1
|
Ji X, Huang Z, Zhou C, Wang Y, Geng D, Zhang G, Kang Y, Cui R, Wang J, Zhang T. Esketamine alleviates depressive-like behavior in neuropathic pain mice through the METTL3-GluA1 pathway. Cell Biol Toxicol 2025; 41:38. [PMID: 39875576 PMCID: PMC11775062 DOI: 10.1007/s10565-024-09975-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/21/2024] [Indexed: 01/30/2025]
Abstract
Esketamine, a newly developed antidepressant, is the subject of this research which seeks to explore its impact on depressive symptoms in neuropathic pain mice and the potential molecular mechanisms involved. Through transcriptome sequencing and bioinformatics analysis combined with in vivo studies, it was identified that esketamine markedly boosts the levels of the m6A methyltransferase METTL3 and the AMPA receptor GluA1 subunit. Esketamine activates METTL3, allowing it to bind with GluA1 mRNA, promoting m6A modification, thereby enhancing GluA1 expression at synapses. Through this mechanism, esketamine may reduce depressive-like behavior in neuropathic pain mice, providing new insights into the potential applications of esketamine and novel therapeutic avenues for neuropathic pain and depressive behavior.
Collapse
Affiliation(s)
- Xiaoming Ji
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhimin Huang
- Department of Stomatology, Peoples Hospital, Shizhu Tujia Autonomous County, Chongqing, 409100, China
| | - Chenming Zhou
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yu Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Dongliang Geng
- Changan Dental Clinic, Xinqidian Dental Medical Services Co., Ltd, Shijiazhuang, 050000, China
| | - Guoliang Zhang
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yunxiao Kang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Rui Cui
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jinyang Wang
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Tianyun Zhang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China.
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang, 050017, China.
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China.
- Laboratory of Neurobiology, Hebei Medical University, Zhongshan Donglu No.361, Shijiazhuang, 050017, China.
| |
Collapse
|
2
|
van der Meulen M, Rischer KM, González Roldán AM, Terrasa JL, Montoya P, Anton F. Age-related differences in functional connectivity associated with pain modulation. Neurobiol Aging 2024; 140:1-11. [PMID: 38691941 DOI: 10.1016/j.neurobiolaging.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
Growing evidence suggests that aging is associated with impaired endogenous pain modulation, and that this likely underlies the increased transition from acute to chronic pain in older individuals. Resting-state functional connectivity (rsFC) offers a valuable tool to examine the neural mechanisms behind these age-related changes in pain modulation. RsFC studies generally observe decreased within-network connectivity due to aging, but its relevance for pain modulation remains unknown. We compared rsFC within a set of brain regions involved in pain modulation between young and older adults and explored the relationship with the efficacy of distraction from pain. This revealed several age-related increases and decreases in connectivity strength. Importantly, we found a significant association between lower pain relief and decreased strength of three connections in older adults, namely between the periaqueductal gray and right insula, between the anterior cingulate cortex (ACC) and right insula, and between the ACC and left amygdala. These findings suggest that the functional integrity of the pain control system is critical for effective pain modulation, and that its function is compromised by aging.
Collapse
Affiliation(s)
- Marian van der Meulen
- Department of Behavioural and Cognitive Sciences, University of Luxembourg, Luxembourg.
| | - Katharina M Rischer
- Department of Behavioural and Cognitive Sciences, University of Luxembourg, Luxembourg
| | - Ana María González Roldán
- Cognitive and Affective Neuroscience and Clinical Psychology, University of the Balearic Islands, Palma, Spain
| | - Juan Lorenzo Terrasa
- Cognitive and Affective Neuroscience and Clinical Psychology, University of the Balearic Islands, Palma, Spain
| | - Pedro Montoya
- Cognitive and Affective Neuroscience and Clinical Psychology, University of the Balearic Islands, Palma, Spain
| | - Fernand Anton
- Department of Behavioural and Cognitive Sciences, University of Luxembourg, Luxembourg
| |
Collapse
|
3
|
Bai X, Wang W, Zhang X, Hu Z, Zhang X, Zhang Y, Tang H, Zhang Y, Yu X, Yuan Z, Zhang P, Li Z, Pei X, Wang Y, Sui B. Hyperperfusion of bilateral amygdala in patients with chronic migraine: an arterial spin-labeled magnetic resonance imaging study. J Headache Pain 2023; 24:138. [PMID: 37848831 PMCID: PMC10583377 DOI: 10.1186/s10194-023-01668-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Amygdala, an essential element of the limbic system, has served as an important structure in pain modulation. There is still a lack of clarity about altered cerebral perfusion of amygdala in migraine. This study aimed to investigate the perfusion variances of bilateral amygdala in episodic migraine (EM) and chronic migraine (CM) using multi-delay pseudo-continuous arterial spin-labeled magnetic resonance imaging (pCASL-MRI). METHODS Twenty-six patients with EM, 55 patients with CM (33 CM with medication overuse headache (MOH)), and 26 age- and sex-matched healthy controls (HCs) were included. All participants underwent 3D multi-delay pCASL MR imaging to obtain cerebral perfusion data, including arrival-time-corrected cerebral blood flow (CBF) and arterial cerebral blood volume (aCBV). The CBF and aCBV values in the bilateral amygdala were compared among the three groups. Correlation analyses between cerebral perfusion parameters and clinical variables were performed. RESULTS Compared with HC participants, patients with CM were found to have increased CBF and aCBV values in the left amygdala, as well as increased CBF values in the right amygdala (all P < 0.05). There were no significant differences of CBF and aCBV values in the bilateral amygdala between the HC and EM groups, the EM and CM groups, as well as the CM without and with MOH groups (all P > 0.05). In patients with CM, the increased perfusion parameters of bilateral amygdala were positively correlated with MIDAS score after adjustments for age, sex, and body mass index (BMI). CONCLUSION Hyperperfusion of bilateral amygdala might provide potential hemodynamics evidence in the neurolimbic pain network of CM.
Collapse
Affiliation(s)
- Xiaoyan Bai
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xueyan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Xue Zhang
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yingkui Zhang
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Hefei Tang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yaqing Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xueying Yu
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ziyu Yuan
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Peng Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Zhiye Li
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xun Pei
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yonggang Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| | - Binbin Sui
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
4
|
Tanaka K, Kuzumaki N, Hamada Y, Suda Y, Mori T, Nagumo Y, Narita M. Elucidation of the mechanisms of exercise-induced hypoalgesia and pain prolongation due to physical stress and the restriction of movement. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100133. [PMID: 37274841 PMCID: PMC10239008 DOI: 10.1016/j.ynpai.2023.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/07/2023]
Abstract
Persistent pain signals cause brain dysfunction and can further prolong pain. In addition, the physical restriction of movement (e.g., by a cast) can cause stress and prolong pain. Recently, it has been recognized that exercise therapy including rehabilitation is effective for alleviating chronic pain. On the other hand, physical stress and the restriction of movement can prolong pain. In this review, we discuss the neural circuits involved in the control of pain prolongation and the mechanisms of exercise-induced hypoalgesia (EIH). We also discuss the importance of the mesolimbic dopaminergic network in these phenomena.
Collapse
Affiliation(s)
- Kenichi Tanaka
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Naoko Kuzumaki
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yusuke Hamada
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yukari Suda
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Tomohisa Mori
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yasuyuki Nagumo
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Minoru Narita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
5
|
Presto P, Ji G, Ponomareva O, Ponomarev I, Neugebauer V. Hmgb1 Silencing in the Amygdala Inhibits Pain-Related Behaviors in a Rat Model of Neuropathic Pain. Int J Mol Sci 2023; 24:11944. [PMID: 37569320 PMCID: PMC10418916 DOI: 10.3390/ijms241511944] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Chronic pain presents a therapeutic challenge due to the highly complex interplay of sensory, emotional-affective and cognitive factors. The mechanisms of the transition from acute to chronic pain are not well understood. We hypothesized that neuroimmune mechanisms in the amygdala, a brain region involved in the emotional-affective component of pain and pain modulation, play an important role through high motility group box 1 (Hmgb1), a pro-inflammatory molecule that has been linked to neuroimmune signaling in spinal nociception. Transcriptomic analysis revealed an upregulation of Hmgb1 mRNA in the right but not left central nucleus of the amygdala (CeA) at the chronic stage of a spinal nerve ligation (SNL) rat model of neuropathic pain. Hmgb1 silencing with a stereotaxic injection of siRNA for Hmgb1 into the right CeA of adult male and female rats 1 week after (post-treatment), but not 2 weeks before (pre-treatment) SNL induction decreased mechanical hypersensitivity and emotional-affective responses, but not anxiety-like behaviors, measured 4 weeks after SNL. Immunohistochemical data suggest that neurons are a major source of Hmgb1 in the CeA. Therefore, Hmgb1 in the amygdala may contribute to the transition from acute to chronic neuropathic pain, and the inhibition of Hmgb1 at a subacute time point can mitigate neuropathic pain.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Olga Ponomareva
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Igor Ponomarev
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
6
|
Zheng G, Ren J, Shang L, Bao Y. Sonic Hedgehog Signaling Pathway: A Role in Pain Processing. Neurochem Res 2023; 48:1611-1630. [PMID: 36738366 DOI: 10.1007/s11064-023-03864-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023]
Abstract
Pain, as one of the most prevalent clinical symptoms, is a complex physiological and psychological activity. Long-term severe pain can become unbearable to the body. However, existing treatments do not provide satisfactory results. Therefore, new mechanisms and therapeutic targets need to be urgently explored for pain management. The Sonic hedgehog (Shh) signaling pathway is crucial in embryonic development, cell differentiation and proliferation, and nervous system regulation. Here, we review the recent studies on the Shh signaling pathway and its action in multiple pain-related diseases. The Shh signaling pathway is dysregulated under various pain conditions, such as pancreatic cancer pain, bone cancer pain, chronic post-thoracotomy pain, pain caused by degenerative lumbar disc disease, and toothache. Further studies on the Shh signaling pathway may provide new therapeutic options for pain patients.
Collapse
Affiliation(s)
- Guangda Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China
| | - Juanxia Ren
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning Province, China
| | - Lu Shang
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning Province, China
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
7
|
Ponticelli M, Lela L, Moles M, Mangieri C, Bisaccia D, Faraone I, Falabella R, Milella L. The healing bitterness of Gentiana lutea L., phytochemistry and biological activities: A systematic review. PHYTOCHEMISTRY 2023; 206:113518. [PMID: 36423749 DOI: 10.1016/j.phytochem.2022.113518] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Over many years, natural products have been a source of healing agents and have exhibited beneficial uses for treating human diseases. The Gentiana genus is the biggest genus in the Gentianaceae, with over 400 species distributed mainly in alpine zones of temperate countries around the world. Plants in the Gentiana genus have historically been used to treat a wide range of diseases. Still, only in the last years has particular attention been paid to the biological activities of Gentiana lutea Linn., also known as yellow Gentian or bitterwort. Several in vitro/vivo investigations and human interventional trials have demonstrated the promising activity of G. lutea extracts against oxidative stress, microbial infections, inflammation, obesity, atherosclerosis, etc.. A systematic approach was performed using Pubmed and Scopus databases to update G. lutea chemistry and activity. Specifically, this systematic review synthesized the major specialized bitter metabolites and the biological activity data obtained from different cell lines, animal models, and human interventional trials. This review aims to the exaltation of G. lutea as a source of bioactive compounds that can prevent and treat several human illnesses.
Collapse
Affiliation(s)
- Maria Ponticelli
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Ludovica Lela
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Mariapia Moles
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Claudia Mangieri
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Donatella Bisaccia
- Italian National Research Council-Water Research Institute, Viale F. De Blasio 5, 70123, Bari, Italy
| | - Immacolata Faraone
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy; Spinoff Bioactiplant Srl Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Roberto Falabella
- Urology Unit, San Carlo Hospital, Via Potito Petrone, 85100, Potenza, Italy
| | - Luigi Milella
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy.
| |
Collapse
|
8
|
Association between chronic low back pain and regional brain atrophy in a Japanese older population: the Hisayama Study. Pain 2022; 163:2185-2193. [PMID: 35333827 DOI: 10.1097/j.pain.0000000000002612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/25/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Chronic low back pain (CLBP) is the leading cause of years lived with disability. Recently, it has been reported that CLBP is associated with alterations in the central nervous system. The present study aimed to investigate the association between CLBP and regional brain atrophy in an older Japanese population. A total of 1106 community-dwelling participants aged ≥65 years underwent brain magnetic resonance imaging scans and a health examination in 2017 to 2018. We used the FreeSurfer software for the analysis of brain magnetic resonance imaging. Chronic pain was defined as subjective pain for ≥3 months. Participants were divided into 3 groups according to the presence or absence of chronic pain and the body part that mainly suffered from pain: a "no chronic pain (NCP)" group (n = 541), "CLBP" group (n = 189), and "chronic pain in body parts other than the lower back (OCP)" group (n = 376). The brain volumes of the ventrolateral and dorsolateral prefrontal cortex, the posterior cingulate gyrus, and the amygdala were significantly lower in the CLBP group than in the NCP group after adjustment for sociodemographic, physical, and lifestyle factors and depressive symptoms. In addition, the left superior frontal gyrus was identified as a significant cluster by the Query, Design, Estimate, Contrast interface. There were no significant differences in the brain volumes of pain-related regions between the NCP and the OCP groups. The present study suggests that CLBP is associated with lower brain volumes of pain-related regions in a general older population of Japanese.
Collapse
|
9
|
Gerum M, Simonin F. Behavioral characterization, potential clinical relevance and mechanisms of latent pain sensitization. Pharmacol Ther 2021; 233:108032. [PMID: 34763010 DOI: 10.1016/j.pharmthera.2021.108032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Chronic pain is a debilitating disorder that can occur as painful episodes that alternates with bouts of remission and occurs despite healing of the primary insult. Those episodes are often triggered by stressful events. In the last decades, a similar situation has been evidenced in a wide variety of rodent models (including inflammatory pain, neuropathy and opioid-induced hyperalgesia) where animals develop a chronic latent hyperalgesia that silently persists after behavioral signs of pain resolution. This state, referred as latent pain sensitization, is due to the compensatory activation of antinociceptive systems, such as the opioid system or NPY and its receptors. A transitory phase of hyperalgesia can then be reinstated by pharmacological or genetic blockade of these antinociceptive systems or by submitting animals to acute stress. Those observations reveal that there is a constant endogenous analgesia responsible for chronic pain inhibition that might paradoxically contribute to maintain this maladaptive state and could then participate to the transition from acute to chronic pain. Thus, demonstration of the existence of this phenomenon in humans and a better understanding of the mechanisms by which latent pain sensitization develops and maintains over long periods of time will be of particular interest to help identifying new therapeutic strategies and targets for chronic pain treatment. The present review aims to recapitulate behavioral expression, potential clinical relevance, cellular mechanisms and intracellular signaling pathways involved so far in latent pain sensitization.
Collapse
Affiliation(s)
- Manon Gerum
- Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, Illkirch-Graffenstaden, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, Illkirch-Graffenstaden, France.
| |
Collapse
|
10
|
Boucher MN, May V, Braas KM, Hammack SE. PACAP orchestration of stress-related responses in neural circuits. Peptides 2021; 142:170554. [PMID: 33865930 PMCID: PMC8592028 DOI: 10.1016/j.peptides.2021.170554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a pleiotropic polypeptide that can activate G protein-coupled PAC1, VPAC1, and VPAC2 receptors, and has been implicated in stress signaling. PACAP and its receptors are widely distributed throughout the nervous system and other tissues and can have a multitude of effects. Human and animal studies suggest that PACAP plays a role responding to a variety of threats and stressors. Here we review the roles of PACAP in several regions of the central nervous system (CNS) as they relate to several behavioral functions. For example, in the bed nucleus of the stria terminalis (BNST), PACAP is upregulated following chronic stress and may drive anxiety-like behavior. PACAP can also influence both the consolidation and expression of fear memories, as demonstrated by studies in several fear-related areas, such as the amygdala, hippocampus, and prefrontal cortex. PACAP can also mediate the emotional component of pain, as PACAP in the central nucleus of the amygdala (CeA) is able to decrease pain sensitivity thresholds. Outside of the central nervous system, PACAP may drive glucocorticoid release via enhanced hypothalamic-pituitary-adrenal axis activity and may participate in infection-induced stress responses. Together, this suggests that PACAP exerts effects on many stress-related systems and may be an important driver of emotional behavior.
Collapse
Affiliation(s)
- Melissa N Boucher
- Department of Psychological Science, University of Vermont, 2 Colchester Avenue, Burlington, VT, 05405, United States
| | - Victor May
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, 149 Beaumont Avenue, Burlington, VT, 05405, United States.
| | - Karen M Braas
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, 149 Beaumont Avenue, Burlington, VT, 05405, United States
| | - Sayamwong E Hammack
- Department of Psychological Science, University of Vermont, 2 Colchester Avenue, Burlington, VT, 05405, United States
| |
Collapse
|
11
|
Davis SM, Zuke JT, Berchulski MR, Burman MA. Amygdalar Corticotropin-Releasing Factor Signaling Is Required for Later-Life Behavioral Dysfunction Following Neonatal Pain. Front Physiol 2021; 12:660792. [PMID: 34045975 PMCID: PMC8144524 DOI: 10.3389/fphys.2021.660792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Neonatal pain such as that experienced by infants in the neonatal intensive care unit is known to produce later-life dysfunction including heightened pain sensitivity and anxiety, although the mechanisms remain unclear. Both chronic pain and stress in adult organisms are known to influence the corticotropin-releasing factor (CRF) system in the Central Nucleus of the Amygdala, making this system a likely candidate for changes following neonatal trauma. To examine this, neonatal rats were subjected to daily pain, non-painful handling or left undisturbed for the first week of life. Beginning on postnatal day, 24 male and female rats were subjected to a 4-day fear conditioning and sensory testing protocol. Some subjects received intra-amygdalar administration of either Vehicle, the CRF receptor 1 (CRF1) receptor antagonist Antalarmin, or the CRF receptor 2 (CRF2) receptor antagonist Astressin 2B prior to fear conditioning and somatosensory testing, while others had tissue collected following fear conditioning and CRF expression in the CeA and BLA was assessed using fluorescent in situ hybridization. CRF1 antagonism attenuated fear-induced hypersensitivity in neonatal pain and handled rats, while CRF2 antagonism produced a general antinociception. In addition, neonatal pain and handling produced a lateralized sex-dependent decrease in CRF expression, with males showing a diminished number of CRF-expressing cells in the right CeA and females showing a similar reduction in the number of CRF-expressing cells in the left BLA compared to undisturbed controls. These data show that the amygdalar CRF system is a likely target for alleviating dysfunction produced by early life trauma and that this system continues to play a major role in the lasting effects of such trauma into the juvenile stage of development.
Collapse
Affiliation(s)
- Seth M Davis
- Department of Psychology, University of New England, Biddeford, ME, United States.,Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States
| | - Jared T Zuke
- Department of Psychology, University of New England, Biddeford, ME, United States.,Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States
| | - Mariah R Berchulski
- Department of Psychology, University of New England, Biddeford, ME, United States.,Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States
| | - Michael A Burman
- Department of Psychology, University of New England, Biddeford, ME, United States.,Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States
| |
Collapse
|
12
|
Zhang XH, Feng CC, Pei LJ, Zhang YN, Chen L, Wei XQ, Zhou J, Yong Y, Wang K. Electroacupuncture Attenuates Neuropathic Pain and Comorbid Negative Behavior: The Involvement of the Dopamine System in the Amygdala. Front Neurosci 2021; 15:657507. [PMID: 34025342 PMCID: PMC8137986 DOI: 10.3389/fnins.2021.657507] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain (NeuP) is an important clinical problem accompanying negative mood symptoms. Neuroinflammation in the amygdala is critically involved in NeuP, and the dopamine (DA) system acts as an important endogenous anti-inflammatory pathway. Electroacupuncture (EA) can improve the clinical outcomes in NeuP, but the underlying mechanisms have not been fully elucidated. This study was designed to assess the effectiveness of EA on pain and pain-related depressive-like and anxiety-like behaviors and explore the role of the DA system in the effects of EA. Male Sprague-Dawley rats were subjected to the chronic constrictive injury (CCI) model to induce NeuP. EA treatment was carried out for 30 min once every other day for 3 weeks. The results showed that CCI caused mechanical hyperalgesia and depressive and anxiety-like behaviors in rats and neuroinflammation in the amygdala, such as an increased protein level of TNFα and IL-1β and activation of astrocytes. EA treatment significantly improved mechanical allodynia and the emotional dysfunction induced by CCI. The effects of EA were accompanied by markedly decreased expression of TNFα, IL-1β, and glial fibrillary acid protein (GFAP) in the amygdala. Moreover, EA treatment reversed CCI-induced down-regulation of DA concentration, tyrosine hydroxylase (TH) expression, and DRD1 and DRD2 receptors. These results suggest that EA-ameliorated NeuP may possibly be associated with the DA system to inhibit the neuroinflammation in the amygdala.
Collapse
Affiliation(s)
- Xue-Hui Zhang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen-Chen Feng
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Jian Pei
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya-Nan Zhang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu Chen
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Qiang Wei
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia Zhou
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Yong
- Department of Anesthesiology and Research Institute for Acupuncture Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Wang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Guan SY, Zhang K, Wang XS, Yang L, Feng B, Tian DD, Gao MR, Liu SB, Liu A, Zhao MG. Anxiolytic effects of polydatin through the blockade of neuroinflammation in a chronic pain mouse model. Mol Pain 2021; 16:1744806919900717. [PMID: 31964240 PMCID: PMC6977205 DOI: 10.1177/1744806919900717] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background Chronic pain is frequently comorbid with anxiety disorder, thereby
complicating its treatment. Polydatin, a component from the root of
Polygonum cuspidatum, has shown neuroprotection in the
central nervous system. However, its effects on pain and anxiety processing
have been rarely investigated. In this study, mice were injected with
complete Freund’s adjuvant (CFA) at the hindpaw to induce pain- and
anxiety-like behaviors. Results Treatment with polydatin (25 mg/kg) alleviated the anxiety-like behaviors but
not pain perception in these mice. Polydatin treatment reversed the
upregulation of N-methyl-D-aspartic acid receptors and
GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid
receptors in the amygdala of CFA-injected mice. Additionally, this treatment
reduced the levels of proinflammatory cytokines, namely, tumor necrosis
factor-alpha and interleukin-1β, in the amygdala. Furthermore, activated
nuclear factor kappa-B signaling was blocked in the amygdala from
CFA-injected mice. By using docking technology, we found potential
structural binding between polydatin and IκB kinase beta. Conclusion This study indicates the anxiolytic effects of polydatin by suppressing
inflammatory cytokines in the amygdala.
Collapse
Affiliation(s)
- Shao-Yu Guan
- Department of Pharmacy, Precision Pharmacy and Drug Development Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Kun Zhang
- Department of Pharmacy, Precision Pharmacy and Drug Development Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin-Shang Wang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Le Yang
- Department of Pharmacy, Precision Pharmacy and Drug Development Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Bin Feng
- Department of Pharmacy, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Dan-Dan Tian
- Department of Acupuncture-Moxibustion-Massage, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Mei-Rong Gao
- Department of Acupuncture-Moxibustion-Massage, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Shui-Bing Liu
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - An Liu
- Department of Pharmacy, Precision Pharmacy and Drug Development Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ming-Gao Zhao
- Department of Pharmacy, Precision Pharmacy and Drug Development Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
14
|
Fang Y, Ren R, Shi H, Huang L, Lenahan C, Lu Q, Tang L, Huang Y, Tang J, Zhang J, Zhang JH. Pituitary Adenylate Cyclase-Activating Polypeptide: A Promising Neuroprotective Peptide in Stroke. Aging Dis 2020; 11:1496-1512. [PMID: 33269103 PMCID: PMC7673855 DOI: 10.14336/ad.2020.0626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
The search for viable, effective treatments for acute stroke continues to be a global priority due to the high mortality and morbidity. Current therapeutic treatments have limited effects, making the search for new treatments imperative. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a well-established cytoprotective neuropeptide that participates in diverse neural physiological and pathological activities, such as neuronal proliferation, differentiation, and migration, as well as neuroprotection. It is considered a promising treatment in numerous neurological diseases. Thus, PACAP bears potential as a new therapeutic strategy for stroke treatment. Herein, we provide an overview pertaining to the current knowledge of PACAP, its receptors, and its potential neuroprotective role in the setting of stroke, as well as various mechanisms of neuroprotection involving ionic homeostasis, excitotoxicity, cell edema, oxidative stress, inflammation, and cell death, as well as the route of PACAP administration.
Collapse
Affiliation(s)
- Yuanjian Fang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Reng Ren
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Shi
- 2Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Lei Huang
- 3Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.,4Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Cameron Lenahan
- 3Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.,4Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA.,5Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Qin Lu
- 6Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Lihui Tang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Huang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiping Tang
- 3Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.,4Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA.,7Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| | - Jianmin Zhang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - John H Zhang
- 3Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.,4Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA.,7Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
15
|
Sun L, Liu R, Guo F, Wen MQ, Ma XL, Li KY, Sun H, Xu CL, Li YY, Wu MY, Zhu ZG, Li XJ, Yu YQ, Chen Z, Li XY, Duan S. Parabrachial nucleus circuit governs neuropathic pain-like behavior. Nat Commun 2020; 11:5974. [PMID: 33239627 PMCID: PMC7688648 DOI: 10.1038/s41467-020-19767-w] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
The lateral parabrachial nucleus (LPBN) is known to relay noxious information to the amygdala for processing affective responses. However, it is unclear whether the LPBN actively processes neuropathic pain characterized by persistent hyperalgesia with aversive emotional responses. Here we report that neuropathic pain-like hypersensitivity induced by common peroneal nerve (CPN) ligation increases nociceptive stimulation-induced responses in glutamatergic LPBN neurons. Optogenetic activation of GABAergic LPBN neurons does not affect basal nociception, but alleviates neuropathic pain-like behavior. Optogenetic activation of glutamatergic or inhibition of GABAergic LPBN neurons induces neuropathic pain-like behavior in naïve mice. Inhibition of glutamatergic LPBN neurons alleviates both basal nociception and neuropathic pain-like hypersensitivity. Repetitive pharmacogenetic activation of glutamatergic or GABAergic LPBN neurons respectively mimics or prevents the development of CPN ligation-induced neuropathic pain-like hypersensitivity. These findings indicate that a delicate balance between excitatory and inhibitory LPBN neuronal activity governs the development and maintenance of neuropathic pain. The parabrachial nucleus (PBN) projects to the amygdala, and contributes to affective aspects of neuropathic pain. Here the authors demonstrate that the lateral parabrachial nucleus (LPBN) contributes to hypersensitivity in a mouse model of neuropathic pain.
Collapse
Affiliation(s)
- Li Sun
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China. .,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China.
| | - Rui Liu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Fang Guo
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Man-Qing Wen
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Xiao-Lin Ma
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Kai-Yuan Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Hao Sun
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, 310020, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, 310027, Hangzhou, China
| | - Ceng-Lin Xu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yuan-Yuan Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Meng-Yin Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, 310058, Hangzhou, China
| | - Zheng-Gang Zhu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Xin-Jian Li
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, 310020, Hangzhou, China
| | - Yan-Qin Yu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Zhong Chen
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Xiang-Yao Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Shumin Duan
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China. .,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
16
|
Ferrer A, Labad J, Salvat-Pujol N, Monreal JA, Urretavizcaya M, Crespo JM, Menchón JM, Palao D, Soria V. Hypothalamic-pituitary-adrenal axis-related genes and cognition in major mood disorders and schizophrenia: a systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109929. [PMID: 32197928 DOI: 10.1016/j.pnpbp.2020.109929] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/01/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022]
Abstract
Hypothalamic-pituitary-adrenal (HPA) axis dysregulation and cognitive deficits are two well-characterized endophenotypes present in different serious mental illnesses (SMIs), including major depressive disorder, bipolar disorder and schizophrenia. Our aim was to study the influence of genetic and epigenetic variations in HPA axis-related genes on cognitive performance in clinical samples, including patients with major mood disorders and schizophrenia. A systematic search was performed using PubMed (Medline), PsycINFO and Scopus databases. The systematic review identified 12 studies dealing with HPA-related genes and cognition in samples including patients with SMIs, focusing on single nucleotide polymorphism (SNP) variants, while no studies analysing epigenetic variations were found. The results suggest different and specific effects on the cognitive performance of SNP variants in the HPA axis-related genes studied, as well as interactions with traumatic experiences. There was high heterogeneity in the studied samples, genes analysed, and cognitive tasks evaluated. The relationship between HPA-related genes and cognition in SMIs is still largely unknown, and further studies including larger samples and epigenetic variations are needed.
Collapse
Affiliation(s)
- Alex Ferrer
- Department of Mental Health, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain; Department of Clinical Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Javier Labad
- Department of Mental Health, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Spain
| | - Neus Salvat-Pujol
- Department of Mental Health, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain; Department of Clinical Sciences, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Spain
| | - José A Monreal
- Department of Mental Health, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Spain
| | - Mikel Urretavizcaya
- Department of Clinical Sciences, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Spain; Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Neurosciences Group - Psychiatry and Mental Health, Barcelona, Spain
| | - José M Crespo
- Department of Clinical Sciences, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Spain; Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Neurosciences Group - Psychiatry and Mental Health, Barcelona, Spain
| | - José M Menchón
- Department of Clinical Sciences, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Spain; Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Neurosciences Group - Psychiatry and Mental Health, Barcelona, Spain
| | - Diego Palao
- Department of Mental Health, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Spain
| | - Virginia Soria
- Department of Clinical Sciences, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Spain; Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Neurosciences Group - Psychiatry and Mental Health, Barcelona, Spain.
| |
Collapse
|
17
|
Liao C, de Molliens MP, Schneebeli ST, Brewer M, Song G, Chatenet D, Braas KM, May V, Li J. Targeting the PAC1 Receptor for Neurological and Metabolic Disorders. Curr Top Med Chem 2019; 19:1399-1417. [PMID: 31284862 PMCID: PMC6761004 DOI: 10.2174/1568026619666190709092647] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/23/2018] [Accepted: 12/26/2018] [Indexed: 12/16/2022]
Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP)-selective PAC1 receptor (PAC1R, ADCYAP1R1) is a member of the vasoactive intestinal peptide (VIP)/secretin/glucagon family of G protein-coupled receptors (GPCRs). PAC1R has been shown to play crucial roles in the central and peripheral nervous systems. The activation of PAC1R initiates diverse downstream signal transduction pathways, including adenylyl cyclase, phospholipase C, MEK/ERK, and Akt pathways that regulate a number of physiological systems to maintain functional homeostasis. Accordingly, at times of tissue injury or insult, PACAP/PAC1R activation of these pathways can be trophic to blunt or delay apoptotic events and enhance cell survival. Enhancing PAC1R signaling under these conditions has the potential to mitigate cellular damages associated with cerebrovascular trauma (including stroke), neurodegeneration (such as Parkinson's and Alzheimer's disease), or peripheral organ insults. Conversely, maladaptive PACAP/PAC1R signaling has been implicated in a number of disorders, including stressrelated psychopathologies (i.e., depression, posttraumatic stress disorder, and related abnormalities), chronic pain and migraine, and metabolic diseases; abrogating PAC1R signaling under these pathological conditions represent opportunities for therapeutic intervention. Given the diverse PAC1R-mediated biological activities, the receptor has emerged as a relevant pharmaceutical target. In this review, we first describe the current knowledge regarding the molecular structure, dynamics, and function of PAC1R. Then, we discuss the roles of PACAP and PAC1R in the activation of a variety of signaling cascades related to the physiology and diseases of the nervous system. Lastly, we examine current drug design and development of peptides and small molecules targeting PAC1R based on a number of structure- activity relationship studies and key pharmacophore elements. At present, the rational design of PAC1R-selective peptide or small-molecule therapeutics is largely hindered by the lack of structural information regarding PAC1R activation mechanisms, the PACAP-PAC1R interface, and the core segments involved in receptor activation. Understanding the molecular basis governing the PACAP interactions with its different cognate receptors will undoubtedly provide a basis for the development and/or refinement of receptor-selective therapeutics.
Collapse
Affiliation(s)
- Chenyi Liao
- Department of Chemistry, University of Vermont, Burlington, VT 05405, United States
| | | | - Severin T Schneebeli
- Department of Chemistry, University of Vermont, Burlington, VT 05405, United States
| | - Matthias Brewer
- Department of Chemistry, University of Vermont, Burlington, VT 05405, United States
| | - Gaojie Song
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - David Chatenet
- INRS - Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Karen M Braas
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, 149 Beaumont Avenue, Burlington, VT 05405, United States
| | - Victor May
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, 149 Beaumont Avenue, Burlington, VT 05405, United States
| | - Jianing Li
- Department of Chemistry, University of Vermont, Burlington, VT 05405, United States
| |
Collapse
|
18
|
Chen W, Taché Y, Marvizón JC. Corticotropin-Releasing Factor in the Brain and Blocking Spinal Descending Signals Induce Hyperalgesia in the Latent Sensitization Model of Chronic Pain. Neuroscience 2019; 381:149-158. [PMID: 29776484 DOI: 10.1016/j.neuroscience.2018.03.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/21/2018] [Accepted: 03/16/2018] [Indexed: 12/25/2022]
Abstract
Latent sensitization is a model of chronic pain in which an injury triggers a period of hyperalgesia followed by an apparent recovery, but in which pain sensitization persists but is suppressed by opioid and adrenergic receptors. One important characteristic of latent sensitization is that hyperalgesia can be triggered by acute stress. To determine whether the effect of stress is mimicked by the activation of corticotropin-releasing factor (CRF) signaling in the brain, rats with latent sensitization induced by injecting complete Freund's adjuvant (CFA, 50 μl) in one hind paw were given an intracerebroventricular (i.c.v.) injection of CRF. The i.c.v. injection of CRF (0.6 μg, 10 μl), but not saline, induced bilateral mechanical hyperalgesia in rats with latent sensitization. In contrast, CRF i.c.v. did not induce hyperalgesia in rats without latent sensitization (injected with saline in the hind paw). To determine whether descending pain inhibition mediates the suppression of hyperalgesia in latent sensitization, rats with CFA-induced latent sensitization received an intrathecal injection of lidocaine (10%, 1 μl) at the cervical-thoracic spinal cord to produce a spinal block. Lidocaine-injected rats, but not rats injected intrathecally with saline, developed bilateral mechanical hyperalgesia. Intrathecal lidocaine did not induce hyperalgesia in rats without latent sensitization (injected with saline in the hind paw). These results show that i.c.v. CRF mimicked the hyperalgesic response triggered by stress during latent sensitization, possibly by blocking inhibitory spinal descending signals that suppress hyperalgesia.
Collapse
Affiliation(s)
- Wenling Chen
- Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States; Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, United States.
| | - Yvette Taché
- Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States; Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, United States.
| | - Juan Carlos Marvizón
- Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States; Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
19
|
Tache Y, Larauche M, Yuan PQ, Million M. Brain and Gut CRF Signaling: Biological Actions and Role in the Gastrointestinal Tract. Curr Mol Pharmacol 2018; 11:51-71. [PMID: 28240194 DOI: 10.2174/1874467210666170224095741] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/16/2016] [Accepted: 08/03/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) pathways coordinate behavioral, endocrine, autonomic and visceral responses to stress. Convergent anatomical, molecular, pharmacological and functional experimental evidence supports a key role of brain CRF receptor (CRF-R) signaling in stress-related alterations of gastrointestinal functions. These include the inhibition of gastric acid secretion and gastric-small intestinal transit, stimulation of colonic enteric nervous system and secretorymotor function, increase intestinal permeability, and visceral hypersensitivity. Brain sites of CRF actions to alter gut motility encompass the paraventricular nucleus of the hypothalamus, locus coeruleus complex and the dorsal motor nucleus while those modulating visceral pain are localized in the hippocampus and central amygdala. Brain CRF actions are mediated through the autonomic nervous system (decreased gastric vagal and increased sacral parasympathetic and sympathetic activities). The activation of brain CRF-R2 subtype inhibits gastric motor function while CRF-R1 stimulates colonic secretomotor function and induces visceral hypersensitivity. CRF signaling is also located within the gut where CRF-R1 activates colonic myenteric neurons, mucosal cells secreting serotonin, mucus, prostaglandin E2, induces mast cell degranulation, enhances mucosal permeability and propulsive motor functions and induces visceral hyperalgesia in animals and humans. CRF-R1 antagonists prevent CRF- and stressrelated gut alterations in rodents while not influencing basal state. DISCUSSION These preclinical studies contrast with the limited clinical positive outcome of CRF-R1 antagonists to alleviate stress-sensitive functional bowel diseases such as irritable bowel syndrome. CONCLUSION The translational potential of CRF-R1 antagonists in gut diseases will require additional studies directed to novel anti-CRF therapies and the neurobiology of brain-gut interactions under chronic stress.
Collapse
Affiliation(s)
- Yvette Tache
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| | - Muriel Larauche
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| | - Pu-Qing Yuan
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| | - Mulugeta Million
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| |
Collapse
|
20
|
Weston CSE. Amygdala Represents Diverse Forms of Intangible Knowledge, That Illuminate Social Processing and Major Clinical Disorders. Front Hum Neurosci 2018; 12:336. [PMID: 30186129 PMCID: PMC6113401 DOI: 10.3389/fnhum.2018.00336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/02/2018] [Indexed: 01/21/2023] Open
Abstract
Amygdala is an intensively researched brain structure involved in social processing and multiple major clinical disorders, but its functions are not well understood. The functions of a brain structure are best hypothesized on the basis of neuroanatomical connectivity findings, and of behavioral, neuroimaging, neuropsychological and physiological findings. Among the heaviest neuroanatomical interconnections of amygdala are those with perirhinal cortex (PRC), but these are little considered in the theoretical literature. PRC integrates complex, multimodal, meaningful and fine-grained distributed representations of objects and conspecifics. Consistent with this connectivity, amygdala is hypothesized to contribute meaningful and fine-grained representations of intangible knowledge for integration by PRC. Behavioral, neuroimaging, neuropsychological and physiological findings further support amygdala mediation of a diversity of such representations. These representations include subjective valence, impact, economic value, noxiousness, importance, ingroup membership, social status, popularity, trustworthiness and moral features. Further, the formation of amygdala representations is little understood, and is proposed to be often implemented through embodied cognition mechanisms. The hypothesis builds on earlier work, and makes multiple novel contributions to the literature. It highlights intangible knowledge, which is an influential but insufficiently researched factor in social and other behaviors. It contributes to understanding the heavy but neglected amygdala-PRC interconnections, and the diversity of amygdala-mediated intangible knowledge representations. Amygdala is a social brain region, but it does not represent species-typical social behaviors. A novel proposal to clarify its role is postulated. The hypothesis is also suggested to illuminate amygdala's involvement in several core symptoms of autism spectrum disorder (ASD). Specifically, novel and testable explanations are proposed for the ASD symptoms of disorganized visual scanpaths, apparent social disinterest, preference for concrete cognition, aspects of the disorder's heterogeneity, and impairment in some activities of daily living. Together, the presented hypothesis demonstrates substantial explanatory potential in the neuroscience, social and clinical domains.
Collapse
|
21
|
Yarushkina NI, Filaretova LP. Corticotropin-Releasing Factor (CRF) and Somatic Pain Sensitivity: the Contribution of CRF Receptors of Subtypes 1 and 2. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
The peripheral corticotropin-releasing factor (CRF)-induced analgesic effect on somatic pain sensitivity in conscious rats: involving CRF, opioid and glucocorticoid receptors. Inflammopharmacology 2018; 26:305-318. [DOI: 10.1007/s10787-018-0445-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/23/2018] [Indexed: 12/30/2022]
|
23
|
Tian J, Tian Z, Qin SL, Zhao PY, Jiang X, Tian Z. Anxiolytic-like effects of α-asarone in a mouse model of chronic pain. Metab Brain Dis 2017; 32:2119-2129. [PMID: 28913780 DOI: 10.1007/s11011-017-0108-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 09/06/2017] [Indexed: 01/03/2023]
Abstract
α-asarone (ASR) is a major bioactive compound isolated from the rhizome of Acorus tatarinowii Schott and it has extensive biological effects. Clinically, anxiety disorder is a common comorbidity of chronic pain. However, limited information is available regarding the effects of ASR on chronic pain-related anxiety. This study aims to evaluate the anxiolytic effects of ASR in chronic pain mice. Chronic inflammatory pain was induced by hind-paw injection of complete Freund's adjuvant (CFA). Behavioral tests, western-blot analysis and whole-cell patch recordings were performed to evaluate the subsequent events. We found that ASR induced anxiolytic activities in CFA-injected mice but did not affect the nociceptive threshold. ASR administration reversed the up-regulation of GluR1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, NR2A-containing N-methyl-D-aspartate (NMDA) receptors and down-regulation of γ-aminobutyric acid A (GABAA) receptors in the basolateral amygdala (BLA) of CFA-injected mice. Electrophysiological data revealed that ASR treatment restored the balance between excitatory and inhibitory neurotransmissions, which was disturbed in the BLA of CFA-injected mice. Moreover, ASR prevented the hyper-excitability of pyramidal neurons in the BLA of chronic pain mice. Our results suggested that the anxiolytic effects of ASR were partially due to maintaining the balance between excitatory/inhibitory transmissions and attenuating neuronal hyper-excitability of excitatory neurons in the BLA.
Collapse
Affiliation(s)
- Jiao Tian
- Department of Pediatrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhen Tian
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Department of Pharmacy, The 154th Hospital of People's Liberation Army, Xinyang, 464000, China
| | - Shu-Li Qin
- Department of Pharmacy, The 154th Hospital of People's Liberation Army, Xinyang, 464000, China
| | - Pu-Yu Zhao
- Department of Pharmacy, The 154th Hospital of People's Liberation Army, Xinyang, 464000, China
| | - Xun Jiang
- Department of Pediatrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| | - Zhen Tian
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
24
|
Romero A, García-Carmona JA, Laorden ML, Puig MM. Role of CRF1 receptor in post-incisional plasma extravasation and nociceptive responses in mice. Toxicol Appl Pharmacol 2017; 332:121-128. [DOI: 10.1016/j.taap.2017.04.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 12/30/2022]
|
25
|
Haller J. The role of central and medial amygdala in normal and abnormal aggression: A review of classical approaches. Neurosci Biobehav Rev 2017; 85:34-43. [PMID: 28918358 DOI: 10.1016/j.neubiorev.2017.09.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/21/2017] [Accepted: 09/13/2017] [Indexed: 12/19/2022]
Abstract
The involvement of the amygdala in aggression is supported by overwhelming evidence. Frequently, however, the amygdala is studied as a whole, despite its complex internal organization. To reveal the role of various subdivisions, here we review the involvement of the central and medial amygdala in male rivalry aggression, maternal aggression, predatory aggression, and models of abnormal aggression where violent behavior is associated with increased or decreased arousal. We conclude that: (1) rivalry aggression is controlled by the medial amygdala; (2) predatory aggression is controlled by the central amygdala; (3) hypoarousal-associated violent aggression recruits both nuclei, (4) a specific upregulation of the medial amygdala was observed in hyperarousal-driven aggression. These patterns of amygdala activation were used to build four alternative models of the aggression circuitry, each being specific to particular forms of aggression. The separate study of the roles of amygdala subdivisions may not only improve our understanding of aggressive behavior, but also the differential control of aggression and violent behaviors of various types, including those associated with various psychopathologies.
Collapse
Affiliation(s)
- Jozsef Haller
- Institute of Experimental Medicine, Budapest, Hungary; National University of Public Service, Budapest, Hungary.
| |
Collapse
|
26
|
Andreoli M, Marketkar T, Dimitrov E. Contribution of amygdala CRF neurons to chronic pain. Exp Neurol 2017; 298:1-12. [PMID: 28830762 DOI: 10.1016/j.expneurol.2017.08.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/03/2017] [Accepted: 08/18/2017] [Indexed: 12/30/2022]
Abstract
We investigated the role of amygdala corticotropin-releasing factor (CRF) neurons in the perturbations of descending pain inhibition caused by neuropathic pain. Forced swim increased the tail-flick response latency in uninjured mice, a phenomenon known as stress-induced analgesia (SIA) but did not change the tail-flick response latency in mice with neuropathic pain caused by sciatic nerve constriction. Neuropathic pain also increased the expression of CRF in the central amygdala (CeAmy) and ΔFosB in the dorsal horn of the spinal cord. Next, we injected the CeAmy of CRF-cre mice with cre activated AAV-DREADD (Designer Receptors Exclusively Activated by Designer Drugs) vectors. Activation of CRF neurons by DREADD/Gq did not affect the impaired SIA but inhibition of CRF neurons by DREADD/Gi restored SIA and decreased allodynia in mice with neuropathic pain. The possible downstream circuitry involved in the regulation of SIA was investigated by combined injections of retrograde cre-virus (CAV2-cre) into the locus ceruleus (LC) and cre activated AAV-diphtheria toxin (AAV-FLEX-DTX) virus into the CeAmy. The viral injections were followed by a sciatic nerve constriction ipsilateral or contralateral to the injections. Ablation of amygdala projections to the LC on the side of injury but not on the opposite side, completely restored SIA, decreased allodynia and decreased ΔFosB expression in the spinal cord in mice with neuropathic pain. The possible lateralization of SIA impairment to the side of injury was confirmed by an experiment in which unilateral inhibition of the LC decreased SIA even in uninjured mice. The current view in the field of pain research attributes the process of pain chronification to abnormal functioning of descending pain inhibition. Our results demonstrate that the continuous activity of CRF neurons brought about by persistent pain leads to impaired SIA, which is a symptom of dysregulation of descending pain inhibition. Therefore, an over-activation of amygdala CRF neurons is very likely an important contributing factor for pain chronification.
Collapse
Affiliation(s)
- Matthew Andreoli
- Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, Unites States.
| | - Tanvi Marketkar
- Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, Unites States.
| | - Eugene Dimitrov
- Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, Unites States.
| |
Collapse
|
27
|
Rosinger ZJ, Jacobskind JS, Park SG, Justice NJ, Zuloaga DG. Distribution of corticotropin-releasing factor receptor 1 in the developing mouse forebrain: A novel sex difference revealed in the rostral periventricular hypothalamus. Neuroscience 2017; 361:167-178. [PMID: 28823817 DOI: 10.1016/j.neuroscience.2017.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/19/2017] [Accepted: 08/09/2017] [Indexed: 12/16/2022]
Abstract
Corticotropin-releasing factor (CRF) signaling through CRF receptor 1 (CRFR1) regulates autonomic, endocrine and behavioral responses to stress and has been implicated in the pathophysiology of several disorders including anxiety, depression, and addiction. Using a validated CRFR1 reporter mouse line (bacterial artificial chromosome identified by green fluorescence protein (BAC GFP-CRFR1)), we investigated the distribution of CRFR1 in the developing mouse forebrain. Distribution of CRFR1 was investigated at postnatal days (P) 0, 4, and 21 in male and female mice. CRFR1 increased with age in several regions including the medial amygdala, arcuate nucleus, paraventricular hypothalamus, medial septum, CA1 hippocampal area, and the lateral habenula. Regions showing decreased CRFR1 expression with increased age include the intermediate portion of the periventricular hypothalamic nucleus, and CA3 hippocampal area. We report a sexually dimorphic expression of CRFR1 within the rostral portion of the anteroventral periventricular nucleus of the hypothalamus (AVPV/PeN), a region known to regulate ovulation, reproductive and maternal behaviors. Females had a greater number of CRFR1-GFP-ir cells at all time points in the AVPV/PeN and CRFR1-GFP-ir was nearly absent in males by P21. Overall, alterations in CRFR1-GFP-ir distribution based on age and sex may contribute to observed age- and sex-dependent differences in stress regulation.
Collapse
Affiliation(s)
| | | | - Shannon G Park
- University at Albany, Department of Psychology, Albany, NY 12222, USA
| | - Nicholas J Justice
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, TX, USA
| | - Damian G Zuloaga
- University at Albany, Department of Psychology, Albany, NY 12222, USA.
| |
Collapse
|
28
|
Babygirija R, Sood M, Kannampalli P, Sengupta JN, Miranda A. Percutaneous electrical nerve field stimulation modulates central pain pathways and attenuates post-inflammatory visceral and somatic hyperalgesia in rats. Neuroscience 2017; 356:11-21. [DOI: 10.1016/j.neuroscience.2017.05.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/19/2022]
|
29
|
Reichard RA, Subramanian S, Desta MT, Sura T, Becker ML, Ghobadi CW, Parsley KP, Zahm DS. Abundant collateralization of temporal lobe projections to the accumbens, bed nucleus of stria terminalis, central amygdala and lateral septum. Brain Struct Funct 2017; 222:1971-1988. [PMID: 27704219 PMCID: PMC5378696 DOI: 10.1007/s00429-016-1321-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/28/2016] [Indexed: 10/20/2022]
Abstract
Behavioral flexibility is subserved in part by outputs from the cerebral cortex to telencephalic subcortical structures. In our earlier evaluation of the organization of the cortical-subcortical output system (Reynolds and Zahm, J Neurosci 25:11757-11767, 2005), retrograde double-labeling was evaluated in the prefrontal cortex following tracer injections into pairs of the following subcortical telencephalic structures: caudate-putamen, core and shell of the accumbens (Acb), bed nucleus of stria terminalis (BST) and central nucleus of the amygdala (CeA). The present study was done to assess patterns of retrograde labeling in the temporal lobe after similar paired tracer injections into most of the same telencephalic structures plus the lateral septum (LS). In contrast to the modest double-labeling observed in the prefrontal cortex in the previous study, up to 60-80 % of neurons in the basal and accessory basal amygdaloid nuclei and amygdalopiriform transition area exhibited double-labeling in the present study. The most abundant double-labeling was generated by paired injections into structures affiliated with the extended amygdala, including the CeA, BST and Acb shell. Injections pairing the Acb core with the BST or CeA produced significantly fewer double-labeled neurons. The ventral subiculum exhibited modest amounts of double-labeling associated with paired injections into the Acb, BST, CeA and LS. The results raise the issue of how an extraordinarily collateralized output from the temporal lobe may contribute to behavioral flexibility.
Collapse
Affiliation(s)
- Rhett A Reichard
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Suriya Subramanian
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Mikiyas T Desta
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Tej Sura
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Mary L Becker
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Comeron W Ghobadi
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Kenneth P Parsley
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Daniel S Zahm
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA.
| |
Collapse
|
30
|
Missig G, Mei L, Vizzard MA, Braas KM, Waschek JA, Ressler KJ, Hammack SE, May V. Parabrachial Pituitary Adenylate Cyclase-Activating Polypeptide Activation of Amygdala Endosomal Extracellular Signal-Regulated Kinase Signaling Regulates the Emotional Component of Pain. Biol Psychiatry 2017; 81:671-682. [PMID: 28057459 PMCID: PMC5332340 DOI: 10.1016/j.biopsych.2016.08.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 07/15/2016] [Accepted: 08/16/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Chronic pain and stress-related psychopathologies, such as depression and anxiety-associated abnormalities, are mutually reinforcing; however, the neuronal circuits and mechanisms that underlie this reinforcement are still not well understood. Pituitary adenylate cyclase-activating polypeptide (PACAP; Adcyap1) and its cognate PAC1 receptor (Adcyap1r1) are expressed in peripheral nociceptive pathways, participate in anxiety-related responses and have been have been linked to posttraumatic stress disorder and other mental health afflictions. METHODS Using immunocytochemistry, pharmacological treatments and behavioral testing techniques, we have used a rodent partial sciatic nerve chronic constriction injury model (n = 5-8 per group per experiment) to evaluate PACAP plasticity and signaling in nociceptive and stress-related behaviors. RESULTS We show that chronic neuropathic pain increases PACAP expression at multiple tiers along the spinoparabrachioamygdaloid tract. Furthermore, chronic constriction injury bilaterally augments nociceptive amygdala (in the central nucleus of the amygdala [CeA]) PACAP immunoreactivity, extracellular signal-regulated kinase phosphorylation, and c-Fos activation, in parallel with heightened anxiety-like behavior and nociceptive hypersensitivity. Acute CeA infusions with the PACAP receptor antagonist PACAP(6-38) blocked chronic constriction injury-induced behavioral responses. Additionally, pretreatments with inhibitors of mitogen-activated protein kinase enzymes or endocytosis to block endosomal PACAP receptor extracellular signal-regulated kinase signaling attenuated PACAP-induced CeA neuronal activation and nociceptive responses. CONCLUSIONS Our data suggest that chronic pain-induced PACAP neuroplasticity and signaling in spinoparabrachioamygdaloid projections have an impact on CeA stress- and nociception-associated maladaptive responses, which can be ameliorated upon receptor antagonism even during injury progression. Thus, the PACAP pathway provides for an important mechanism underlying the intersection of stress and chronic pain pathways via the amygdala.
Collapse
Affiliation(s)
- Galen Missig
- Department of Neurological Sciences, Burlington, Vermont
| | - Linda Mei
- Department of Neurological Sciences, Burlington, Vermont
| | | | - Karen M Braas
- Department of Neurological Sciences, Burlington, Vermont
| | - James A Waschek
- Department of Psychiatry and Behavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Kerry J Ressler
- Division of Depression and Anxiety, McLean Hospital-Harvard Medical School, Belmont, Massachusetts
| | - Sayamwong E Hammack
- Department of Psychological Science, University of Vermont College of Medicine, Burlington, Vermont
| | - Victor May
- Department of Neurological Sciences, Burlington, Vermont.
| |
Collapse
|
31
|
Miranda A, Taca A. Neuromodulation with percutaneous electrical nerve field stimulation is associated with reduction in signs and symptoms of opioid withdrawal: a multisite, retrospective assessment. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2017; 44:56-63. [PMID: 28301217 DOI: 10.1080/00952990.2017.1295459] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Finding an effective, non-pharmacological approach to treat opioid withdrawal could remove some of the barriers associated with pharmacotherapy. The BRIDGE® is a noninvasive, percutaneous electrical nerve field stimulator developed to target pain. OBJECTIVES This pilot study aimed to determine (1) the effects of the BRIDGE on withdrawal scores during the induction phase of opioid withdrawal therapy, (2) the percentage of subjects who successfully transitioned to medication assisted therapy (MAT). METHODS Adult patients treated with the BRIDGE during medically supervised withdrawal were included in this open label, uncontrolled, and retrospective study. The clinical opioid withdrawal scale (COWS) scores were prospectively recorded at different intervals (20, 30, and 60 min) and analyzed retrospectively. A subset of patients had scores recorded 5-days post-BRIDGE. Those who returned to the clinic and received their first dose of maintenance medication were considered to be successfully transitioned. RESULTS In this cohort (n=73), 65% were male. The mean COWS score prior to BRIDGE placement was 20.1 (±6.1). Twenty minutes after BRIDGE placement, the mean score was reduced to 7.5 (±5.9) (62.7% reduction, p<0.001). The scores further decreased after 30 minutes 4.0 (±4.4) and 60 minutes 3.1 (±3.4) (84.6% reduction, p<0.001). No rescue medications were administered during this period. The mean withdrawal score on day 5 was 0.6 (97.1% reduction, p<0.001) (n=33). Overall, 64/73 patients (88.8%) successfully transitioned to MAT. CONCLUSIONS Neurostimulation with the BRIDGE is associated with a reduction in opioid withdrawal scores. This effect persisted during the induction period and allowed for effective transition to MAT.
Collapse
Affiliation(s)
- Adrian Miranda
- a Department of Pediatrics, Division of Gastroenterology and Hepatology , Medical College of Wisconsin , Milwaukee , WI , USA
| | - Arturo Taca
- b St. Louis University School of Medicine , St. Louis , MO , USA.,c INSynergy Treatment Program , St. Louis , MO , USA
| |
Collapse
|
32
|
Aissouni Y, El Guerrab A, Hamieh AM, Ferrier J, Chalus M, Lemaire D, Grégoire S, Etienne M, Eschalier A, Ardid D, Lingueglia E, Marchand F. Acid-Sensing Ion Channel 1a in the amygdala is involved in pain and anxiety-related behaviours associated with arthritis. Sci Rep 2017; 7:43617. [PMID: 28321113 PMCID: PMC5340794 DOI: 10.1038/srep43617] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/30/2017] [Indexed: 12/17/2022] Open
Abstract
Chronic pain is associated with anxiety and depression episodes. The amygdala plays a key role in the relationship between emotional responses and chronic pain. Here, we investigated the role of Acid-Sensing Ion Channels 1a within the basolateral amygdala (BLA), in pain and associated anxiety in a rat model of monoarthritis (MoAr). Administration within the BLA of PcTx1 or mambalgin-1, two specific inhibitors of ASIC1a-containing channels significantly inhibited pain and anxiety-related behaviours in MoAr rats. The effect of PcTx1 was correlated with a reduction of c-Fos expression in the BLA. We examined the expression profile of ASICs and other genes in the amygdala in MoAr and sham animals, and found no variation of the expression of ASIC1a, which was confirmed at the protein level. However, an increase in the BLA of MoAr rats of both PI3Kinase mRNA and the phosphorylated form of Akt, along with Bdnf mRNA, suggest that the BDNF/PI3-kinase/Akt pathway might regulate ASIC1a in BLA neurons as demonstrated in spinal sensitisation phenomenon. We also observed changes in several kinase mRNAs expression (PICK1, Sgk1) that are potentially involved in ASIC1a regulation. These results show a crucial role of ASIC1a channels in the BLA in pain and anxiety-related behaviours during arthritis.
Collapse
Affiliation(s)
- Youssef Aissouni
- Clermont Université, Université d'Auvergne, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France.,Inserm U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France
| | - Abderrahim El Guerrab
- Centre Jean Perrin, ERTICA EA4677 Université d'Auvergne F-63001, Clermont-Ferrand, France
| | - Al Mahdy Hamieh
- Clermont Université, Université d'Auvergne, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France.,Inserm U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France
| | - Jérémy Ferrier
- Clermont Université, Université d'Auvergne, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France.,Inserm U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France
| | - Maryse Chalus
- Clermont Université, Université d'Auvergne, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France.,Inserm U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France
| | - Diane Lemaire
- Clermont Université, Université d'Auvergne, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France.,Inserm U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France
| | - Stéphanie Grégoire
- Clermont Université, Université d'Auvergne, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France.,Inserm U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France
| | - Monique Etienne
- Clermont Université, Université d'Auvergne, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France.,Inserm U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France
| | - Alain Eschalier
- Clermont Université, Université d'Auvergne, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France.,Inserm U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France.,CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Denis Ardid
- Clermont Université, Université d'Auvergne, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France.,Inserm U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France
| | - Eric Lingueglia
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,LabEx Ion Channel Science and Therapeutics, Valbonne, France
| | - Fabien Marchand
- Clermont Université, Université d'Auvergne, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France.,Inserm U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France
| |
Collapse
|
33
|
Diverse Physiological Roles of Calcitonin Gene-Related Peptide in Migraine Pathology: Modulation of Neuronal-Glial-Immune Cells to Promote Peripheral and Central Sensitization. Curr Pain Headache Rep 2017; 20:48. [PMID: 27334137 DOI: 10.1007/s11916-016-0578-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The neuropeptide calcitonin gene-related peptide (CGRP) is implicated in the underlying pathology of migraine by promoting the development of a sensitized state of primary and secondary nociceptive neurons. The ability of CGRP to initiate and maintain peripheral and central sensitization is mediated by modulation of neuronal, glial, and immune cells in the trigeminal nociceptive signaling pathway. There is accumulating evidence to support a key role of CGRP in promoting cross excitation within the trigeminal ganglion that may help to explain the high co-morbidity of migraine with rhinosinusitis and temporomandibular joint disorder. In addition, there is emerging evidence that CGRP facilitates and sustains a hyperresponsive neuronal state in migraineurs mediated by reported risk factors such as stress and anxiety. In this review, the significant role of CGRP as a modulator of the trigeminal system will be discussed to provide a better understanding of the underlying pathology associated with the migraine phenotype.
Collapse
|
34
|
Reward deficiency and anti-reward in pain chronification. Neurosci Biobehav Rev 2016; 68:282-297. [DOI: 10.1016/j.neubiorev.2016.05.033] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 12/12/2022]
|
35
|
Yang F, Peng L, Luo J, Yi H, Hu X. Intra-amygdala microinfusion of neuropeptide S attenuates neuropathic pain and suppresses the response of spinal microglia and astrocytes after spinal nerve ligation in rats. Peptides 2016; 82:26-34. [PMID: 27224019 DOI: 10.1016/j.peptides.2016.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/13/2016] [Accepted: 05/15/2016] [Indexed: 01/04/2023]
Abstract
The amygdala circuitry and neuropeptide S (NPS) have been shown to play an important role in the pain modulation. However, the alleviative effect of NPS in amygdala on neuropathic pain (NP) is not fully understood. Here, we demonstrate a possibility that the intra-amygdala microinfusion of NPS attenuates NP symptoms and suppresses the response of spinal microglia and astrocytes after spinal nerve injury. Spinal nerve ligation (SNL) in rats resulted in a striking decline in level of NPS and density of NPS-immunopositive cells in amygdala. SNL rats randomly received chronic bilateral microinjections of NPS (1, 10 and 100pmol/side) or saline into the amygdala via cannulas on days 3, 6, 9, 12, 15 and 18 post-surgery. Chronic treatment with NPS increased thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT) on day 11-21 post-SNL. The simultaneous treatment with SHA68 as non-peptide NPS receptor antagonist decreased the TWL and MWT, and reversed the inhibitory effects of NPS in SNL rats. NPS also significantly attenuated immunoreactivities of ionized calcium-binding adapter molecule 1 and glial fibrillary acidic protein for microglia and astrocytes. Furthermore, the elevated levels of inflammatory mediators and expressions of nuclear factor κB p65 and CX3C chemokine receptor 1 due to SNL were significantly attenuated by NPS in amygdala. These effects of NPS were also counteracted by SHA 68. SHA 68 per se deteriorated the symptom of NP and the response of spinal microglia and astrocytes in SNL rats. Our study identified a protective role for NPS in amygdala against the development of NP, possibly attributing to its anti-inflammatory activity and inhibition of spinal microglia and astrocytes.
Collapse
Affiliation(s)
- Fengrui Yang
- Department of Anesthesiology, the First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Liangyu Peng
- Department of Anesthesiology, the First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Jingjing Luo
- Department of Anesthesiology, the First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Han Yi
- Department of Anesthesiology, the First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Xiaoling Hu
- Department of Anesthesiology, the First Affiliated Hospital of University of South China, Hengyang 421001, China.
| |
Collapse
|
36
|
|
37
|
Hammack SE, May V. Pituitary adenylate cyclase activating polypeptide in stress-related disorders: data convergence from animal and human studies. Biol Psychiatry 2015; 78:167-77. [PMID: 25636177 PMCID: PMC4461555 DOI: 10.1016/j.biopsych.2014.12.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/13/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022]
Abstract
The maladaptive expression and function of several stress-associated hormones have been implicated in pathological stress and anxiety-related disorders. Among these, recent evidence has suggested that pituitary adenylate cyclase activating polypeptide (PACAP) has critical roles in central neurocircuits mediating stress-related emotional behaviors. We describe the PACAPergic systems, the data implicating PACAP in stress biology, and how altered PACAP expression and signaling may result in psychopathologies. We include our work implicating PACAP signaling within the bed nucleus of the stria terminalis in mediating the consequences of stressor exposure and relatedly, describe more recent studies suggesting that PACAP in the central nucleus of the amygdala may impact the emotional aspects of chronic pain states. In aggregate, these results are consistent with data suggesting that PACAP dysregulation is associated with posttraumatic stress disorder in humans.
Collapse
Affiliation(s)
- Sayamwong E. Hammack
- Department of Psychological Science, University of Vermont, John Dewey Hall, 2 Colchester Avenue, Burlington, Vermont 05405-0134, Phone: 802.656.1041, Fax: 802.656.8783
| | - Victor May
- Department of Neurological Sciences, University of Vermont College of Medicine, 149 Beaumont Avenue, HSRF 428, Burlington, VT 05405, Phone: 802.656.4579
| |
Collapse
|
38
|
CB1 receptors modulate affective behaviour induced by neuropathic pain. Brain Res Bull 2015; 114:42-8. [DOI: 10.1016/j.brainresbull.2015.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/25/2015] [Accepted: 03/30/2015] [Indexed: 11/19/2022]
|
39
|
Guo HL, Xiao Y, Tian Z, Li XB, Wang DS, Wang XS, Zhang ZW, Zhao MG, Liu SB. Anxiolytic effects of sesamin in mice with chronic inflammatory pain. Nutr Neurosci 2015; 19:231-6. [DOI: 10.1179/1476830515y.0000000015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
40
|
Activation of GPR30 attenuates chronic pain-related anxiety in ovariectomized mice. Psychoneuroendocrinology 2015; 53:94-107. [PMID: 25614360 DOI: 10.1016/j.psyneuen.2014.12.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/24/2014] [Accepted: 12/29/2014] [Indexed: 11/21/2022]
Abstract
Estrogen regulates neuroendocrine and inflammatory processes that play critical roles in neuroinflammation, anxiety, and chronic pain. Patients suffering from chronic pain often complain of anxiety. However, limited information is available regarding the neural circuitry of chronic pain-related anxiety and the related function of estrogen. Hindpaw injection of complete Freund's adjuvant (CFA) and chronic constriction injury (CCI) of the sciatic nerve induced notable pain sensitization and anxiety-like behavior in ovariectomized (OVX) mice. We found that the level of G-protein-coupled receptor 30 (GPR30), a membrane estrogen receptor, was significantly increased in the basolateral amygdala (BLA) of ovariectomized (OVX) mice suffering from chronic inflammatory and neuropathic pain. Subcutaneous injection or BLA local infusion of the GPR30 agonist G1 significantly reduced anxiety-like behavior in CFA-injected and CCI-OVX mice; however, this treatment did not alter the nociceptive threshold. GPR30 knock down by shRNA in the BLA of OVX mice inhibited the anxiolytic effects of GPR30 activation. G1 administration reversed the upregulation of GluR1 subunit in AMPA and NR2A-containing NMDA receptors and the downregulation of GABAA receptors in the BLA of CFA-injected and CCI-OVX mice. Electrophysiological recording revealed that GPR30 activation could prevent imbalance between excitatory and inhibitory transmissions in the BLA synapses of CFA-injected OVX mice. In conclusion, GPR30 activation induced anxiolytic effects but did not affect the nociceptive threshold of mice under chronic pain. The anxiolytic effects of GPR30 were partially due to maintaining the balance between excitatory and inhibitory transmissions in the BLA.
Collapse
|
41
|
TACHÉ Y. Corticotrophin-releasing factor 1 activation in the central amygdale and visceral hyperalgesia. Neurogastroenterol Motil 2015; 27:1-6. [PMID: 25557223 PMCID: PMC4389773 DOI: 10.1111/nmo.12495] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 12/20/2022]
Abstract
Corticotropin-releasing factor (CRF)-CRF1 receptor in the brain plays a key role in stress-related alterations of behavior including anxiety/depression, and autonomic and visceral functions. In particular, CRF1 signaling mediates hypersensitivity to colorectal distension (CRD) in various models (early life adverse events, repeated psychological stress, chronic high anxiety, postcolonic inflammation, or repeated nociceptive CRD). So far, knowledge of brain sites involved is limited. A recent article demonstrates in rats that CRF microinjected into the central amygdala (CeA) induces a hyperalgesic response to CRD and enhances the noradrenaline and dopamine levels at this site. The visceral and noradrenaline, unlike dopamine, responses were blocked by a CRF1 antagonist injected into the CeA. Here, we review the emerging role that CRF-CRF1 signaling plays in the CeA to induce visceral hypersensitivity. In the somatic pain field, CRF in the CeA was shown to induce pain sensitization. This is mediated by the activation of postsynaptic CRF1 receptors and protein kinase A signaling that increases N-methyl-d-aspartate receptor neurotransmission. In addition, the activation of tetraethylamonium-sensitive ion channels such as Kv3 accelerates repolarization and firing rate. Whether facilitation of pain transmission underlies CRF action in the CeA-induced visceral hypersensitivity will need to be delineated. CRF1 signaling in the CeA is also an important component of the neuronal circuitry inducing anxiety-like behavior and positioned at the interphase of the reciprocal relationship between pain and affective state. The hyperactivity of this system may represent the neuroanatomical and biochemical substrate contributing to the coexpression of hypersensitivity to CRD and mood disorders in subsets of irritable bowel syndrome patients.
Collapse
Affiliation(s)
- Y. TACHÉ
- Center for Neurobiology of Stress & Women’s Health and CURE: Digestive Diseases Research Center, Digestive Diseases Division, UCLA David Geffen School of Medicine and VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
42
|
Smith ML, Li J, Ryabinin AE. Increased alcohol consumption in urocortin 3 knockout mice is unaffected by chronic inflammatory pain. Alcohol Alcohol 2014; 50:132-9. [PMID: 25451237 DOI: 10.1093/alcalc/agu084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AIMS Stress neurocircuitry may modulate the relationship between alcohol drinking and chronic pain. The corticotropin-releasing factor (CRF) system is crucial for regulation of stress responses. The current study aimed to elucidate the role of the endogenous CRF ligand Urocortin 3 (Ucn3) in the relationship between alcohol drinking behavior and chronic pain using a genetic approach. METHODS Ucn3 (KO) and wildtype (WT) littermates were subjected to a 24-h access drinking procedure prior to and following induction of chronic inflammatory pain. RESULTS Ucn3 KO mice displayed significantly increased ethanol intake and preference compared with WT across the time course. There were no long-term effects of chronic pain on alcohol drinking behavior, regardless of genotype, nor any evidence for alcohol-induced analgesia. CONCLUSION The increased drinking in Ucn3 KO supports a role for this peptide in alcohol-related behavior. These data suggest the necessity for more research exploring the relationship between alcohol drinking, chronic pain and the CRF system in rodent models.
Collapse
Affiliation(s)
- Monique L Smith
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239-3098, USA
| | - Ju Li
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239-3098, USA
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239-3098, USA
| |
Collapse
|
43
|
Parabrachial nucleus (PBn) pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the amygdala: implication for the sensory and behavioral effects of pain. Neuropharmacology 2014; 86:38-48. [PMID: 24998751 DOI: 10.1016/j.neuropharm.2014.06.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 11/22/2022]
Abstract
The intricate relationships that associate pain, stress responses and emotional behavior have been well established. Acute stressful situations can decrease nociceptive sensations and conversely, chronic pain can enhance other pain experiences and heighten the emotional and behavioral consequences of stress. Accordingly, chronic pain is comorbid with a number of behavioral disorders including depression, anxiety abnormalities and associated stress-related disorders including post traumatic stress disorder (PTSD). The central nucleus of the amygdala (CeA) represents a convergence of pathways for pain, stress and emotion, and we have identified pituitary adenylate cyclase activating polypeptide (PACAP) immunoreactivity in fiber elements in the lateral capsular division of the CeA (CeLC). The PACAP staining patterns colocalized in part with those for calcitonin gene related peptide (CGRP); anterograde fiber tracing and excitotoxic lesion studies demonstrated that the CeLC PACAP/CGRP immunoreactivities represented sensory fiber projections from the lateral parabrachial nucleus (LPBn) along the spino-parabrachioamygdaloid tract. The same PBn PACAP/CGRP fiber system also projected to the BNST. As in the BNST, CeA PACAP signaling increased anxiety-like behaviors accompanied by weight loss and decreased feeding. But in addition to heightened anxiety-like responses, CeA PACAP signaling also altered nociception as reflected by decreased latency and threshold responses in thermal and mechanical sensitivity tests, respectively. From PACAP expression in major pain pathways, the current observations are novel and suggest that CeA PACAP nociceptive signaling and resulting neuroplasticity via the spino-parabrachioamygdaloid tract may represent mechanisms that associate chronic pain with sensory hypersensitivity, fear memory consolidation and severe behavioral disorders.
Collapse
|
44
|
Liu SB, Zhao R, Li XS, Guo HJ, Tian Z, Zhang N, Gao GD, Zhao MG. Attenuation of reserpine-induced pain/depression dyad by gentiopicroside through downregulation of GluN2B receptors in the amygdala of mice. Neuromolecular Med 2014; 16:350-9. [PMID: 24584520 DOI: 10.1007/s12017-013-8280-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/20/2013] [Indexed: 01/05/2023]
Abstract
Epidemiological studies demonstrate that pain frequently occurs comorbid with depression. Gentiopicroside (Gent) is a secoiridoid compound isolated from Gentiana lutea that exhibits analgesic properties and inhibits the expression of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors in the anterior cingulate cortex of mice. However, the effects of Gent on the reserpine-induced pain/depression dyad and its underlying mechanisms are unclear. Reserpine administration (1 mg/kg subcutaneous daily for 3 days) caused a significant decrease in the nociceptive threshold as evidenced by the reduced paw withdrawal latency in response to a radiant heat source and mechanical allodynia. Behavioral detection indicated a significant increase in immobility time during a forced swim test, as well as decreased time in the central area and total travel distance in an open field test. Furthermore, reserpinized animals exhibited increased oxidative stress. Systemic Gent administration dose-dependently ameliorated the behavioral deficits associated with reserpine-induced pain/depression dyad. At the same time, the decrease in biogenic amine levels (norepinephrine, dopamine, and serotonin) was integrated with the increase in caspase-3 levels and GluN2B-containing NMDA receptors in the amygdala of the reserpine-injected mice. Gent significantly reversed the changes in the levels of biogenic amines, caspase-3, and GluN2B-containing NMDA receptors in amygdala. However, Gent did not affect the expression of GluN2A-containing NMDA receptors. The inhibitory effects of Gent on oxidative stress were occluded by simultaneous treatment of GluN2B receptors antagonist Ro25-6981. Our study provides strong evidence that Gent inhibits reserpine-induced pain/depression dyad by downregulating GluN2B receptors in the amygdala.
Collapse
Affiliation(s)
- Shui-bing Liu
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Le Coz GM, Fiatte C, Anton F, Hanesch U. Differential neuropathic pain sensitivity and expression of spinal mediators in Lewis and Fischer 344 rats. BMC Neurosci 2014; 15:35. [PMID: 24575861 PMCID: PMC3975939 DOI: 10.1186/1471-2202-15-35] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/25/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Altered hypothalamo-pituitary-adrenal (HPA) axis activity may be accompanied by a modulation of pain sensitivity. In a model of neuropathic pain (chronic constriction injury, CCI) we investigated the onset and maintenance of mechanical allodynia/hyperalgesia and the expression of biochemical mediators potentially involved in spinal cell modulation in two rat strains displaying either hypo- (Lewis-LEW) or hyper- (Fischer 344-FIS) reactivity of the HPA axis. RESULTS Mechanical pain thresholds and plasmatic corticosterone levels were assessed before and during periods of 4 or 21 days following CCI surgery. At the end of the respective protocols, the mRNA expression of glial cell markers (GFAP and Iba1) and glutamate transporters (EAAT3 and EAAT2) were examined. We observed a correlation between the HPA axis reactivity and the pain behavior but not as commonly described in the literature; LEW rats seemed to be less sensitive than FIS from 4 to 14 days after the CCI surgery when looking at the mechanical allodynia/hyperalgesia. However, the biochemical spinal markers expression we observed is conflicting. CONCLUSION We did not find a specific causal relation between the pain behavior and the glial cell activation or the expression of the glutamate transporters, suggesting that the interaction between the HPA axis and the spinal activation pattern is more complex in a context of neuropathic pain.
Collapse
Affiliation(s)
| | | | | | - Ulrike Hanesch
- Laboratory of Neurophysiology & Psychobiology, University of Luxembourg, 162a, avenue de la Faïencerie, Luxembourg, L-1511, Luxembourg.
| |
Collapse
|
46
|
Baiamonte BA, Valenza M, Roltsch EA, Whitaker AM, Baynes BB, Sabino V, Gilpin NW. Nicotine dependence produces hyperalgesia: role of corticotropin-releasing factor-1 receptors (CRF1Rs) in the central amygdala (CeA). Neuropharmacology 2013; 77:217-23. [PMID: 24107576 DOI: 10.1016/j.neuropharm.2013.09.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/23/2013] [Accepted: 09/26/2013] [Indexed: 12/29/2022]
Abstract
Because tobacco use has a large negative health and financial impact on society, it is critical to identify the factors that drive excessive use. These factors include the aversive withdrawal symptoms that manifest upon cessation of tobacco use, and may include increases in nociceptive processing. Corticotropin-releasing factor (CRF) signalling in the central amygdala (CeA) has been attributed an important role in: (1) central processing of pain, (2) excessive nicotine use that results in nicotine dependence, and (3) in mediating the aversive symptoms that manifest following cessation of tobacco exposure. Here, we describe three experiments in which the main hypothesis was that CRF/CRF1 receptor (CRF1R) signalling in the CeA mediates nicotine withdrawal-induced increases in nociceptive sensitivity in rats that are dependent on nicotine. In Experiment 1, nicotine-dependent rats withdrawn from chronic intermittent (14-h/day) nicotine vapor exhibited decreased hind paw withdrawal latencies in response to a painful thermal stimulus in the Hargreaves test, and this effect was attenuated by systemic administration of the CRF1R antagonist, R121919. In Experiment 2, nicotine-dependent rats withdrawn from nicotine vapor exhibited robust increases in mRNA for CRF and CRF1Rs in CeA. In Experiment 3, intra-CeA administration of R121919 reduced thermal nociception only in nicotine-dependent rats. Collectively, these results suggest that nicotine dependence increases CRF/CRF1R signalling in the CeA that mediates withdrawal-induced increases in sensitivity to a painful stimulus. Future studies will build on these findings by exploring the hypothesis that nicotine withdrawal-induced reduction in pain thresholds drive excessive nicotine use via CRF/CRF1R signalling pathways.
Collapse
Affiliation(s)
- Brandon A Baiamonte
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| | - Marta Valenza
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA.
| | - Emily A Roltsch
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| | - Annie M Whitaker
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| | - Brittni B Baynes
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA.
| | - Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA; Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
47
|
Analgesia Is Enhanced by Providing Information regarding Good Outcomes Associated with an Odor: Placebo Effects in Aromatherapy? EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:921802. [PMID: 23840270 PMCID: PMC3691937 DOI: 10.1155/2013/921802] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/10/2013] [Accepted: 05/11/2013] [Indexed: 11/17/2022]
Abstract
No previous report has described whether information regarding an odor used in aromatherapy has placebo effects. We investigated whether placebo analgesia was engendered by verbal information regarding the analgesic effects of an odor. Twelve of 24 subjects were provided with the information that a lavender odor would reduce pain (informed), whereas the other 12 subjects were not (not-informed). Concurrent with respiration recording, the subjects were administered a lavender-odor or no-odor treatment during application of painful stimulation to the forefinger. The subjects reported their experience of pain and its unpleasantness on a visual analogue scale after the painful stimulation. The lavender-odor treatment significantly alleviated pain and unpleasantness compared with the no-odor treatment in the informed (P < 0.01) and not-informed groups (P < 0.05). The no-odor treatment in the informed group significantly alleviated pain and unpleasantness compared with both the no-odor and lavender-odor treatments in the not-informed group (P < 0.05). Rapid and shallow breathing induced by the painful stimulation became slow and deep during the lavender-odor and no-odor treatments in both groups. Information regarding a lavender odor, the lavender odor itself, and slower breathing contributed to reduced perceptions of pain and unpleasantness during painful stimulation, suggesting that placebo effects significantly contribute to analgesia in aromatherapy.
Collapse
|
48
|
Marcello L, Cavaliere C, Colangelo A, Bianco M, Cirillo G, Alberghina L, Papa M. Remodelling of supraspinal neuroglial network in neuropathic pain is featured by a reactive gliosis of the nociceptive amygdala. Eur J Pain 2012. [DOI: 10.1002/j.1532-2149.2012.00255.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- L. Marcello
- Laboratory of Morphology of Neural Networks; Department of Medicina Pubblica Clinica e Preventiva; Second University of Napoli; Italy
| | - C. Cavaliere
- Laboratory of Morphology of Neural Networks; Department of Medicina Pubblica Clinica e Preventiva; Second University of Napoli; Italy
| | | | - M.R. Bianco
- Laboratory of Morphology of Neural Networks; Department of Medicina Pubblica Clinica e Preventiva; Second University of Napoli; Italy
| | - G. Cirillo
- Laboratory of Morphology of Neural Networks; Department of Medicina Pubblica Clinica e Preventiva; Second University of Napoli; Italy
| | | | | |
Collapse
|
49
|
Simons LE, Moulton EA, Linnman C, Carpino E, Becerra L, Borsook D. The human amygdala and pain: evidence from neuroimaging. Hum Brain Mapp 2012; 35:527-38. [PMID: 23097300 DOI: 10.1002/hbm.22199] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/19/2012] [Accepted: 08/21/2012] [Indexed: 11/06/2022] Open
Abstract
The amygdala, a small deep brain structure involved in behavioral processing through interactions with other brain regions, has garnered increased attention in recent years in relation to pain processing. As pain is a multidimensional experience that encompasses physical sensation, affect, and cognition, the amygdala is well suited to play a part in this process. Multiple neuroimaging studies of pain in humans have reported activation in the amygdala. Here, we summarize these studies by performing a coordinate-based meta-analysis within experimentally induced and clinical pain studies using an activation likelihood estimate analysis. The results are presented in relation to locations of peak activation within and outside of amygdala subregions. The majority of studies identified coordinates consistent with human amygdala cytoarchitecture indicating reproducibility in neuroanatomical labeling across labs, analysis methods, and imaging modalities. Differences were noted between healthy and clinical pain studies: in clinical pain studies, peak activation was located in the laterobasal region, suggestive of the cognitive-affective overlay present among individuals suffering from chronic pain; while the less understood superficial region of the amygdala was prominent among experimental pain studies. Taken together, these findings suggest several important directions for further research exploring the amygdala's role in pain processing.
Collapse
Affiliation(s)
- Laura E Simons
- P.A.I.N. Group, Boston Children's Hospital, Center for Pain and the Brain, Harvard Medical School, Boston, Massachusetts; Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | |
Collapse
|