1
|
Chin HS, Cheng J, Hsu SH, Lum GG, Zaldivia MT, Nelameham S, Guo F, Mallavarapu K, Jackling FC, Yang J, Tan JSL, Sampath P, Barker N, Smyth GK, Lindeman GJ, Strasser A, Visvader JE, Chen Y, Chen T, Fu NY. MCL‑1 safeguards activated hair follicle stem cells to enable adult hair regeneration. Nat Commun 2025; 16:2829. [PMID: 40121237 PMCID: PMC11929845 DOI: 10.1038/s41467-025-58150-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
Hair follicles cycle through expansion, regression and quiescence. To investigate the role of MCL‑1, a BCL‑2 family protein with anti‑apoptotic and apoptosis‑unrelated functions, we delete Mcl‑1 within the skin epithelium using constitutive and inducible systems. Constitutive Mcl‑1 deletion does not impair hair follicle organogenesis but leads to gradual hair loss and elimination of hair follicle stem cells. Acute Mcl‑1 deletion rapidly depletes activated hair follicle stem cells and completely blocks depilation‑induced hair regeneration in adult mice, while quiescent hair follicle stem cells remain unaffected. Single‑cell RNA‑seq profiling reveals the engagement of P53 and DNA mismatch repair signaling in hair follicle stem cells upon depilation‑induced activation. Trp53 deletion rescues hair regeneration defects caused by acute Mcl‑1 deletion, highlighting a critical interplay between P53 and MCL‑1 in balancing proliferation and death. The ERBB pathway plays a central role in sustaining the survival of adult activated hair follicle stem cells by promoting MCL‑1 protein expression. Remarkably, the loss of a single Bak allele, a pro‑apoptotic Bcl‑2 effector gene, rescues Mcl‑1 deletion‑induced defects in both hair follicles and mammary glands. These findings demonstrate the pivotal role of MCL‑1 in inhibiting proliferation stress‑induced apoptosis when quiescent stem cells activate to fuel tissue regeneration.
Collapse
Affiliation(s)
- Hui San Chin
- Cancer and Stem Cell Biology Program, Duke‑NUS Medical School, Singapore, Singapore.
| | - Jinming Cheng
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Shih Han Hsu
- Cancer and Stem Cell Biology Program, Duke‑NUS Medical School, Singapore, Singapore
| | - Guo Guang Lum
- Cancer and Stem Cell Biology Program, Duke‑NUS Medical School, Singapore, Singapore
| | - Maria Tk Zaldivia
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Sarmilla Nelameham
- Cancer and Stem Cell Biology Program, Duke‑NUS Medical School, Singapore, Singapore
| | - Fusheng Guo
- Cancer and Stem Cell Biology Program, Duke‑NUS Medical School, Singapore, Singapore
| | | | - Felicity C Jackling
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Jicheng Yang
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Jonathan S L Tan
- A*STAR Skin Research Labs (A*SRL), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Prabha Sampath
- Cancer and Stem Cell Biology Program, Duke‑NUS Medical School, Singapore, Singapore
- A*STAR Skin Research Labs (A*SRL), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Nick Barker
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gordon K Smyth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - Geoffrey J Lindeman
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- The Royal Melbourne Hospital, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Andreas Strasser
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Jane E Visvader
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Yunshun Chen
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Ting Chen
- National Institute of Biological Sciences, Beijing, China
| | - Nai Yang Fu
- Cancer and Stem Cell Biology Program, Duke‑NUS Medical School, Singapore, Singapore.
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Ma S, Cao W, Ma X, Ye X, Qin C, Li B, Liu W, Lu Q, Wu C, Fu X. Metabolomics reveals metabolites associated with hair follicle cycle in cashmere goats. BMC Vet Res 2024; 20:208. [PMID: 38760765 PMCID: PMC11100241 DOI: 10.1186/s12917-024-04057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND The hair follicle is a skin accessory organ that regulates hair development, and its activity varies on a regular basis. However, the significance of metabolites in the hair follicle cycle has long been unknown. RESULTS Targeted metabolomics was used in this investigation to reveal the expression patterns of 1903 metabolites in cashmere goat skin during anagen to telogen. A statistical analysis was used to investigate the potential associations between metabolites and the hair follicle cycle. The findings revealed clear changes in the expression patterns of metabolites at various phases and in various feeding models. The majority of metabolites (primarily amino acids, nucleotides, their metabolites, and lipids) showed downregulated expression from anagen (An) to telogen (Tn), which was associated with gene expression, protein synthesis and transport, and cell structure, which reflected, to some extent, that the cells associated with hair follicle development are active in An and apoptotic in An-Tn. It is worth mentioning that the expression of vitamin D3 and 3,3',5-triiodo-L-thyronine decreased and then increased, which may be related to the shorter and longer duration of outdoor light, which may stimulate the hair follicle to transition from An to catagen (Cn). In the comparison of different hair follicle development stages (An, Cn, and Tn) or feeding modes (grazing and barn feeding), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that common differentially expressed metabolites (DEMs) (2'-deoxyadenosine, L-valine, 2'-deoxyuridine, riboflavin, cytidine, deoxyguanosine, L-tryptophan, and guanosine-5'-monophosphate) were enriched in ABC transporters. This finding suggested that this pathway may be involved in the hair follicle cycle. Among these DEMs, riboflavin is absorbed from food, and the expression of riboflavin and sugars (D-glucose and glycogen) in skin tissue under grazing was greater and lower than that during barn feeding, respectively, suggesting that eating patterns may also alter the hair follicle cycle. CONCLUSIONS The expression patterns of metabolites such as sugars, lipids, amino acids, and nucleotides in skin tissue affect hair follicle growth, in which 2'-deoxyadenosine, L-valine, 2'-deoxyuridine, riboflavin, cytidine, deoxyguanosine, L-tryptophan, and guanosine-5'-monophosphate may regulate the hair follicle cycle by participating in ABC transporters. Feeding practices may regulate hair follicle cycles by influencing the amount of hormones and vitamins expressed in the skin of cashmere goats.
Collapse
Affiliation(s)
- Shengchao Ma
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Xinjiang, Urumqi, 830011, China
| | - Wenzhi Cao
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China
| | - Xiaolin Ma
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China
| | - Xiaofang Ye
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China
| | - Chongkai Qin
- Xinjiang Aksu Prefecture Animal Husbandry Technology Extension Center, Xinjiang, Aksu, 843000, China
| | - Bin Li
- Xinjiang Aksu Prefecture Animal Husbandry Technology Extension Center, Xinjiang, Aksu, 843000, China
| | - Wenna Liu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Xinjiang, Urumqi, 830011, China
| | - Qingwei Lu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Xinjiang, Urumqi, 830011, China
| | - Cuiling Wu
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China.
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China.
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Xinjiang, Urumqi, 830011, China.
| |
Collapse
|
3
|
Cuevas-Diaz Duran R, Martinez-Ledesma E, Garcia-Garcia M, Bajo Gauzin D, Sarro-Ramírez A, Gonzalez-Carrillo C, Rodríguez-Sardin D, Fuentes A, Cardenas-Lopez A. The Biology and Genomics of Human Hair Follicles: A Focus on Androgenetic Alopecia. Int J Mol Sci 2024; 25:2542. [PMID: 38473791 DOI: 10.3390/ijms25052542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Androgenetic alopecia is a highly prevalent condition mainly affecting men. This complex trait is related to aging and genetics; however, multiple other factors, for example, lifestyle, are also involved. Despite its prevalence, the underlying biology of androgenetic alopecia remains elusive, and thus advances in its treatment have been hindered. Herein, we review the functional anatomy of hair follicles and the cell signaling events that play a role in follicle cycling. We also discuss the pathology of androgenetic alopecia and the known molecular mechanisms underlying this condition. Additionally, we describe studies comparing the transcriptional differences in hair follicles between balding and non-balding scalp regions. Given the genetic contribution, we also discuss the most significant risk variants found to be associated with androgenetic alopecia. A more comprehensive understanding of this pathology may be generated through using multi-omics approaches.
Collapse
Affiliation(s)
- Raquel Cuevas-Diaz Duran
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, NL, Mexico
- CapilarFix®, Monterrey 66220, NL, Mexico
| | - Emmanuel Martinez-Ledesma
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, NL, Mexico
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey 64849, NL, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Wang Y, Cheng S, Zhang H, Zhang Y, Ding C, Peng T, Chen W, Yang K, Zhang J, Tan Y, Wang X, Liu Z, Wei P, Jiang M, Hua Q. Adverse Effects of Gefitinib on Skin and Colon in a Lung Cancer Mouse Model. Recent Pat Anticancer Drug Discov 2024; 19:308-315. [PMID: 37723963 DOI: 10.2174/1574892818666230727143750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/26/2023] [Accepted: 05/03/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Gefitinib, an Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor (EGFR-TKI), frequently causes side effects when used to treat non-small cell lung cancer. OBJECTIVE The purpose of this experiment was to investigate the side effect of gefitinib on the skin and colon of mice. METHODS Male Balb/c nu-nu nude mice aged 4-5 weeks were used as xenograft tumor models, and gefitinib at 150 mg/kg and 225 mg/kg was started at 9 days after the xenograft tumor grew out. The mice's weights and tumor volumes were tracked concurrently, and the mouse skin adverse reactions and diarrhea were observed during the treatment. The animal tissues were subjected to biochemical and pathological evaluations after 14 days. RESULTS Gefitinib effectively decreased the size and weight of transplanted tumors in nude mice, while also lowering body weight and raising indexes of the liver and spleen. Gefitinib could cause skin adverse reactions and diarrhea in mice. Further pathological investigation revealed tight junction- related markers in the mice's skin and colon to be reduced and macrophages and neutrophils to be increased after gefitinib treatment. CONCLUSION The findings imply that gefitinib has negative effects on the skin and colon. Gefitinib- induced skin and colon adverse reactions in mice have been successfully modeled in this study.
Collapse
Affiliation(s)
- Yalei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Shuo Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Huawei Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Yali Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Chengcheng Ding
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Tiantian Peng
- School of Acupuncture and Massage, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Weihang Chen
- School of Acupuncture and Massage, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Ke Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Jiani Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Yan Tan
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Xu Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Zhaoheng Liu
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Peng Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Miao Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| | - Qian Hua
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11 North 3rd Ring, Eastern Road, Beijing, 100029, China
| |
Collapse
|
5
|
Alhanshali L, Buontempo M, Shapiro J, Lo Sicco K. Medication-induced hair loss: An update. J Am Acad Dermatol 2023; 89:S20-S28. [PMID: 37591561 DOI: 10.1016/j.jaad.2023.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 08/19/2023]
Abstract
This article discusses drug-induced hair loss, which can occur with many drugs including cytotoxic agents, biologics, and immunomodulating agents, among others. It outlines the diagnosis and management of drug-induced alopecia, with a focus on recently implicated drugs.
Collapse
Affiliation(s)
- Lina Alhanshali
- Department of Dermatology, SUNY Downstate College of Medicine, Brooklyn, New York
| | - Michael Buontempo
- Department of Dermatology, Hackensack Meridian School of Medicine, Nutley, New Jersey
| | - Jerry Shapiro
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York
| | - Kristen Lo Sicco
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York.
| |
Collapse
|
6
|
Chen L, You Q, Liu M, Li S, Wu Z, Hu J, Ma Y, Xia L, Zhou Y, Xu N, Zhang S. Remodeling of dermal adipose tissue alleviates cutaneous toxicity induced by anti-EGFR therapy. eLife 2022; 11:72443. [PMID: 35324426 PMCID: PMC8947768 DOI: 10.7554/elife.72443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Anti-epidermal growth factor receptor (EGFR) therapy–associated cutaneous toxicity is a syndrome characterized by papulopustular rash, local inflammation, folliculitis, and microbial infection, resulting in a decrease in quality of life and dose interruption. However, no effective clinical intervention is available for this adverse effect. Here, we report the atrophy of dermal white adipose tissue (dWAT), a highly plastic adipose tissue with various skin-specific functions, correlates with rash occurrence and exacerbation in a murine model of EGFR inhibitor-induced rash. The reduction in dWAT is due to the inhibition of adipogenic differentiation by defects in peroxisome proliferator-activated receptor γ (PPARγ) signaling, and increased lipolysis by the induced expression of the lipolytic cytokine IL6. The activation of PPARγ by rosiglitazone maintains adipogenic differentiation and represses the transcription of IL6, eventually improving skin functions and ameliorating the severity of rash without altering the antitumor effects. Thus, activation of PPARγ represents a promising approach to ameliorate cutaneous toxicity in patients with cancer who receive anti-EGFR therapy.
Collapse
Affiliation(s)
- Leying Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qing You
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Min Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shuaihu Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoyu Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jiajun Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yurui Ma
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Liangyong Xia
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhou
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Xu
- Department of Dermatology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Shiyi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
da Silva EZM, Fraga-Silva TFDC, Yuan Y, Alves MG, Publio GA, da Fonseca CK, Kodama MH, Vieira GV, Candido MF, Innocentini LMAR, Miranda MG, da Silva AR, Alves-Filho JC, Bonato VLD, Iglesias-Bartolome R, Sales KU. Kallikrein 5 Inhibition by the Lympho-Epithelial Kazal-Type Related Inhibitor Hinders Matriptase-Dependent Carcinogenesis. Cancers (Basel) 2021; 13:cancers13174395. [PMID: 34503205 PMCID: PMC8431081 DOI: 10.3390/cancers13174395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma remains challenging to treat with no improvement in survival rates over the past 50 years. Thus, there is an urgent need to discover more reliable therapeutic targets and biomarkers for HNSCC. Matriptase, a type-II transmembrane serine protease, induces malignant transformation in epithelial stem cells through proteolytic activation of pro-HGF and PAR-2, triggering PI3K-AKT-mTOR and NFKB signaling. The serine protease inhibitor lympho-epithelial Kazal-type-related inhibitor (LEKTI) inhibits the matriptase-driven proteolytic pathway, directly blocking kallikreins in epithelial differentiation. Hence, we hypothesized LEKTI could inhibit matriptase-dependent squamous cell carcinogenesis, thus implicating kallikreins in this process. Double-transgenic mice with simultaneous expression of matriptase and LEKTI under the keratin-5 promoter showed a prominent rescue of K5-Matriptase+/0 premalignant phenotype. Notably, in DMBA-induced SCC, heterotopic co-expression of LEKTI and matriptase delayed matriptase-driven tumor incidence and progression. Co-expression of LEKTI reverted altered Kallikrein-5 expression observed in the skin of K5-Matriptase+/0 mice, indicating that matriptase-dependent proteolytic pathway inhibition by LEKTI occurs through kallikreins. Moreover, we showed that Kallikrein-5 is necessary for PAR-2-mediated IL-8 release, YAP1-TAZ/TEAD activation, and matriptase-mediated oral squamous cell carcinoma migration. Collectively, our data identify a third signaling pathway for matriptase-dependent carcinogenesis in vivo. These findings are critical for the identification of more reliable biomarkers and effective therapeutic targets in Head and Neck cancer.
Collapse
Affiliation(s)
- Elaine Zayas Marcelino da Silva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil; (E.Z.M.d.S.); (M.G.A.); (C.K.d.F.); (M.H.K.); (G.V.V.); (M.F.C.); (M.G.M.)
| | - Thais Fernanda de Campos Fraga-Silva
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil; (T.F.d.C.F.-S.); (V.L.D.B.)
| | - Yao Yuan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (R.I.-B.)
| | - Márcia Gaião Alves
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil; (E.Z.M.d.S.); (M.G.A.); (C.K.d.F.); (M.H.K.); (G.V.V.); (M.F.C.); (M.G.M.)
| | - Gabriel Azevedo Publio
- Departament of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil; (G.A.P.); (J.C.A.-F.)
| | - Carol Kobori da Fonseca
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil; (E.Z.M.d.S.); (M.G.A.); (C.K.d.F.); (M.H.K.); (G.V.V.); (M.F.C.); (M.G.M.)
| | - Márcio Hideki Kodama
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil; (E.Z.M.d.S.); (M.G.A.); (C.K.d.F.); (M.H.K.); (G.V.V.); (M.F.C.); (M.G.M.)
| | - Gabriel Viliod Vieira
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil; (E.Z.M.d.S.); (M.G.A.); (C.K.d.F.); (M.H.K.); (G.V.V.); (M.F.C.); (M.G.M.)
| | - Marina Ferreira Candido
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil; (E.Z.M.d.S.); (M.G.A.); (C.K.d.F.); (M.H.K.); (G.V.V.); (M.F.C.); (M.G.M.)
| | - Lara Maria Alencar Ramos Innocentini
- Dentistry and Stomatology Division, Ophthalmology, Otolaryngology, and Head and Neck Surgery Department, Clinical Hospital of Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil;
| | - Mateus Gonçalves Miranda
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil; (E.Z.M.d.S.); (M.G.A.); (C.K.d.F.); (M.H.K.); (G.V.V.); (M.F.C.); (M.G.M.)
| | - Alfredo Ribeiro da Silva
- Department of Pathology and Legal Medicine, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil;
| | - Jose Carlos Alves-Filho
- Departament of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil; (G.A.P.); (J.C.A.-F.)
| | - Vania Luiza Deperon Bonato
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil; (T.F.d.C.F.-S.); (V.L.D.B.)
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (R.I.-B.)
| | - Katiuchia Uzzun Sales
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil; (E.Z.M.d.S.); (M.G.A.); (C.K.d.F.); (M.H.K.); (G.V.V.); (M.F.C.); (M.G.M.)
- Correspondence: ; Tel.: +55-16-3315-9113
| |
Collapse
|
8
|
Epstein RJ, Tian LJ, Gu YF. 2b or Not 2b: How Opposing FGF Receptor Splice Variants Are Blocking Progress in Precision Oncology. JOURNAL OF ONCOLOGY 2021; 2021:9955456. [PMID: 34007277 PMCID: PMC8110382 DOI: 10.1155/2021/9955456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 01/16/2023]
Abstract
More than ten thousand peer-reviewed studies have assessed the role of fibroblast growth factors (FGFs) and their receptors (FGFRs) in cancer, but few patients have yet benefited from drugs targeting this molecular family. Strategizing how best to use FGFR-targeted drugs is complicated by multiple variables, including RNA splicing events that alter the affinity of ligands for FGFRs and hence change the outcomes of stromal-epithelial interactions. The effects of splicing are most relevant to FGFR2; expression of the FGFR2b splice isoform can restore apoptotic sensitivity to cancer cells, whereas switching to FGFR2c may drive tumor progression by triggering epithelial-mesenchymal transition. The differentiating and regulatory actions of wild-type FGFR2b contrast with the proliferative actions of FGFR1 and FGFR3, and may be converted to mitogenicity either by splice switching or by silencing of tumor suppressor genes such as CDH1 or PTEN. Exclusive use of small-molecule pan-FGFR inhibitors may thus cause nonselective blockade of FGFR2 isoforms with opposing actions, undermining the rationale of FGFR2 drug targeting. This splice-dependent ability of FGFR2 to switch between tumor-suppressing and -driving functions highlights an unmet oncologic need for isoform-specific drug targeting, e.g., by antibody inhibition of ligand-FGFR2c binding, as well as for more nuanced molecular pathology prediction of FGFR2 actions in different stromal-tumor contexts.
Collapse
Affiliation(s)
- Richard J. Epstein
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
- Garvan Institute of Medical Research and UNSW Clinical School, 84 Victoria St, Darlinghurst 2010 Sydney, Australia
| | - Li Jun Tian
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
| | - Yan Fei Gu
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
| |
Collapse
|
9
|
MEK/ERK signaling is a critical regulator of high-risk human papillomavirus oncogene expression revealing therapeutic targets for HPV-induced tumors. PLoS Pathog 2021; 17:e1009216. [PMID: 33481911 PMCID: PMC7857559 DOI: 10.1371/journal.ppat.1009216] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 02/03/2021] [Accepted: 12/03/2020] [Indexed: 11/19/2022] Open
Abstract
Intracellular pathogens have evolved to utilize normal cellular processes to complete their replicative cycles. Pathogens that interface with proliferative cell signaling pathways risk infections that can lead to cancers, but the factors that influence malignant outcomes are incompletely understood. Human papillomaviruses (HPVs) predominantly cause benign hyperplasia in stratifying epithelial tissues. However, a subset of carcinogenic or “high-risk” HPV (hr-HPV) genotypes are etiologically linked to nearly 5% of all human cancers. Progression of hr-HPV-induced lesions to malignancies is characterized by increased expression of the E6 and E7 oncogenes and the oncogenic functions of these viral proteins have been widely studied. Yet, the mechanisms that regulate hr-HPV oncogene transcription and suppress their expression in benign lesions remain poorly understood. Here, we demonstrate that EGFR/MEK/ERK signaling, influenced by epithelial contact inhibition and tissue differentiation cues, regulates hr-HPV oncogene expression. Using monolayer cells, epithelial organotypic tissue models, and neoplastic tissue biopsy materials, we show that cell-extrinsic activation of ERK overrides cellular control to promote HPV oncogene expression and the neoplastic phenotype. Our data suggest that HPVs are adapted to use the EGFR/MEK/ERK signaling pathway to regulate their productive replicative cycles. Mechanistic studies show that EGFR/MEK/ERK signaling influences AP-1 transcription factor activity and AP-1 factor knockdown reduces oncogene transcription. Furthermore, pharmacological inhibitors of EGFR, MEK, and ERK signaling quash HPV oncogene expression and the neoplastic phenotype, revealing a potential clinical strategy to suppress uncontrolled cell proliferation, reduce oncogene expression and treat HPV neoplasia. Human papillomavirus (HPV) infections occur in differentiating squamous epithelium and induce hyperplasia during the viral replicative cycle. Although HPV oncogene expression is necessary to promote cellular proliferation for viral genome amplification in the middle epithelial layers, oncogene levels are thereafter suppressed to permit differentiation-induced late gene expression in the uppermost epithelial cells. Yet, the mechanisms responsible for controlling HPV oncogene expression are not well understood. Here, we demonstrate that EGFR/MEK/ERK signaling, which is subject to the normal cellular cues of contact inhibition and epithelial tissue differentiation, is a critical regulator of hr-HPV oncogene expression. We found that extrinsic activation of ERK overrides cellular control to promote oncogene expression and the neoplastic phenotype. Many epidemiologically defined risk factors activate the EGFR/MEK/ERK pathway, suggesting a common mechanism whereby they may promote HPV persistence and disease progression. Lastly, we show that HPV oncogene transcription and protein expression remain susceptible to MEK/ERK control in early neoplastic tissues and tumor cells and that targeted inhibition of MEK/ERK signaling might be exploited therapeutically for HPV-induced infections and tumors.
Collapse
|
10
|
Billi AC, Sarkar MK, Gudjonsson JE. When bugs and drugs conspire: driving acneiform skin toxicity. J Clin Invest 2020; 130:1090-1092. [PMID: 32015232 DOI: 10.1172/jci133787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Therapy with antineoplastic agents that inhibit EGFR and MEK is frequently limited by cutaneous adverse reactions, most commonly acne-like eruptions. In this issue of the JCI, Satoh et al. define a mechanism for acneiform skin toxicity wherein EGFR/MEK inhibitors cooperate with the skin commensal Cutibacterium acnes to induce IL-36γ in keratinocytes via the combined actions of Krüppel-like factor 4 and NF-κB transcription factors at the IL-36γ promoter, resulting in neutrophil recruitment. In addition to elucidating why EGFR/MEK inhibitor-induced rashes are often pustular and folliculocentric, this mechanism provides justification for the long-standing practice of management with antibiotic therapy.
Collapse
|
11
|
Cosio T, Mazzilli S, Bianchi L, Campione E. The Dark Side of Gefitinib: Reflectance Confocal Microscopy Applied to Hair Hyperpigmentation. Skin Appendage Disord 2020; 6:44-47. [PMID: 32021862 DOI: 10.1159/000503758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/26/2019] [Indexed: 11/19/2022] Open
Abstract
Gefitinib is a multi-target tyrosine kinase inhibitor used for the treatment of non-small cell lung cancer. Papulo-pustular and/or paronychia, abnormalities in hair growth, itching, and dryness due to epidermal growth factor inhibitors - i.e., PRIDE Complex - are a common effect of tyrosine kinase inhibitors. We report a case of hair and eyebrow hyperpigmentation after 7 months of treatment with gefitinib. In the literature, we found no data regarding rapid pigmentation of hair due to treatment with any multi-target tyrosine kinase inhibitors. To our knowledge, this is the first case reporting both hair and eyebrow hyperpigmentation. We hypothesize the role of different mechanisms linked to rapid hair hyperpigmentation.
Collapse
Affiliation(s)
- Terenzio Cosio
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Sara Mazzilli
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luca Bianchi
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Elena Campione
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
12
|
Nishiya N, Murai M, Hosoda A, Yonezawa H, Omori N. Bucillamine Prevents Afatinib-Mediated Inhibition of Epidermal Growth Factor Receptor Signaling. Pharmaceuticals (Basel) 2019; 12:ph12040165. [PMID: 31703435 PMCID: PMC6958386 DOI: 10.3390/ph12040165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 11/16/2022] Open
Abstract
Molecular targeting therapies often cause characteristic adverse effects, such as skin rash during anti-epidermal growth factor receptor (EGFR) therapies, making treatment continuation difficult. In contrast, skin symptoms induced by EGFR inhibition are strongly correlated with the overall survival of the therapies. Therefore, controlling adverse effects not only facilitates treatment continuation but also increases clinical benefits. In this study, we proposed a novel strategy for reducing EGFR–tyrosine kinase inhibitor (TKI)-induced adverse effects in nontumorous organs by repositioning approved medicines using a zebrafish model. We developed a model system for evaluating chemical quenchers of afatinib, a clinically available irreversible EGFR-TKI, by scoring the inhibition of afatinib-induced hyperformation of lateral line neuromasts in zebrafish larvae. Bucillamine, an antirheumatic drug, was identified as an afatinib quencher in the zebrafish system and inhibited TKI activity in vitro. In addition, bucillamine restored EGFR autophosphorylation and downstream signaling in afatinib-treated A431 cells. Thus, topical bucillamine is a potential reliever of irreversible EGFR-TKI-induced skin rash. The zebrafish model can be applied to a screening for quenchers of other anti-EGFR-targeting therapies, including reversible TKIs and biologics.
Collapse
Affiliation(s)
- Naoyuki Nishiya
- Division of Integrated Information for Pharmaceutical Sciences, Department of Clinical Pharmacy, Iwate Medical University School of Pharmacy, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan; (M.M.); (A.H.); (H.Y.); (N.O.)
- Correspondence:
| | - Moeka Murai
- Division of Integrated Information for Pharmaceutical Sciences, Department of Clinical Pharmacy, Iwate Medical University School of Pharmacy, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan; (M.M.); (A.H.); (H.Y.); (N.O.)
| | - Ayumi Hosoda
- Division of Integrated Information for Pharmaceutical Sciences, Department of Clinical Pharmacy, Iwate Medical University School of Pharmacy, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan; (M.M.); (A.H.); (H.Y.); (N.O.)
| | - Honami Yonezawa
- Division of Integrated Information for Pharmaceutical Sciences, Department of Clinical Pharmacy, Iwate Medical University School of Pharmacy, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan; (M.M.); (A.H.); (H.Y.); (N.O.)
| | - Norikazu Omori
- Division of Integrated Information for Pharmaceutical Sciences, Department of Clinical Pharmacy, Iwate Medical University School of Pharmacy, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan; (M.M.); (A.H.); (H.Y.); (N.O.)
- Department of Pharmacy, Iwate Medical University Hospital, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate 028-3695, Japan
| |
Collapse
|
13
|
Fukuyama T, Nakamura Y, Kanemaru K, Toyoda C, Jang HJ, Suh PG, Fukami K. Phospholipase Cγ1 is required for normal irritant contact dermatitis responses and sebaceous gland homeostasis. Exp Dermatol 2019; 28:1051-1057. [PMID: 31338881 DOI: 10.1111/exd.14009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/14/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022]
Abstract
Differentiation and proliferation of keratinocyte are controlled by various signalling pathways. The epidermal growth factor receptor (EGFR) is known to be an important regulator of multiple epidermal functions. Inhibition of EGFR signalling disturbs keratinocyte proliferation, differentiation and migration. Previous studies have revealed that one of the EGFR downstream signalling molecules, phospholipase Cγ1 (PLCγ1), regulates differentiation, proliferation and migration of keratinocytes in in vitro cell culture system. However, the role of PLCγ1 in the regulation of keratinocyte functions in animal epidermis remains unexplored. In this study, we generated keratinocyte-specific PLCγ1 knockout (KO) mice (PLCγ1 cKO mice). Contrary to our expectations, loss of PLCγ1 did not affect differentiation, proliferation and migration of interfollicular keratinocytes. We further examined the role of PLCγ1 in irritant contact dermatitis (ICD), in which epidermal cells play a pivotal role. Upon irritant stimulation, PLCγ1 cKO mice showed exaggerated ICD responses. Further study revealed that epidermal loss of PLCγ1 induced sebaceous gland hyperplasia, indicating that PLCγ1 regulates homeostasis of one of the epidermal appendages. Taken together, our results indicate that, although PLCγ1 is dispensable in interfollicular keratinocyte for normal differentiation, proliferation and migration, it is required for normal ICD responses. Our results also indicate that PLCγ1 regulates homeostasis of sebaceous glands.
Collapse
Affiliation(s)
- Takatsugu Fukuyama
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yoshikazu Nakamura
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan.,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Kaori Kanemaru
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Chiho Toyoda
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hyun-Jun Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea.,Korea Brain Reaseach Institute, Daegu, Korea
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
14
|
Amberg N, Sotiropoulou PA, Heller G, Lichtenberger BM, Holcmann M, Camurdanoglu B, Baykuscheva-Gentscheva T, Blanpain C, Sibilia M. EGFR Controls Hair Shaft Differentiation in a p53-Independent Manner. iScience 2019; 15:243-256. [PMID: 31082735 PMCID: PMC6515155 DOI: 10.1016/j.isci.2019.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/15/2019] [Accepted: 04/15/2019] [Indexed: 12/31/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) signaling controls skin development and homeostasis in mice and humans, and its deficiency causes severe skin inflammation, which might affect epidermal stem cell behavior. Here, we describe the inflammation-independent effects of EGFR deficiency during skin morphogenesis and in adult hair follicle stem cells. Expression and alternative splicing analysis of RNA sequencing data from interfollicular epidermis and outer root sheath indicate that EGFR controls genes involved in epidermal differentiation and also in centrosome function, DNA damage, cell cycle, and apoptosis. Genetic experiments employing p53 deletion in EGFR-deficient epidermis reveal that EGFR signaling exhibits p53-dependent functions in proliferative epidermal compartments, as well as p53-independent functions in differentiated hair shaft keratinocytes. Loss of EGFR leads to absence of LEF1 protein specifically in the innermost epithelial hair layers, resulting in disorganization of medulla cells. Thus, our results uncover important spatial and temporal features of cell-autonomous EGFR functions in the epidermis.
Collapse
Affiliation(s)
- Nicole Amberg
- Institute of Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria
| | - Panagiota A Sotiropoulou
- Interdisciplinary Research Institute (IRIBHM), Université Libre Bruxelles, Bruxelles 1070, Belgium
| | - Gerwin Heller
- Department of Medicine I, Comprehensive Cancer Center, Clinical Division of Oncology, Medical University of Vienna, Vienna 1090, Austria
| | - Beate M Lichtenberger
- Institute of Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria
| | - Martin Holcmann
- Institute of Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria
| | - Bahar Camurdanoglu
- Institute of Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria
| | - Temenuschka Baykuscheva-Gentscheva
- Institute of Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria
| | - Cedric Blanpain
- Interdisciplinary Research Institute (IRIBHM), Université Libre Bruxelles, Bruxelles 1070, Belgium; WELBIO, Interdisciplinary Research Institute (IRIBHM), Université Libre Bruxelles, Bruxelles 1070, Belgium
| | - Maria Sibilia
- Institute of Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
15
|
Nabiee R, Dubois B, Green L, Sharma A, Wong SF, Montazeri Aliabadi H. In vitro and ex-vivo evaluation of topical formulations designed to minimize transdermal absorption of Vitamin K1. PLoS One 2018; 13:e0204531. [PMID: 30289881 PMCID: PMC6173387 DOI: 10.1371/journal.pone.0204531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/10/2018] [Indexed: 11/18/2022] Open
Abstract
Topical application of Vitamin K1 has been demonstrated to effectively treat papulopustular skin rash, a serious and frequently encountered side effect of Epidermal Growth Factor Inhibitors (EGFRIs). Systemic absorption of vitamin K1 from skin and the resultant consequence of antagonizing EGFRIs anticancer effects jeopardizes the clinical acceptability of this rather effective treatment. The purpose of the present study was to rationally formulate and evaluate the release rate and transdermal absorption of a wide range of Vitamin K1 dermal preparations with a variety of physiochemical properties. A library of 33 formulations with were compounded and tested for Vitamin K1 permeation using hydrophobic membranes and porcine skin mounted in a Fran diffusion cells. Our results demonstrate the lowest diffusion for water-in-oil emulsions, which also demonstrated a negligible transdermal absorption. The statistical analysis showed a significant correlation between in vitro and ex vivo results. While viscosity did not have a significant impact on the diffusion or absorption of vitamin K1, an increase in the lipid content was correlated with an increase in transmembrane diffusion (not with transdermal absorption). Overall, formulation design significantly impacts the release rate and transdermal absorption of vitamin K1, and confirms the possibility of minimal systemic distribution of this vitamin for this specific purpose.
Collapse
Affiliation(s)
- Ramina Nabiee
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, United States
| | - Barent Dubois
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, United States
| | - Laura Green
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, United States
| | - Ajay Sharma
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, United States
| | - Siu Fun Wong
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, United States
| | - Hamidreza Montazeri Aliabadi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, United States
- Center for Targeted Drug Delivery, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, United States
- * E-mail:
| |
Collapse
|
16
|
He Y, Xu H, Li C, Zhang X, Zhou P, Xiao X, Zhang W, Wu Y, Zeng R, Wang B. Nicastrin/miR-30a-3p/RAB31 Axis Regulates Keratinocyte Differentiation by Impairing EGFR Signaling in Familial Acne Inversa. J Invest Dermatol 2018; 139:124-134. [PMID: 30120935 DOI: 10.1016/j.jid.2018.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/29/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022]
Abstract
Nicastrin (NCSTN) mutations are associated with familial acne inversa (AI), and emerging evidence suggests that microRNAs (miRNAs) are involved in various skin diseases. However, whether NCSTN mutations affect miRNA levels and their subsequent signaling pathways in familial AI patients has not been studied. We aimed to elucidate the relationship between NCSTN mutations and familial AI pathogenesis by investigating differential miRNA expression and their related pathways. Combined with miRNA microarray data from familial AI patients, Ncstn keratinocyte-specific-knockout (NcstnΔKC) mice and bioinformatics predictions showed that NCSTN mutations led to decreased miR-30a-3p levels, which negatively regulated RAB31 expression. Moreover, enhanced RAB31 levels accelerated degradation of activated EGFR, leading to abnormal differentiation in keratinocytes. The impaired EGFR signaling and its effects on epidermal differentiation were also observed in familial AI patients and NcstnΔKC mice. Thus, our study showed that miR-30a-3p/RAB31/EGFR signaling pathway may play a key role in the pathogenesis of familial AI with NCSTN mutations.
Collapse
Affiliation(s)
- Yanyan He
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Haoxiang Xu
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Chengrang Li
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Xiaofeng Zhang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengjun Zhou
- Department of Dermatology, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xuemin Xiao
- Department of Dermatology, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Wanlu Zhang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Yingda Wu
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Rong Zeng
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Baoxi Wang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China; Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
17
|
Zhao B, Chen Y, Hao Y, Yang N, Wang M, Mei M, Wang J, Qiu X, Wu X. Transcriptomic analysis reveals differentially expressed genes associated with wool length in rabbit. Anim Genet 2018; 49:428-437. [DOI: 10.1111/age.12701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2018] [Indexed: 12/24/2022]
Affiliation(s)
- B. Zhao
- College of Animal Science and Technology; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - Y. Chen
- College of Animal Science and Technology; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - Y. Hao
- Joint International Research Laboratory of Agriculture & Agri-Product Safety; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - N. Yang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - M. Wang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - M. Mei
- College of Animal Science and Technology; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - J. Wang
- College of Animal Science and Technology; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - X. Qiu
- College of Animal Science and Technology; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - X. Wu
- College of Animal Science and Technology; Yangzhou University; 225009 Yangzhou Jiangsu China
| |
Collapse
|
18
|
Lulli D, Carbone ML, Pastore S. Epidermal growth factor receptor inhibitors trigger a type I interferon response in human skin. Oncotarget 2018; 7:47777-47793. [PMID: 27322144 PMCID: PMC5216978 DOI: 10.18632/oncotarget.10013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/29/2016] [Indexed: 12/16/2022] Open
Abstract
The Epidermal Growth Factor Receptor (EGFR) is centrally involved in the regulation of key processes of the epithelia, including cell proliferation, survival, differentiation, and also tumorigenesis. Humanized antibodies and small-molecule inhibitors targeting EGFR were developed to disrupt these functions in cancer cells and are currently used in the treatment of diverse metastatic epithelial cancers. By contrast, these drugs possess significant skin-specific toxic effects, comprising the establishment of a persistent inflammatory milieu. So far, the molecular mechanisms underlying these epiphenomena have been investigated rather poorly. Here we showed that keratinocytes respond to anti-EGFR drugs with the development of a type I interferon molecular signature. Upregulation of the transcription factor IRF1 is early implicated in the enhanced expression of interferon-kappa, leading to persistent activation of STAT1 and further amplification of downstream interferon-induced genes, including anti-viral effectors and chemokines. When anti-EGFR drugs are associated to TNF-α, whose expression is enhanced by the drugs themselves, all these molecular events undergo a dramatic enhancement by synergy mechanisms. Finally, high levels of interferon-kappa can be observed in epidermal keratinocytes and also in leukocytes infiltrating the upper dermis of cetuximab-driven skin lesions. Our data suggest that dysregulated activation of type I interferon innate immunity is implicated in the molecular processes triggered by anti-EGFR drugs and leading to persistent skin inflammation.
Collapse
Affiliation(s)
- Daniela Lulli
- Laboratory of Experimental Immunology, IDI-IRCCS, Fondazione Luigi M. Monti, Rome, Italy
| | - Maria Luigia Carbone
- Laboratory of Experimental Immunology, IDI-IRCCS, Fondazione Luigi M. Monti, Rome, Italy
| | - Saveria Pastore
- Laboratory of Experimental Immunology, IDI-IRCCS, Fondazione Luigi M. Monti, Rome, Italy
| |
Collapse
|
19
|
|
20
|
Secretory phospholipase A 2-IIA overexpressing mice exhibit cyclic alopecia mediated through aberrant hair shaft differentiation and impaired wound healing response. Sci Rep 2017; 7:11619. [PMID: 28912581 PMCID: PMC5599634 DOI: 10.1038/s41598-017-11830-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 08/10/2017] [Indexed: 12/17/2022] Open
Abstract
Secretory phospholipase A2 Group-IIA (sPLA2-IIA) is involved in lipid catabolism and growth promoting activity. sPLA2-IIA is deregulated in many pathological conditions including various cancers. Here, we have studied the role of sPLA2-IIA in the development of cyclic alopecia and wound healing response in relation to complete loss of hair follicle stem cells (HFSCs). Our data showed that overexpression of sPLA2-IIA in homozygous mice results in hyperproliferation and terminal epidermal differentiation followed by hair follicle cycle being halted at anagen like stage. In addition, sPLA2-IIA induced hyperproliferation leads to complete exhaustion of hair follicle stem cell pool at PD28 (Postnatal day). Importantly, sPLA2-IIA overexpression affects the hair shaft differentiation leading to development of cyclic alopecia. Molecular investigation study showed aberrant expression of Sox21, Msx2 and signalling modulators necessary for proper differentiation of inner root sheath (IRS) and hair shaft formation. Further, full-thickness skin wounding on dorsal skin of K14-sPLA2-IIA homozygous mice displayed impaired initial healing response. Our results showed the involvement of sPLA2-IIA in regulation of matrix cells differentiation, hair shaft formation and complete loss of HFSCs mediated impaired wound healing response. These novel functions of sPLA2-IIA may have clinical implications in alopecia, cancer development and ageing.
Collapse
|
21
|
Búa S, Sotiropoulou P, Sgarlata C, Borlado LR, Eguren M, Domínguez O, Ortega S, Malumbres M, Blanpain C, Méndez J. Deregulated expression of Cdc6 in the skin facilitates papilloma formation and affects the hair growth cycle. Cell Cycle 2016; 14:3897-907. [PMID: 26697840 DOI: 10.1080/15384101.2015.1120919] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Cdc6 encodes a key protein for DNA replication, responsible for the recruitment of the MCM helicase to replication origins during the G1 phase of the cell division cycle. The oncogenic potential of deregulated Cdc6 expression has been inferred from cellular studies, but no mouse models have been described to study its effects in mammalian tissues. Here we report the generation of K5-Cdc6, a transgenic mouse strain in which Cdc6 expression is deregulated in tissues with stratified epithelia. Higher levels of CDC6 protein enhanced the loading of MCM complexes to DNA in epidermal keratinocytes, without affecting their proliferation rate or inducing DNA damage. While Cdc6 overexpression did not promote skin tumors, it facilitated the formation of papillomas in cooperation with mutagenic agents such as DMBA. In addition, the elevated levels of CDC6 protein in the skin extended the resting stage of the hair growth cycle, leading to better fur preservation in older mice.
Collapse
Affiliation(s)
- Sabela Búa
- a DNA Replication Group; Molecular Oncology Program; Spanish National Cancer Reserch Center (CNIO) ; Madrid , Spain
| | - Peggy Sotiropoulou
- b Interdisciplinary Research Institute; Université Libre de Bruxelles ; Bruxelles , Belgium
| | - Cecilia Sgarlata
- a DNA Replication Group; Molecular Oncology Program; Spanish National Cancer Reserch Center (CNIO) ; Madrid , Spain
| | - Luis R Borlado
- a DNA Replication Group; Molecular Oncology Program; Spanish National Cancer Reserch Center (CNIO) ; Madrid , Spain
| | - Manuel Eguren
- c Cell Division and Cancer Group; Molecular Oncology Program; Spanish National Cancer Research Center (CNIO) ; Madrid , Spain
| | - Orlando Domínguez
- d Genomics Unit, Biotechnology Program; Spanish National Cancer Research Center (CNIO) ; Madrid , Spain
| | - Sagrario Ortega
- e Transgenic Mice Unit; Biotechnology Program; Spanish National Cancer Research Center (CNIO) ; Madrid , Spain
| | - Marcos Malumbres
- c Cell Division and Cancer Group; Molecular Oncology Program; Spanish National Cancer Research Center (CNIO) ; Madrid , Spain
| | - Cedric Blanpain
- b Interdisciplinary Research Institute; Université Libre de Bruxelles ; Bruxelles , Belgium
| | - Juan Méndez
- a DNA Replication Group; Molecular Oncology Program; Spanish National Cancer Reserch Center (CNIO) ; Madrid , Spain
| |
Collapse
|
22
|
Sarate RM, Chovatiya GL, Ravi V, Khade B, Gupta S, Waghmare SK. sPLA2 -IIA Overexpression in Mice Epidermis Depletes Hair Follicle Stem Cells and Induces Differentiation Mediated Through Enhanced JNK/c-Jun Activation. Stem Cells 2016; 34:2407-17. [PMID: 27299855 DOI: 10.1002/stem.2418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 04/13/2016] [Accepted: 04/24/2016] [Indexed: 12/29/2022]
Abstract
Secretory phospholipase A2 Group-IIA (sPLA2 -IIA) catalyzes the hydrolysis of the sn-2 position of glycerophospholipids to yield fatty acids and lysophospholipids. sPLA2 -IIA is deregulated in various cancers; however, its role in hair follicle stem cell (HFSC) regulation is obscure. Here we report a transgenic mice overexpressing sPLA2 -IIA (K14-sPLA2 -IIA) showed depletion of HFSC pool. This was accompanied with increased differentiation, loss of ortho-parakeratotic organization and enlargement of sebaceous gland, infundibulum and junctional zone. The colony forming efficiency of keratinocytes was significantly reduced. Microarray profiling of HFSCs revealed enhanced level of epithelial mitogens and transcription factors, c-Jun and FosB that may be involved in proliferation and differentiation. Moreover, K14-sPLA2 -IIA keratinocytes showed enhanced activation of EGFR and JNK1/2 that led to c-Jun activation, which co-related with enhanced differentiation. Further, depletion of stem cells in bulge is associated with high levels of chromatin silencing mark, H3K27me3 and low levels of an activator mark, H3K9ac suggestive of alteration in gene expression contributing toward stem cells differentiation. Our results, first time uncovered that overexpression of sPLA2 -IIA lead to depletion of HFSCs and differentiation associated with altered histone modification. Thus involvement of sPLA2 -IIA in stem cells regulation and disease pathogenesis suggest its prospective clinical implications. Stem Cells 2016;34:2407-2417.
Collapse
Affiliation(s)
| | | | | | - Bharat Khade
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India
| | - Sanjay Gupta
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India
| | | |
Collapse
|
23
|
Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC. Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiol Rev 2016; 96:1025-1069. [DOI: 10.1152/physrev.00030.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is the prototypical member of a family of membrane-associated intrinsic tyrosine kinase receptors, the ErbB family. EGFR is activated by multiple ligands, including EGF, transforming growth factor (TGF)-α, HB-EGF, betacellulin, amphiregulin, epiregulin, and epigen. EGFR is expressed in multiple organs and plays important roles in proliferation, survival, and differentiation in both development and normal physiology, as well as in pathophysiological conditions. In addition, EGFR transactivation underlies some important biologic consequences in response to many G protein-coupled receptor (GPCR) agonists. Aberrant EGFR activation is a significant factor in development and progression of multiple cancers, which has led to development of mechanism-based therapies with specific receptor antibodies and tyrosine kinase inhibitors. This review highlights the current knowledge about mechanisms and roles of EGFR in physiology and disease.
Collapse
Affiliation(s)
- Jianchun Chen
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Fenghua Zeng
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Steven J. Forrester
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ming-Zhi Zhang
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Raymond C. Harris
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
van Veen JE, Pringle DR, McMahon M. P2A-Fluorophore Tagging of BRAF Tightly Links Expression to Fluorescence In Vivo. PLoS One 2016; 11:e0157661. [PMID: 27348307 PMCID: PMC4922626 DOI: 10.1371/journal.pone.0157661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/02/2016] [Indexed: 11/19/2022] Open
Abstract
The Braf proto-oncogene is a key component of the mitogen-activated protein kinase signaling cascade and is a critical regulator of both normal development and tumorigenesis in a variety of tissues. In order to elucidate BRAF's differing roles in varying cell types, it is important to understand both the pattern and timing of BRAF expression. Here we report the production of a mouse model that links the expression of Braf with the bright red fluorescent protein, tdTomato. We have utilized a P2A knock-in strategy, ensuring that BRAF and the fluorophore are expressed from the same endogenous promoter and from the same bicistronic mRNA transcript. This mouse model (BrafTOM) shows bright red fluorescence in organs and cell types known to be sensitive to BRAF perturbation. We further show that on a cell-by-cell basis, fluorescence correlates with BRAF protein levels. Finally, we extend the utility of this mouse by demonstrating that the remnant P2A fragment attached to BRAF acts as a suitable epitope for immunoprecipitation and biochemical characterization of BRAF in vivo.
Collapse
Affiliation(s)
- J. Edward van Veen
- Helen Diller Family Comprehensive Cancer, University of California San Francisco, San Francisco, CA, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States of America
| | - Daphne R. Pringle
- Helen Diller Family Comprehensive Cancer, University of California San Francisco, San Francisco, CA, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States of America
| | - Martin McMahon
- Helen Diller Family Comprehensive Cancer, University of California San Francisco, San Francisco, CA, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
25
|
Falodah FA, Al-Karim S. Immuno- and gene expression analysis of EGFR and Nestin during mice skin development. Tissue Cell 2016; 48:274-81. [PMID: 27105606 DOI: 10.1016/j.tice.2016.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/22/2016] [Accepted: 02/06/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Skin stem cell populations reside in the adult hair follicle, sebaceous gland, dermis and epidermis. However, the origin of most of the stem cell populations found in the adult epidermis is still unknown. Far more unknown is the embryonic origin of other stem cells that populate the other layers of this tissue. OBJECTIVES The main objectives of the present study were to identify the precise anatomical localization of stem cells in mice during skin developing; and to determine the expression levels by using immuno- and gene expression analysis. SUBJECTS AND METHODS In this comparative cross sectional study, six ages been chosen and divided into: embryonic days (E12.5, E14.5 and E19.5) and litter days (L7, L14 and L19). Skin were removed from the back side and processed to assess both immuno- and gene-expression of EGFR and Nestin surface antigen markers. Data of the different studied age groups was compared using the SPSS software. RESULTS EGFR was mainly expressed in the outer root sheath (ORS), in basal and, to a lesser extent, in suprabasal keratinocytes and tend to lie where the dermis comes closest to the skin surface, while Nestin expressed throughout the dermis in the early embryo, but it is subsequently restricted to the follicular connective tissue sheaths later in development and to hair follicles after birth. Immunoexpression analysis showed a strong EGFR expression in all group ages except E12.5 which recorded as moderate, while Nestin showed strong expression level for all embryonic stages, while in the litters it was moderate. The qRT-PCR results were consistent with those of the immunohistochemical study. The Pearson correlation analyze present a correlation between the cases of study with age (p≤0.01), which indicated to the effect of age to mice development. CONCLUSION EGFR and Nestin showed to have vital role during mice development, and considered to be suitable markers for the study of skin stem cells.
Collapse
Affiliation(s)
- Fawaz Adnan Falodah
- Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Saleh Al-Karim
- Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Embryonic Stem Cell Unit, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
26
|
Tholen S, Wolf C, Mayer B, Knopf JD, Löffek S, Qian Y, Kizhakkedathu JN, Biniossek ML, Franzke CW, Schilling O. Skin Barrier Defects Caused by Keratinocyte-Specific Deletion of ADAM17 or EGFR Are Based on Highly Similar Proteome and Degradome Alterations. J Proteome Res 2016; 15:1402-17. [PMID: 27089454 DOI: 10.1021/acs.jproteome.5b00691] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Keratinocyte-specific deletion of ADAM17 in mice impairs terminal differentiation of keratinocytes leading to severe epidermal barrier defects. Mice deficient for ADAM17 in keratinocytes phenocopy mice with a keratinocyte-specific deletion of epidermal growth factor receptor (EGFR), which highlights the role of ADAM17 as a "ligand sheddase" of EGFR ligands. In this study, we aim for the first proteomic/degradomic approach to characterize the disruption of the ADAM17-EGFR signaling axis and its consequences for epidermal barrier formation. Proteomic profiling of the epidermal proteome of mice deficient for either ADAM17 or EGFR in keratinocytes at postnatal days 3 and 10 revealed highly similar protein alterations for ADAM17 and EGFR deficiency. These include massive proteome alterations of structural and regulatory components important for barrier formation such as transglutaminases, involucrin, filaggrin, and filaggrin-2. Cleavage site analysis using terminal amine isotopic labeling of substrates revealed increased proteolytic processing of S100 fused-type proteins including filaggrin-2. Alterations in proteolytic processing are supported by altered abundance of numerous proteases upon keratinocyte-specific Adam17 or Egfr deletion, among them kallikreins, cathepsins, and their inhibitors. This study highlights the essential role of proteolytic processing for maintenance of a functional epidermal barrier. Furthermore, it suggests that most defects in formation of the postnatal epidermal barrier upon keratinocyte-specific ADAM17 deletion are mediated via EGFR.
Collapse
Affiliation(s)
- Stefan Tholen
- Institute of Molecular Medicine and Cell Research, University of Freiburg , 79104 Freiburg, Germany
| | - Cristina Wolf
- Department of Dermatology, University Medical Center Freiburg , 79104 Freiburg, Germany
| | - Bettina Mayer
- Institute of Molecular Medicine and Cell Research, University of Freiburg , 79104 Freiburg, Germany
| | - Julia D Knopf
- Institute of Molecular Medicine and Cell Research, University of Freiburg , 79104 Freiburg, Germany
| | - Stefanie Löffek
- Department of Dermatology, University Medical Center Freiburg , 79104 Freiburg, Germany
| | - Yawen Qian
- Department of Dermatology, University Medical Center Freiburg , 79104 Freiburg, Germany
| | - Jayachandran N Kizhakkedathu
- Department of Pathology and Laboratory Medicine and Department of Chemistry, Centre for Blood Research, University of British Columbia , Vancouver, British Columbia V6T 1Z3, Canada
| | - Martin L Biniossek
- Institute of Molecular Medicine and Cell Research, University of Freiburg , 79104 Freiburg, Germany
| | - Claus-Werner Franzke
- Department of Dermatology, University Medical Center Freiburg , 79104 Freiburg, Germany
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research, University of Freiburg , 79104 Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg , D-79104 Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| |
Collapse
|
27
|
Stoll SW, Stuart PE, Swindell WR, Tsoi LC, Li B, Gandarillas A, Lambert S, Johnston A, Nair RP, Elder JT. The EGF receptor ligand amphiregulin controls cell division via FoxM1. Oncogene 2016; 35:2075-86. [PMID: 26234682 PMCID: PMC4788585 DOI: 10.1038/onc.2015.269] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 06/04/2015] [Accepted: 06/13/2015] [Indexed: 12/26/2022]
Abstract
Epidermal growth factor receptor (EGFR) is central to epithelial cell physiology, and deregulated EGFR signaling has an important role in a variety of human carcinomas. Here we show that silencing of the EGF-related factor amphiregulin (AREG) markedly inhibits the expansion of human keratinocytes through mitotic failure and accumulation of cells with ⩾ 4n DNA content. RNA-sequencing-based transcriptome analysis revealed that tetracycline-mediated AREG silencing significantly altered the expression of 2331 genes, 623 of which were not normalized by treatment with EGF. Interestingly, genes irreversibly upregulated by suppression of AREG overlapped with genes involved in keratinocyte differentiation. Moreover, a significant proportion of the irreversibly downregulated genes featured upstream binding sites recognized by forkhead box protein M1 (FoxM1), a key transcription factor in the control of mitosis that is widely dysregulated in cancer. The downregulation of FoxM1 and its target genes preceded mitotic arrest. Constitutive expression of FoxM1 in AREG knockdown cells normalized cell proliferation, reduced the number of cells with ⩾ 4n DNA content and rescued expression of FoxM1 target genes. These results demonstrate that AREG controls G2/M progression and cytokinesis in keratinocytes via activation of a FoxM1-dependent transcriptional program, suggesting new avenues for treatment of epithelial cancer.
Collapse
Affiliation(s)
- Stefan W. Stoll
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | - Philip E. Stuart
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | | | - Lam C. Tsoi
- Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - Bingshan Li
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Alberto Gandarillas
- Cell Cycle, Stem Cells and Cancer Lab, Instituto de Investigación Marques de Valdecilla-IDIVAL), Santander, Spain
| | - Sylviane Lambert
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | - Andrew Johnston
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | - Rajan P. Nair
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | - James T. Elder
- Department of Dermatology, University of Michigan, Ann Arbor, MI
- Ann Arbor Veterans Affairs Health System, Ann Arbor, MI
| |
Collapse
|
28
|
Kim CL, Cha SY, Chun MY, Kim B, Choi MY, Cheon YP. Positive Effects of Diphlorethohydroxycarmalol (DPHC) on the Stability of the Integument Structure in Diet-Induced Obese Female Mice. Dev Reprod 2016; 19:145-52. [PMID: 27004271 PMCID: PMC4801041 DOI: 10.12717/dr.2015.19.3.145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Diphlorethohydroxycarmalol (DPHC) is a known to modulate the expression of extracellular matrix (ECM) components in 3T3-L1. However, the possible role of DPHC in integument stability during obesity induction is not clear yet. We evaluated the effects of DPHC on collagen or elastic fiber quantity in integument during obesity induction with high-fat diet. The dorsal back integument sections were stained with hematoxylin–eosin, Masson trichrome, and Verhoff-Van Gieson. The intensities of collagen fibers and elastin fibers were analyzed with ImageJ. The number of fibroblasts was counted at ×1,000 fields. The number of fibroblast was increased by obesity induction, but DPHC suppressed it in a concentrationdependent manner both in lean and obese mice. On the other hand, the intensities of collagen fibers were increased by DPHC treatment in obese mice groups but not in lean mice groups. The intensities of collagen fibers of obese mice were lower than that of the lean mice in 0% group. However, the number became similar between lean and obese mice by the treatment of DPHC. The intensity of elastic fibers was increased in the lean mice with the concentration of DPHC. In the obese mice group, there were increasing patterns but only significant at 10% DPHC group. The intensity of elastic fibers of obese mice was higher than lean mice in 0%, 1%, and 10% groups. Histologically epithelial cells and follicle cells which were diffused nuclear staining forms were increased by DPHC treatment. The results suggest that the activity of integument cells during obesity induction can be modulated by DPHC.
Collapse
Affiliation(s)
- Chae-Lim Kim
- Division of Developmental Biology and Physiology, School of Biosciences and Chemistry, Institute for Basic Sciences, Sungshin Women's University, Seoul 142-742, Korea
| | - Sun-Yeong Cha
- Division of Developmental Biology and Physiology, School of Biosciences and Chemistry, Institute for Basic Sciences, Sungshin Women's University, Seoul 142-742, Korea
| | - Min Young Chun
- Global Medical Science, Sungshin Women's University, Seoul 142-742, Korea
| | - Bumsoo Kim
- Exercise Rehabilitation and Welfare, Sungshin Women's University, Seoul 142-742, Korea
| | - Min Young Choi
- Industrial Design, Sungshin Women's University, Seoul 142-742, Korea
| | - Yong-Pil Cheon
- Division of Developmental Biology and Physiology, School of Biosciences and Chemistry, Institute for Basic Sciences, Sungshin Women's University, Seoul 142-742, Korea
| |
Collapse
|
29
|
Bichsel KJ, Hammiller B, Trempus CS, Li Y, Hansen LA. The epidermal growth factor receptor decreases Stathmin 1 and triggers catagen entry in the mouse. Exp Dermatol 2016; 25:275-81. [PMID: 26661905 DOI: 10.1111/exd.12921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2015] [Indexed: 12/29/2022]
Abstract
The epidermal growth factor receptor (EGFR) is necessary for normal involution of hair follicles after the growth phase of anagen, although the mechanisms through which it acts are not well understood. In this report, we used transcriptional profiling of microdissected hair follicles from mice with skin-targeted deletion of Egfr to investigate how EGFR activation triggers catagen. Immunofluorescence for phospho-EGFR in mouse skin revealed increased activation of EGFR in follicular keratinocytes at catagen onset. Consistent with other models of EGFR deficiency, mice with skin-targeted deletion of Egfr (Krt14-Cre(+) /Egfr(fl/fl) ) exhibited a delayed and asynchronous catagen entry. Transcriptional profiling at the time of normal catagen onset at post-natal day (P) 17 revealed increased expression of the mitotic regulator Rcc2 in hair follicles lacking EGFR. Rcc2 protein was strongly immunopositive in the nuclei of control follicular keratinocytes at P16 then rapidly decreased until it was undetectable between P18 and 21. In contrast, Rcc2 expression continued in Egfr mutant follicles throughout this period. Proliferation, measured by bromodeoxyuridine incorporation, was also significantly increased in Egfr mutant follicular keratinocytes compared to controls at P18-21. Similarly, Rcc2-regulated mitotic regulator Stathmin 1 was strikingly reduced in control but not Egfr mutant follicles between P17 and P19. Deletion of Stmn1, in turn, accelerated catagen entry associated with premature cessation of proliferation in the hair follicles. These data reveal EGFR suppression of mitotic regulators including Rcc2 and Stathmin 1 as a mechanism for catagen induction in mouse skin.
Collapse
Affiliation(s)
- Kyle J Bichsel
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, USA
| | - Brianna Hammiller
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, USA
| | - Carol S Trempus
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Yanhua Li
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, USA
| | - Laura A Hansen
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, USA
| |
Collapse
|
30
|
López-Luque J, Caballero-Díaz D, Martinez-Palacián A, Roncero C, Moreno-Càceres J, García-Bravo M, Grueso E, Fernández A, Crosas-Molist E, García-Álvaro M, Addante A, Bertran E, Valverde AM, González-Rodríguez Á, Herrera B, Montoliu L, Serrano T, Segovia JC, Fernández M, Ramos E, Sánchez A, Fabregat I. Dissecting the role of epidermal growth factor receptor catalytic activity during liver regeneration and hepatocarcinogenesis. Hepatology 2016; 63:604-19. [PMID: 26313466 DOI: 10.1002/hep.28134] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/21/2015] [Indexed: 12/17/2022]
Abstract
UNLABELLED Different data support a role for the epidermal growth factor receptor (EGFR) pathway during liver regeneration and hepatocarcinogenesis. However, important issues, such as the precise mechanisms mediating its actions and the unique versus redundant functions, have not been fully defined. Here, we present a novel transgenic mouse model expressing a hepatocyte-specific truncated form of human EGFR, which acts as negative dominant mutant (ΔEGFR) and allows definition of its tyrosine kinase-dependent functions. Results indicate a critical role for EGFR catalytic activity during the early stages of liver regeneration. Thus, after two-thirds partial hepatectomy, ΔEGFR livers displayed lower and delayed proliferation and lower activation of proliferative signals, which correlated with overactivation of the transforming growth factor-β pathway. Altered regenerative response was associated with amplification of cytostatic effects of transforming growth factor-β through induction of cell cycle negative regulators. Interestingly, lipid synthesis was severely inhibited in ΔEGFR livers after partial hepatectomy, revealing a new function for EGFR kinase activity as a lipid metabolism regulator in regenerating hepatocytes. In spite of these profound alterations, ΔEGFR livers were able to recover liver mass by overactivating compensatory signals, such as c-Met. Our results also indicate that EGFR catalytic activity is critical in the early preneoplastic stages of the liver because ΔEGFR mice showed a delay in the appearance of diethyl-nitrosamine-induced tumors, which correlated with decreased proliferation and delay in the diethyl-nitrosamine-induced inflammatory process. CONCLUSION These studies demonstrate that EGFR catalytic activity is critical during the initial phases of both liver regeneration and carcinogenesis and provide key mechanistic insights into how this kinase acts to regulate liver pathophysiology. (Hepatology 2016;63:604-619).
Collapse
Affiliation(s)
- Judit López-Luque
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Daniel Caballero-Díaz
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Adoración Martinez-Palacián
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University of Madrid, and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - César Roncero
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University of Madrid, and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Joaquim Moreno-Càceres
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - María García-Bravo
- Cell Differentiation and Cytometry Unit, Hematopoietic Innovative Therapies Division, , Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Advanced Therapies Mixed Unit, CIEMAT/IIS Fundación Jiménez Díaz, Madrid, Spain
| | - Esther Grueso
- Cell Differentiation and Cytometry Unit, Hematopoietic Innovative Therapies Division, , Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Almudena Fernández
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Eva Crosas-Molist
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - María García-Álvaro
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University of Madrid, and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Annalisa Addante
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University of Madrid, and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Esther Bertran
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Angela M Valverde
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC/UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Águeda González-Rodríguez
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC/UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Blanca Herrera
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University of Madrid, and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Lluis Montoliu
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Teresa Serrano
- Pathological Anatomy Service, University Hospital of Bellvitge, Barcelona, Spain
| | - Jose-Carlos Segovia
- Cell Differentiation and Cytometry Unit, Hematopoietic Innovative Therapies Division, , Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Advanced Therapies Mixed Unit, CIEMAT/IIS Fundación Jiménez Díaz, Madrid, Spain
| | - Margarita Fernández
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University of Madrid, and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Emilio Ramos
- Department of Surgery, Liver Transplant Unit, University Hospital of Bellvitge, Barcelona, Spain
| | - Aránzazu Sánchez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University of Madrid, and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Spain
| |
Collapse
|
31
|
Paus R, Burgoa I, Platt CI, Griffiths T, Poblet E, Izeta A. Biology of the eyelash hair follicle: an enigma in plain sight. Br J Dermatol 2016; 174:741-52. [PMID: 26452071 DOI: 10.1111/bjd.14217] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2015] [Indexed: 01/19/2023]
Abstract
Because of their crucial impact on our perception of beauty, eyelashes constitute a prime target for the cosmetic industry. However, when compared with other hair shafts and the mini-organs that produce them [eyelash hair follicles (ELHFs)], knowledge on the biology underlying growth and pigmentation of eyelashes is still rudimentary. This is due in part to the extremely restricted availability of human ELHFs for experimental study, underappreciation of their important sensory and protective functions and insufficient interest in understanding why they are distinct from scalp hair follicles (HFs) (e.g. ELHFs produce shorter hair shafts, do not possess an arrector pili muscle, have a shorter hair cycle and undergo greying significantly later than scalp HFs). Here we synthesize the limited current knowledge on the biology of ELHFs, in humans and other species, their role in health and disease, the known similarities with and differences from other HF populations, and their intrinsic interethnic variations. We define major open questions in the biology of these intriguing mini-organs and conclude by proposing future research directions. These include dissecting the molecular and cellular mechanisms that underlie trichomegaly and the development of in vitro models in order to interrogate the distinct molecular controls of ELHF growth, cycling and pigmentation and to probe novel strategies for the therapeutic and cosmetic manipulation of ELHFs beyond prostaglandin receptor stimulation.
Collapse
Affiliation(s)
- R Paus
- The Dermatology Research Centre, Institute of Inflammation and Repair, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Department of Dermatology, University of Münster, Münster, Germany
| | - I Burgoa
- The Dermatology Research Centre, Institute of Inflammation and Repair, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Instituto Biodonostia, Hospital Universitario Donostia, Paseo Dr Begiristain s/n, 20014, San Sebastián, Spain
| | - C I Platt
- The Dermatology Research Centre, Institute of Inflammation and Repair, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K
| | - T Griffiths
- The Dermatology Research Centre, Institute of Inflammation and Repair, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K
| | - E Poblet
- Department of Pathology, Hospital Universitario Reina Sofía, Murcia, Spain
| | - A Izeta
- Instituto Biodonostia, Hospital Universitario Donostia, Paseo Dr Begiristain s/n, 20014, San Sebastián, Spain
| |
Collapse
|
32
|
Li Y, Stoll SW, Sekhon S, Talsma C, Camhi MI, Jones JL, Lambert S, Marley H, Rittié L, Grachtchouk M, Fritz Y, Ward NL, Elder JT. Transgenic expression of human amphiregulin in mouse skin: inflammatory epidermal hyperplasia and enlarged sebaceous glands. Exp Dermatol 2016; 25:187-93. [PMID: 26519132 DOI: 10.1111/exd.12886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2015] [Indexed: 12/15/2022]
Abstract
To explore the role of amphiregulin in inflammatory epidermal hyperplasia, we overexpressed human AREG (hAREG) in FVB/N mice using a bovine K5 promoter. A construct containing AREG coding sequences flanked by 5' and 3' untranslated region sequences (AREG-UTR) led to a >10-fold increase in hAREG expression compared to an otherwise-identical construct containing only the coding region (AREG-CDR). AREG-UTR mice developed tousled, greasy fur as well as elongated nails and thickened, erythematous tail skin. No such phenotype was evident in AREG-CDR mice. Histologically, AREG-UTR mice presented with marked epidermal hyperplasia of tail skin (2.1-fold increase in epidermal thickness with a 9.5-fold increase in Ki-67(+) cells) accompanied by significantly increased CD4+ T-cell infiltration. Dorsal skin of AREG-UTR mice manifested lesser but still significant increases in epidermal thickness and keratinocyte hyperplasia. AREG-UTR mice also developed marked and significant sebaceous gland enlargement, with corresponding increases in Ki-67(+) cells. To determine the response of AREG-UTR animals to a pro-inflammatory skin challenge, topical imiquimod (IMQ) or vehicle cream was applied to dorsal and tail skin. IMQ increased dorsal skin thickness similarly in both AREG-UTR and wild type mice (1.7- and 2.2-fold vs vehicle, P < 0.001 each), but had no such effect on tail skin. These results confirm that keratinocyte expression of hAREG elicits inflammatory epidermal hyperplasia, and are consistent with prior reports of tail epidermal hyperplasia and increased sebaceous gland size in mice expressing human epigen.
Collapse
Affiliation(s)
- Yong Li
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stefan W Stoll
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sahil Sekhon
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA
| | - Caroline Talsma
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maya I Camhi
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA
| | - Jennifer L Jones
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA
| | - Sylviane Lambert
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hue Marley
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Laure Rittié
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marina Grachtchouk
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yi Fritz
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA
| | - Nicole L Ward
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA
| | - James T Elder
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA.,Ann Arbor VA Hospital, Ann Arbor, MI, USA
| |
Collapse
|
33
|
Ferrazzi A, Russo I, Pasello G, Alaibac M. Atypical skin reaction in a patient treated with gefitinib for advanced lung cancer: A case report and review of the literature. Exp Ther Med 2015; 11:197-200. [PMID: 26889239 DOI: 10.3892/etm.2015.2881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 10/14/2015] [Indexed: 11/06/2022] Open
Abstract
Gefitinib is a selective epidermal growth factor receptor tyrosine kinase inhibitor utilized for the treatment of advanced non-small cell lung carcinoma. The most commonly reported adverse event during gefitinib therapy is skin rash, particularly a papulopustular acne-like eruption. Cutaneous toxicities can affect treatment compliance and the quality of life of the patient. The present study reports a case of gefitinib-induced atypical skin reaction in a 73-year-old woman with advanced non-small cell lung cancer, who developed a squamous-crusted eruption on her face after 4 weeks of oral treatment with gefitinib at a dose of 250 mg/day. The patient was treated with 100 mg minocyclin (2 tablets/day, orally) and with ryfamicin topically. A complete resolution of the lesions was observed 2 weeks later. The present case report explored the pathogenesis of this skin manifestation, focusing on the underlying immunological mechanisms. A review of the literature concerning skin reactions to gefitinib was also conducted.
Collapse
Affiliation(s)
- Anna Ferrazzi
- Dermatology Unit, Department of Medicine, University of Padua, Padua I-35121, Italy
| | - Irene Russo
- Dermatology Unit, Department of Medicine, University of Padua, Padua I-35121, Italy
| | - Giulia Pasello
- Unit of Medical Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua I-35128, Italy
| | - Mauro Alaibac
- Dermatology Unit, Department of Medicine, University of Padua, Padua I-35121, Italy
| |
Collapse
|
34
|
Gab1 and Mapk Signaling Are Essential in the Hair Cycle and Hair Follicle Stem Cell Quiescence. Cell Rep 2015; 13:561-572. [PMID: 26456821 DOI: 10.1016/j.celrep.2015.09.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 07/29/2015] [Accepted: 09/03/2015] [Indexed: 12/17/2022] Open
Abstract
Gab1 is a scaffold protein that acts downstream of receptor tyrosine kinases. Here, we produced conditional Gab1 mutant mice (by K14- and Krox20-cre) and show that Gab1 mediates crucial signals in the control of both the hair cycle and the self-renewal of hair follicle stem cells. Remarkably, mutant hair follicles do not enter catagen, the destructive phase of the hair cycle. Instead, hair follicle stem cells lose quiescence and become exhausted, and thus no stem cell niches are established in the bulges. Moreover, conditional sustained activation of Mapk signaling by expression of a gain-of-function Mek1(DD) allele (by Krox20-cre) rescues hair cycle deficits and restores quiescence of the stem cells. Our data thus demonstrate an essential role of Gab1 downstream of receptor tyrosine kinases and upstream of Shp2 and Mapk in the regulation of the hair cycle and the self-renewal of hair follicle stem cells.
Collapse
|
35
|
Transcription Factor CTIP2 Maintains Hair Follicle Stem Cell Pool and Contributes to Altered Expression of LHX2 and NFATC1. J Invest Dermatol 2015; 135:2593-2602. [PMID: 26176759 PMCID: PMC4640969 DOI: 10.1038/jid.2015.281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/11/2015] [Accepted: 06/17/2015] [Indexed: 01/11/2023]
Abstract
Transcription factor CTIP2 (COUP-TF-interacting protein 2), also known as BCL11B, is expressed in hair follicles of embryonic and adult skin. Ctip2-null mice exhibit reduced hair follicle density during embryonic development. In contrast, conditional inactivation of Ctip2 in epidermis (Ctip2ep−/− mice) leads to a shorter telogen and premature entry into anagen during the second phase of hair cycling without a detectable change in the number of hair follicles. Keratinocytes of the bulge stem cells niche of Ctip2ep−/− mice proliferate more and undergo reduced apoptosis than the corresponding cells of wild-type mice. However, premature activation of follicular stem cells in mice lacking CTIP2 leads to the exhaustion of this stem cell compartment in comparison to Ctip2L2/L2 mice, which retained quiescent follicle stem cells. CTIP2 modulates expression of genes encoding EGFR and NOTCH1 during formation of hair follicles, and those encoding NFATC1 and LHX2 during normal hair cycling in adult skin. The expression of most of these genes is disrupted in mice lacking CTIP2 and these alterations may underlie the phenotype of Ctip2-null and Ctip2ep−/− mice. CTIP2 appears to serve as a transcriptional organizer that integrates input from multiple signaling cues during hair follicle morphogenesis and hair cycling.
Collapse
|
36
|
Jaka A, Gutiérrez-Rivera A, López-Pestaña A, del Alcázar E, Zubizarreta J, Vildosola S, Arregui M, Sarasqueta C, Lobo C, Tuneu A. Predictors of Tumor Response to Cetuximab and Panitumumab in 116 Patients and a Review of Approaches to Managing Skin Toxicity. ACTAS DERMO-SIFILIOGRAFICAS 2015. [DOI: 10.1016/j.adengl.2015.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
37
|
Keller DA, Brennan RJ, Leach KL. Clinical and Nonclinical Adverse Effects of Kinase Inhibitors. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2015. [DOI: 10.1002/9783527673643.ch16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
38
|
Holcmann M, Sibilia M. Mechanisms underlying skin disorders induced by EGFR inhibitors. Mol Cell Oncol 2015; 2:e1004969. [PMID: 27308503 PMCID: PMC4905346 DOI: 10.1080/23723556.2015.1004969] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/31/2014] [Accepted: 01/03/2015] [Indexed: 12/21/2022]
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is frequently mutated or overexpressed in a large number of tumors such as carcinomas or glioblastoma. Inhibitors of EGFR activation have been successfully established for the therapy of some cancers and are more and more frequently being used as first or later line therapies. Although the side effects induced by inhibitors of EGFR are less severe than those observed with classic cytotoxic chemotherapy and can usually be handled by out-patient care, they may still be a cause for dose reduction or discontinuation of treatment that can reduce the effectiveness of antitumor therapy. The mechanisms underlying these cutaneous side effects are only partly understood. Important questions, such as the reasons for the correlation between the intensity of the side effects and the efficiency of treatment with EGFR inhibitors, remain to be answered. Optimized adjuvant strategies to accompany anti-EGFR therapy need to be found for optimal therapeutic application and improved quality of life of patients. Here, we summarize current literature on the molecular and cellular mechanisms underlying the cutaneous side effects induced by EGFR inhibitors and provide evidence that keratinocytes are probably the optimal targets for adjuvant therapy aimed at alleviating skin toxicities.
Collapse
Affiliation(s)
- Martin Holcmann
- Institute of Cancer Research; Department of Medicine I; Medical University of Vienna; Comprehensive Cancer Center ; Vienna, Austria
| | - Maria Sibilia
- Institute of Cancer Research; Department of Medicine I; Medical University of Vienna; Comprehensive Cancer Center ; Vienna, Austria
| |
Collapse
|
39
|
Srivastava J, Rho O, Youssef RM, DiGiovanni J. Twist1 regulates keratinocyte proliferation and skin tumor promotion. Mol Carcinog 2015; 55:941-52. [PMID: 26013710 DOI: 10.1002/mc.22335] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/07/2015] [Accepted: 04/20/2015] [Indexed: 11/08/2022]
Abstract
In the present study, we evaluated the effect of deleting Twist1 on keratinocyte proliferation and on skin tumor development using the two-stage chemical carcinogenesis model. BK5.Cre × Twist1(flox/flox) mice, which have a keratinocyte-specific Twist1 knockout (Twist1 KO), developed significantly reduced numbers of papilloma (70% reduction) and squamous cell carcinoma (75% reduction) as well as delayed tumor latency compared to wild-type (WT) mice. Interestingly, knockdown of Twist1 in primary keratinocytes impeded cell cycle progression at the G1/S transition that coincided with reduced levels of the cell cycle proteins c-Myc, Cyclin E1, and E2F1 and increased levels of p53 and p21. Furthermore, ChIP analyses revealed that Twist1 bound to the promoter regions of Cyclin E1, E2F1, and c-Myc at the canonical E-box binding motif suggesting a direct transcriptional regulation. Further analyses of Twist1 KO mice revealed a significant reduction in the number of label-retaining cells as well as the number of α6-integrin(+) /CD34(+) cells in the hair follicles of untreated mice compared to WT mice. These mice also exhibited significantly reduced epidermal proliferation in response to TPA treatment that again correlated with reduced levels of cell cycle regulators and increased levels of p53 and p21. Finally, Twist1 deficiency in keratinocytes led to an upregulation of p53 via its stabilization and nuclear localization, which is responsible for the increased expression of p21 in these cells. Collectively, these findings indicate that Twist1 has a novel role in epithelial carcinogenesis by regulating proliferation of keratinocytes, including keratinocyte stem cells during tumor promotion.
Collapse
Affiliation(s)
- Jaya Srivastava
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Okkyung Rho
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Ronnie M Youssef
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas.,Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
40
|
Predictors of Tumor Response to Cetuximab and Panitumumab in 116 Patients and a Review of Approaches to Managing Skin Toxicity. ACTAS DERMO-SIFILIOGRAFICAS 2015; 106:483-92. [PMID: 25798804 DOI: 10.1016/j.ad.2015.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/22/2015] [Accepted: 01/25/2015] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION AND OBJECTIVES Cetuximab and panitumumab are monoclonal antibodies that target the epidermal growth factor receptor (EGFR) in the treatment of metastatic colorectal cancer. Most patients develop a papulopustular rash, which may predict tumor response. We studied whether the other adverse cutaneous effects associated with these monoclonal antibodies are also clinical predictors of response. We also reviewed publications describing approaches to treating the papulopustular rash since no evidence-based guidelines have yet been published. MATERIAL AND METHODS We performed a retrospective study of 116 patients with metastatic colorectal cancer receiving anti-EGRF therapy with cetuximab or panitumumab at Hospital Universitario Donostia. RESULTS In total, 81.9% of the patients developed a papulopustular rash. Patients who received the most cycles of treatment with the EGFR inhibitor were at the highest risk of developing the rash, and these patients also had the most severe rash reactions (P=.03). All of the patients who exhibited a complete tumor response had the rash, and the incidence of rash was lower in patients with poor tumor response (P=.03). We also observed an association between tumor response and xerosis (53.4% of the patients who developed xerosis also exhibited tumor response, P=.002). The papulopustular rash was managed according to an algorithm developed by our department. CONCLUSIONS Severe papulopustular rash and xerosis may be clinical predictors of good response to anti-EGFR therapy. Patients who develop a papulopustular rash should be treated promptly because suboptimal treatment of this and other adverse effects can lead to delays in taking the prescribed anti-EGFR dose or to interruption of therapy.
Collapse
|
41
|
Macdonald JB, Macdonald B, Golitz LE, LoRusso P, Sekulic A. Cutaneous adverse effects of targeted therapies: Part I: Inhibitors of the cellular membrane. J Am Acad Dermatol 2015; 72:203-18; quiz 219-20. [PMID: 25592338 DOI: 10.1016/j.jaad.2014.07.032] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 12/18/2022]
Abstract
There has been a rapid emergence of numerous targeted agents in the oncology community in the last decade. This exciting paradigm shift in drug development lends promise for the future of individualized medicine. Given the pace of development and clinical deployment of targeted agents with novel mechanisms of action, dermatology providers may not be familiar with the full spectrum of associated skin-related toxicities. Cutaneous adverse effects are among the most frequently observed toxicities with many targeted agents, and their intensity can be dose-limiting or lead to therapy discontinuation. In light of the often life-saving nature of emerging oncotherapeutics, it is critical that dermatologists both understand the mechanisms and recognize clinical signs and symptoms of such toxicities in order to provide effective clinical management. Part I of this continuing medical education article will review in detail the potential skin-related adverse sequelae, the frequency of occurrence, and the implications associated with on- and off-target cutaneous toxicities of inhibitors acting at the cell membrane level, chiefly inhibitors of epidermal growth factor receptor, KIT, and BCR-ABL, angiogenesis, and multikinase inhibitors.
Collapse
Affiliation(s)
- James B Macdonald
- Department of Dermatology, Central Utah Clinic, Provo, Utah; Department of Pathology, Central Utah Clinic, Provo, Utah.
| | | | - Loren E Golitz
- Department of Dermatology, University of Colorado-Denver, Aurora, Colorado; Department of Pathology, University of Colorado-Denver, Aurora, Colorado
| | - Patricia LoRusso
- Department of Oncology, Wayne State University, Detroit, Michigan
| | | |
Collapse
|
42
|
Tóth BI, Oláh A, Szöllősi AG, Bíró T. TRP channels in the skin. Br J Pharmacol 2014; 171:2568-81. [PMID: 24372189 DOI: 10.1111/bph.12569] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/28/2013] [Accepted: 12/03/2013] [Indexed: 12/16/2022] Open
Abstract
Emerging evidence suggests that transient receptor potential (TRP) ion channels not only act as 'polymodal cellular sensors' on sensory neurons but are also functionally expressed by a multitude of non-neuronal cell types. This is especially true in the skin, one of the largest organs of the body, where they appear to be critically involved in regulating various cutaneous functions both under physiological and pathophysiological conditions. In this review, we focus on introducing the roles of several cutaneous TRP channels in the regulation of the skin barrier, skin cell proliferation and differentiation, and immune functions. Moreover, we also describe the putative involvement of several TRP channels in the development of certain skin diseases and identify future TRP channel-targeted therapeutic opportunities.
Collapse
Affiliation(s)
- Balázs I Tóth
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; DE-MTA 'Lendület' Cellular Physiology Research Group, Department of Physiology, University of Debrecen, Medical and Health Science Center, Research Center for Molecular Medicine, Debrecen, Hungary
| | | | | | | |
Collapse
|
43
|
Matriptase promotes inflammatory cell accumulation and progression of established epidermal tumors. Oncogene 2014; 34:4664-72. [PMID: 25486433 PMCID: PMC4459940 DOI: 10.1038/onc.2014.391] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 12/23/2022]
Abstract
Deregulation of matriptase is a consistent feature of human epithelial cancers and correlates with poor disease outcome. We have previously shown that matriptase promotes multi-stage squamous cell carcinogenesis in transgenic mice through dual activation of pro-hepatocyte growth factor-cMet-Akt-mTor proliferation/survival signaling and PAR-2-Gαi-NFκB inflammatory signaling. Matriptase was congenitally and constitutively deregulated in our prior studies, and therefore it was unclear if aberrant matriptase signaling supports only initiation of tumor formation or if it is also critical for the progression of established tumors. To determine this, we here have generated triple-transgenic mice with constitutive deregulation of matriptase and simultaneous inducible expression of the cognate matriptase inhibitor, hepatocyte growth factor inhibitor (HAI)-2. As expected, constitutive expression of HAI-2 suppressed the formation of matriptase-dependent tumors in 7,12-Dimethylbenz(a)anthracene-treated mouse skin. Interestingly, however, the induction of HAI-2 expression in already established tumors markedly impaired malignant progression and caused regression of individual tumors. Tumor regression correlated with reduced accumulation of tumor-associated inflammatory cells, likely caused by diminished expression of pro-tumorigenic inflammatory cytokines. The data suggest that matriptase-dependent signaling may be a therapeutic target for both squamous cell carcinoma chemoprevention and for the treatment of established tumors.
Collapse
|
44
|
Arcidiacono MV, Yang J, Fernandez E, Dusso A. Parathyroid-specific epidermal growth factor-receptor inactivation prevents uremia-induced parathyroid hyperplasia in mice. Nephrol Dial Transplant 2014; 30:434-40. [PMID: 25324357 DOI: 10.1093/ndt/gfu318] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND In chronic kidney disease (CKD), parathyroid hyperplasia contributes to high serum parathyroid hormone (PTH) and also to an impaired suppression of secondary hyperparathyroidism by calcium, vitamin D and fibroblast growth factor 23 (FGF23). In rats, systemic inhibition of epidermal growth factor receptor (EGFR) activation markedly attenuated uremia-induced parathyroid hyperplasia and vitamin D receptor (VDR) loss, hence restoring the response to vitamin D. Therefore, we propose that parathyroid-specific EGFR inactivation should prevent CKD-induced parathyroid hyperplasia. METHODS A dominant-negative human EGFR mutant, which forms non-functional heterodimers with full-length endogenous EGFR, was successfully targeted to the parathyroid glands (PTGs) of FVB/N mice, using the 5' regulatory sequence of the PTH promoter. The parathyroid phenotype and serum chemistries of wild-type (WT) and transgenic mice were examined after 14 weeks of either sham operation or 75% renal mass reduction (NX). RESULTS Both genotypes had similar morphology and body weight, and NX-induction enhanced similarly serum blood urea nitrogen compared with sham-operated controls. However, despite similar serum calcium, phosphate and FGF23 levels in NX mice of both genotypes, parathyroid EGFR inactivation sufficed to completely prevent the marked increases in PTG enlargement, serum PTH and in parathyroid levels of transforming growth factor-α, a powerful EGFR-activator, and the VDR reductions observed in WT mice. CONCLUSION In CKD, parathyroid EGFR activation is essential for parathyroid hyperplasia and VDR loss, rendering this transgenic mouse a unique tool to scrutinize the pathogenesis of parathyroid and multiple organ dysfunction of CKD progression unrelated to parathyroid hyperplasia.
Collapse
Affiliation(s)
- Maria Vittoria Arcidiacono
- Renal Division, Washington University School of Medicine, St. Louis, MO, USA Division of Experimental Nephrology, IRB Lleida, Lleida, Spain Renal Division, Hospital Universitari Arnau de Vilanova, Universidad de Lleida, Lleida, Spain
| | - Jing Yang
- Renal Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Elvira Fernandez
- Division of Experimental Nephrology, IRB Lleida, Lleida, Spain Renal Division, Hospital Universitari Arnau de Vilanova, Universidad de Lleida, Lleida, Spain
| | - Adriana Dusso
- Renal Division, Washington University School of Medicine, St. Louis, MO, USA Division of Experimental Nephrology, IRB Lleida, Lleida, Spain Renal Division, Hospital Universitari Arnau de Vilanova, Universidad de Lleida, Lleida, Spain
| |
Collapse
|
45
|
Inui S, Itami S. A newly discovered linkage between proteoglycans and hair biology: decorin acts as an anagen inducer. Exp Dermatol 2014; 23:547-8. [DOI: 10.1111/exd.12471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Shigeki Inui
- Department of Regenerative Dermatology; Osaka University Graduate School of Medicine; Suita Japan
| | - Satoshi Itami
- Department of Regenerative Dermatology; Osaka University Graduate School of Medicine; Suita Japan
| |
Collapse
|
46
|
Pastore S, Lulli D, Girolomoni G. Epidermal growth factor receptor signalling in keratinocyte biology: implications for skin toxicity of tyrosine kinase inhibitors. Arch Toxicol 2014; 88:1189-203. [PMID: 24770552 DOI: 10.1007/s00204-014-1244-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/15/2014] [Indexed: 02/08/2023]
Abstract
The epidermal growth factor receptor (EGFR) and its ligands have been long recognized as centrally involved in the growth and repair process of epithelia, as well as in carcinogenesis. In addition, the EGFR has been demonstrated to be importantly involved in the control of inflammatory responses. During this last decade, a number of highly specific agents targeting this system have become an integral component of pharmacologic strategies against many solid malignancies. These drugs have led to increased patient survival and made therapy more tolerant when compared to conventional cytotoxic drugs. Nonetheless, their use is associated with a constellation of toxic effects on the skin, including follicular pustules, persistent inflammation, xerosis and pruritus, and enhanced susceptibility to infections. This dramatic impairment of skin homoeostasis underscores the centrality of the EGFR-ligand system in the whole skin immune system. So far, no mechanism-based approaches are available to specifically counteract the adverse effects of anti-EGFR drugs or any other class of tyrosine kinase inhibitors. Only the knowledge of the cellular and molecular events underlying these adverse effects in humans, combined with in vitro/in vivo models able to mimic these toxic responses, may guide the development of mechanism-based treatment or prevention strategies.
Collapse
Affiliation(s)
- Saveria Pastore
- Laboratory of Experimental Immunology, IDI-IRCCS, Rome, Italy,
| | | | | |
Collapse
|
47
|
Mascia F, Lam G, Keith C, Garber C, Steinberg SM, Kohn E, Yuspa SH. Genetic ablation of epidermal EGFR reveals the dynamic origin of adverse effects of anti-EGFR therapy. Sci Transl Med 2014; 5:199ra110. [PMID: 23966299 DOI: 10.1126/scitranslmed.3005773] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer patients treated with anti-EGFR (epidermal growth factor receptor) drugs often develop a dose-limiting pruritic rash of unknown etiology. The aims of our study were to define causal associations from a clinical study of cutaneous and systemic changes in patients treated with gefitinib and use these to develop and characterize a mouse model that recapitulates the human skin rash syndrome caused by anti-EGFR therapy. We examined the patients' plasma before and after treatment with gefitinib and documented changes in chemokines and leukocyte counts associated with the extent of rash or the presence of pruritus. We established a parallel mouse model by ablating EGFR in the epidermis. These mice developed skin lesions similar to the human rash. Before lesion development, we detected increased mRNA expression of chemokines in the skin associated with early infiltration of macrophages and mast cells and later infiltration of eosinophils, T cells, and neutrophils. As the skin phenotype evolved, changes in blood counts and circulating chemokines reproduced those seen in the gefitinib-treated patients. Crossing the mutant mice with mice deficient for tumor necrosis factor-α (TNF-α) receptors, MyD88, NOS2, CCR2, T cells, or B cells failed to reverse the skin phenotype. However, local depletion of macrophages provided partial resolution, suggesting that this model can identify targets that may be effective in preventing the troublesome and dose-limiting skin response to anti-EGFR drugs. These results highlight the importance of EGFR signaling in maintaining skin immune homeostasis and identify a macrophage contribution to a serious adverse consequence of cancer chemotherapy.
Collapse
Affiliation(s)
- Francesca Mascia
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Kheir WJ, Sniegowski MC, El-Sawy T, Li A, Esmaeli B. Ophthalmic complications of targeted cancer therapy and recently recognized ophthalmic complications of traditional chemotherapy. Surv Ophthalmol 2014; 59:493-502. [PMID: 25130892 DOI: 10.1016/j.survophthal.2014.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 02/09/2014] [Accepted: 02/12/2014] [Indexed: 12/14/2022]
Abstract
As our understanding of cancer pathophysiology has increased, so have the number of targeted therapeutic agents available. By targeting specific molecules involved in tumorigenesis, targeted therapeutic agents offer the potential for significant efficacy against tumor cells while minimizing the adverse effects. We highlight the recently recognized ophthalmic complications of targeted cancer therapy, as well as recently recognized complications of traditional chemotherapeutic agents.
Collapse
Affiliation(s)
- Wajiha J Kheir
- Orbital Oncology and Ophthalmic Plastic Surgery Program, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas; American University of Beirut Medical Center, Beirut, Lebanon
| | - Matthew C Sniegowski
- Orbital Oncology and Ophthalmic Plastic Surgery Program, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tarek El-Sawy
- Orbital Oncology and Ophthalmic Plastic Surgery Program, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Ophthalmology, Stanford University, Palo Alto, California
| | - Alexa Li
- Orbital Oncology and Ophthalmic Plastic Surgery Program, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bita Esmaeli
- Orbital Oncology and Ophthalmic Plastic Surgery Program, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
49
|
Qin H, Bollag WB. The caveolin-1 scaffolding domain peptide decreases phosphatidylglycerol levels and inhibits calcium-induced differentiation in mouse keratinocytes. PLoS One 2013; 8:e80946. [PMID: 24236206 PMCID: PMC3827482 DOI: 10.1371/journal.pone.0080946] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 10/14/2013] [Indexed: 11/19/2022] Open
Abstract
Phospholipase D2 (PLD2) has been found localized in low-density caveolin-rich membrane microdomains. Our previous study suggested that PLD2 and aquaporin 3 (AQP3) interact in these domains to inhibit keratinocyte proliferation and promote differentiation by cooperating to produce phosphatidylglycerol. To examine the effect of membrane microdomain localization on the PLD2/AQP3 signaling module and keratinocyte proliferation and differentiation, we treated mouse keratinocytes with 3 µM cell-permeable caveolin-1 scaffolding domain peptide or a negative control peptide and stimulated cell differentiation using a moderately elevated extracellular calcium concentration (125 uM) to maximally promote differentiation and phosphatidylglycerol production. Cell proliferation, differentiation, total PLD activity, phosphatidylglycerol levels, and AQP3 activity were monitored. The caveolin-1 scaffolding domain peptide itself had no effect on phosphatidylglycerol levels or keratinocyte proliferation or differentiation but prevented the changes induced by a moderately elevated calcium concentration, whereas a negative control did not. The caveolin-1 scaffolding domain peptide had little effect on total PLD activity or glycerol uptake (AQP3 activity). We conclude that the caveolin-1 scaffolding domain peptide disrupts the functional association between AQP3 and PLD2 and prevents both the inhibited proliferation and the stimulated differentiation in response to elevated extracellular calcium levels. The interaction of caveolin-1 and PLD2 is indirect (i.e., lipid mediated); together with the proliferation-promoting effects of caveolin-1 knockout on epidermal keratinocytes, we propose that the caveolin-1 scaffolding domain pepetide exerts a dominant-negative effect on caveolin-1 to alter lipid rafts in these cells.
Collapse
Affiliation(s)
- Haixia Qin
- Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, Georgia, United States of America
| | - Wendy B. Bollag
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America
- Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, Georgia, United States of America
- Department of Medicine (Dermatology), Medical College of Georgia at Georgia Regents University, Augusta, Georgia, United States of America
- Departments of Orthopaedic Surgery, Oral Biology and Cell Biology and Anatomy, Georgia Regents University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
50
|
Belum VR, Fontanilla Patel H, Lacouture ME, Rodeck U. Skin toxicity of targeted cancer agents: mechanisms and intervention. Future Oncol 2013; 9:1161-70. [PMID: 23902247 DOI: 10.2217/fon.13.62] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In recent years, targeted agents have rapidly evolved as effective tools in the clinical management of a broad range of malignant diseases. These agents disrupt molecular mechanisms and signaling modules that drive the malignant phenotype in defined subsets of malignancies. Beyond the intended cellular targets crucial to tumor growth and progression, these agents also affect signal transduction in normal cells and tissues. The resulting adverse events and their clinical management continue to change, as newer agents with an ever-increasing target spectrum are developed. We provide a succinct overview of dermatologic toxicities arising from the targeting of receptor tyrosine kinases and downstream effectors. Emergent insights into the pathomechanisms involved and the use of this knowledge base to alleviate cutaneous adverse events are discussed.
Collapse
Affiliation(s)
- Viswanath Reddy Belum
- Dermatology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, Rockefeller Outpatient Pavilion Suite 248, 160 East 53rd Street, New York, NY 10022, USA
| | | | | | | |
Collapse
|