1
|
Zhao D, Wang Q, Wang M, Lyu L, Liu S, Jiang Y, Zhou S, Liu F. A putative wild-type or wild-type-like hairpin structure is required within 3' untranslated region of Senecavirus A for virus replication. Virology 2023; 585:72-77. [PMID: 37307649 DOI: 10.1016/j.virol.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023]
Abstract
The 3' untranslated region (UTR) of Senecavirus A (SVA) was predicted to harbor two hairpin structures, hairpin-I and -II. The former is composed of two internal loops, one terminal loop and three stem regions; the latter comprises one internal loop, one terminal loop and two stem regions. In this study, we constructed a total of nine SVA cDNA clones, which contained different point mutations within a stem-formed motif in the hairpin-I or -II, for rescuing replication-competent viruses. Only three mutants were successfully rescued and moreover genetically stable during at least five serial passages. Computer-aided prediction showed these three mutants bearing either a wild-type or a wild-type-like hairpin-I in their individual 3' UTRs. Neither wild-type nor wild-type-like hairpin-I could be computationally predicted to exist in 3' UTRs of the other six unviable "viruses". The results suggested that the wild-type or wild-type-like hairpin-I was necessary in the 3' UTR for SVA replication.
Collapse
Affiliation(s)
- Di Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China; College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, 010018, China
| | - Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China; College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, 010018, China
| | - Mengyao Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Liangpeng Lyu
- Qingdao Workstation of Animal Husbandry, Qingdao, 266199, China
| | - Shuqing Liu
- Qingdao Center for Animal Disease Control & Prevention, Qingdao, 266199, China
| | - Yujia Jiang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shuning Zhou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
2
|
Liu F, Zhao D, Wang N, Li Z, Dong Y, Liu S, Zhang F, Cui J, Meng H, Ni B, Wei R, Shan H. Tolerance of Senecavirus A to Mutations in Its Kissing-Loop or Pseudoknot Structure Computationally Predicted in 3′ Untranslated Region. Front Microbiol 2022; 13:889480. [PMID: 35707163 PMCID: PMC9189406 DOI: 10.3389/fmicb.2022.889480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Senecavirus A (SVA) is an emerging virus that belongs to the genus Senecavirus in the family Picornaviridae. Its genome is a positive-sense and single-stranded RNA, containing two untranslated regions (UTRs). The 68-nt-long 3′ UTR is computationally predicted to possess two higher-order RNA structures: a kissing-loop interaction and an H-type-like pseudoknot, both of which, however, cannot coexist in the 3′ UTR. In this study, we constructed 17 full-length SVA cDNA clones (cD-1 to -17): the cD-1 to -7 contained different point mutations in a kissing-loop-forming motif (KLFM); the cD-8 to -17 harbored one single or multiple point mutations in a pseudoknot-forming motif (PFM). These 17 mutated cDNA clones were independently transfected into BSR-T7/5 cells for rescuing recombinant SVAs (rSVAs), named rSVA-1 to −17, corresponding to cD-1 to −17. The results showed that the rSVA-1, -2, -3, -4, -5, -6, -7, -9, -13, and -15 were successfully rescued from their individual cDNA clones. Moreover, all mutated motifs were genetically stable during 10 viral passages in vitro. This study unveiled viral abilities of tolerating mutations in the computationally predicted KLFM or PFMs. It can be concluded that the putative kissing-loop structure, even if present in the 3′ UTR, is unnecessary for SVA replication. Alternatively, if the pseudoknot formation potentially occurs in the 3′ UTR, its deformation would have a lethal effect on SVA propagation.
Collapse
Affiliation(s)
- Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Di Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China
| | - Ning Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ziwei Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Yaqin Dong
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Shuang Liu
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Feng Zhang
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Jin Cui
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Hailan Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Bo Ni
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
- Bo Ni,
| | - Rong Wei
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
- Rong Wei,
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Hu Shan,
| |
Collapse
|
3
|
Kim KR, Kim J, Mao C, Ahn DR. Kissing loop-mediated fabrication of RNA nanoparticles and their potential as cellular and in vivo siRNA delivery platforms. Biomater Sci 2021; 9:8148-8152. [PMID: 34755728 DOI: 10.1039/d1bm01440d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe an efficient method to condense RNAs into tightly packed RNA nanoparticles (RNPs) for biomedical applications without hydrophobic or cationic agents. We embedded kissing loops and siRNA in the RNAs to constrain the size of RNPs to ca. 100 nm, making them suitable not only for cellular uptake but also for passive tumor accumulation. The resulting RNPs were efficiently internalized into cells and downregulated the target gene of siRNAs. When intravenously injected into tumor-bearing mice, RNPs could also accumulate in the tumor. The reported fabrication method could be readily adopted as a platform to prepare RNPs for in vitro and in vivo delivery of bioactive RNAs.
Collapse
Affiliation(s)
- Kyoung-Ran Kim
- Center for Theragnosis, Biomedical Research Research Division, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea.
| | - Junghyun Kim
- Center for Theragnosis, Biomedical Research Research Division, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea.
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Dae-Ro Ahn
- Center for Theragnosis, Biomedical Research Research Division, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea. .,Division of Biomedical Science and Technology, KIST School, University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| |
Collapse
|
4
|
Filipe IC, Guedes MS, Zdobnov EM, Tapparel C. Enterovirus D: A Small but Versatile Species. Microorganisms 2021; 9:1758. [PMID: 34442837 PMCID: PMC8400195 DOI: 10.3390/microorganisms9081758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Enteroviruses (EVs) from the D species are the causative agents of a diverse range of infectious diseases in spite of comprising only five known members. This small clade has a diverse host range and tissue tropism. It contains types infecting non-human primates and/or humans, and for the latter, they preferentially infect the eye, respiratory tract, gastrointestinal tract, and nervous system. Although several Enterovirus D members, in particular EV-D68, have been associated with neurological complications, including acute myelitis, there is currently no effective treatment or vaccine against any of them. This review highlights the peculiarities of this viral species, focusing on genome organization, functional elements, receptor usage, and pathogenesis.
Collapse
Affiliation(s)
- Ines Cordeiro Filipe
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Mariana Soares Guedes
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Evgeny M. Zdobnov
- Department of Genetic Medicine and Development, Switzerland and Swiss Institute of Bioinformatics, University of Geneva, 1206 Geneva, Switzerland;
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| |
Collapse
|
5
|
Jackson T, Belsham GJ. Picornaviruses: A View from 3A. Viruses 2021; 13:v13030456. [PMID: 33799649 PMCID: PMC7999760 DOI: 10.3390/v13030456] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Picornaviruses are comprised of a positive-sense RNA genome surrounded by a protein shell (or capsid). They are ubiquitous in vertebrates and cause a wide range of important human and animal diseases. The genome encodes a single large polyprotein that is processed to structural (capsid) and non-structural proteins. The non-structural proteins have key functions within the viral replication complex. Some, such as 3Dpol (the RNA dependent RNA polymerase) have conserved functions and participate directly in replicating the viral genome, whereas others, such as 3A, have accessory roles. The 3A proteins are highly divergent across the Picornaviridae and have specific roles both within and outside of the replication complex, which differ between the different genera. These roles include subverting host proteins to generate replication organelles and inhibition of cellular functions (such as protein secretion) to influence virus replication efficiency and the host response to infection. In addition, 3A proteins are associated with the determination of host range. However, recent observations have challenged some of the roles assigned to 3A and suggest that other viral proteins may carry them out. In this review, we revisit the roles of 3A in the picornavirus life cycle. The 3AB precursor and mature 3A have distinct functions during viral replication and, therefore, we have also included discussion of some of the roles assigned to 3AB.
Collapse
Affiliation(s)
- Terry Jackson
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, UK;
| | - Graham J. Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- Correspondence:
| |
Collapse
|
6
|
Elsedawy NB, Nace RA, Russell SJ, Schulze AJ. Oncolytic Activity of Targeted Picornaviruses Formulated as Synthetic Infectious RNA. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:484-495. [PMID: 32529026 PMCID: PMC7276391 DOI: 10.1016/j.omto.2020.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022]
Abstract
Infectious nucleic acid has been proposed as a superior formulation for oncolytic virus therapy. Oncolytic picornaviruses can be formulated as infectious RNA (iRNA), and their unwanted tropisms eliminated by microRNA (miRNA) detargeting. However, genomic insertion of miRNA target sequences into coxsackievirus A21 (CVA21) iRNA compromised its specific infectivity, negating further development as a novel oncolytic virus formulation. To address this limitation, we substituted a muscle-specific miRNA response element for the spacer region downstream of the internal ribosomal entry site in the 5′ non-coding region of CVA21 iRNA, thereby preserving genome length while avoiding the disruption of known surrounding RNA structural elements. This new iRNA (R-CVA21) retained high specific infectivity, rapidly generating replicating miRNA-detargeted viruses following transfection in H1-HeLa cells. Further, in contrast with alternatively configured iRNAs that were tested in parallel, intratumoral administration of R-CVA21 generated a spreading oncolytic infection that was curative in treated animals without associated myotoxicity. Moreover, R-CVA21 also exhibited superior miRNA response element stability in vivo. This novel formulation is a promising agent for clinical translation.
Collapse
Affiliation(s)
- Noura B Elsedawy
- Department of Molecule Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Rebecca A Nace
- Department of Molecule Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Stephen J Russell
- Department of Molecule Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Autumn J Schulze
- Department of Molecule Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| |
Collapse
|
7
|
Agol VI. In pursuit of intriguing puzzles. Virology 2020; 539:49-60. [PMID: 31670219 DOI: 10.1016/j.virol.2019.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
This Invited Review is a kind of scientific autobiography based on the presentation at the Symposium "Viruses: Discovering Big in Small" held in honor of the author's 90th birthday (Moscow, March 2019).
Collapse
Affiliation(s)
- Vadim I Agol
- Institute of Poliomyelitis, M. P. Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, Moscow, 108819, Russia; A. N. Belozersky Institute of Physical-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, 119899, Russia.
| |
Collapse
|
8
|
Sunaga F, Masuda T, Ito M, Akagami M, Naoi Y, Sano K, Katayama Y, Omatsu T, Oba M, Sakaguchi S, Furuya T, Yamasato H, Ouchi Y, Shirai J, Mizutani T, Nagai M. Complete genomic analysis and molecular characterization of Japanese porcine sapeloviruses. Virus Genes 2019; 55:198-208. [PMID: 30712153 DOI: 10.1007/s11262-019-01640-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/21/2019] [Indexed: 01/08/2023]
Abstract
The Porcine Sapelovirus (PSV) is an enteric virus of pigs that can cause various disorders. However, there are few reports that describe the molecular characteristics of the PSV genome. In this study, almost the entire genomes of 23 PSVs detected in Japanese pigs were analyzed using bioinformatics. Analysis of the cis-active RNA elements showed that the predicted secondary structures of the internal ribosome entry site in the 5' untranslated region (UTR) and a cis-replication element in the 2C coding region were conserved among PSVs. In contrast, those at the 3' UTR were different for different PSVs; however, tertiary structures between domains were conserved across all PSVs. Phylogenetic analysis of nucleotide sequences of the complete VP1 region showed that PSVs exhibited sequence diversity; however, they could not be grouped into genotypes due to the low bootstrap support of clusters. The insertion and/or deletion patterns in the C-terminal VP1 region were not related to the topology of the VP1 tree. The 3CD phylogenetic tree was topologically different from the VP1 tree, and PSVs from the same country were clustered independently. Recombination analysis revealed that recombination events were found upstream of the P2 region and some recombination breakpoints involved insertions and/or deletions in the C-terminal VP1 region. These findings demonstrate that PSVs show genetic diversity and frequent recombination events, particularly in the region upstream of the P2 region; however, PSVs could currently not be classified into genotypes and conserved genetic structural features of the cis-active RNA elements are observed across all PSVs.
Collapse
Affiliation(s)
- Fujiko Sunaga
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan
| | - Tsuneyuki Masuda
- Kurayoshi Livestock Hygiene Service Center, Kurayoshi, Tottori, 683-0017, Japan
| | - Mika Ito
- Ishikawa Nanbu Livestock Hygiene Service Center, Kanazawa, Ishikawa, 920-3101, Japan
| | - Masataka Akagami
- Kenpoku Livestock Hygiene Service Center, Mito, Ibaraki, 310-0002, Japan
| | - Yuki Naoi
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo, 183-8509, Japan
| | - Kaori Sano
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo, 183-8509, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo, 183-8509, Japan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo, 183-8509, Japan
| | - Mami Oba
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo, 183-8509, Japan
| | - Shoichi Sakaguchi
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo, 183-8509, Japan.,Department of Microbiology and Infection Control, Osaka Medical College, Osaka, 569-8686, Japan
| | - Tetsuya Furuya
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Hiroshi Yamasato
- Kurayoshi Livestock Hygiene Service Center, Kurayoshi, Tottori, 683-0017, Japan
| | - Yoshinao Ouchi
- Kenpoku Livestock Hygiene Service Center, Mito, Ibaraki, 310-0002, Japan
| | - Junsuke Shirai
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo, 183-8509, Japan.,Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo, 183-8509, Japan
| | - Makoto Nagai
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan. .,Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
9
|
Royston L, Essaidi-Laziosi M, Pérez-Rodríguez FJ, Piuz I, Geiser J, Krause KH, Huang S, Constant S, Kaiser L, Garcin D, Tapparel C. Viral chimeras decrypt the role of enterovirus capsid proteins in viral tropism, acid sensitivity and optimal growth temperature. PLoS Pathog 2018; 14:e1006962. [PMID: 29630666 PMCID: PMC5908207 DOI: 10.1371/journal.ppat.1006962] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 04/19/2018] [Accepted: 03/08/2018] [Indexed: 11/19/2022] Open
Abstract
Despite their genetic similarities, enteric and respiratory enteroviruses (EVs) have highly heterogeneous biophysical properties and cause a vast diversity of human pathologies. In vitro differences include acid sensitivity, optimal growth temperature and tissue tropism, which reflect a preferential in vivo replication in the respiratory or gastrointestinal tract and are thus key determinants of EV virulence. To investigate the underlying cause of these differences, we generated chimeras at the capsid-level between EV-D68 (a respiratory EV) and EV-D94 (an enteric EV). Although some chimeras were nonfunctional, EV-D94 with both the capsid and 2A protease or the capsid only of EV-D68 were both viable. Using this latter construct, we performed several functional assays, which indicated that capsid proteins determine acid sensitivity and tropism in cell lines and in respiratory, intestinal and neural tissues. Additionally, capsid genes were shown to also participate in determining the optimal growth temperature, since EV-D94 temperature adaptation relied on single mutations in VP1, while constructs with EV-D68 capsid could not adapt to higher temperatures. Finally, we demonstrate that EV-D68 maintains residual binding-capacity after acid-treatment despite a loss of infectivity. In contrast, non-structural rather than capsid proteins modulate the innate immune response in tissues. These unique biophysical insights expose another layer in the phenotypic diversity of one of world's most prevalent pathogens and could aid target selection for vaccine or antiviral development.
Collapse
Affiliation(s)
- Léna Royston
- University of Geneva Faculty of Medicine, Department of Microbiology and Molecular Medicine, 1 Rue Michel-Servet, Geneva, Switzerland
| | - Manel Essaidi-Laziosi
- University of Geneva Faculty of Medicine, Department of Microbiology and Molecular Medicine, 1 Rue Michel-Servet, Geneva, Switzerland
| | - Francisco J. Pérez-Rodríguez
- University of Geneva Faculty of Medicine, Department of Microbiology and Molecular Medicine, 1 Rue Michel-Servet, Geneva, Switzerland
| | - Isabelle Piuz
- University of Geneva Faculty of Medicine, Department of Microbiology and Molecular Medicine, 1 Rue Michel-Servet, Geneva, Switzerland
| | - Johan Geiser
- University of Geneva Faculty of Medicine, Department of Microbiology and Molecular Medicine, 1 Rue Michel-Servet, Geneva, Switzerland
| | - Karl-Heinz Krause
- University of Geneva Faculty of Medicine, Department of Pathology and Immunology, 1 Rue Michel-Servet, Geneva, Switzerland
| | - Song Huang
- Epithelix Sàrl, 18 Chemin des Aulx, Geneva, Switzerland
| | | | - Laurent Kaiser
- Laboratory of Virology, Division of Infectious Diseases, University of Geneva Hospitals, 4 Rue Gabrielle Perret-Gentil, Geneva 14, Switzerland
| | - Dominique Garcin
- University of Geneva Faculty of Medicine, Department of Microbiology and Molecular Medicine, 1 Rue Michel-Servet, Geneva, Switzerland
| | - Caroline Tapparel
- University of Geneva Faculty of Medicine, Department of Microbiology and Molecular Medicine, 1 Rue Michel-Servet, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
10
|
Abstract
Reproduction of RNA viruses is typically error-prone due to the infidelity of their replicative machinery and the usual lack of proofreading mechanisms. The error rates may be close to those that kill the virus. Consequently, populations of RNA viruses are represented by heterogeneous sets of genomes with various levels of fitness. This is especially consequential when viruses encounter various bottlenecks and new infections are initiated by a single or few deviating genomes. Nevertheless, RNA viruses are able to maintain their identity by conservation of major functional elements. This conservatism stems from genetic robustness or mutational tolerance, which is largely due to the functional degeneracy of many protein and RNA elements as well as to negative selection. Another relevant mechanism is the capacity to restore fitness after genetic damages, also based on replicative infidelity. Conversely, error-prone replication is a major tool that ensures viral evolvability. The potential for changes in debilitated genomes is much higher in small populations, because in the absence of stronger competitors low-fit genomes have a choice of various trajectories to wander along fitness landscapes. Thus, low-fit populations are inherently unstable, and it may be said that to run ahead it is useful to stumble. In this report, focusing on picornaviruses and also considering data from other RNA viruses, we review the biological relevance and mechanisms of various alterations of viral RNA genomes as well as pathways and mechanisms of rehabilitation after loss of fitness. The relationships among mutational robustness, resilience, and evolvability of viral RNA genomes are discussed.
Collapse
|
11
|
Korotkova E, Laassri M, Zagorodnyaya T, Petrovskaya S, Rodionova E, Cherkasova E, Gmyl A, Ivanova OE, Eremeeva TP, Lipskaya GY, Agol VI, Chumakov K. Pressure for Pattern-Specific Intertypic Recombination between Sabin Polioviruses: Evolutionary Implications. Viruses 2017; 9:v9110353. [PMID: 29165333 PMCID: PMC5707560 DOI: 10.3390/v9110353] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 11/29/2022] Open
Abstract
Complete genomic sequences of a non-redundant set of 70 recombinants between three serotypes of attenuated Sabin polioviruses as well as location (based on partial sequencing) of crossover sites of 28 additional recombinants were determined and compared with the previously published data. It is demonstrated that the genomes of Sabin viruses contain distinct strain-specific segments that are eliminated by recombination. The presumed low fitness of these segments could be linked to mutations acquired upon derivation of the vaccine strains and/or may have been present in wild-type parents of Sabin viruses. These “weak” segments contribute to the propensity of these viruses to recombine with each other and with other enteroviruses as well as determine the choice of crossover sites. The knowledge of location of such segments opens additional possibilities for the design of more genetically stable and/or more attenuated variants, i.e., candidates for new oral polio vaccines. The results also suggest that the genome of wild polioviruses, and, by generalization, of other RNA viruses, may harbor hidden low-fitness segments that can be readily eliminated only by recombination.
Collapse
Affiliation(s)
- Ekaterina Korotkova
- AN Belozersky Institute of Physical-Chemical Biology, MV Lomonosov Moscow State University, Moscow 119899, Russia.
- Institute of Poliomyelitis and Viral Encephalitides of MP Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Majid Laassri
- US Food and Drug Administration, Silver Spring, MD 20993, USA.
| | | | | | | | - Elena Cherkasova
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20895, USA.
| | - Anatoly Gmyl
- Institute of Poliomyelitis and Viral Encephalitides of MP Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
- IM Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| | - Olga E Ivanova
- Institute of Poliomyelitis and Viral Encephalitides of MP Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
- IM Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| | - Tatyana P Eremeeva
- Institute of Poliomyelitis and Viral Encephalitides of MP Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Galina Y Lipskaya
- AN Belozersky Institute of Physical-Chemical Biology, MV Lomonosov Moscow State University, Moscow 119899, Russia.
| | - Vadim I Agol
- AN Belozersky Institute of Physical-Chemical Biology, MV Lomonosov Moscow State University, Moscow 119899, Russia.
- Institute of Poliomyelitis and Viral Encephalitides of MP Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | | |
Collapse
|
12
|
Lukashev AN, Corman VM, Schacht D, Gloza-Rausch F, Seebens-Hoyer A, Gmyl AP, Drosten C, Drexler JF. Close genetic relatedness of picornaviruses from European and Asian bats. J Gen Virol 2017; 98:955-961. [PMID: 28555547 DOI: 10.1099/jgv.0.000760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Our investigation of 1004 faecal specimens from European bats for picornaviruses by broadly reactive nested reverse transcription-PCR found picornaviral RNA in 28 samples (2.8 %). Phylogenetic analysis of the partial 3D genomic region suggested that one bat virus belonged to the species Enterovirus G (EV-G, formerly Porcine enterovirus B). Bat infection was supported by relatively high EV-G concentrations of 1.1×106 RNA copies per gram of faeces. All other bat viruses belonged either to the bat-associated genus Mischivirus, or to an unclassified Picornaviridae group distantly related to the genus Sapelovirus. Members of this unclassified sapelovirus-related group had RNA secondary structures in their 3'-nontranslated regions that were typical of enteroviruses and that resembled structures that occur in bat-associated coronaviruses, suggesting ancient recombination events. Based on sequence distances, several picornaviruses from European and Chinese bats were likely conspecific, suggesting connectivity of virus populations. Due to their high mutation rates and their diversity, picornaviruses may be useful tools for studies of bat and virus ecology.
Collapse
Affiliation(s)
- Alexander N Lukashev
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Victor Max Corman
- German Centre for Infection Research (DZIF)
- Institute of Virology, Helmut-Ruska-Haus, Charité Medical School, Berlin, Germany
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Daniel Schacht
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Florian Gloza-Rausch
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
- Noctalis, Centre for Bat Protection and Information, Bad Segeberg, Germany
| | | | - Anatoly P Gmyl
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
| | - Christian Drosten
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
- German Centre for Infection Research (DZIF)
- Institute of Virology, Helmut-Ruska-Haus, Charité Medical School, Berlin, Germany
| | - Jan Felix Drexler
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
- German Centre for Infection Research (DZIF)
| |
Collapse
|
13
|
A Cluster of Paralytic Poliomyelitis Cases Due to Transmission of Slightly Diverged Sabin 2 Vaccine Poliovirus. J Virol 2016; 90:5978-88. [PMID: 27099315 DOI: 10.1128/jvi.00277-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/12/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Four cases of acute flaccid paralysis caused by slightly evolved (Sabin-like) vaccine polioviruses of serotype 2 were registered in July to August 2010 in an orphanage of Biysk (Altai Region, Russia). The Biysk cluster of vaccine-associated paralytic poliomyelitis (VAPP) had several uncommon, if not unique, features. (i) Until this outbreak, Sabin-like viruses (in distinction to more markedly evolved vaccine-derived polioviruses [VDPVs]) were reported to cause only sporadic cases of VAPP. Consequently, VAPP cases were not considered to require outbreak-type responses. However, the Biysk outbreak completely blurred the borderline between Sabin-like viruses and VDPVs in epidemiological terms. (ii) The outbreak demonstrated a very high disease/infection ratio, apparently exceeding even that reported for wild polioviruses. The viral genome structures did not provide any substantial hints as to the underlying reason(s) for such pathogenicity. (iii) The replacement of intestinal poliovirus lineages by other Sabin-like lineages during short intervals after the disease onsets was observed in two patients. Again, the sequences of the respective genomes provided no clues to explain these events. (iv) The polioviruses isolated from the patients and their contacts demonstrated a striking heterogeneity as well as rapid and uneven evolution of the whole genomes and their parts, apparently due to extensive interpersonal contacts in a relatively small closed community, multiple bottlenecking, and recombination. Altogether, the results demonstrate several new aspects of pathogenicity, epidemiology, and evolution of vaccine-related polioviruses and underscore several serious gaps in understanding these problems. IMPORTANCE The oral poliovirus vaccine largely contributed to the nearly complete disappearance of poliovirus-caused poliomyelitis. Being generally safe, it can, in some cases, result in a paralytic disease. Two types of such outcomes are distinguished: those caused by slightly diverged (Sabin-like) viruses on the one hand and those caused by significantly diverged VDPVs on the other. This classification is based on the number of mutations in the viral genome region encoding a viral structural protein. Until now, only sporadic poliomyelitis cases due to Sabin-like polioviruses had been described, and in distinction from the VDPV-triggered outbreaks, they did not require broad-scale epidemiological responses. Here, an unusual outbreak of poliomyelitis caused by a Sabin-like virus is reported, which had an exceptionally high disease/infection ratio. This outbreak blurred the borderline between Sabin-like polioviruses and VDPVs both in pathogenicity and in the kind of responses required, as well as underscoring important gaps in understanding the pathogenicity, epidemiology, and evolution of vaccine-derived polioviruses.
Collapse
|
14
|
Abstract
The Picornaviridae represent a large family of small plus-strand RNA viruses that cause a bewildering array of important human and animal diseases. Morphogenesis is the least-understood step in the life cycle of these viruses, and this process is difficult to study because encapsidation is tightly coupled to genome translation and RNA replication. Although the basic steps of assembly have been known for some time, very few details are available about the mechanism and factors that regulate this process. Most of the information available has been derived from studies of enteroviruses, in particular poliovirus, where recent evidence has shown that, surprisingly, the specificity of encapsidation is governed by a viral protein-protein interaction that does not involve an RNA packaging signal. In this review, we make an attempt to summarize what is currently known about the following topics: (i) encapsidation intermediates, (ii) the specificity of encapsidation (iii), viral and cellular factors that are required for encapsidation, (iv) inhibitors of encapsidation, and (v) a model of enterovirus encapsidation. Finally, we compare some features of picornavirus morphogenesis with those of other plus-strand RNA viruses.
Collapse
|
15
|
Garmaroudi FS, Marchant D, Hendry R, Luo H, Yang D, Ye X, Shi J, McManus BM. Coxsackievirus B3 replication and pathogenesis. Future Microbiol 2015; 10:629-53. [DOI: 10.2217/fmb.15.5] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT Viruses such as coxsackievirus B3 (CVB3) are entirely host cell-dependent parasites. Indeed, they must cleverly exploit various compartments of host cells to complete their life cycle, and consequently launch disease. Evolution has equipped this pico-rna-virus, CVB3, to use different strategies, including CVB3-induced direct damage to host cells followed by a host inflammatory response to CVB3 infection, and cell death to super-additively promote target organ tissue injury, and dysfunction. In this update, the patho-stratagems of CVB3 are explored from molecular, and systems-level approaches. In summarizing recent developments in this field, we focus particularly on mechanisms by which CVB3 can harness different host cell processes including kinases, host cell-killing and cell-eating machineries, matrix metalloproteinases and miRNAs to promote disease.
Collapse
Affiliation(s)
- Farshid S Garmaroudi
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - David Marchant
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Reid Hendry
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Honglin Luo
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - Decheng Yang
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - Xin Ye
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - Junyan Shi
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - Bruce M McManus
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
- Centre of Excellence for Prevention of Organ Failure, Vancouver, BC, Canada
| |
Collapse
|
16
|
Martínez-Salas E, Francisco-Velilla R, Fernandez-Chamorro J, Lozano G, Diaz-Toledano R. Picornavirus IRES elements: RNA structure and host protein interactions. Virus Res 2015; 206:62-73. [PMID: 25617758 DOI: 10.1016/j.virusres.2015.01.012] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/05/2015] [Accepted: 01/12/2015] [Indexed: 01/26/2023]
Abstract
Internal ribosome entry site (IRES) elements were discovered in picornaviruses. These elements are cis-acting RNA sequences that adopt diverse three-dimensional structures and recruit the translation machinery using a 5' end-independent mechanism assisted by a subset of translation initiation factors and various RNA binding proteins termed IRES transacting factors (ITAFs). Many of these factors suffer important modifications during infection including cleavage by picornavirus proteases, changes in the phosphorylation level and/or redistribution of the protein from the nuclear to the cytoplasm compartment. Picornavirus IRES are amongst the most potent elements described so far. However, given their large diversity and complexity, the mechanistic basis of its mode of action is not yet fully understood. This review is focused to describe recent advances on the studies of RNA structure and RNA-protein interactions modulating picornavirus IRES activity.
Collapse
Affiliation(s)
- Encarnación Martínez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, 28049 Madrid, Spain.
| | - Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, 28049 Madrid, Spain
| | - Javier Fernandez-Chamorro
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, 28049 Madrid, Spain
| | - Gloria Lozano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, 28049 Madrid, Spain
| | - Rosa Diaz-Toledano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
17
|
Paul AV, Wimmer E. Initiation of protein-primed picornavirus RNA synthesis. Virus Res 2015; 206:12-26. [PMID: 25592245 DOI: 10.1016/j.virusres.2014.12.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/16/2014] [Accepted: 12/24/2014] [Indexed: 12/14/2022]
Abstract
Plus strand RNA viruses use different mechanisms to initiate the synthesis of their RNA chains. The Picornaviridae family constitutes a large group of plus strand RNA viruses that possess a small terminal protein (VPg) covalently linked to the 5'-end of their genomes. The RNA polymerases of these viruses use VPg as primer for both minus and plus strand RNA synthesis. In the first step of the initiation reaction the RNA polymerase links a UMP to the hydroxyl group of a tyrosine in VPg using as template a cis-replicating element (cre) positioned in different regions of the viral genome. In this review we will summarize what is known about the initiation reaction of protein-primed RNA synthesis by the RNA polymerases of the Picornaviridae. As an example we will use the RNA polymerase of poliovirus, the prototype of Picornaviridae. We will also discuss models of how these nucleotidylylated protein primers might be used, together with viral and cellular replication proteins and other cis-replicating RNA elements, during minus and plus strand RNA synthesis.
Collapse
Affiliation(s)
- Aniko V Paul
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, United States.
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, United States
| |
Collapse
|
18
|
Son KY, Kim DS, Kwon J, Choi JS, Kang MI, Belsham GJ, Cho KO. Full-length genomic analysis of Korean porcine Sapelovirus strains. PLoS One 2014; 9:e107860. [PMID: 25229940 PMCID: PMC4168140 DOI: 10.1371/journal.pone.0107860] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/07/2014] [Indexed: 12/17/2022] Open
Abstract
Porcine sapelovirus (PSV), a species of the genus Sapelovirus within the family Picornaviridae, is associated with diarrhea, pneumonia, severe neurological disorders, and reproductive failure in pigs. However, the structural features of the complete PSV genome remain largely unknown. To analyze the structural features of PSV genomes, the full-length nucleotide sequences of three Korean PSV strains were determined and analyzed using bioinformatic techniques in comparison with other known PSV strains. The Korean PSV genomes ranged from 7,542 to 7,566 nucleotides excluding the 3′ poly(A) tail, and showed the typical picornavirus genome organization; 5′untranslated region (UTR)-L-VP4-VP2-VP3-VP1-2A-2B-2C-3A-3B-3C-3D-3′UTR. Three distinct cis-active RNA elements, the internal ribosome entry site (IRES) in the 5′UTR, a cis-replication element (CRE) in the 2C coding region and 3′UTR were identified and their structures were predicted. Interestingly, the structural features of the CRE and 3′UTR were different between PSV strains. The availability of these first complete genome sequences for PSV strains will facilitate future investigations of the molecular pathogenesis and evolutionary characteristics of PSV.
Collapse
Affiliation(s)
- Kyu-Yeol Son
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Deok-Song Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Joseph Kwon
- Division of Life Science, Korea Basic Science Institute, Yuseong-gu, Daejeon, Republic of Korea
| | - Jong-Soon Choi
- Division of Life Science, Korea Basic Science Institute, Yuseong-gu, Daejeon, Republic of Korea
| | - Mun-Il Kang
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Graham J. Belsham
- National Veterinary Institute, Technical University of Denmark, Kalvehave, Denmark
- * E-mail: (GJB); (KOC)
| | - Kyoung-Oh Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
- * E-mail: (GJB); (KOC)
| |
Collapse
|
19
|
Saxena P, Lomonossoff GP. Virus infection cycle events coupled to RNA replication. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:197-212. [PMID: 24906127 DOI: 10.1146/annurev-phyto-102313-050205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Replication, the process by which the genetic material of a virus is copied to generate multiple progeny genomes, is the central part of the virus infection cycle. For an infection to be productive, it is essential that this process is coordinated with other aspects of the cycle, such as translation of the viral genome, encapsidation, and movement of the genome between cells. In the case of positive-strand RNA viruses, this represents a particular challenge, as the infecting genome must not only be replicated but also serve as an mRNA for the production of the replication-associated proteins. In recent years, it has become apparent that in positive-strand RNA plant viruses all the aspects of the infection cycle are intertwined. This article reviews the current state of knowledge regarding replication-associated events in such viruses.
Collapse
Affiliation(s)
- Pooja Saxena
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom; ,
| | | |
Collapse
|
20
|
Complete genome characterization of a novel enterovirus type EV-B106 isolated in China, 2012. Sci Rep 2014; 4:4255. [PMID: 24584702 PMCID: PMC3939458 DOI: 10.1038/srep04255] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/13/2014] [Indexed: 11/19/2022] Open
Abstract
Human enterovirus B106 (EV-B106) is a recently identified member of enterovirus species B. In this study, we report the complete genomic characterization of an EV-B106 strain (148/YN/CHN/12) isolated from an acute flaccid paralysis patient in Yunnan Province, China. The new strain had 79.2–81.3% nucleotide and 89.1–94.8% amino acid similarity in the VP1 region with the other two EV-B106 strains from Bolivia and Pakistan. When compared with other EV serotypes, it had the highest (73.3%) VP1 nucleotide similarity with the EV-B77 prototype strain CF496-99. However, when aligned with all EV-B106 and EV-B77 sequences available from the GenBank database, two major frame shifts were observed in the VP1 coding region, which resulted in substantial (20.5%) VP1 amino acid divergence between the two serotypes. Phylogenetic analysis and similarity plot analysis revealed multiple recombination events in the genome of this strain. This is the first report of the complete genome of EV-B106.
Collapse
|
21
|
Burrill CP, Westesson O, Schulte MB, Strings VR, Segal M, Andino R. Global RNA structure analysis of poliovirus identifies a conserved RNA structure involved in viral replication and infectivity. J Virol 2013; 87:11670-83. [PMID: 23966409 PMCID: PMC3807356 DOI: 10.1128/jvi.01560-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/15/2013] [Indexed: 01/06/2023] Open
Abstract
The genomes of RNA viruses often contain RNA structures that are crucial for translation and RNA replication and may play additional, uncharacterized roles during the viral replication cycle. For the picornavirus family member poliovirus, a number of functional RNA structures have been identified, but much of its genome, especially the open reading frame, has remained uncharacterized. We have now generated a global RNA structure map of the poliovirus genome using a chemical probing approach that interrogates RNA structure with single-nucleotide resolution. In combination with orthogonal evolutionary analyses, we uncover several conserved RNA structures in the open reading frame of the viral genome. To validate the ability of our global analyses to identify functionally important RNA structures, we further characterized one of the newly identified structures, located in the region encoding the RNA-dependent RNA polymerase, 3D(pol), by site-directed mutagenesis. Our results reveal that the structure is required for viral replication and infectivity, since synonymous mutants are defective in these processes. Furthermore, these defects can be partially suppressed by mutations in the viral protein 3C(pro), which suggests the existence of a novel functional interaction between an RNA structure in the 3D(pol)-coding region and the viral protein(s) 3C(pro) and/or its precursor 3CD(pro).
Collapse
Affiliation(s)
- Cecily P. Burrill
- Tetrad Graduate Program, University of California, San Francisco, California, USA
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA
| | - Oscar Westesson
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Michael B. Schulte
- Tetrad Graduate Program, University of California, San Francisco, California, USA
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA
| | - Vanessa R. Strings
- Tetrad Graduate Program, University of California, San Francisco, California, USA
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA
| | - Mark Segal
- Department of Epidemiology & Biostatistics, University of California, San Francisco, California, USA
| | - Raul Andino
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA
| |
Collapse
|
22
|
Abstract
The genomic RNA of poliovirus and closely related picornaviruses perform template and non-template functions during viral RNA replication. The non-template functions are mediated by cis-active RNA sequences that bind viral and cellular proteins to form RNP complexes. The RNP complexes mediate temporally dynamic, long-range interactions in the viral genome and ensure the specificity of replication. The 5' cloverleaf (5' CL)-RNP complex serves as a key cis-active element in all of the non-template functions of viral RNA. The 5'CL-RNP complex is proposed to interact with the cre-RNP complex during VPgpUpU synthesis, the 3'NTR-poly(A) RNP complex during negative-strand initiation and the 30 end negative-strand-RNP complex during positive-strand initiation. Co-ordinating these long-range interactions is important in regulating each step in the replication cycle.
Collapse
Affiliation(s)
- Sushma A Ogram
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, United States
| | | |
Collapse
|
23
|
Identification of two functionally redundant RNA elements in the coding sequence of poliovirus using computer-generated design. Proc Natl Acad Sci U S A 2012; 109:14301-7. [PMID: 22886087 DOI: 10.1073/pnas.1211484109] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genomes of RNA viruses contain multiple functional RNA elements required for translation or RNA replication. We use unique approaches to identify functional RNA elements in the coding sequence of poliovirus (PV), a plus strand RNA virus. The general method is to recode large segments of the genome using synonymous codons, such that protein sequences, codon use, and codon pair bias are conserved but the nucleic acid sequence is changed. Such recoding does not affect the growth of PV unless it destroys the sequence/structure of a functional RNA element. Using genetic analyses and a method called "signal location search," we detected two unique functionally redundant RNA elements (α and β), each about 75 nt long and separated by 150 nt, in the 3'-terminal coding sequence of RNA polymerase, 3D(pol). The presence of wild type (WT) α or β was sufficient for the optimal growth of PV, but the alteration of both segments in the same virus yielded very low titers and tiny plaques. The nucleotide sequences and predicted RNA structures of α and β have no apparent resemblance to each other. In α, we narrowed down the functional domain to a 48-nt-long, highly conserved segment. The primary determinant of function in β is a stable and highly conserved hairpin. Reporter constructs showed that the α- and β-segments are required for RNA replication. Recoding offers a unique and effective method to search for unknown functional RNA elements in coding sequences of RNA viruses, particularly if the signals are redundant in function.
Collapse
|
24
|
Boros Á, Nemes C, Pankovics P, Kapusinszky B, Delwart E, Reuter G. Identification and complete genome characterization of a novel picornavirus in turkey (Meleagris gallopavo). J Gen Virol 2012; 93:2171-2182. [PMID: 22875254 DOI: 10.1099/vir.0.043224-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Members of the family Picornaviridae are important pathogens of humans and animals, although compared with the thousands of known bird species (>10 000), only a few (n = 11) picornaviruses have been identified from avian sources. This study reports the metagenomic detection and complete genome characterization of a novel turkey picornavirus from faecal samples collected from eight turkey farms in Hungary. Using RT-PCR, both healthy (two of three) and affected (seven of eight) commercial turkeys with enteric and/or stunting syndrome were shown to be shedding viruses in seven (88 %) of the eight farms. The viral genome sequence (turkey/M176/2011/HUN; GenBank accession no. JQ691613) shows a high degree of amino acid sequence identity (96 %) to the partial P3 genome region of a picornavirus reported recently in turkey and chickens from the USA and probably belongs to the same species. In the P1 and P2 regions, turkey/M176/2011/HUN is related most closely to, but distinct from, the kobuviruses and turdivirus 1. Complete genome analysis revealed the presence of characteristic picornaviral amino acid motifs, a potential type II-like 5' UTR internal ribosome entry site (first identified among avian-origin picornaviruses) and a conserved, 48 nt long 'barbell-like' structure found at the 3' UTR of turkey/M176/2011/HUN and members of the picornavirus genera Avihepatovirus and Kobuvirus. The general presence of turkey picornavirus - a novel picornavirus species - in faecal samples from healthy and affected turkeys in Hungary and in the USA suggests the worldwide occurrence and endemic circulation of this virus in turkey farms. Further studies are needed to investigate the aetiological role and pathogenic potential of this picornavirus in food animals.
Collapse
Affiliation(s)
- Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Csaba Nemes
- Veterinary Diagnostic Directorate of the Central Agricultural Office, Kaposvár, Hungary
| | - Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | | | - Eric Delwart
- University of California San Francisco, San Francisco, CA, USA.,Blood Systems Research Institute, San Francisco, CA, USA
| | - Gábor Reuter
- Blood Systems Research Institute, San Francisco, CA, USA.,Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| |
Collapse
|
25
|
Longjam N, Deb R, Sarmah AK, Tayo T, Awachat VB, Saxena VK. A Brief Review on Diagnosis of Foot-and-Mouth Disease of Livestock: Conventional to Molecular Tools. Vet Med Int 2011; 2011:905768. [PMID: 21776357 PMCID: PMC3135314 DOI: 10.4061/2011/905768] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 03/25/2011] [Accepted: 04/20/2011] [Indexed: 12/31/2022] Open
Abstract
Foot-and-mouth disease (FMD) is one of the highly contagious diseases of domestic animals. Effective control of this disease needs sensitive, specific, and quick diagnostic tools at each tier of control strategy. In this paper we have outlined various diagnostic approaches from old to new generation in a nutshell. Presently FMD diagnosis is being carried out using techniques such as Virus Isolation (VI), Sandwich-ELISA (S-ELISA), Liquid-Phase Blocking ELISA (LPBE), Multiplex-PCR (m-PCR), and indirect ELISA (DIVA), and real time-PCR can be used for detection of antibody against nonstructural proteins. Nucleotide sequencing for serotyping, microarray as well as recombinant antigen-based detection, biosensor, phage display, and nucleic-acid-based diagnostic are on the way for rapid and specific detection of FMDV. Various pen side tests, namely, lateral flow, RT-LAMP, Immunostrip tests, and so forth. are also developed for detection of the virus in field condition.
Collapse
Affiliation(s)
- Neeta Longjam
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati 781022, India
| | - Rajib Deb
- Division of Animal Biotechnology, Indian Veterinary Research Institute (IVRI), Izatnagar 243122, India
| | - A. K. Sarmah
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati 781022, India
| | - Tilling Tayo
- Division of Animal Nutrition, Indian Veterinary Research Institute (IVRI), Izatnagar 243122, India
| | - V. B. Awachat
- Division of Poultry Science, Central Avian Research Institute (CARI), Izatnagar 243122, India
| | - V. K. Saxena
- Division of Veterinary Biochemistry and Physiology, Central Sheep and Wool Research Institute (CSWRI), Avikanagar, India
| |
Collapse
|
26
|
Abstract
Several new enterovirus serotypes and a new human rhinovirus species have been characterized in the Enterovirus genus recently, raising a question about the origin of the new viruses. In this article we attempt to outline the general patterns of enterovirus evolution, ultimately leading to the emergence of new serotypes or species. Different evolutionary and epidemiological patterns can be deduced between different enterovirus species, between entero- and rhino-viruses and between different serotypes within a species. This article presents a hypothesis that the divergent evolution leading to a new serotype is likely to involve adaptation to a new ecological niche either within a single host species or due to interspecies transmission. By contrast, evolution within a serotype appears to occur primarily by genetic drift.
Collapse
Affiliation(s)
| | - Carita Savolainen-Kopra
- National Institute for Health and Welfare (THL), Division of Health Protection, Department of Infectious Disease Surveillance & Control, Intestinal Viruses Unit, P.O. Box 30, FI-00271 Helsinki, Finland; National Institute for Health & Welfare (THL), PO Box 30, FI-00271 Helsinki, Finland
| | - Merja Roivainen
- National Institute for Health and Welfare (THL), Division of Health Protection, Department of Infectious Disease Surveillance & Control, Intestinal Viruses Unit, P.O. Box 30, FI-00271 Helsinki, Finland; National Institute for Health & Welfare (THL), PO Box 30, FI-00271 Helsinki, Finland
| |
Collapse
|
27
|
Tao Z, Cui N, Xu A, Wang H, Song L, Li Y, Liu G, Liu Y, Feng L. Genomic characterization of an enterovirus 97 strain isolated in Shandong, China. Virus Genes 2010; 41:158-64. [PMID: 20532813 DOI: 10.1007/s11262-010-0496-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Accepted: 05/22/2010] [Indexed: 10/19/2022]
Abstract
The genomic characterization of human enterovirus 97 (EV97) strain isolated from an acute flaccid paralysis case in Shandong province, China in 1999, is described. The strain, designated as 99188/SD/CHN/1999/EV97 (abbreviated as 99188), had a genome of 7394 nucleotides. Compared with other EV97 strains, it had 81.3-83.3% nucleotide similarity and 94.0-95.4% amino acid similarity in VP1 coding region, and it had 81.4% complete genomic similarity with prototype strain BAN99-10355. The most striking feature was the deletion of 18 nucleotides in the 3' end of VP1 coding region, combined with two deletions and one insertion in 5' and 3' untranslated regions. All these findings demonstrated the strain 99188 had a distant genetic relationship with other EV97 strains. In the phylogenetic trees generated from VP1 and 3D sequences of human enterovirus species B (HEV-B), the lineages of strain 99188 were not congruent, suggesting the event of recombination. Similarity plot analysis further provided the evidence of recombination with other strains of HEV-B in P2 and P3 coding region. This is the first finding of EV97 in China and the third genomic sequence of EV97 reported.
Collapse
Affiliation(s)
- Zexin Tao
- Division of EPI, Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mechanistic consequences of hnRNP C binding to both RNA termini of poliovirus negative-strand RNA intermediates. J Virol 2010; 84:4229-42. [PMID: 20164237 DOI: 10.1128/jvi.02198-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The poliovirus 3' noncoding region (3' NCR) is necessary for efficient virus replication. A poliovirus mutant, PVDelta3'NCR, with a deletion of the entire 3' NCR, yielded a virus that was capable of synthesizing viral RNA, albeit with a replication defect caused by deficient positive-strand RNA synthesis compared to wild-type virus. We detected multiple ribonucleoprotein (RNP) complexes in extracts from poliovirus-infected HeLa cells formed with a probe corresponding to the 5' end of poliovirus negative-strand RNA (the complement of the genomic 3' NCR), and the levels of these RNP complexes increased during the course of viral infection. Previous studies have identified RNP complexes formed with the 3' end of poliovirus negative-strand RNA, including one that contains a 36-kDa protein later identified as heterogeneous nuclear ribonucleoprotein C (hnRNP C). We report here that the 5' end of poliovirus negative-strand RNA is capable of interacting with endogenous hnRNP C, as well as with poliovirus nonstructural proteins. Further, we demonstrate that the addition of recombinant purified hnRNP C proteins can stimulate virus RNA synthesis in vitro and that depletion of hnRNP C proteins in cultured cells results in decreased virus yields and a correspondingly diminished accumulation of positive-strand RNAs. We propose that the association of hnRNP C with poliovirus negative-strand termini acts to stabilize or otherwise promote efficient positive-strand RNA synthesis.
Collapse
|
29
|
Liu Y, Wimmer E, Paul AV. Cis-acting RNA elements in human and animal plus-strand RNA viruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:495-517. [PMID: 19781674 PMCID: PMC2783963 DOI: 10.1016/j.bbagrm.2009.09.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 09/09/2009] [Accepted: 09/13/2009] [Indexed: 02/08/2023]
Abstract
The RNA genomes of plus-strand RNA viruses have the ability to form secondary and higher-order structures that contribute to their stability and to their participation in inter- and intramolecular interactions. Those structures that are functionally important are called cis-acting RNA elements because their functions cannot be complemented in trans. They can be involved not only in RNA/RNA interactions but also in binding of viral and cellular proteins during the complex processes of translation, RNA replication and encapsidation. Most viral cis-acting RNA elements are located in the highly structured 5'- and 3'-nontranslated regions of the genomes but sometimes they also extend into the adjacent coding sequences. In addition, some cis-acting RNA elements are embedded within the coding sequences far away from the genomic ends. Although the functional importance of many of these structures has been confirmed by genetic and biochemical analyses, their precise roles are not yet fully understood. In this review we have summarized what is known about cis-acting RNA elements in nine families of human and animal plus-strand RNA viruses with an emphasis on the most thoroughly characterized virus families, the Picornaviridae and Flaviviridae.
Collapse
Affiliation(s)
- Ying Liu
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, USA
| | | | | |
Collapse
|
30
|
Attenuated foot-and-mouth disease virus RNA carrying a deletion in the 3' noncoding region can elicit immunity in swine. J Virol 2009; 83:3475-85. [PMID: 19211755 DOI: 10.1128/jvi.01836-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We constructed foot-and-mouth disease virus (FMDV) mutants bearing independent deletions of the two stem-loop structures predicted in the 3' noncoding region of viral RNA, SL1 and SL2, respectively. Deletion of SL2 was lethal for viral infectivity in cultured cells, while deletion of SL1 resulted in viruses with slower growth kinetics and downregulated replication associated with impaired negative-strand RNA synthesis. With the aim of exploring the potential of an RNA-based vaccine against foot-and-mouth disease using attenuated viral genomes, full-length chimeric O1K/C-S8 RNAs were first inoculated into pigs. Our results show that FMDV viral transcripts could generate infectious virus and induce disease in swine. In contrast, RNAs carrying the DeltaSL1 mutation on an FMDV O1K genome were innocuous for pigs but elicited a specific immune response including both humoral and cellular responses. A single inoculation with 500 microg of RNA was able to induce a neutralizing antibody response. This response could be further boosted by a second RNA injection. The presence of the DeltaSL1 mutation was confirmed in viruses isolated from serum samples of RNA-inoculated pigs or after transfection and five passages in cell culture. These findings suggest that deletion of SL1 might contribute to FMDV attenuation in swine and support the potential of RNA technology for the design of new FMDV vaccines.
Collapse
|
31
|
Zoll J, Heus HA, van Kuppeveld FJM, Melchers WJG. The structure-function relationship of the enterovirus 3'-UTR. Virus Res 2008; 139:209-16. [PMID: 18706945 DOI: 10.1016/j.virusres.2008.07.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 07/02/2008] [Indexed: 12/25/2022]
Abstract
Essential processes in living cells are carried out by large complex assemblies, which typically consist of a large number of proteins and frequently also contain nucleic acids, mostly RNA [Alberts, B., 1998. The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92, 291-294]. These large biomolecular complexes carry out biological processes in highly sophisticated ways: molecules do not move around randomly in the cell and interact by chance, but are guided to these "macromolecular machines", in which the number of possible collisions is restricted to a few possibilities, based, e.g., on the specificity of protein-RNA recognition. While the coding capacity of RNA lies within its sequence, the shape of an RNA molecule determines other functionalities such as stability, intra- and intermolecular interactions, catalytic activity, regulation of cellular processes, etc. [Doudna, J.A., 2000. Structural genomics of RNA. Nat. Struct. Biol. 7, 954-956; Cech, T.R. 2000. Structural biology. The ribosome is a ribozyme. Science 289, 878-879]. RNA structures in macromolecular machines are important features in assembly, target recognition and activity. Viral RNA molecules contain cis- and/or trans-acting control elements that, as exemplified by internal ribosomal entry sites and origins of genome replication, consist of complex multidomain structures [Andino, R., Rieckhof, G.E., Achacoso, P.L., Baltimore D., 1993. Poliovirus RNA synthesis utilizes an RNP complex formed around the 5'-end of viral RNA. EMBO J. 12, 3587-3598; Melchers, W.J.G., Hoenderop, J.G.J., Bruins Slot, H.J., Pleij, C.W.A., Pilipenko, E.V., Agol, V.I., Galama, J.M.D., 1997. Kissing of the two predominant hairpin loops in the coxsackie B virus 3' untranslated region is the essential structural feature of the origin of replication required for negative-strand RNA synthesis. J. Virol. 71, 686-696]. The formation of these structures is involved in the specific recognition of ligands or serves to support the structural integrity of the whole element. The replication of the enterovirus RNA is carried out by a large biomolecular complex formed by cis-acting RNA elements found in the 5'- and 3'-UTR of the virus genome and several cellular and viral proteins. This review will focus on RNA elements in the 3'-UTR of enteroviruses.
Collapse
Affiliation(s)
- Jan Zoll
- Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Department of Medical Microbiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
32
|
Fernández-Miragall O, López de Quinto S, Martínez-Salas E. Relevance of RNA structure for the activity of picornavirus IRES elements. Virus Res 2008; 139:172-82. [PMID: 18692097 DOI: 10.1016/j.virusres.2008.07.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 07/02/2008] [Accepted: 07/04/2008] [Indexed: 02/02/2023]
Abstract
The RNA of all members of the Picornaviridae family initiates translation internally, via an internal ribosome entry site (IRES) element present in their 5' untranslated region. IRES elements consist of cis-acting RNA structures that often operate in association with specific RNA-binding proteins to recruit the translational machinery. This specialized mechanism of translation initiation is shared with other viral RNAs, and represents an alternative to the general cap-dependent initiation mechanism. In this review we discuss recent evidences concerning the relationship between RNA structure and IRES function in the genome of picornaviruses. The biological implications of conserved RNA structural elements for the mechanism of internal translation initiation driven by representative members of enterovirus and rhinovirus (type I IRES) and cardiovirus and aphthovirus (type II IRES) will be discussed.
Collapse
Affiliation(s)
- Olga Fernández-Miragall
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain
| | | | | |
Collapse
|
33
|
Cordey S, Gerlach D, Junier T, Zdobnov EM, Kaiser L, Tapparel C. The cis-acting replication elements define human enterovirus and rhinovirus species. RNA (NEW YORK, N.Y.) 2008; 14:1568-1578. [PMID: 18541697 PMCID: PMC2491478 DOI: 10.1261/rna.1031408] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 04/24/2008] [Indexed: 05/26/2023]
Abstract
Replication of picornaviruses is dependent on VPg uridylylation, which is linked to the presence of the internal cis-acting replication element (cre). Cre are located within the sequence encoding polyprotein, yet at distinct positions as demonstrated for poliovirus and coxsackievirus-B3, cardiovirus, and human rhinovirus (HRV-A and HRV-B), overlapping proteins 2C, VP2, 2A, and VP1, respectively. Here we report a novel distinct cre element located in the VP2 region of the recently reported HRV-A2 species and provide evolutionary evidence of its functionality. We also experimentally interrogated functionality of recently identified HRV-B cre in the 2C region that is orthologous to the human enterovirus (HEV) cre and show that it is dispensable for replication and appears to be a nonfunctional evolutionary relic. In addition, our mutational analysis highlights two amino acids in the 2C protein that are crucial for replication. Remarkably, we conclude that each genetic clade of HRV and HEV is characterized by a unique functional cre element, where evolutionary success of a new genetic lineage seems to be associated with an invention of a novel cre motif and decay of the ancestral one. Therefore, we propose that cre element could be considered as an additional criterion for human rhinovirus and enterovirus classification.
Collapse
Affiliation(s)
- Samuel Cordey
- Central Laboratory of Virology, Division of Infectious Diseases, University of Geneva Hospitals, 1211 Geneva 14, Switzerland.
| | | | | | | | | | | |
Collapse
|
34
|
Oberste MS, Maher K, Pallansch MA. Complete genome sequences for nine simian enteroviruses. J Gen Virol 2008; 88:3360-3372. [PMID: 18024906 DOI: 10.1099/vir.0.83124-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Analysis of the VP1 capsid-coding sequences of the simian picornaviruses has suggested that baboon enterovirus (BaEV), SV19, SV43 and SV46 belong to the species Human enterovirus A (HEV-A) and SA5 belongs to HEV-B, whereas SV4/A2 plaque virus (two isolates of a single serotype), SV6 and N125/N203 (two isolates of a single serotype) appear to represent new species in the genus. We have further characterized by complete genomic sequencing the genetic relationships among the simian enteroviruses serotypes (BaEV, N125/N203, SA5, SV4/A2 plaque virus, SV6, SV19, SV43 and SV46) and to other enteroviruses. Phylogenetic and pairwise sequence relationships for the P1 region paralleled those of VP1 alone, and confirmed that SV4/A-2 plaque virus, SV6 and N125/N203 represent unique genetic clusters that probably correspond to three new species. However, sequence relationships in the P2 and P3 regions were quite different. In 2C, SV19, SV43 and SV46 remain clustered with the human viruses of HEV-A, but BaEV, SV6 and N125/N203 cluster together; in 3CD, SA5 (HEV-B) also joined this cluster. The 3'-non-translated region (NTR) sequences are highly conserved within each of the four human enterovirus species, but the 3'-NTRs of the simian enteroviruses are distinct from those of all human enteroviruses and generally distinct from one another. These results suggest that host species may have a significant influence on the evolution of enterovirus non-capsid sequences.
Collapse
Affiliation(s)
- M Steven Oberste
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Kaija Maher
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Mark A Pallansch
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| |
Collapse
|
35
|
Svitkin YV, Costa-Mattioli M, Herdy B, Perreault S, Sonenberg N. Stimulation of picornavirus replication by the poly(A) tail in a cell-free extract is largely independent of the poly(A) binding protein (PABP). RNA (NEW YORK, N.Y.) 2007; 13:2330-2340. [PMID: 17942745 PMCID: PMC2080607 DOI: 10.1261/rna.606407] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 08/21/2007] [Indexed: 05/25/2023]
Abstract
Picornavirus infectivity is dependent on the RNA poly(A) tail, which binds the poly(A) binding protein (PABP). PABP was reported to stimulate viral translation and RNA synthesis. Here, we studied encephalomyocarditis virus (EMCV) and poliovirus (PV) genome expression in Krebs-2 and HeLa cell-free extracts that were drastically depleted of PABP (96%-99%). Although PABP depletion markedly diminished EMCV and PV internal ribosome entry site (IRES)-mediated translation of a polyadenylated luciferase mRNA, it displayed either no (EMCV) or slight (PV) deleterious effect on the translation of the full-length viral RNAs. Moreover, PABP-depleted extracts were fully competent in supporting EMCV and PV RNA replication and virus assembly. In contrast, removing the poly(A) tail from EMCV RNA dramatically reduced RNA synthesis and virus yields in cell-free reactions. The advantage conferred by the poly(A) tail to EMCV synthesis was more pronounced in untreated than in nuclease-treated extract, indicating that endogenous cellular mRNAs compete with the viral RNA for a component(s) of the RNA replication machinery. These results suggest that the poly(A) tail functions in picornavirus replication largely independent of PABP.
Collapse
Affiliation(s)
- Yuri V Svitkin
- Department of Biochemistry and McGill Cancer Centre, McGill University, Montreal, Quebec, Canada H3G 1Y6.
| | | | | | | | | |
Collapse
|
36
|
Florez de Sessions P, Dobrikova E, Gromeier M. Genetic adaptation to untranslated region-mediated enterovirus growth deficits by mutations in the nonstructural proteins 3AB and 3CD. J Virol 2007; 81:8396-405. [PMID: 17537861 PMCID: PMC1951365 DOI: 10.1128/jvi.00321-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 05/22/2007] [Indexed: 12/17/2022] Open
Abstract
Both untranslated regions (UTRs) of plus-strand RNA virus genomes jointly control translation and replication of viral genomes. In the case of the Enterovirus genus of the Picornaviridae family, the 5'UTR consists of a cloverleaf-like terminus preceding the internal ribosomal entry site (IRES) and the 3' terminus is composed of a structured 3'UTR and poly(A). The IRES and poly(A) have been implicated in translation control, and all UTR structures, in addition to cis-acting genetic elements mapping to the open reading frame, have been assigned roles in RNA replication. Viral UTRs are recognized by viral and host cell RNA-binding proteins that may co-determine genome stability, translation, plus- and minus-strand RNA replication, and scaffolding of viral replication complexes within host cell substructures. In this report, we describe experiments with coxsackie B viruses with a cell type-specific propagation deficit in Sk-N-Mc neuroblastoma cells conferred by the combination of a heterologous IRES and altered 3'UTR. Serial passage of these constructs in Sk-N-Mc cells yielded genetic adaptation by mutations within the viral nonstructural proteins 3A and 3C. Our data implicate 3A and/or 3C or their precursors 3AB and/or 3CD in a functional complex with the IRES and 3'UTR that drives viral propagation. Adaptation to neuroblastoma cells suggests an involvement of cell type-specific host factors or the host cell cytoplasmic milieu in this phenomenon.
Collapse
Affiliation(s)
- Paola Florez de Sessions
- Division of Neurological Surgery, Department of Surgery, Duke University Medical Center, Box 3020, Durham, NC 27710, USA
| | | | | |
Collapse
|
37
|
Smura TP, Junttila N, Blomqvist S, Norder H, Kaijalainen S, Paananen A, Magnius LO, Hovi T, Roivainen M. Enterovirus 94, a proposed new serotype in human enterovirus species D. J Gen Virol 2007; 88:849-858. [PMID: 17325357 DOI: 10.1099/vir.0.82510-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Enterovirus (family Picornaviridae) contains five species with strains isolated from humans: Human enterovirus A (HEV-A), HEV-B, HEV-C, HEV-D and Poliovirus. In this study, a proposed new serotype of HEV-D was characterized. Four virus strains were isolated from sewage in Egypt and one strain from acute flaccid paralysis cases in the Democratic Republic of the Congo. The complete genome of one environmental isolate, the complete coding sequence of one clinical isolate and complete VP1 regions from the other isolates were sequenced. These isolates had 66.6–69.4 % nucleotide similarity and 74.7–76.6 % amino acid sequence similarity in the VP1 region with the closest enterovirus serotype, enterovirus 70 (EV70), suggesting that the isolates form a new enterovirus type, tentatively designated enterovirus 94 (EV94). Phylogenetic analyses including sequences of the 5′ UTR, VP1 and 3D regions demonstrated that EV94 isolates formed a monophyletic group within the species HEV-D. No evidence of recombination was found between EV94 and the other HEV-D serotypes, EV68 and EV70. Further biological characterization showed that EV94 was acid stable and had a wide cell tropism in vitro. Attempts to prevent replication with protective antibodies to known enterovirus receptors (poliovirus receptor, vitronectin α
v
β
3 receptor and decay accelerating factor) were not successful. Seroprevalence studies in the Finnish population revealed a high prevalence of this virus over the past two decades.
Collapse
Affiliation(s)
- Teemu P Smura
- Enterovirus Laboratory, Department of Viral Diseases and Immunology, National Public Health Institute (KTL), Mannerheimintie 166, FIN-00300 Helsinki, Finland
| | - Nina Junttila
- Swedish Institute for Infectious Disease Control, SE-17182 Solna, Sweden
| | - Soile Blomqvist
- Enterovirus Laboratory, Department of Viral Diseases and Immunology, National Public Health Institute (KTL), Mannerheimintie 166, FIN-00300 Helsinki, Finland
| | - Helene Norder
- Swedish Institute for Infectious Disease Control, SE-17182 Solna, Sweden
| | - Svetlana Kaijalainen
- Enterovirus Laboratory, Department of Viral Diseases and Immunology, National Public Health Institute (KTL), Mannerheimintie 166, FIN-00300 Helsinki, Finland
| | - Anja Paananen
- Enterovirus Laboratory, Department of Viral Diseases and Immunology, National Public Health Institute (KTL), Mannerheimintie 166, FIN-00300 Helsinki, Finland
| | - Lars O Magnius
- Swedish Institute for Infectious Disease Control, SE-17182 Solna, Sweden
| | - Tapani Hovi
- Enterovirus Laboratory, Department of Viral Diseases and Immunology, National Public Health Institute (KTL), Mannerheimintie 166, FIN-00300 Helsinki, Finland
| | - Merja Roivainen
- Enterovirus Laboratory, Department of Viral Diseases and Immunology, National Public Health Institute (KTL), Mannerheimintie 166, FIN-00300 Helsinki, Finland
| |
Collapse
|
38
|
Goebel SJ, Miller TB, Bennett CJ, Bernard KA, Masters PS. A hypervariable region within the 3' cis-acting element of the murine coronavirus genome is nonessential for RNA synthesis but affects pathogenesis. J Virol 2006; 81:1274-87. [PMID: 17093194 PMCID: PMC1797510 DOI: 10.1128/jvi.00803-06] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The 3' cis-acting element for mouse hepatitis virus (MHV) RNA synthesis resides entirely within the 301-nucleotide 3' untranslated region (3' UTR) of the viral genome and consists of three regions. Encompassing the upstream end of the 3' UTR are a bulged stem-loop and an overlapping RNA pseudoknot, both of which are essential to MHV and common to all group 2 coronaviruses. At the downstream end of the genome is the minimal signal for initiation of negative-strand RNA synthesis. Between these two ends is a hypervariable region (HVR) that is only poorly conserved between MHV and other group 2 coronaviruses. Paradoxically, buried within the HVR is an octanucleotide motif (oct), 5'-GGAAGAGC-3', which is almost universally conserved in coronaviruses and is therefore assumed to have a critical biological function. We conducted an extensive mutational analysis of the HVR. Surprisingly, this region tolerated numerous deletions, rearrangements, and point mutations. Most striking, a mutant deleted of the entire HVR was only minimally impaired in tissue culture relative to the wild type. By contrast, the HVR deletion mutant was highly attenuated in mice, causing no signs of clinical disease and minimal weight loss compared to wild-type virus. Correspondingly, replication of the HVR deletion mutant in the brains of mice was greatly reduced compared to that of the wild type. Our results show that neither the HVR nor oct is essential for the basic mechanism of MHV RNA synthesis in tissue culture. However, the HVR appears to play a significant role in viral pathogenesis.
Collapse
Affiliation(s)
- Scott J Goebel
- Wadsworth Center, New York State Department of Health, State University of New York, Albany, New York 12201, USA
| | | | | | | | | |
Collapse
|
39
|
van Ooij MJM, Glaudemans DHRF, Heus HA, van Kuppeveld FJM, Melchers WJG. Structural and functional integrity of the coxsackievirus B3 oriR: spacing between coaxial RNA helices. J Gen Virol 2006; 87:689-695. [PMID: 16476992 DOI: 10.1099/vir.0.81558-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The enterovirus oriR is composed of two helices, X and Y, anchored by a kissing (K) interaction. For proper oriR function, certain areas of these helices should be specifically oriented towards each other. It was hypothesized that the single-stranded nucleotides bridging the coaxial helices (Y-X and K-Y linkers) are important to determine this orientation. Spatial changes were introduced by altering the linker length between the helices of the coxsackievirus B3 oriR. Changing the linker lengths resulted in defective RNA replication, probably because of an altered oriR geometry. The identity of the linker residues also played a role, possibly because of sequence-specific ligand recognition. Although each point mutation altering the primary sequence of the Y-X spacer resulted in defective growth at 36 degrees C, the mutations had a wild-type phenotype at 39 degrees C, indicating a cold-sensitive phenotype. The results show that the intrinsic connection between oriR structure and function is fine-tuned by the spacing between the coaxial RNA helices.
Collapse
Affiliation(s)
- Mark J M van Ooij
- Radboud University Medical Centre Nijmegen, Nijmegen Centre for Molecular Life Sciences, Department of Medical Microbiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Dirk H R F Glaudemans
- Radboud University Medical Centre Nijmegen, Nijmegen Centre for Molecular Life Sciences, Department of Medical Microbiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Hans A Heus
- Radboud University Nijmegen, Institute for Molecules and Materials, Laboratory of Biophysical Chemistry, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Frank J M van Kuppeveld
- Radboud University Medical Centre Nijmegen, Nijmegen Centre for Molecular Life Sciences, Department of Medical Microbiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Willem J G Melchers
- Radboud University Medical Centre Nijmegen, Nijmegen Centre for Molecular Life Sciences, Department of Medical Microbiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
40
|
van Ooij MJM, Vogt DA, Paul A, Castro C, Kuijpers J, van Kuppeveld FJM, Cameron CE, Wimmer E, Andino R, Melchers WJG. Structural and functional characterization of the coxsackievirus B3 CRE(2C): role of CRE(2C) in negative- and positive-strand RNA synthesis. J Gen Virol 2006; 87:103-113. [PMID: 16361422 DOI: 10.1099/vir.0.81297-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A stem-loop element located within the 2C-coding region of the coxsackievirus B3 (CVB3) genome has been proposed to function as a cis-acting replication element (CRE). It is shown here that disruption of this structure indeed interfered with viral RNA replication in vivo and abolished uridylylation of VPg in vitro. Site-directed mutagenesis demonstrated that the previously proposed enteroviral CRE consensus loop sequence, R(1)NNNAAR(2)NNNNNNR(3), is also applicable to CVB3 CRE(2C) and that a positive correlation exists between the ability of CRE(2C) mutants to serve as template in the uridylylation reaction and the capacity of these mutants to support viral RNA replication. To further investigate the effects of the mutations on negative-strand RNA synthesis, an in vitro translation/replication system containing HeLa S10 cell extracts was used. Similar to the results observed for poliovirus and rhinovirus, it was found that a complete disruption of the CRE(2C) structure interfered with positive-strand RNA synthesis, but not with negative-strand synthesis. All CRE(2C) point mutants affecting the enteroviral CRE consensus loop, however, showed a marked decrease in efficiency to induce negative-strand synthesis. Moreover, a transition (A(5)G) regarding the first templating adenosine residue in the loop was even unable to initiate complementary negative-strand synthesis above detectable levels. Taken together, these results indicate that the CVB3 CRE(2C) is not only required for the initiation of positive-strand RNA synthesis, but also plays an essential role in the efficient initiation of negative-strand RNA synthesis, a conclusion that has not been reached previously by using the cell-free system.
Collapse
Affiliation(s)
- Mark J M van Ooij
- Radboud University Medical Centre Nijmegen, Nijmegen Centre for Molecular Life Science, Department of Medical Microbiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Dorothee A Vogt
- University of California, San Francisco, Mission Bay Genentech Hall, UCSF Department of Microbiology, 600 16th Street, PO Box 2280, San Francisco, CA 94143, USA
| | - Aniko Paul
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Christian Castro
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Judith Kuijpers
- Radboud University Medical Centre Nijmegen, Nijmegen Centre for Molecular Life Science, Department of Medical Microbiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Frank J M van Kuppeveld
- Radboud University Medical Centre Nijmegen, Nijmegen Centre for Molecular Life Science, Department of Medical Microbiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Raul Andino
- University of California, San Francisco, Mission Bay Genentech Hall, UCSF Department of Microbiology, 600 16th Street, PO Box 2280, San Francisco, CA 94143, USA
| | - Willem J G Melchers
- Radboud University Medical Centre Nijmegen, Nijmegen Centre for Molecular Life Science, Department of Medical Microbiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
41
|
Oberste MS, Maher K, Williams AJ, Dybdahl-Sissoko N, Brown BA, Gookin MS, Peñaranda S, Mishrik N, Uddin M, Pallansch MA. Species-specific RT-PCR amplification of human enteroviruses: a tool for rapid species identification of uncharacterized enteroviruses. J Gen Virol 2006; 87:119-128. [PMID: 16361424 DOI: 10.1099/vir.0.81179-0] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 65 serotypes of human enteroviruses are classified into four species, Human enterovirus (HEV) A to D, based largely on phylogenetic relationships in multiple genome regions. The 3'-non-translated region of enteroviruses is highly conserved within a species but highly divergent between species. From this information, species-specific RT-PCR primers were developed that can be used to rapidly screen collections of enterovirus isolates to identify species of interest. The four primer pairs were 100 % specific when tested against enterovirus prototype strains and panels of isolates of known serotype (a total of 193 isolates). For evaluation in a typical application, the species-specific primers were used to screen 186 previously uncharacterized non-polio enterovirus isolates. The HEV-B primers amplified 68.3 % of isolates, while the HEV-A and HEV-C primers accounted for 9.7 and 11.3 % of isolates, respectively; no isolates were amplified with the HEV-D primers. Twelve isolates (6.5 %) were amplified by more than one primer set and eight isolates (4.3 %) were not amplified by any of the four primer pairs. Serotypes were identified by partial sequencing of the VP1 capsid gene, and in every case sequencing confirmed that the species-specific PCR result was correct; the isolates that were amplified by more than one species-specific primer pair were mixtures of two (11 isolates) or three (one isolate) species of viruses. The eight isolates that were not amplified by the species-specific primers comprised four new serotypes (EV76, EV89, EV90 and EV91) that appear to be unique members of HEV-A based on VP1, 3D and 3'-non-translated region sequences.
Collapse
Affiliation(s)
- M Steven Oberste
- Respiratory and Enteric Viruses Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop G-17, Atlanta, GA 30333, USA
| | - Kaija Maher
- Respiratory and Enteric Viruses Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop G-17, Atlanta, GA 30333, USA
| | - Alford J Williams
- Respiratory and Enteric Viruses Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop G-17, Atlanta, GA 30333, USA
| | - Naomi Dybdahl-Sissoko
- Respiratory and Enteric Viruses Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop G-17, Atlanta, GA 30333, USA
| | - Betty A Brown
- Respiratory and Enteric Viruses Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop G-17, Atlanta, GA 30333, USA
| | - Michelle S Gookin
- Respiratory and Enteric Viruses Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop G-17, Atlanta, GA 30333, USA
| | - Silvia Peñaranda
- Respiratory and Enteric Viruses Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop G-17, Atlanta, GA 30333, USA
| | - Nada Mishrik
- Respiratory and Enteric Viruses Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop G-17, Atlanta, GA 30333, USA
| | - Moyez Uddin
- Institute of Public Health, Dhaka, Bangladesh
| | - Mark A Pallansch
- Respiratory and Enteric Viruses Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop G-17, Atlanta, GA 30333, USA
| |
Collapse
|
42
|
Abstract
Replication of poliovirus RNA is accomplished by the error-prone viral RNA-dependent RNA polymerase and hence is accompanied by numerous mutations. In addition, genetic errors may be introduced by nonreplicative mechanisms. Resulting variability is manifested by point mutations and genomic rearrangements (e.g., deletions, insertions and recombination). After description of basic mechanisms underlying this variability, the review focuses on regularities of poliovirus evolution (mutation fixation) in tissue cultures, human organisms and populations.
Collapse
Affiliation(s)
- V I Agol
- M.P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, 142782, Russia.
| |
Collapse
|
43
|
Silvestri LS, Parilla JM, Morasco BJ, Ogram SA, Flanegan JB. Relationship between poliovirus negative-strand RNA synthesis and the length of the 3' poly(A) tail. Virology 2005; 345:509-19. [PMID: 16297425 DOI: 10.1016/j.virol.2005.10.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 10/07/2005] [Accepted: 10/18/2005] [Indexed: 10/25/2022]
Abstract
The precise relationship between the length of the 3' poly(A) tail and the replication and infectivity of poliovirus RNA was examined in this study. With both poly(A)(11) and poly(A)(12) RNAs, negative-strand synthesis was 1-3% of the level observed with poly(A)(80) RNA. In contrast, increasing the length of the poly(A) tail from (A)(12) to (A)(13) resulted in about a ten-fold increase in negative-strand synthesis. This increase continued with each successive increase in poly(A) tail length. With poly(A)(20) RNA, RNA synthesis approached the level observed with poly(A)(80) RNA. A similar relationship was observed between poly(A) tail length and the infectivity of the viral RNA. A replication model is described which suggests that viral RNA replication is dependent on a poly(A) tail that is long enough to bind poly(A) binding protein and to act as a template for VPg uridylylation and negative-strand initiation.
Collapse
Affiliation(s)
- Lynn S Silvestri
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, 32610-0245, USA
| | | | | | | | | |
Collapse
|
44
|
Brown DM, Cornell CT, Tran GP, Nguyen JHC, Semler BL. An authentic 3' noncoding region is necessary for efficient poliovirus replication. J Virol 2005; 79:11962-73. [PMID: 16140772 PMCID: PMC1212627 DOI: 10.1128/jvi.79.18.11962-11973.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Picornavirus RNA replication involves the specific synthesis of negative-strand intermediates followed by an accumulation of positive-strand viral RNA in the presence of a multitude of cellular mRNAs. Previously, in an effort to identify cis-acting elements required for initiation of negative-strand RNA synthesis, we deleted the entire 3' noncoding regions from human rhinovirus and poliovirus genomic RNAs. These deletion mutation transcripts displayed a severe delay in RNA accumulation following transfection of HeLa cells. Interestingly, in subsequent infection of HeLa cells, the deletion-mutant poliovirus displayed only a moderate deficiency in RNA synthesis. These data suggested that the delay in the production of cytopathic effects after transfection may have been due to an RNA replication defect overcome by the accumulation of a compensatory mutation(s) generated during initial rounds of RNA synthesis. In this study, we have sequenced the entire genome of the deletion-mutant virus and found only two nucleotide changes from the parental clone. Transfection analysis of these sequence variants revealed that the sequence changes did not provide compensatory functions for the 3' noncoding region deletion mutation replication defect. Further examination of the deletion mutant phenotype revealed that the severe replication defect following RNA transfection is due, in part, to nonviral terminal sequences present in the in vitro-derived deletion mutation transcripts. Our data suggest that poliovirus RNA harboring a complete 3' noncoding region deletion mutation is infectious (not merely quasi-infectious).
Collapse
Affiliation(s)
- David M Brown
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals. The disease was initially described in the 16th century and was the first animal pathogen identified as a virus. Recent FMD outbreaks in developed countries and their significant economic impact have increased the concern of governments worldwide. This review describes the reemergence of FMD in developed countries that had been disease free for many years and the effect that this has had on disease control strategies. The etiologic agent, FMD virus (FMDV), a member of the Picornaviridae family, is examined in detail at the genetic, structural, and biochemical levels and in terms of its antigenic diversity. The virus replication cycle, including virus-receptor interactions as well as unique aspects of virus translation and shutoff of host macromolecular synthesis, is discussed. This information has been the basis for the development of improved protocols to rapidly identify disease outbreaks, to differentiate vaccinated from infected animals, and to begin to identify and test novel vaccine candidates. Furthermore, this knowledge, coupled with the ability to manipulate FMDV genomes at the molecular level, has provided the framework for examination of disease pathogenesis and the development of a more complete understanding of the virus and host factors involved.
Collapse
Affiliation(s)
- Marvin J Grubman
- Plum Island Animal Disease Center, USDA, Agricultural Research Service, North Atlantic Area, Greenport, New York 11944, USA.
| | | |
Collapse
|
46
|
Yuan J, Cheung PKM, Zhang H, Chau D, Yanagawa B, Cheung C, Luo H, Wang Y, Suarez A, McManus BM, Yang D. A phosphorothioate antisense oligodeoxynucleotide specifically inhibits coxsackievirus B3 replication in cardiomyocytes and mouse hearts. J Transl Med 2004; 84:703-14. [PMID: 15094712 DOI: 10.1038/labinvest.3700083] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Antisense oligodeoxynucleotides (AS-ODNs) are promising therapeutic agents for the treatment of virus-induced diseases. We previously reported that coxsackievirus B3 (CVB3) infectivity could be inhibited effectively in HeLa cells by phosphorothioate AS-ODNs complementary to different regions of the 5' and 3' untranslated regions of CVB3 RNA. The most effective target is the proximal terminus of the 3' untranslated region. To further investigate the potential antiviral role of the AS-ODN targeting this site in cardiomyocytes (HL-1 cell line), corresponding AS-ODN (AS-7) was transfected into the HL-1 cells and followed by CVB3 infection. Analyses by RT-PCR, Western blotting and plaque assay demonstrated that AS-7 strongly inhibits viral RNA and viral protein synthesis as compared to scrambled AS-ODNs. The percent inhibitions of viral RNA transcription and capsid protein VP1 synthesis were 87.6 and 40.1, respectively. Moreover, AS-7 could inhibit ongoing CVB3 infection when it was given after virus infection. The antiviral activity was further evaluated in a CVB3 myocarditis mouse model. Adolescent A/J mice were intravenously administrated with AS-7 or scrambled AS-ODNs prior to and after CVB3 infection. Following a 4-day therapy, the myocardium CVB3 RNA replication decreased by 68% and the viral titers decreased by 0.5 log(10) in the AS-7-treated group as compared to the group treated with the scrambled AS-ODNs as determined by RT-PCR, in situ hybridization and viral plaque assay. Taken together, our results demonstrated a great potential for AS-7 to be further developed into an effective treatment towards viral myocarditis as well as other diseases caused by CVB3 infection.
Collapse
Affiliation(s)
- Ji Yuan
- Department of Pathology and Laboratory Medicine, The James Hogg iCAPTURE Centre, University of British Columbia-St Paul's Hospital, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Murray KE, Steil BP, Roberts AW, Barton DJ. Replication of poliovirus RNA with complete internal ribosome entry site deletions. J Virol 2004; 78:1393-402. [PMID: 14722294 PMCID: PMC321374 DOI: 10.1128/jvi.78.3.1393-1402.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
cis-acting RNA sequences and structures in the 5' and 3' nontranslated regions of poliovirus RNA interact with host translation machinery and viral replication proteins to coordinately regulate the sequential translation and replication of poliovirus RNA. The poliovirus internal ribosome entry site (IRES) in the 5' nontranslated region (NTR) has been implicated as a cis-active RNA required for both viral mRNA translation and viral RNA replication. To evaluate the role of the IRES in poliovirus RNA replication, we exploited the advantages of cell-free translation-replication reactions and preinitiation RNA replication complexes. Genetic complementation with helper mRNAs allowed us to create preinitiation RNA replication complexes containing RNA templates with defined deletions in the viral open reading frame and the IRES. A series of deletions revealed that no RNA elements of either the viral open reading frame or the IRES were required in cis for negative-strand RNA synthesis. The IRES was dispensable for both negative- and positive-strand RNA syntheses. Intriguingly, although small viral RNAs lacking the IRES replicated efficiently, the replication of genome length viral RNAs was stimulated by the presence of the IRES. These results suggest that RNA replication is not directly dependent on a template RNA first functioning as an mRNA. These results further suggest that poliovirus RNA replication is not absolutely dependent on any protein-RNA interactions involving the IRES.
Collapse
Affiliation(s)
- Kenneth E Murray
- Department of Microbiology. Program in Molecular Biology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
48
|
Yang Y, Rijnbrand R, Watowich S, Lemon SM. Genetic evidence for an interaction between a picornaviral cis-acting RNA replication element and 3CD protein. J Biol Chem 2004; 279:12659-67. [PMID: 14711816 DOI: 10.1074/jbc.m312992200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Internally located, cis-acting RNA replication elements, termed cres, are essential for replication of the genomes of picornaviruses such as human rhinovirus 14 (HRV-14) and poliovirus because they template uridylylation of the protein primer, VPg, by the polymerase 3D(pol). These cres form stem-loop structures sharing a common loop motif, and the HRV-14 cre can substitute functionally for the poliovirus cre in both uridylylation in vitro and RNA replication in vivo. We show, however, that the poliovirus cre is unable to support HRV-14 RNA replication. This lack of complementation maps to the stem of the poliovirus cre and was reversed by single nucleotide substitutions in the stem as well as the base of the loop. Replication-competent, revertant viruses rescued from dicistronic HRV-14 RNAs containing the poliovirus cre, or a chimeric cre containing the poliovirus stem, contained adaptive amino acid substitutions. These mapped to the surface of both the polymerase 3D(pol), at the tip of the "thumb" domain, and the protease 3C(pro), on the side opposing the active site and near the end of an extended strand segment implicated previously in RNA binding. These mutations substantially enhanced replication competence when introduced into HRV-14 RNAs containing the poliovirus cre, and they were additive in their effects. The data support a model in which 3CD or its derivatives 3C(pro) and 3D(pol) interact directly with the stem of the cre during uridylylation of VPg.
Collapse
Affiliation(s)
- Yan Yang
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1019, USA
| | | | | | | |
Collapse
|
49
|
Gutiérrez-Escolano AL, Vázquez-Ochoa M, Escobar-Herrera J, Hernández-Acosta J. La, PTB, and PAB proteins bind to the 3(') untranslated region of Norwalk virus genomic RNA. Biochem Biophys Res Commun 2003; 311:759-66. [PMID: 14623338 PMCID: PMC7111188 DOI: 10.1016/j.bbrc.2003.10.066] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Indexed: 11/17/2022]
Abstract
Noroviruses are human enteric caliciviruses for which no cell culture is available. Consequently, the mechanisms and factors involved in their replication have been difficult to study. In an attempt to analyze the cis- and trans-acting factors that could have a role in NV replication, the 3(')-untranslated region of the genome was studied. Use of Zuker's mfold-2 software predicted that NV 3(')UTR contains a stem-loop structure of 47 nts. Proteins from HeLa cell extracts, such as La and PTB, form stable complexes with this region. The addition of a poly(A) tail (24 nts) to the 3(')UTR permits the specific binding of the poly(A) binding protein (PABP) present in HeLa cell extracts, as well as the recombinant PABP. Since La, PTB, and PABP are important trans-acting factors required for viral translation and replication, these RNA-protein interactions may play a role in NV replication or translation.
Collapse
Affiliation(s)
- Ana Lorena Gutiérrez-Escolano
- Departamento de Patologĭa Experimental, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City 07360, Mexico.
| | | | | | | |
Collapse
|
50
|
Paul AV, Yin J, Mugavero J, Rieder E, Liu Y, Wimmer E. A "slide-back" mechanism for the initiation of protein-primed RNA synthesis by the RNA polymerase of poliovirus. J Biol Chem 2003; 278:43951-60. [PMID: 12937178 DOI: 10.1074/jbc.m307441200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poliovirus RNA replication is initiated when a molecule of UMP is covalently linked to the hydroxyl group of a tyrosine in the terminal protein VPg. This reaction can be reproduced in vitro with an assay that utilizes two purified viral proteins, RNA polymerase 3Dpol and viral protein 3CDpro, synthetic VPg, UTP, and Mg2+. The template for the reaction is either poliovirus RNA or transcripts of a small RNA hairpin, termed cre(2C), located in the coding sequence of protein 2CATPase. The products of the reaction are VPgpU and VPgpUpU, the primers used by 3Dpol for RNA synthesis. With mutant template RNAs in this assay we determined the precise initiation site. Our results indicate that 1) 3Dpol does not possess strict specificity toward the nucleotide it links to VPg, 2) A-5 of the conserved 1GXXXAAAXXXXXXA14 sequence in the loop is the template nucleotide for the linkage of both the first and second UMPs to VPg, 3) VPgpUpU is synthesized by a "slide-back" mechanism, and 4) A-6 provides specificity to the reaction during the slide-back step and also modulates the uridylylation reaction. In additional experiments we determined the effect of mutations in the 5AAA7 sequence of cre(2C) on viral growth, RNA replication, and on the activity of the 2CATPase protein. Furthermore, we observed that the spacing between G-1 and A-5 and the size of the loop affect the yield but not the nature of the VPg-linked products.
Collapse
Affiliation(s)
- Aniko V Paul
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, New York 11790, USA.
| | | | | | | | | | | |
Collapse
|