certain therapeutic effect on DCM. These results demonstrate that OGG1 is a new molecular target for the treatment of DCM and has certain clinical significance.
Collapse
Affiliation(s)
- Xiao-Min Li
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai 200433, China
| | - Zi-Jun Wu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Jun-Yu Fan
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Man-Qi Liu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Chu-Ge Song
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Hong-Qiao Chen
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Yu Yin
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Ao Li
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Ya-Hong Wang
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Sheng-Lan Gao
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Zhi-Liang Xu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China.
| | - Gang Liu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| | - Keng Wu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Cardiovascular Center, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan 523000, China.
| |
Collapse
|
4
|
Chinnam NB, Thapar R, Arvai AS, Sarker AH, Soll JM, Paul T, Syed A, Rosenberg DJ, Hammel M, Bacolla A, Katsonis P, Asthana A, Tsai MS, Ivanov I, Lichtarge O, Silverman RH, Mosammaparast N, Tsutakawa SE, Tainer JA. ASCC1 structures and bioinformatics reveal a novel helix-clasp-helix RNA-binding motif linked to a two-histidine phosphodiesterase. J Biol Chem 2024; 300:107368. [PMID: 38750793 PMCID: PMC11214414 DOI: 10.1016/j.jbc.2024.107368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024] Open
Abstract
Activating signal co-integrator complex 1 (ASCC1) acts with ASCC-ALKBH3 complex in alkylation damage responses. ASCC1 uniquely combines two evolutionarily ancient domains: nucleotide-binding K-Homology (KH) (associated with regulating splicing, transcriptional, and translation) and two-histidine phosphodiesterase (PDE; associated with hydrolysis of cyclic nucleotide phosphate bonds). Germline mutations link loss of ASCC1 function to spinal muscular atrophy with congenital bone fractures 2 (SMABF2). Herein analysis of The Cancer Genome Atlas (TCGA) suggests ASCC1 RNA overexpression in certain tumors correlates with poor survival, Signatures 29 and 3 mutations, and genetic instability markers. We determined crystal structures of Alvinella pompejana (Ap) ASCC1 and Human (Hs) PDE domain revealing high-resolution details and features conserved over 500 million years of evolution. Extending our understanding of the KH domain Gly-X-X-Gly sequence motif, we define a novel structural Helix-Clasp-Helix (HCH) nucleotide binding motif and show ASCC1 sequence-specific binding to CGCG-containing RNA. The V-shaped PDE nucleotide binding channel has two His-Φ-Ser/Thr-Φ (HXT) motifs (Φ being hydrophobic) positioned to initiate cyclic phosphate bond hydrolysis. A conserved atypical active-site histidine torsion angle implies a novel PDE substrate. Flexible active site loop and arginine-rich domain linker appear regulatory. Small-angle X-ray scattering (SAXS) revealed aligned KH-PDE RNA binding sites with limited flexibility in solution. Quantitative evolutionary bioinformatic analyses of disease and cancer-associated mutations support implied functional roles for RNA binding, phosphodiesterase activity, and regulation. Collective results inform ASCC1's roles in transactivation and alkylation damage responses, its targeting by structure-based inhibitors, and how ASCC1 mutations may impact inherited disease and cancer.
Collapse
Affiliation(s)
- Naga Babu Chinnam
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Roopa Thapar
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andrew S Arvai
- Integrative Structural & Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Altaf H Sarker
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jennifer M Soll
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Tanmoy Paul
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Aleem Syed
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel J Rosenberg
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Panagiotis Katsonis
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Abhishek Asthana
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, Ohio, USA
| | - Miaw-Sheue Tsai
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Ivaylo Ivanov
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Olivier Lichtarge
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Robert H Silverman
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, Ohio, USA
| | - Nima Mosammaparast
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA; Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
5
|
Wu M, Lin T, Dong K, Gong Y, Liu X, Zhang L. Biochemical characterization and mechanistic insight of the family IV uracil DNA glycosylase from Sulfolobus islandicus REY15A. Int J Biol Macromol 2023; 230:123222. [PMID: 36639072 DOI: 10.1016/j.ijbiomac.2023.123222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023]
Abstract
Uracil DNA glycosylase (UDG) can remove uracil from DNA, thus playing an essential role in maintaining genomic stability. Family IV UDG members are mostly widespread in hyperthermophilic Archaea and bacteria. In this work, we characterized the family IV UDG from the hyperthermophilic crenarchaeon Sulfolobus islandicus REY15A (Sis-UDGIV) biochemically, and dissected the roles of nine conserved residues in uracil excision by mutational analyses. Biochemical data demonstrate that Sis-UDGIV displays maximum efficiency for uracil excision at 50 °C ~ 70 °C and at pH 7.0-9.0. Additionally, the enzyme has displays a weak activity without a divalent metal ion, but maximum activity with Mg2+. Our mutational analyses show that residues E48 and F55 in Sis-UDGIV are essential for uracil removal, and residues E48, F55, R87, R92 and K146 are responsible for binding DNA. Importantly, we systemically revealed the roles of four conserved cysteine residues C14, C17, C86 and C102 in Sis-UDGIV that are required for being ligands of FeS cluster in maintaining the overall protein conformation and stability by circular dichroism analyses. Overall, our work has provided insights into biochemical function and DNA-binding specificity of archaeal family IV UDGs.
Collapse
Affiliation(s)
- Mai Wu
- College of Environmental Science and Engineering, Yangzhou University, China
| | - Tan Lin
- College of Environmental Science and Engineering, Yangzhou University, China
| | - Kunming Dong
- College of Environmental Science and Engineering, Yangzhou University, China
| | - Yong Gong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Xipeng Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, China
| | - Likui Zhang
- College of Environmental Science and Engineering, Yangzhou University, China; Guangling College, Yangzhou University, China.
| |
Collapse
|
6
|
A novel Family V uracil DNA glycosylase from Sulfolobus islandicus REY15A. DNA Repair (Amst) 2022; 120:103420. [DOI: 10.1016/j.dnarep.2022.103420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 11/18/2022]
|
7
|
Polymorphic variant Asp239Tyr of human DNA glycosylase NTHL1 is inactive for removal of a variety of oxidatively-induced DNA base lesions from genomic DNA. DNA Repair (Amst) 2022; 117:103372. [PMID: 35870279 DOI: 10.1016/j.dnarep.2022.103372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022]
Abstract
Base excision repair is the major pathway for the repair of oxidatively-induced DNA damage, with DNA glycosylases removing modified bases in the first step. Human NTHL1 is specific for excision of several pyrimidine- and purine-derived lesions from DNA, with loss of function NTHL1 showing a predisposition to carcinogenesis. A rare single nucleotide polymorphism of the Nthl1 gene leading to the substitution of Asp239 with Tyr within the active site, occurs within global populations. In this work, we overexpressed and purified the variant NTHL1-Asp239Tyr (NTHL1-D239Y) and determined the substrate specificity of this variant relative to wild-type NTHL1 using gas chromatography-tandem mass spectrometry with isotope-dilution, and oxidatively-damaged genomic DNA containing multiple pyrimidine- and purine-derived lesions. Wild-type NTHL1 excised seven DNA base lesions with different efficiencies, whereas NTHL1-D239Y exhibited no glycosylase activity for any of these lesions. We also measured the activities of human glycosylases OGG1 and NEIL1, and E. coli glycosylases Nth and Fpg under identical experimental conditions. Different substrate specificities among these DNA glycosylases were observed. When mixed with NTHL1-D239Y, the activity of NTHL1 was not reduced, indicating no substrate binding competition. These results and the inactivity of the variant D239Y toward the major oxidatively-induced DNA lesions points to the importance of the understanding of this variant's role in carcinogenesis and the potential of individual susceptibility to cancer in individuals carrying this variant.
Collapse
|
8
|
Disentangling Unusual Catalytic Properties and the Role of the [4Fe-4S] Cluster of Three Endonuclease III from the Extremophile D. radiodurans. Molecules 2022; 27:molecules27134270. [PMID: 35807515 PMCID: PMC9268735 DOI: 10.3390/molecules27134270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023] Open
Abstract
Endonuclease III (EndoIII) is a bifunctional DNA glycosylase with specificity for a broad range of oxidized DNA lesions. The genome of an extremely radiation- and desiccation-resistant bacterium, Deinococcus radiodurans, possesses three genes encoding for EndoIII-like enzymes (DrEndoIII1, DrEndoIII2 and DrEndoIII3), which reveal different types of catalytic activities. DrEndoIII2 acts as the main EndoIII in this organism, while DrEndoIII1 and 3 demonstrate unusual and no EndoIII activity, respectively. In order to understand the role of DrEndoIII1 and DrEndoIII3 in D. radiodurans, we have generated mutants which target non-conserved residues in positions considered essential for classic EndoIII activity. In parallel, we have substituted residues coordinating the iron atoms in the [4Fe-4S] cluster in DrEndoIII2, aiming at elucidating the role of the cluster in these enzymes. Our results demonstrate that the amino acid substitutions in DrEndoIII1 reduce the enzyme activity without altering the overall structure, revealing that the residues found in the wild-type enzyme are essential for its unusual activity. The attempt to generate catalytic activity of DrEndoIII3 by re-designing its catalytic pocket was unsuccessful. A mutation of the iron-coordinating cysteine 199 in DrEndoIII2 appears to compromise the structural integrity and induce the formation of a [3Fe-4S] cluster, but apparently without affecting the activity. Taken together, we provide important structural and mechanistic insights into the three EndoIIIs, which will help us disentangle the open questions related to their presence in D. radiodurans and their particularities.
Collapse
|
9
|
Biochemical and functional characterization of an endonuclease III from Thermococcus barophilus Ch5. World J Microbiol Biotechnol 2022; 38:145. [PMID: 35750964 DOI: 10.1007/s11274-022-03328-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/01/2022] [Indexed: 10/17/2022]
Abstract
Endonuclease III (EndoIII) is a bifunctional DNA glycosylase that is essential to excise thymine glycol (Tg) from DNA. Although EndoIII is widespread in bacteria, eukarya and Archaea, our understanding on archaeal EndoIII function remains relatively incomplete due to the limited reports. Herein, we characterized an EndoIII from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5 (Tba-EndoIII) biochemically, demonstrating that the enzyme can excise Tg from dsDNA and display maximum activity at 50 ~ 70 °C and at pH 6.0 ~ 9.0 without the requirement of a divalent metal ion. Importantly, Tba-EndoIII differs from other reported archaeal EndoIII homologues in thermostability and salt requirement. As observed in other EndoIII homologues, the conserved residues D155 and H157 in Helix-hairpin-Helix motif of Tba-EndoIII are essential for Tg excision. Intriguingly, we first dissected that the conserved residues C215 and C221 in the Fe-S cluster loop in Tba-EndoIII are involved in intermediate formation and Tg excision. Additionally, we first revealed that the conserved residue L48 is flexible for intermediate formation and AP cleavage, but plays no detectable role in Tg excision. Overall, our work has revealed additional archaeal EndoIII function and catalytic mechanism.
Collapse
|
10
|
Wang L, Lin T, Oger P, Gong Y, Zhang L. Biochemical Characterization and Mutational Analysis of a Mismatch Glycosylase From the Hyperthermophilic Euryarchaeon Thermococcus barophilus Ch5. DNA Repair (Amst) 2022; 114:103321. [DOI: 10.1016/j.dnarep.2022.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/26/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022]
|
11
|
Moe E, Silveira CM, Zuccarello L, Rollo F, Stelter M, De Bonis S, Kulka-Peschke C, Katz S, Hildebrandt P, Zebger I, Timmins J, Todorovic S. Human endonuclease III/NTH1: focusing on the [4Fe–4S] cluster and the N-terminal domain. Chem Commun (Camb) 2022; 58:12568-12571. [DOI: 10.1039/d2cc03643f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Full length and truncated human Endonuclease III/hNTH1 possess distinct conformations, redox properties and interactions with the damaged DNA substrate.
Collapse
Affiliation(s)
- Elin Moe
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Célia M. Silveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Lidia Zuccarello
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Filipe Rollo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Meike Stelter
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France
| | | | - Catharina Kulka-Peschke
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Sagie Katz
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Peter Hildebrandt
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Ingo Zebger
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Joanna Timmins
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
12
|
Tsutakawa SE, Bacolla A, Katsonis P, Bralić A, Hamdan SM, Lichtarge O, Tainer JA, Tsai CL. Decoding Cancer Variants of Unknown Significance for Helicase-Nuclease-RPA Complexes Orchestrating DNA Repair During Transcription and Replication. Front Mol Biosci 2021; 8:791792. [PMID: 34966786 PMCID: PMC8710748 DOI: 10.3389/fmolb.2021.791792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/16/2021] [Indexed: 01/13/2023] Open
Abstract
All tumors have DNA mutations, and a predictive understanding of those mutations could inform clinical treatments. However, 40% of the mutations are variants of unknown significance (VUS), with the challenge being to objectively predict whether a VUS is pathogenic and supports the tumor or whether it is benign. To objectively decode VUS, we mapped cancer sequence data and evolutionary trace (ET) scores onto crystallography and cryo-electron microscopy structures with variant impacts quantitated by evolutionary action (EA) measures. As tumors depend on helicases and nucleases to deal with transcription/replication stress, we targeted helicase–nuclease–RPA complexes: (1) XPB-XPD (within TFIIH), XPF-ERCC1, XPG, and RPA for transcription and nucleotide excision repair pathways and (2) BLM, EXO5, and RPA plus DNA2 for stalled replication fork restart. As validation, EA scoring predicts severe effects for most disease mutations, but disease mutants with low ET scores not only are likely destabilizing but also disrupt sophisticated allosteric mechanisms. For sites of disease mutations and VUS predicted to be severe, we found strong co-localization to ordered regions. Rare discrepancies highlighted the different survival requirements between disease and tumor mutations, as well as the value of examining proteins within complexes. In a genome-wide analysis of 33 cancer types, we found correlation between the number of mutations in each tumor and which pathways or functional processes in which the mutations occur, revealing different mutagenic routes to tumorigenesis. We also found upregulation of ancient genes including BLM, which supports a non-random and concerted cancer process: reversion to a unicellular, proliferation-uncontrolled, status by breaking multicellular constraints on cell division. Together, these genes and global analyses challenge the binary “driver” and “passenger” mutation paradigm, support a gradient impact as revealed by EA scoring from moderate to severe at a single gene level, and indicate reduced regulation as well as activity. The objective quantitative assessment of VUS scoring and gene overexpression in the context of functional interactions and pathways provides insights for biology, oncology, and precision medicine.
Collapse
Affiliation(s)
- Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Amer Bralić
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Samir M Hamdan
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - John A Tainer
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States.,Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
13
|
Carroll BL, Zahn KE, Hanley JP, Wallace SS, Dragon JA, Doublié S. Caught in motion: human NTHL1 undergoes interdomain rearrangement necessary for catalysis. Nucleic Acids Res 2021; 49:13165-13178. [PMID: 34871433 PMCID: PMC8682792 DOI: 10.1093/nar/gkab1162] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/02/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023] Open
Abstract
Base excision repair (BER) is the main pathway protecting cells from the continuous damage to DNA inflicted by reactive oxygen species. BER is initiated by DNA glycosylases, each of which repairs a particular class of base damage. NTHL1, a bifunctional DNA glycosylase, possesses both glycolytic and β-lytic activities with a preference for oxidized pyrimidine substrates. Defects in human NTHL1 drive a class of polyposis colorectal cancer. We report the first X-ray crystal structure of hNTHL1, revealing an open conformation not previously observed in the bacterial orthologs. In this conformation, the six-helical barrel domain comprising the helix-hairpin-helix (HhH) DNA binding motif is tipped away from the iron sulphur cluster-containing domain, requiring a conformational change to assemble a catalytic site upon DNA binding. We found that the flexibility of hNTHL1 and its ability to adopt an open configuration can be attributed to an interdomain linker. Swapping the human linker sequence for that of Escherichia coli yielded a protein chimera that crystallized in a closed conformation and had a reduced activity on lesion-containing DNA. This large scale interdomain rearrangement during catalysis is unprecedented for a HhH superfamily DNA glycosylase and provides important insight into the molecular mechanism of hNTHL1.
Collapse
Affiliation(s)
- Brittany L Carroll
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Karl E Zahn
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - John P Hanley
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Julie A Dragon
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
14
|
Zhang L, Wang L, Wu L, Jiang D, Tang C, Wu Y, Wu M, Chen M. Biochemical characterization and mutational studies of a thermostable endonuclease III from Sulfolobus islandicus REY15A. Int J Biol Macromol 2021; 193:856-865. [PMID: 34743941 DOI: 10.1016/j.ijbiomac.2021.10.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022]
Abstract
Endonuclease III (EndoIII), which is ubiquitous in bacteria, Archaea and eukaryotes, plays an important role in excising thymine glycol (Tg) from DNA. Herein, we present evidence that an EndoIII from the hyperthermophilic crenarchaeon Sulfolobus islandicus REY15A (Sis-EndoIII) is capable of removing Tg from DNA at high temperature. Biochemical data show that the optimal temperature and pH of Sis-EndoIII are ca.70 °C and ca.7.0-8.0, respectively. Furthermore, the recombinant Sis-EndoIII retains relative weak activity without a divalent metal ion, and displays maximum activity in the presence of Mg2+ or Ca2+. Additionally, we first revealed the activation energy (Ea) of 39.7 ± 4.2 kcal/mol for Sis-EndoIII to remove Tg from dsDNA. As a bifunctional glycosylase, Sis-EndoIII possesses AP lyase activity in addition to glycosylase activity. Additionally, a covalent intermediate is formed between Sis-EndoIII and Tg-containing dsDNA. Mutational studies demonstrate that residues D50, K133 and D151 in Sis-EndoIII are responsible for removal of Tg from dsDNA and K133 and D151 are essential for formation of the covalent intermediate. To our knowledge, it is the first report of Tg excision by crenarchaeal EndoIII, thus augmenting our understanding on archaeal EndoIII function.
Collapse
Affiliation(s)
- Likui Zhang
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China; Guangling College, Yangzhou University, China.
| | - Lei Wang
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Leilei Wu
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Donghao Jiang
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Chengxuan Tang
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Ying Wu
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Mai Wu
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Min Chen
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China.
| |
Collapse
|
15
|
Ye Z, Shi Y, Lees-Miller SP, Tainer JA. Function and Molecular Mechanism of the DNA Damage Response in Immunity and Cancer Immunotherapy. Front Immunol 2021; 12:797880. [PMID: 34970273 PMCID: PMC8712645 DOI: 10.3389/fimmu.2021.797880] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
The DNA damage response (DDR) is an organized network of multiple interwoven components evolved to repair damaged DNA and maintain genome fidelity. Conceptually the DDR includes damage sensors, transducer kinases, and effectors to maintain genomic stability and accurate transmission of genetic information. We have recently gained a substantially improved molecular and mechanistic understanding of how DDR components are interconnected to inflammatory and immune responses to stress. DDR shapes both innate and adaptive immune pathways: (i) in the context of innate immunity, DDR components mainly enhance cytosolic DNA sensing and its downstream STimulator of INterferon Genes (STING)-dependent signaling; (ii) in the context of adaptive immunity, the DDR is needed for the assembly and diversification of antigen receptor genes that is requisite for T and B lymphocyte development. Imbalances between DNA damage and repair impair tissue homeostasis and lead to replication and transcription stress, mutation accumulation, and even cell death. These impacts from DDR defects can then drive tumorigenesis, secretion of inflammatory cytokines, and aberrant immune responses. Yet, DDR deficiency or inhibition can also directly enhance innate immune responses. Furthermore, DDR defects plus the higher mutation load in tumor cells synergistically produce primarily tumor-specific neoantigens, which are powerfully targeted in cancer immunotherapy by employing immune checkpoint inhibitors to amplify immune responses. Thus, elucidating DDR-immune response interplay may provide critical connections for harnessing immunomodulatory effects plus targeted inhibition to improve efficacy of radiation and chemotherapies, of immune checkpoint blockade, and of combined therapeutic strategies.
Collapse
Affiliation(s)
- Zu Ye
- Department of Molecular and Cellular Oncology, and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yin Shi
- Department of Immunology, Zhejiang University School of Medicine, Hangzhou, China
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Susan P. Lees-Miller
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - John A. Tainer
- Department of Molecular and Cellular Oncology, and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
16
|
Walther FJ, Sharma S, Gordon LM, Waring AJ. Structural and functional stability of the sulfur-free surfactant protein B peptide mimic B-YL in synthetic surfactant lipids. BMC Pulm Med 2021; 21:330. [PMID: 34686153 PMCID: PMC8540162 DOI: 10.1186/s12890-021-01695-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Optimal functionality of synthetic lung surfactant for treatment of respiratory distress syndrome in preterm infants largely depends on the quality and quantity of the surfactant protein B (SP-B) peptide mimic and the lipid mixture. B-YL peptide is a 41-residue sulfur-free SP-B mimic with its cysteine and methionine residues replaced by tyrosine and leucine, respectively, to enhance its oxidation resistance. AIM Testing the structural and functional stability of the B-YL peptide in synthetic surfactant lipids after long-term storage. METHODS The structural and functional properties of B-YL peptide in surfactant lipids were studied using three production runs of B-YL peptides in synthetic surfactant lipids. Each run was held at 5 °C ambient temperature for three years and analyzed with structural and computational techniques, i.e., MALDI-TOF mass spectrometry, ATR-Fourier Transform Infrared Spectroscopy (ATR-FTIR), secondary homology modeling of a preliminary B-YL structure, and tertiary Molecular Dynamic simulations of B-YL in surfactant lipids, and with functional methods, i.e., captive bubble surfactometry (CBS) and retesting in vivo surface activity in surfactant-deficient young adult rabbits. RESULTS MALDI-TOF mass spectrometry showed no degradation of the B-YL peptide as a function of stored time. ATR-FTIR studies demonstrated that the B-YL peptide still assumed stable alpha-helical conformations in synthetic surfactant lipids. These structural findings correlated with excellent in vitro surface activity during both quasi-static and dynamic cycling on CBS after three years of cold storage and in vivo surface activity of the aged formulations with improvements in oxygenation and dynamic lung compliance approaching those of the positive control surfactant Curosurf®. CONCLUSIONS The structure of the B-YL peptide and the in vitro and in vivo functions of the B-YL surfactant were each maintained after three years of refrigeration storage.
Collapse
Affiliation(s)
- Frans J Walther
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, 405 Hilgard Avenue, Los Angeles, CA, 90095, USA.
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA, 90502, USA.
| | - Shantanu Sharma
- Materials and Process Simulation Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA
| | - Larry M Gordon
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA, 90502, USA
| | - Alan J Waring
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA, 90502, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 405 Hilgard Avenue, Los Angeles, CA, 90095, USA
| |
Collapse
|
17
|
Trasviña-Arenas CH, Demir M, Lin WJ, David SS. Structure, function and evolution of the Helix-hairpin-Helix DNA glycosylase superfamily: Piecing together the evolutionary puzzle of DNA base damage repair mechanisms. DNA Repair (Amst) 2021; 108:103231. [PMID: 34649144 DOI: 10.1016/j.dnarep.2021.103231] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
The Base Excision Repair (BER) pathway is a highly conserved DNA repair system targeting chemical base modifications that arise from oxidation, deamination and alkylation reactions. BER features lesion-specific DNA glycosylases (DGs) which recognize and excise modified or inappropriate DNA bases to produce apurinic/apyrimidinic (AP) sites and coordinate AP-site hand-off to subsequent BER pathway enzymes. The DG superfamilies identified have evolved independently to cope with a wide variety of nucleobase chemical modifications. Most DG superfamilies recognize a distinct set of structurally related lesions. In contrast, the Helix-hairpin-Helix (HhH) DG superfamily has the remarkable ability to act upon structurally diverse sets of base modifications. The versatility in substrate recognition of the HhH-DG superfamily has been shaped by motif and domain acquisitions during evolution. In this paper, we review the structural features and catalytic mechanisms of the HhH-DG superfamily and draw a hypothetical reconstruction of the evolutionary path where these DGs developed diverse and unique enzymatic features.
Collapse
Affiliation(s)
| | - Merve Demir
- Department of Chemistry, University of California, Davis, CA 95616, U.S.A
| | - Wen-Jen Lin
- Department of Chemistry, University of California, Davis, CA 95616, U.S.A
| | - Sheila S David
- Department of Chemistry, University of California, Davis, CA 95616, U.S.A..
| |
Collapse
|
18
|
Inhibiting homologous recombination by targeting RAD51 protein. Biochim Biophys Acta Rev Cancer 2021; 1876:188597. [PMID: 34332021 DOI: 10.1016/j.bbcan.2021.188597] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/09/2021] [Accepted: 07/24/2021] [Indexed: 02/06/2023]
Abstract
Homologous recombination (HR) is involved in repairing DNA double-strand breaks (DSB), the most harmful for the cell. Regulating HR is essential for maintaining genomic stability. In many forms of cancer, overactivation of HR increases tumor resistance to DNA-damaging treatments. RAD51, HR's core protein, is very often over-expressed in these cancers and plays a critical role in cancer cell development and survival. Targeting RAD51 directly to reduce its activity and its expression is therefore one strategy to sensitize and overcome resistance cancer cells to existing DNA-damaging therapies which remains the limiting factor for the success of targeted therapy. This review describes the structure and biological roles of RAD51, summarizes the different targeted sites of RAD51 and its inhibitory compounds discovered and described in the last decade.
Collapse
|
19
|
Pidugu LS, Bright H, Lin WJ, Majumdar C, Van Ostrand RP, David SS, Pozharski E, Drohat AC. Structural Insights into the Mechanism of Base Excision by MBD4. J Mol Biol 2021; 433:167097. [PMID: 34107280 PMCID: PMC8286355 DOI: 10.1016/j.jmb.2021.167097] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 11/28/2022]
Abstract
DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2'-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.
Collapse
Affiliation(s)
- Lakshmi S Pidugu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hilary Bright
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wen-Jen Lin
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Chandrima Majumdar
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | | | - Sheila S David
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Edwin Pozharski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Biomolecular Therapeutics, Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA.
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
20
|
Evolutionary Origins of DNA Repair Pathways: Role of Oxygen Catastrophe in the Emergence of DNA Glycosylases. Cells 2021; 10:cells10071591. [PMID: 34202661 PMCID: PMC8307549 DOI: 10.3390/cells10071591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022] Open
Abstract
It was proposed that the last universal common ancestor (LUCA) evolved under high temperatures in an oxygen-free environment, similar to those found in deep-sea vents and on volcanic slopes. Therefore, spontaneous DNA decay, such as base loss and cytosine deamination, was the major factor affecting LUCA’s genome integrity. Cosmic radiation due to Earth’s weak magnetic field and alkylating metabolic radicals added to these threats. Here, we propose that ancient forms of life had only two distinct repair mechanisms: versatile apurinic/apyrimidinic (AP) endonucleases to cope with both AP sites and deaminated residues, and enzymes catalyzing the direct reversal of UV and alkylation damage. The absence of uracil–DNA N-glycosylases in some Archaea, together with the presence of an AP endonuclease, which can cleave uracil-containing DNA, suggests that the AP endonuclease-initiated nucleotide incision repair (NIR) pathway evolved independently from DNA glycosylase-mediated base excision repair. NIR may be a relic that appeared in an early thermophilic ancestor to counteract spontaneous DNA damage. We hypothesize that a rise in the oxygen level in the Earth’s atmosphere ~2 Ga triggered the narrow specialization of AP endonucleases and DNA glycosylases to cope efficiently with a widened array of oxidative base damage and complex DNA lesions.
Collapse
|
21
|
Nguyen MT, Moiani D, Ahmed Z, Arvai AS, Namjoshi S, Shin DS, Fedorov Y, Selvik EJ, Jones DE, Pink J, Yan Y, Laverty DJ, Nagel ZD, Tainer JA, Gerson SL. An effective human uracil-DNA glycosylase inhibitor targets the open pre-catalytic active site conformation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:143-159. [PMID: 33675849 PMCID: PMC8722130 DOI: 10.1016/j.pbiomolbio.2021.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
Human uracil DNA-glycosylase (UDG) is the prototypic and first identified DNA glycosylase with a vital role in removing deaminated cytosine and incorporated uracil and 5-fluorouracil (5-FU) from DNA. UDG depletion sensitizes cells to high APOBEC3B deaminase and to pemetrexed (PEM) and floxuridine (5-FdU), which are toxic to tumor cells through incorporation of uracil and 5-FU into DNA. To identify small-molecule UDG inhibitors for pre-clinical evaluation, we optimized biochemical screening of a selected diversity collection of >3,000 small-molecules. We found aurintricarboxylic acid (ATA) as an inhibitor of purified UDG at an initial calculated IC50 < 100 nM. Subsequent enzymatic assays confirmed effective ATA inhibition but with an IC50 of 700 nM and showed direct binding to the human UDG with a KD of <700 nM. ATA displays preferential, dose-dependent binding to purified human UDG compared to human 8-oxoguanine DNA glycosylase. ATA did not bind uracil-containing DNA at these concentrations. Yet, combined crystal structure and in silico docking results unveil ATA interactions with the DNA binding channel and uracil-binding pocket in an open, destabilized UDG conformation. Biologically relevant ATA inhibition of UDG was measured in cell lysates from human DLD1 colon cancer cells and in MCF-7 breast cancer cells using a host cell reactivation assay. Collective findings provide proof-of-principle for development of an ATA-based chemotype and “door stopper” strategy targeting inhibitor binding to a destabilized, open pre-catalytic glycosylase conformation that prevents active site closing for functional DNA binding and nucleotide flipping needed to excise altered bases in DNA.
Collapse
Affiliation(s)
- My T Nguyen
- Case Western Reserve University, Department of Biochemistry, Cleveland, OH, 44106, USA
| | - Davide Moiani
- Departments of Cancer Biology and of Molecular & Cellular Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcomb Blvd, Houston, TX, 77030, USA
| | - Zamal Ahmed
- Departments of Cancer Biology and of Molecular & Cellular Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcomb Blvd, Houston, TX, 77030, USA
| | - Andrew S Arvai
- Integrative Structural & Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Sarita Namjoshi
- Departments of Cancer Biology and of Molecular & Cellular Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcomb Blvd, Houston, TX, 77030, USA
| | - Dave S Shin
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuriy Fedorov
- Case Small-Molecule Screening Core, School of Medicine, Case Western Reserve University, Cleveland, OH, 44016, USA
| | - Edward J Selvik
- Department of Pharmaceutical Sciences, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
| | - Darin E Jones
- Department of Pharmaceutical Sciences, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
| | - John Pink
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yan Yan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Daniel J Laverty
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
| | - Zachary D Nagel
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
| | - John A Tainer
- Departments of Cancer Biology and of Molecular & Cellular Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcomb Blvd, Houston, TX, 77030, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Stanton L Gerson
- Case Western Reserve University, Department of Biochemistry, Cleveland, OH, 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
22
|
Hans F, Senarisoy M, Bhaskar Naidu C, Timmins J. Focus on DNA Glycosylases-A Set of Tightly Regulated Enzymes with a High Potential as Anticancer Drug Targets. Int J Mol Sci 2020; 21:ijms21239226. [PMID: 33287345 PMCID: PMC7730500 DOI: 10.3390/ijms21239226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022] Open
Abstract
Cancer is the second leading cause of death with tens of millions of people diagnosed with cancer every year around the world. Most radio- and chemotherapies aim to eliminate cancer cells, notably by causing severe damage to the DNA. However, efficient repair of such damage represents a common mechanism of resistance to initially effective cytotoxic agents. Thus, development of new generation anticancer drugs that target DNA repair pathways, and more particularly the base excision repair (BER) pathway that is responsible for removal of damaged bases, is of growing interest. The BER pathway is initiated by a set of enzymes known as DNA glycosylases. Unlike several downstream BER enzymes, DNA glycosylases have so far received little attention and the development of specific inhibitors of these enzymes has been lagging. Yet, dysregulation of DNA glycosylases is also known to play a central role in numerous cancers and at different stages of the disease, and thus inhibiting DNA glycosylases is now considered a valid strategy to eliminate cancer cells. This review provides a detailed overview of the activities of DNA glycosylases in normal and cancer cells, their modes of regulation, and their potential as anticancer drug targets.
Collapse
|
23
|
Landová B, Šilhán J. Conformational changes of DNA repair glycosylase MutM triggered by DNA binding. FEBS Lett 2020; 594:3032-3044. [PMID: 32598485 DOI: 10.1002/1873-3468.13876] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/28/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022]
Abstract
Bacterial MutM is a DNA repair glycosylase removing DNA damage generated from oxidative stress and, therefore, preventing mutations and genomic instability. MutM belongs to the Fpg/Nei family of prokaryotic enzymes sharing structural and functional similarities with their eukaryotic counterparts, for example, NEIL1-NEIL3. Here, we present two crystal structures of MutM from pathogenic Neisseria meningitidis: a MutM holoenzyme and MutM bound to DNA. The free enzyme exists in an open conformation, while upon binding to DNA, both the enzyme and DNA undergo substantial structural changes and domain rearrangement. Our data show that not only NEI glycosylases but also the MutMs undergo dramatic conformational changes. Moreover, crystallographic data support the previously published observations that MutM enzymes are rather flexible and dynamic molecules.
Collapse
Affiliation(s)
- Barbora Landová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Šilhán
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
24
|
Silva RMB, Grodick MA, Barton JK. UvrC Coordinates an O 2-Sensitive [4Fe4S] Cofactor. J Am Chem Soc 2020; 142:10964-10977. [PMID: 32470300 DOI: 10.1021/jacs.0c01671] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances have led to numerous landmark discoveries of [4Fe4S] clusters coordinated by essential enzymes in repair, replication, and transcription across all domains of life. The cofactor has notably been challenging to observe for many nucleic acid processing enzymes due to several factors, including a weak bioinformatic signature of the coordinating cysteines and lability of the metal cofactor. To overcome these challenges, we have used sequence alignments, an anaerobic purification method, iron quantification, and UV-visible and electron paramagnetic resonance spectroscopies to investigate UvrC, the dual-incision endonuclease in the bacterial nucleotide excision repair (NER) pathway. The characteristics of UvrC are consistent with [4Fe4S] coordination with 60-70% cofactor incorporation, and additionally, we show that, bound to UvrC, the [4Fe4S] cofactor is susceptible to oxidative degradation with aggregation of apo species. Importantly, in its holo form with the cofactor bound, UvrC forms high affinity complexes with duplexed DNA substrates; the apparent dissociation constants to well-matched and damaged duplex substrates are 100 ± 20 nM and 80 ± 30 nM, respectively. This high affinity DNA binding contrasts reports made for isolated protein lacking the cofactor. Moreover, using DNA electrochemistry, we find that the cluster coordinated by UvrC is redox-active and participates in DNA-mediated charge transport chemistry with a DNA-bound midpoint potential of 90 mV vs NHE. This work highlights that the [4Fe4S] center is critical to UvrC.
Collapse
Affiliation(s)
- Rebekah M B Silva
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Michael A Grodick
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jacqueline K Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
25
|
Marsden CG, Jaruga P, Coskun E, Maher RL, Pederson DS, Dizdaroglu M, Sweasy JB. Expression of a germline variant in the N-terminal domain of the human DNA glycosylase NTHL1 induces cellular transformation without impairing enzymatic function or substrate specificity. Oncotarget 2020; 11:2262-2272. [PMID: 32595826 PMCID: PMC7299534 DOI: 10.18632/oncotarget.27548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/14/2020] [Indexed: 01/04/2023] Open
Abstract
Oxidatively-induced DNA damage, widely accepted as a key player in the onset of cancer, is predominantly repaired by base excision repair (BER). BER is initiated by DNA glycosylases, which locate and remove damaged bases from DNA. NTHL1 is a bifunctional DNA glycosylase in mammalian cells that predominantly removes oxidized pyrimidines. In this study, we investigated a germline variant in the N-terminal domain of NTHL1, R33K. Expression of NTHL1 R33K in human MCF10A cells resulted in increased proliferation and anchorage-independent growth compared to NTHL1 WT-expressing cells. However, wt-NTHL1 and R33K-NTHL1 exhibited similar substrate specificity, excision kinetics, and enzyme turnover in vitro and in vivo. The results of this study indicate an important function of R33 in BER that is disrupted by the R33K mutation. Furthermore, the cellular transformation induced by R33K-NTHL1 expression suggests that humans harboring this germline variant may be at increased risk for cancer incidence.
Collapse
Affiliation(s)
- Carolyn G Marsden
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405, USA.,Present address: Saint Michael's College, Colchester, VT 05439, USA
| | - Pawel Jaruga
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Erdem Coskun
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.,Present address: Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Robyn L Maher
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - David S Pederson
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Joann B Sweasy
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA
| |
Collapse
|
26
|
Shiraishi M, Mizutani K, Yamamoto J, Iwai S. Mutational analysis of Thermococcus kodakarensis Endonuclease III reveals the roles of evolutionarily conserved residues. DNA Repair (Amst) 2020; 90:102859. [PMID: 32408140 DOI: 10.1016/j.dnarep.2020.102859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/25/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
Endonuclease III (EndoIII) is nearly ubiquitous in all three domains of life. EndoIII family proteins exhibit a bifunctional (glycosylase/lyase) activity on oxidative/saturated pyrimidine bases, such as thymine glycol. Previous studies on EndoIII homologs have reported the presence of important residues involved in substrate binding and catalytic activity. However, a biochemical clarification of the roles of these residues as well as details of their evolutionary conservation is still lacking. This is particularly true for archaeal orthologs. The current study demonstrated the roles of the evolutionarily conserved residues of euryarchaeon Thermococcus kodakarensis EndoIII (TkoEndoIII). We utilized amino acid sequence analysis and homology modeling to identify highly conserved regions with potential key residues in the EndoIII proteins. Using Ala-substituted TkoEndoIII mutant proteins, residues of interest were quantitatively examined via DNA binding, glycosylase/AP lyase/bifunctional activity, and DNA trapping assays. The obtained results allowed us to determine the roles, as well as the significance of these roles in Schiff base formation (Lys140 as a nucleophile and Asp158), Tg recognition (His160), substrate binding (Arg59, Leu101, Trp102, and Gly136), β-elimination activities (Ser57 and Asp62), and [4Fe-4S] cluster formation (Cys208 and Cys215). Interestingly, a critical role played by the highly conserved Lys105 (predicted as being away from the catalytic site) in substrate binding, accompanied by a significant indirect effect on catalytic activity, were detected. Our results suggest that these particular residues play conserved roles among EndoIII orthologs across the domains. In addition to identifying the critical role of the highly conserved Lys105, the study provides a comprehensive understanding of the functions attributable to the evolutionarily conserved residues found in the EndoIII family, from Escherichia coli to humans.
Collapse
Affiliation(s)
- Miyako Shiraishi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, 5608531, Japan.
| | - Kento Mizutani
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, 5608531, Japan
| | - Junpei Yamamoto
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, 5608531, Japan
| | - Shigenori Iwai
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, 5608531, Japan
| |
Collapse
|
27
|
Hassan A, Macedo LJA, Souza JCPD, Lima FCDA, Crespilho FN. A combined Far-FTIR, FTIR Spectromicroscopy, and DFT Study of the Effect of DNA Binding on the [4Fe4S] Cluster Site in EndoIII. Sci Rep 2020; 10:1931. [PMID: 32029762 PMCID: PMC7005299 DOI: 10.1038/s41598-020-58531-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/04/2019] [Indexed: 11/28/2022] Open
Abstract
Endonuclease III (EndoIII) is a DNA glycosylase that contains the [4Fe4S] cluster, which is essential for the protein to bind to damaged DNA in a process called base excision repair (BER). Here we propose that the change in the covalency of Fe–S bonds of the [4Fe4S] cluster caused by double-stranded (ds)-DNA binding is accompanied by a change in their strength, which is due to alterations of the electronic structure of the cluster. Micro-FTIR spectroscopy in the mid-IR region and FTIR spectroscopy in the far IR (450 and 300 cm−1) were used independently to study the structural changes in EndoIII and the behavior of the [4Fe4S] cluster it contains, in the native form and upon its binding to ds-DNA. Structural changes in the DNA itself were also examined. The characteristics vibrational modes, corresponding to Fe–S (sulfide) and Fe–S (thiolate) bonds were identified in the cluster through far IR spectroscopy as well through quantum chemistry calculations. Based on the experimental results, these vibrational modes shift in their spectral positions caused by negatively charged DNA in the vicinity of the cluster. Modifications of the Fe–S bond lengths upon DNA binding, both of the Fe–S (sulfide) and Fe–S (thiolate) bonds in the [4Fe4S] cluster of EndoIII are responsible for the stabilization of the cluster towards higher oxidation state (3+), and hence its redox communication along the ds-DNA helix.
Collapse
Affiliation(s)
- Ayaz Hassan
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970, São Paulo, Brazil.
| | - Lucyano J A Macedo
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970, São Paulo, Brazil
| | - João C P de Souza
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, 75901-970, Goiás, Brazil
| | - Filipe C D A Lima
- Federal Institute of Education, Science, and Technology of São Paulo, Campus Matão, 15991-502, São Paulo, Brazil
| | - Frank N Crespilho
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970, São Paulo, Brazil.
| |
Collapse
|
28
|
Kuznetsov NA, Fedorova OS. Kinetic Milestones of Damage Recognition by DNA Glycosylases of the Helix-Hairpin-Helix Structural Superfamily. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:1-18. [DOI: 10.1007/978-3-030-41283-8_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Lindahl PA. A comprehensive mechanistic model of iron metabolism in Saccharomyces cerevisiae. Metallomics 2019; 11:1779-1799. [PMID: 31531508 DOI: 10.1039/c9mt00199a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ironome of budding yeast (circa 2019) consists of approximately 139 proteins and 5 nonproteinaceous species. These proteins were grouped according to location in the cell, type of iron center(s), and cellular function. The resulting 27 groups were used, along with an additional 13 nonprotein components, to develop a mesoscale mechanistic model that describes the import, trafficking, metallation, and regulation of iron within growing yeast cells. The model was designed to be simultaneously mutually autocatalytic and mutually autoinhibitory - a property called autocatinhibitory that should be most realistic for simulating cellular biochemical processes. The model was assessed at the systems' level. General conclusions are presented, including a new perspective on understanding regulatory mechanisms in cellular systems. Some unsettled issues are described. This model, once fully developed, has the potential to mimic the phenotype (at a coarse-grain level) of all iron-related genetic mutations in this simple and well-studied eukaryote.
Collapse
Affiliation(s)
- Paul A Lindahl
- Departments of Chemistry and of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-3255, USA.
| |
Collapse
|
30
|
Roldán-Arjona T, Ariza RR, Córdoba-Cañero D. DNA Base Excision Repair in Plants: An Unfolding Story With Familiar and Novel Characters. FRONTIERS IN PLANT SCIENCE 2019; 10:1055. [PMID: 31543887 PMCID: PMC6728418 DOI: 10.3389/fpls.2019.01055] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/30/2019] [Indexed: 05/05/2023]
Abstract
Base excision repair (BER) is a critical genome defense pathway that deals with a broad range of non-voluminous DNA lesions induced by endogenous or exogenous genotoxic agents. BER is a complex process initiated by the excision of the damaged base, proceeds through a sequence of reactions that generate various DNA intermediates, and culminates with restoration of the original DNA structure. BER has been extensively studied in microbial and animal systems, but knowledge in plants has lagged behind until recently. Results obtained so far indicate that plants share many BER factors with other organisms, but also possess some unique features and combinations. Plant BER plays an important role in preserving genome integrity through removal of damaged bases. However, it performs additional important functions, such as the replacement of the naturally modified base 5-methylcytosine with cytosine in a plant-specific pathway for active DNA demethylation.
Collapse
Affiliation(s)
- Teresa Roldán-Arjona
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Rafael R. Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Dolores Córdoba-Cañero
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| |
Collapse
|
31
|
Zhang L, Li Y, Shi H, Zhang D, Yang Z, Oger P, Zheng J. Biochemical characterization and mutational studies of the 8-oxoguanine DNA glycosylase from the hyperthermophilic and radioresistant archaeon Thermococcus gammatolerans. Appl Microbiol Biotechnol 2019; 103:8021-8033. [PMID: 31372707 DOI: 10.1007/s00253-019-10031-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/08/2019] [Accepted: 07/13/2019] [Indexed: 12/22/2022]
Abstract
8-oxoguanine (GO) is a major lesion found in DNA that arises from guanine oxidation. The hyperthermophilic and radioresistant euryarchaeon Thermococcus gammatolerans encodes an archaeal GO DNA glycosylase (Tg-AGOG). Here, we characterized biochemically Tg-AGOG and probed its GO removal mechanism by mutational studies. Tg-AGOG can remove GO from DNA at high temperature through a β-elimination reaction. The enzyme displays an optimal temperature, ca.85-95 °C, and an optimal pH, ca.7.0-8.5. In addition, Tg-AGOG activity is independent on a divalent metal ion. However, both Co2+ and Cu2+ inhibit its activity. The enzyme activity is also inhibited by NaCl. Furthermore, Tg-AGOG specifically cleaves GO-containing dsDNA in the order: GO:C, GO:T, GO:A, and GO:G. Moreover, the temperature dependence of cleavage rates of the enzyme was determined, and from this, the activation energy for GO removal from DNA was first estimated to be 16.9 ± 0.9 kcal/mol. In comparison with the wild-type Tg-AGOG, the R197A mutant has a reduced cleavage activity for GO-containing DNA, whereas both the P193A and F167A mutants exhibit similar cleavage activities for GO-containing DNA. While the mutations of P193 and F167 to Ala lead to increased binding, the mutation of R197 to Ala had no significant effect on binding. These observations suggest that residue R197 is involved in catalysis, and residues P193 and F167 are flexible for conformational change.
Collapse
Affiliation(s)
- Likui Zhang
- Department of Environmental Science and Engineering Marine Science & Technology Institute, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yuting Li
- Department of Environmental Science and Engineering Marine Science & Technology Institute, Yangzhou University, Yangzhou, Jiangsu, China
| | - Haoqiang Shi
- Department of Environmental Science and Engineering Marine Science & Technology Institute, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dai Zhang
- College of Plant Protection, Agricultural University of Hebei, Baoding City, 071001, Hebei Province, China
| | - Zhihui Yang
- College of Plant Protection, Agricultural University of Hebei, Baoding City, 071001, Hebei Province, China.
| | - Philippe Oger
- Univ Lyon, INSA de Lyon, CNRS UMR 5240, Villeurbanne, France.
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
32
|
Barton JK, Silva RMB, O'Brien E. Redox Chemistry in the Genome: Emergence of the [4Fe4S] Cofactor in Repair and Replication. Annu Rev Biochem 2019; 88:163-190. [PMID: 31220976 PMCID: PMC6590699 DOI: 10.1146/annurev-biochem-013118-110644] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many DNA-processing enzymes have been shown to contain a [4Fe4S] cluster, a common redox cofactor in biology. Using DNA electrochemistry, we find that binding of the DNA polyanion promotes a negative shift in [4Fe4S] cluster potential, which corresponds thermodynamically to a ∼500-fold increase in DNA-binding affinity for the oxidized [4Fe4S]3+ cluster versus the reduced [4Fe4S]2+ cluster. This redox switch can be activated from a distance using DNA charge transport (DNA CT) chemistry. DNA-processing proteins containing the [4Fe4S] cluster are enumerated, with possible roles for the redox switch highlighted. A model is described where repair proteins may signal one another using DNA-mediated charge transport as a first step in their search for lesions. The redox switch in eukaryotic DNA primases appears to regulate polymerase handoff, and in DNA polymerase δ, the redox switch provides a means to modulate replication in response to oxidative stress. We thus describe redox signaling interactions of DNA-processing [4Fe4S] enzymes, as well as the most interesting potential players to consider in delineating new DNA-mediated redox signaling networks.
Collapse
Affiliation(s)
- Jacqueline K Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Rebekah M B Silva
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Elizabeth O'Brien
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| |
Collapse
|
33
|
Sarre A, Stelter M, Rollo F, De Bonis S, Seck A, Hognon C, Ravanat JL, Monari A, Dehez F, Moe E, Timmins J. The three Endonuclease III variants of Deinococcus radiodurans possess distinct and complementary DNA repair activities. DNA Repair (Amst) 2019; 78:45-59. [DOI: 10.1016/j.dnarep.2019.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/26/2022]
|
34
|
Dai L, Xia J, Sahin O, Zhang Q. Identification of a nth-Like Gene Encoding an Endonuclease III in Campylobacter jejuni. Front Microbiol 2019; 10:698. [PMID: 31024487 PMCID: PMC6467930 DOI: 10.3389/fmicb.2019.00698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/20/2019] [Indexed: 01/31/2023] Open
Abstract
Campylobacter jejuni is a leading cause of foodborne illnesses worldwide. As a microaerobic pathogen, C. jejuni is subjected to DNA damages caused by various stresses such as reactive oxygen species (ROS) and UV radiations. The base excision repair (BER) system plays an important role in preventing mutations associated with oxidative DNA damage, but the system remains poorly characterized in Campylobacter. In this study, a BER homolog encoded by cj0595c (named nth) in C. jejuni was analyzed for endonuclease III activity and for its role in maintaining genomic stability. It was found that inactivation of nth resulted in elevated frequencies of spontaneous fluoroquinolone-resistant (FQR) and oxidative stress resistant (OXR) mutants, compared with the wild-type strain in C. jejuni. Sequencing analysis of the FQR and OXR mutants revealed that the elevated mutation rates were associated with C → T or G → A transition in gyrA (FQR mutants) or perR (for OXR mutants). In an in vitro assay, a purified recombinant C. jejuni Nth protein demonstrated endonuclease III activity that recognized and excised the thymine glycol (Tg) base from a double stranded DNA. These findings indicate that Nth functions as a BER repair enzyme in C. jejuni and is important for the repair of DNA damage, protecting the bacteria from stresses encountered within a host and in the environment.
Collapse
Affiliation(s)
- Lei Dai
- Departments of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Jing Xia
- Departments of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Orhan Sahin
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Qijing Zhang
- Departments of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
35
|
Trasviña-Arenas CH, David SS, Delaye L, Azuara-Liceaga E, Brieba LG. Evolution of Base Excision Repair in Entamoeba histolytica is shaped by gene loss, gene duplication, and lateral gene transfer. DNA Repair (Amst) 2019; 76:76-88. [DOI: 10.1016/j.dnarep.2019.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 01/14/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
|
36
|
The polyanions heparin and suramin impede binding of free adenine to a DNA glycosylase from C. pseudotuberculosis. Int J Biol Macromol 2019; 125:459-468. [DOI: 10.1016/j.ijbiomac.2018.12.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/31/2022]
|
37
|
Tse EM, Zwang TJ, Bedoya S, Barton JK. Effective Distance for DNA-Mediated Charge Transport between Repair Proteins. ACS CENTRAL SCIENCE 2019; 5:65-72. [PMID: 30693326 PMCID: PMC6346725 DOI: 10.1021/acscentsci.8b00566] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Indexed: 05/23/2023]
Abstract
The stacked aromatic base pairs within the DNA double helix facilitate charge transport down its length in the absence of lesions, mismatches, and other stacking perturbations. DNA repair proteins containing [4Fe4S] clusters can take advantage of DNA charge transport (CT) chemistry to scan the genome for mistakes more efficiently. Here we examine the effective length over which charge can be transported along DNA between these repair proteins. We define the effective CT distance as the length of DNA within which two proteins are able to influence their ensemble affinity to the DNA duplex via CT. Endonuclease III, a DNA repair glycosylase containing a [4Fe4S] cluster, was incubated with DNA duplexes of different lengths (1.5-9 kb), and atomic force microscopy was used to quantify the binding of proteins to these duplexes to determine how the relative protein affinity changes with increasing DNA length. A sharp change in binding slope is observed at 3509 base pairs, or about 1.2 μm, that supports the existence of two regimes for protein binding, one within the range for DNA CT, one outside of the range for CT; DNA CT between the redox proteins bound to DNA effectively decreases the ensemble binding affinity of oxidized and reduced proteins to DNA. Utilizing an Endonuclease III mutant Y82A, which is defective in carrying out DNA CT, shows only one regime for protein binding. Decreasing the temperature to 4 °C or including metallointercalators on the duplex, both of which should enhance base stacking and decrease DNA floppiness, leads to extending the effective length for DNA charge transport to ∼5300 bp or 1.8 μm. These results thus support DNA charge transport between repair proteins over kilobase distances. The results furthermore highlight the ability of DNA repair proteins to search the genome quickly and efficiently using DNA charge transport chemistry.
Collapse
|
38
|
Puig S, Ramos-Alonso L, Romero AM, Martínez-Pastor MT. The elemental role of iron in DNA synthesis and repair. Metallomics 2018; 9:1483-1500. [PMID: 28879348 DOI: 10.1039/c7mt00116a] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Iron is an essential redox element that functions as a cofactor in many metabolic pathways. Critical enzymes in DNA metabolism, including multiple DNA repair enzymes (helicases, nucleases, glycosylases, demethylases) and ribonucleotide reductase, use iron as an indispensable cofactor to function. Recent striking results have revealed that the catalytic subunit of DNA polymerases also contains conserved cysteine-rich motifs that bind iron-sulfur (Fe/S) clusters that are essential for the formation of stable and active complexes. In line with this, mitochondrial and cytoplasmic defects in Fe/S cluster biogenesis and insertion into the nuclear iron-requiring enzymes involved in DNA synthesis and repair lead to DNA damage and genome instability. Recent studies have shown that yeast cells possess multi-layered mechanisms that regulate the ribonucleotide reductase function in response to fluctuations in iron bioavailability to maintain optimal deoxyribonucleotide concentrations. Finally, a fascinating DNA charge transport model indicates how the redox active Fe/S centers present in DNA repair machinery components are critical for detecting and repairing DNA mismatches along the genome by long-range charge transfers through double-stranded DNA. These unexpected connections between iron and DNA replication and repair have to be considered to properly understand cancer, aging and other DNA-related diseases.
Collapse
Affiliation(s)
- Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Ave. Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | | | | | | |
Collapse
|
39
|
Guiraldelli MF, Felberg A, Almeida LP, Parikh A, de Castro RO, Pezza RJ. SHOC1 is a ERCC4-(HhH)2-like protein, integral to the formation of crossover recombination intermediates during mammalian meiosis. PLoS Genet 2018; 14:e1007381. [PMID: 29742103 PMCID: PMC5962103 DOI: 10.1371/journal.pgen.1007381] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/21/2018] [Accepted: 04/26/2018] [Indexed: 11/18/2022] Open
Abstract
Chromosome segregation errors during meiosis result in the formation of aneuploid gametes and are the leading cause of pregnancy loss and birth defects in humans. Proper chromosome segregation requires pairwise associations of maternal and paternal homologous chromosomes. Chiasmata, which are the cytological manifestations of crossovers (COs), provide a physical link that holds the homologs together as a pair, facilitating their orientation on the spindle at meiosis I. Although CO-promoting activities ensure a balanced number and position of COs, their identity and mechanism of action in mammals remain understudied. Previous work in yeast and Arabidopsis has shown that Zip2 and Shoc1 are ortholog proteins with an important role in promoting the formation of COs. Our work is the first study in mammals showing the in vivo and in vitro function of mouse and human SHOC1. We show that purified recombinant human SHOC1, an XPF/MUS81 family member, preferentially binds branched DNA molecules but apparently lacks in vitro endonuclease activity, despite its conserved ERCC4-(HhH)2 core structure. Cytological observations suggest that initial steps of recombination are normal in a majority of spermatocytes from SHOC1 hypomorphic mice. However, late stages of recombination appear abnormal, as chromosomal localization of MLH1 is reduced. In agreement, chiasma formation is reduced, and cells arrest at metaphase I with a few lagging chromosomes and subsequent apoptosis. This analysis of SHOC1-deficient mice and the selective localization of SHOC1 to a subset of recombination sites show that SHOC1 acts at key mid-stage steps of the CO formation process. The formation of chromosome axial elements and homologous pairing are apparently normal, but synapsis is altered with SYCP1 frequently failing to extend the full length of the chromosome axes. Finally, we describe that SHOC1 interacts with TEX11, another protein important for the formation of COs, connecting SHOC1 to chromosome axis and structure.
Collapse
Affiliation(s)
- Michel F. Guiraldelli
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Anna Felberg
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Luciana P. Almeida
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Aniruddha Parikh
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Rodrigo O. de Castro
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Roberto J. Pezza
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
40
|
Kladova OA, Krasnoperov LN, Kuznetsov NA, Fedorova OS. Kinetics and Thermodynamics of DNA Processing by Wild Type DNA-Glycosylase Endo III and Its Catalytically Inactive Mutant Forms. Genes (Basel) 2018; 9:genes9040190. [PMID: 29601551 PMCID: PMC5924532 DOI: 10.3390/genes9040190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 02/01/2023] Open
Abstract
Endonuclease III (Endo III or Nth) is one of the key enzymes responsible for initiating the base excision repair of oxidized or reduced pyrimidine bases in DNA. In this study, a thermodynamic analysis of structural rearrangements of the specific and nonspecific DNA-duplexes during their interaction with Endo III is performed based on stopped-flow kinetic data. 1,3-diaza-2-oxophenoxazine (tCO), a fluorescent analog of the natural nucleobase cytosine, is used to record multistep DNA binding and lesion recognition within a temperature range (5-37 °C). Standard Gibbs energy, enthalpy, and entropy of the specific steps are derived from kinetic data using Van't Hoff plots. The data suggest that enthalpy-driven exothermic 5,6-dihydrouracil (DHU) recognition and desolvation-accompanied entropy-driven adjustment of the enzyme-substrate complex into a catalytically active state play equally important parts in the overall process. The roles of catalytically significant amino acids Lys120 and Asp138 in the DNA lesion recognition and catalysis are identified. Lys120 participates not only in the catalytic steps but also in the processes of local duplex distortion, whereas substitution Asp138Ala leads to a complete loss of the ability of Endo III to distort a DNA double chain during enzyme-DNA complex formation.
Collapse
Affiliation(s)
- Olga A Kladova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), 630090 Novosibirsk, Russia.
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia.
| | - Lev N Krasnoperov
- New Jersey Institute of Technology, Department of Chemistry and Environment Sciences, University Heights, Newark, NJ 07102, USA.
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), 630090 Novosibirsk, Russia.
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), 630090 Novosibirsk, Russia.
| |
Collapse
|
41
|
Walther FJ, Gupta M, Gordon LM, Waring AJ. An oxidation-resistant peptide mimic of surfactant protein B (B-YL) forms an amphipathic helix-hairpin in liposomes with high surface activity. Gates Open Res 2018. [DOI: 10.12688/gatesopenres.12799.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Animal-derived surfactants containing surfactant proteins B (SP-B) and C (SP-C) are used to treat respiratory distress syndrome (RDS) in preterm infants. SP-B (79 residues) plays a pivotal role in lung function and the design of synthetic lung surfactant. Super Mini-B (SMB), a 41-residue peptide based on the N- and C-domains of SP-B joined with a turn and two disulfides, folds as an α-helix hairpin mimicking the properties of these domains in SP-B. Here, we studied ‘B-YL’, a 41-residue oxidation-resistant SMB variant that has its four Cys and two Met residues replaced by Tyr and Leu, respectively, to test whether these hydrophobic substitutions produce a surface-active, α-helix hairpin.Methods:Structure and function of B-YL and SMB in surfactant lipids were compared with CD and FTIR spectroscopy and molecular dynamic (MD) simulations, and surface activity with captive bubble surfactometry and in lavaged, surfactant-deficient adult rabbits.Results:CD and FTIR spectroscopy of B-YL in surfactant lipids showed secondary structures compatible with peptide folding as an α-helix hairpin, similar to SMB in lipids. MD simulations confirmed that B-YL maintained its α-helix hairpin in a lipid bilayer, matching the hairpin obtained from MD of SMB. Unlike the disulfide-reinforced helix-turn of SMB, the B-YL fold was stabilized by a core of clustered Tyr linking the N- and C-helices through noncovalent interactions involving aromatic rings. B-YL in surfactant lipids demonstrated excellentin vitrosurface activity and good oxygenation and dynamic compliance in lavaged, surfactant-deficient adult rabbits.Conclusions:‘Sulfur-free’ and ‘oxidation-resistant’ B-YL forms an amphipathic helix-hairpin in surfactant liposomes with high surface activity and is functionally similar to SMB and native SP-B. B-YL’s resistance against free oxygen radical damage provides an extra edge over oxidized SMB in the treatment of respiratory failure in preterm infants with RDS and children and adults with acute lung injury.
Collapse
|
42
|
Moiani D, Ronato DA, Brosey CA, Arvai AS, Syed A, Masson JY, Petricci E, Tainer JA. Targeting Allostery with Avatars to Design Inhibitors Assessed by Cell Activity: Dissecting MRE11 Endo- and Exonuclease Activities. Methods Enzymol 2018. [PMID: 29523233 DOI: 10.1016/bs.mie.2017.11.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For inhibitor design, as in most research, the best system is question dependent. We suggest structurally defined allostery to design specific inhibitors that target regions beyond active sites. We choose systems allowing efficient quality structures with conformational changes as optimal for structure-based design to optimize inhibitors. We maintain that evolutionarily related targets logically provide molecular avatars, where this Sanskrit term for descent includes ideas of functional relationships and of being a physical embodiment of the target's essential features without requiring high sequence identity. Appropriate biochemical and cell assays provide quantitative measurements, and for biomedical impacts, any inhibitor's activity should be validated in human cells. Specificity is effectively shown empirically by testing if mutations blocking target activity remove cellular inhibitor impact. We propose this approach to be superior to experiments testing for lack of cross-reactivity among possible related enzymes, which is a challenging negative experiment. As an exemplary avatar system for protein and DNA allosteric conformational controls, we focus here on developing separation-of-function inhibitors for meiotic recombination 11 nuclease activities. This was achieved not by targeting the active site but rather by geometrically impacting loop motifs analogously to ribosome antibiotics. These loops are neighboring the dimer interface and active site act in sculpting dsDNA and ssDNA into catalytically competent complexes. One of our design constraints is to preserve DNA substrate binding to geometrically block competing enzymes and pathways from the damaged site. We validate our allosteric approach to controlling outcomes in human cells by reversing the radiation sensitivity and genomic instability in BRCA mutant cells.
Collapse
Affiliation(s)
- Davide Moiani
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Daryl A Ronato
- Genome Stability Laboratory, CHU de Québec Research Center, Québec City, QC, Canada; Laval University Cancer Research Center, Québec City, QC, Canada
| | - Chris A Brosey
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Andrew S Arvai
- The Scripps Research Institute, La Jolla, CA, United States
| | - Aleem Syed
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, Québec City, QC, Canada; Laval University Cancer Research Center, Québec City, QC, Canada
| | | | - John A Tainer
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States; Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
43
|
Kladova OA, Bazlekowa-Karaban M, Baconnais S, Piétrement O, Ishchenko AA, Matkarimov BT, Iakovlev DA, Vasenko A, Fedorova OS, Le Cam E, Tudek B, Kuznetsov NA, Saparbaev M. The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation. DNA Repair (Amst) 2018; 64:10-25. [PMID: 29475157 DOI: 10.1016/j.dnarep.2018.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/09/2018] [Accepted: 02/06/2018] [Indexed: 12/25/2022]
Abstract
The base excision repair (BER) pathway consists of sequential action of DNA glycosylase and apurinic/apyrimidinic (AP) endonuclease necessary to remove a damaged base and generate a single-strand break in duplex DNA. Human multifunctional AP endonuclease 1 (APE1, a.k.a. APEX1, HAP-1, or Ref-1) plays essential roles in BER by acting downstream of DNA glycosylases to incise a DNA duplex at AP sites and remove 3'-blocking sugar moieties at DNA strand breaks. Human 8-oxoguanine-DNA glycosylase (OGG1), methyl-CpG-binding domain 4 (MBD4, a.k.a. MED1), and alkyl-N-purine-DNA glycosylase (ANPG, a.k.a. Aag or MPG) excise a variety of damaged bases from DNA. Here we demonstrated that the redox-deficient truncated APE1 protein lacking the first N-terminal 61 amino acid residues (APE1-NΔ61) cannot stimulate DNA glycosylase activities of OGG1, MBD4, and ANPG on duplex DNA substrates. Electron microscopy imaging of APE1-DNA complexes revealed oligomerization of APE1 along the DNA duplex and APE1-mediated DNA bridging followed by DNA aggregation. APE1 polymerizes on both undamaged and damaged DNA in cooperative mode. Association of APE1 with undamaged DNA may enable scanning for damage; however, this event reduces effective concentration of the enzyme and subsequently decreases APE1-catalyzed cleavage rates on long DNA substrates. We propose that APE1 oligomers on DNA induce helix distortions thereby enhancing molecular recognition of DNA lesions by DNA glycosylases via a conformational proofreading/selection mechanism. Thus, APE1-mediated structural deformations of the DNA helix stabilize the enzyme-substrate complex and promote dissociation of human DNA glycosylases from the AP site with a subsequent increase in their turnover rate. SIGNIFICANCE STATEMENT The major human apurinic/apyrimidinic (AP) endonuclease, APE1, stimulates DNA glycosylases by increasing their turnover rate on duplex DNA substrates. At present, the mechanism of the stimulation remains unclear. We report that the redox domain of APE1 is necessary for the active mode of stimulation of DNA glycosylases. Electron microscopy revealed that full-length APE1 oligomerizes on DNA possibly via cooperative binding to DNA. Consequently, APE1 shows DNA length dependence with preferential repair of short DNA duplexes. We propose that APE1-catalyzed oligomerization along DNA induces helix distortions, which in turn enable conformational selection and stimulation of DNA glycosylases. This new biochemical property of APE1 sheds light on the mechanism of redox function and its role in DNA repair.
Collapse
Affiliation(s)
- Olga A Kladova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Milena Bazlekowa-Karaban
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France; Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Sonia Baconnais
- CNRS UMR8126, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, F-94805 Villejuif Cedex, France
| | - Olivier Piétrement
- CNRS UMR8126, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, F-94805 Villejuif Cedex, France
| | - Alexander A Ishchenko
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Bakhyt T Matkarimov
- National laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Danila A Iakovlev
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Andrey Vasenko
- National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Olga S Fedorova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Eric Le Cam
- CNRS UMR8126, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, F-94805 Villejuif Cedex, France
| | - Barbara Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Nikita A Kuznetsov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia.
| | - Murat Saparbaev
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France.
| |
Collapse
|
44
|
Moe E, Rollo F, Silveira CM, Sezer M, Hildebrandt P, Todorovic S. Spectroelectrochemical insights into structural and redox properties of immobilized endonuclease III and its catalytically inactive mutant. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:149-154. [PMID: 28709140 DOI: 10.1016/j.saa.2017.06.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/07/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
Endonuclease III is a Fe-S containing bifunctional DNA glycosylase which is involved in the repair of oxidation damaged DNA. Here we employ surface enhanced IR spectroelectrochemistry and electrochemistry to study the enzyme from the highly radiation- and desiccation-resistant bacterium Deinococcus radiodurans (DrEndoIII2). The experiments are designed to shed more light onto specific parameters that are currently proposed to govern damage search and recognition by endonucleases III. We demonstrate that electrostatic interactions required for the redox activation of DrEndoIII2 may result in high electric fields that alter its structural and thermodynamic properties. Analysis of inactive DrEndoIII2 (K132A/D150A double mutant) interacting with undamaged DNA, and the active enzyme interacting with damaged DNA also indicate that the electron transfer is modulated by subtle differences in the protein-DNA complex.
Collapse
Affiliation(s)
- Elin Moe
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade NOVA de Lisboa, Av da República, 2780-157 Oeiras, Portugal
| | - Filipe Rollo
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade NOVA de Lisboa, Av da República, 2780-157 Oeiras, Portugal
| | - Célia M Silveira
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade NOVA de Lisboa, Av da República, 2780-157 Oeiras, Portugal; UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Monte de Caparica, Portugal
| | - Murat Sezer
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade NOVA de Lisboa, Av da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
45
|
Tsai CL, Tainer JA. Robust Production, Crystallization, Structure Determination, and Analysis of [Fe-S] Proteins: Uncovering Control of Electron Shuttling and Gating in the Respiratory Metabolism of Molybdopterin Guanine Dinucleotide Enzymes. Methods Enzymol 2017; 599:157-196. [PMID: 29746239 DOI: 10.1016/bs.mie.2017.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
[Fe-S] clusters are essential cofactors in all domains of life. They play many biological roles due to their unique abilities for electron transfer and conformational control. Yet, producing and analyzing Fe-S proteins can be difficult and even misleading if not done anaerobically. Due to unique redox properties of [Fe-S] clusters and their oxygen sensitivity, they pose multiple challenges and can lose enzymatic activity or cause their component proteins to be structurally disordered due to [Fe-S] cluster oxidation and loss in air. Here we highlight tested protocols and strategies enabling efficient and stable [Fe-S] protein production, purification, crystallization, X-ray diffraction data collection, and structure determination. From multiple high-resolution anaerobic crystal structures, we furthermore analyze exemplary data defining [Fe-S] clusters, substrate entry, and product exit for the functional oxidation states of type II molybdo-bis(molybdopterin guanine dinucleotide) (Mo-bisMGD) enzymes. Notably, these enzymes perform electron shuttling between quinone pools and specific substrates to catalyze respiratory metabolism. The identified structure-activity relationships for this enzyme class have broad implications germane to perchlorate environments on Earth and Mars extending to an alternative mechanism underlying metabolic origins for the evolution of the oxygen atmosphere. Integrated structural analyses of type II Mo-bisMGD enzymes unveil novel distinctive shared molecular mechanisms for dynamic control of substrate entry and product release gated by hydrophobic residues. Collective findings support a prototypic model for type II Mo-bisMGD enzymes including insights for a fundamental molecular mechanistic understanding of selectivity and regulation by a conformationally gated channel with general implications for [Fe-S] cluster respiratory enzymes.
Collapse
Affiliation(s)
- Chi-Lin Tsai
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States
| | - John A Tainer
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
46
|
Tse ECM, Zwang TJ, Barton JK. The Oxidation State of [4Fe4S] Clusters Modulates the DNA-Binding Affinity of DNA Repair Proteins. J Am Chem Soc 2017; 139:12784-12792. [PMID: 28817778 PMCID: PMC5929122 DOI: 10.1021/jacs.7b07230] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A central question important to understanding DNA repair is how certain proteins are able to search for, detect, and fix DNA damage on a biologically relevant time scale. A feature of many base excision repair proteins is that they contain [4Fe4S] clusters that may aid their search for lesions. In this paper, we establish the importance of the oxidation state of the redox-active [4Fe4S] cluster in the DNA damage detection process. We utilize DNA-modified electrodes to generate repair proteins with [4Fe4S] clusters in the 2+ and 3+ states by bulk electrolysis under an O2-free atmosphere. Anaerobic microscale thermophoresis results indicate that proteins carrying [4Fe4S]3+ clusters bind to DNA 550 times more tightly than those with [4Fe4S]2+ clusters. The measured increase in DNA-binding affinity matches the calculated affinity change associated with the redox potential shift observed for [4Fe4S] cluster proteins upon binding to DNA. We further devise an electrostatic model that shows this change in DNA-binding affinity of these proteins can be fully explained by the differences in electrostatic interactions between DNA and the [4Fe4S] cluster in the reduced versus oxidized state. We then utilize atomic force microscopy (AFM) to demonstrate that the redox state of the [4Fe4S] clusters regulates the ability of two DNA repair proteins, Endonuclease III and DinG, to bind preferentially to DNA duplexes containing a single site of DNA damage (here a base mismatch) which inhibits DNA charge transport. Together, these results show that the reduction and oxidation of [4Fe4S] clusters through DNA-mediated charge transport facilitates long-range signaling between [4Fe4S] repair proteins. The redox-modulated change in DNA-binding affinity regulates the ability of [4Fe4S] repair proteins to collaborate in the lesion detection process.
Collapse
Affiliation(s)
- Edmund C. M. Tse
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Theodore J. Zwang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jacqueline K. Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
47
|
Abstract
A DNA electrochemistry platform has been developed to probe proteins bound to DNA electrically. Here gold electrodes are modified with thiol-modified DNA, and DNA charge transport chemistry is used to probe DNA binding and enzymatic reaction both with redox-silent and redox-active proteins. For redox-active proteins, the electrochemistry permits the determination of redox potentials in the DNA-bound form, where comparisons to DNA-free potentials can be made using graphite electrodes without DNA modification. Importantly, electrochemistry on the DNA-modified electrodes facilitates reaction under aqueous, physiological conditions with a sensitive electrical measurement of binding and activity.
Collapse
Affiliation(s)
| | | | - Yingxin Deng
- California Institute of Technology, Pasadena, CA, United States
| | | |
Collapse
|
48
|
Robey-Bond SM, Benson MA, Barrantes-Reynolds R, Bond JP, Wallace SS. Probing the activity of NTHL1 orthologs by targeting conserved amino acid residues. DNA Repair (Amst) 2017; 53:43-51. [PMID: 28292631 PMCID: PMC5421317 DOI: 10.1016/j.dnarep.2017.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/01/2017] [Indexed: 01/01/2023]
Abstract
The base excision repair DNA glycosylases, EcoNth and hNTHL1, are homologous, with reported overlapping yet different substrate specificities. The catalytic amino acid residues are known and are identical between the two enzymes although the exact structures of the substrate binding pockets remain to be determined. We sought to explore the sequence basis of substrate differences using a phylogeny-based design of site-directed mutations. Mutations were made for each enzyme in the vicinity of the active site and we examined these variants for glycosylase and lyase activity. Single turnover kinetics were done on a subgroup of these, comparing activity on two lesions, 5,6-dihydrouracil and 5,6-dihydrothymine, with different opposite bases. We report that wild type hNTHL1 and EcoNth are remarkably alike with respect to the specificity of the glycosylase reaction, and although hNTHL1 is a much slower enzyme than EcoNth, the tighter binding of hNTHL1 compensates, resulting in similar kcat/Kd values for both enzymes with each of the substrates tested. For the hNTHL1 variant Gln287Ala, the specificity for substrates positioned opposite G is lost, but not that of substrates positioned opposite A, suggesting a discrimination role for this residue. The EcoNth Thr121 residue influences enzyme binding to DNA, as binding is significantly reduced with the Thr121Ala variant. Finally, we present evidence that hNTHL1 Asp144, unlike the analogous EcoNth residue Asp44, may be involved in resolving the glycosylase transition state.
Collapse
Affiliation(s)
- Susan M Robey-Bond
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405-0068, United States
| | - Meredith A Benson
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405-0068, United States
| | - Ramiro Barrantes-Reynolds
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405-0068, United States
| | - Jeffrey P Bond
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405-0068, United States
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405-0068, United States.
| |
Collapse
|
49
|
Bartels PL, Zhou A, Arnold AR, Nuñez NN, Crespilho FN, David SS, Barton JK. Electrochemistry of the [4Fe4S] Cluster in Base Excision Repair Proteins: Tuning the Redox Potential with DNA. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2523-2530. [PMID: 28219007 PMCID: PMC5423460 DOI: 10.1021/acs.langmuir.6b04581] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Escherichia coli endonuclease III (EndoIII) and MutY are DNA glycosylases that contain [4Fe4S] clusters and that serve to maintain the integrity of the genome after oxidative stress. Electrochemical studies on highly oriented pyrolytic graphite (HOPG) revealed that DNA binding by EndoIII leads to a large negative shift in the midpoint potential of the cluster, consistent with stabilization of the oxidized [4Fe4S]3+ form. However, the smooth, hydrophobic HOPG surface is nonideal for working with proteins in the absence of DNA. In this work, we use thin film voltammetry on a pyrolytic graphite edge electrode to overcome these limitations. Improved adsorption leads to substantial signals for both EndoIII and MutY in the absence of DNA, and a large negative potential shift is retained with DNA present. In contrast, the EndoIII mutants E200K, Y205H, and K208E, which provide electrostatic perturbations in the vicinity of the cluster, all show DNA-free potentials within error of wild type; similarly, the presence of negatively charged poly-l-glutamate does not lead to a significant potential shift. Overall, binding to the DNA polyanion is the dominant effect in tuning the redox potential of the [4Fe4S] cluster, helping to explain why all DNA-binding proteins with [4Fe4S] clusters studied to date have similar DNA-bound potentials.
Collapse
Affiliation(s)
- Phillip L. Bartels
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Andy Zhou
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Anna R. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Nicole N. Nuñez
- Department of Chemistry, University of California Davis, Davis, CA 95616
| | | | - Sheila S. David
- Department of Chemistry, University of California Davis, Davis, CA 95616
| | - Jacqueline K. Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
50
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part V. {[Fe4S4](SCysγ)4} proteins. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|