1
|
Alenezi FO, Nader MA, El-Kashef DH, Abdelmageed ME. Dapansutrile mitigates concanavalin A- induced autoimmune hepatitis: Involvement of NLRP3/IL-1β and JNK/ p38 MAPK pathways. Biomed Pharmacother 2025; 186:118026. [PMID: 40164046 DOI: 10.1016/j.biopha.2025.118026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025] Open
Abstract
AIM Dapansutrile (Dapan) is a newly developed anti-inflammatory molecule that supresses the production of NLRP3 inflammasome-dependent IL-1β. Its hepatoprotective effects against autoimmune hepatitis (AIH) have not yet been explored. Hence, this study was conducted to examine the possible protective effects of Dapan against concanavalin A (Con A)-induced hepatitis in mice. MAIN METHODS Mice were randomly divided into five groups (n = 6): control, Con A (15 mg/kg), Dapan (60 mg/kg), Dapan (6 mg/kg) + Con A, and Dapan (60 mg/kg) + Con A. Mice were euthanised at the end of the study, and blood and hepatic tissues were collected. KEY FINDINGS Hepatic function testing using lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase levels, in addition to hepatic tissue histological examination, revealed that intraperitoneal administration of Dapan noticeably ameliorated Con A-induced hepatic enzyme impairment and histopathological disruption. Moreover, Dapan-treated mice had significantly lower malondialdehyde hepatic content and elevated reduced glutathione, superoxide dismutase, and total antioxidant capacity levels than non-treated mice in a dose-dependent manner. The Dapan-treated groups showed significantly lower levels of the inflammatory mediators, NLRP3, TNF-α, IL-6, and IL-1β, in addition to the immunomodulators CD8, CD4, INF-γ, and NFκB and inhibition of JNK and p38 MAPK levels compared to the Con A-treated group. SIGNIFICANCE Our results showed that intraperitoneal administration of Dapan could be a therapeutic opportunity to inhibit the development of AIH via inhibition of inflammatory pathways.
Collapse
Affiliation(s)
- Fahad O Alenezi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Forensic Toxicology Services Center, Ministry of health, Qassim, Saudi Arabia
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
2
|
Galicia-Moreno M, Monroy-Ramirez HC, Caloca-Camarena F, Arceo-Orozco S, Muriel P, Sandoval-Rodriguez A, García-Bañuelos J, García-González A, Navarro-Partida J, Armendariz-Borunda J. A new opportunity for N-acetylcysteine. An outline of its classic antioxidant effects and its pharmacological potential as an epigenetic modulator in liver diseases treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2365-2386. [PMID: 39436429 DOI: 10.1007/s00210-024-03539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
Liver diseases represent a worldwide health problem accountable for two million deaths per year. Oxidative stress is critical for the development of these diseases. N-acetyl cysteine (NAC) is effective in preventing liver damage, both in experimental and clinical studies, and evidence has shown that the pharmacodynamic mechanisms of NAC are related to its antioxidant nature and ability to modulate key signaling pathways. Here, we provide a comprehensive description of the beneficial effects of NAC in the treatment of liver diseases, addressing the first evidence of its role as a scavenger and precursor of reduced glutathione, along with studies showing its immunomodulatory action, as well as the ability of NAC to modulate epigenetic hallmarks. We searched the PubMed database using the following keywords: oxidative stress, liver disease, epigenetics, antioxidants, NAC, and antioxidant therapies. There was no time limit to gather all available information on the subject. NAC has shown efficacy in treating liver damage, exerting mechanisms of action different from those of free radical scavengers. Like different antioxidant therapies, its effectiveness and safety are related to the administered dose; therefore, designing new pharmacological formulations for this drug is imperative to achieve an adequate response. Finally, there is still much to explore regarding its effect on epigenetic marker characteristics of liver damage, turning it into a drug with broad therapeutic potential. According to the literature reviewed, NAC could be an appropriate option in clinical studies related to hepatic injury and, in the future, a repurposing alternative for treating liver diseases.
Collapse
Affiliation(s)
- Marina Galicia-Moreno
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Hugo Christian Monroy-Ramirez
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Fernando Caloca-Camarena
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
- Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Scarlet Arceo-Orozco
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Pablo Muriel
- Laboratorio de Hepatologia Experimental, Departamento de Farmacologia, Cinvestav-IPN, 07000, Mexico City, Mexico
| | - Ana Sandoval-Rodriguez
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Jesús García-Bañuelos
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | | | | | - Juan Armendariz-Borunda
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico.
- Tecnológico de Monterrey, EMCS, 45201, Zapopan, Jalisco, Mexico.
| |
Collapse
|
3
|
Carballo-López GI, Ojeda-González J, Martínez-García KD, Cervantes-Luevano KE, Moreno-Ulloa A, Castro-Ceseña AB. Enhanced anti-inflammatory and anti-fibrotic effects of nanoparticles loaded with a combination of Aloe vera- Moringa oleifera extracts. Mol Omics 2025. [PMID: 39878065 DOI: 10.1039/d4mo00195h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Metabolic associated steatohepatitis characterized by lipid accumulation, inflammation and fibrosis, is a growing global health issue, contributing to severe liver-related mortality. With limited effective treatments available, there is an urgent need for novel therapeutic strategies. Moringa oleifera, rich in antioxidants, offers potential for combating steatohepatitis, but its cytotoxicity presents challenges. Aloe vera, renowned for its cytocompatibility and anti-inflammatory effects, shows promise in mitigating these risks. Using infrared spectrometry and mass spectrometry, we identified 1586 metabolites from both plants across 84 chemical classes. By encapsulating these phytochemicals in nanoparticles, we achieved increased solubility, cytocompatibility, and gene modulation to hepatic stellate cells affected by steatohepatitis. Chemoinformatic analysis revealed bioactive metabolites, including hesperetin analogs, known to inhibit TGF-β. Our results demonstrate that these nanoparticles not only improved gene expression modulation related to metabolic associated steatohepatitis, particularly TGF-β and COL1A1, but also outperformed free compounds, highlighting their potential as a novel therapeutic approach.
Collapse
Affiliation(s)
- Gabriela I Carballo-López
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Jhordan Ojeda-González
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Kevin D Martínez-García
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Karla E Cervantes-Luevano
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Aldo Moreno-Ulloa
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Ana B Castro-Ceseña
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
- CONAHCYT - Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico
| |
Collapse
|
4
|
Lv M, Guo S, Yang H, Wang Y, Li Y, Li Y, Yi H, He H, Li Z. Synthesis and Anti-Liver Fibrosis Research of Aspartic Acid Derivatives. Molecules 2024; 29:4774. [PMID: 39407703 PMCID: PMC11477965 DOI: 10.3390/molecules29194774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/26/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Liver fibrosis plays an important role in the progression of liver disease, but there is a severe shortage of direct and efficacious pharmaceutical clinical interventions. Literature research indicates that aspartic acid exhibits hepatoprotective properties. In this paper, 32 target compounds were designed and synthesized utilizing aspartic acid as the lead compound, of which 22 were new compounds not reported in the literature. These compounds were screened for their inhibitory effects on the COL1A1 promoter to assess in vitro anti-liver fibrosis activity and summarized structure-activity relationships. Four compounds exhibited superior potency with inhibition rates ranging from 66.72% to 97.44%, substantially higher than EGCG (36.46 ± 4.64%) and L-Asp (11.33 ± 0.35%). In an LPS-induced inflammation model of LX-2 cells, both 41 and 8a could inhibit the activation of LX-2 cells, reducing the expression of COL1A1, fibronectin, and α-SMA. Upon further investigation, 41 and 8a ameliorated liver fibrosis by inhibiting the IKKβ-NF-κB signaling pathway to alleviate inflammatory response. Overall, the study evaluated the anti-liver fibrosis effects of aspartic acid derivatives, identified the potency of 41, and conducted a preliminary exploration of mechanisms, laying the foundation for the discovery of novel anti-liver fibrosis agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hongwei He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.L.); (S.G.); (H.Y.); (Y.W.); (Y.L.); (Y.L.); (H.Y.)
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.L.); (S.G.); (H.Y.); (Y.W.); (Y.L.); (Y.L.); (H.Y.)
| |
Collapse
|
5
|
Sweilam SH, Ali DE, Atwa AM, Elgindy AM, Mustafa AM, Esmail MM, Alkabbani MA, Senna MM, El-Shiekh RA. A First Metabolite Analysis of Norfolk Island Pine Resin and Its Hepatoprotective Potential to Alleviate Methotrexate (MTX)-Induced Hepatic Injury. Pharmaceuticals (Basel) 2024; 17:970. [PMID: 39065818 PMCID: PMC11279851 DOI: 10.3390/ph17070970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Drug-induced liver injury (DILI) represents a significant clinical challenge characterized by hepatic dysfunction following exposure to diverse medications. Methotrexate (MTX) is a cornerstone in treating various cancers and autoimmune disorders. However, the clinical utility of MTX is overshadowed by its ability to induce hepatotoxicity. The current study aims to elucidate the hepatoprotective effect of the alcoholic extract of Egyptian Araucaria heterophylla resin (AHR) on MTX-induced liver injury in rats. AHR (100 and 200 mg/kg) significantly decreased hepatic markers (AST, ALT, and ALP), accompanied by an elevation in the antioxidant's markers (SOD, HO-1, and NQO1). AHR extract also significantly inhibited the TGF-β/NF-κB signaling pathway as well as the downstream cascade (IL-6, JAK, STAT-3, and cyclin D). The extract significantly reduced the expression of VEGF and p38 with an elevation in the BCL2 levels, in addition to a significant decrease in the IL-1β and TNF-α levels, with a prominent effect at a high dose (200 mg/kg). Using LC-HRMS/MS analysis, a total of 43 metabolites were tentatively identified, and diterpenes were the major class. This study presents AHR as a promising hepatoprotective agent through inhibition of the TGF-β/NF-κB and JAK/STAT3 pathways, besides its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| | - Dalia E. Ali
- Pharmacognosy and Natural Products Department, Faculty of Pharmacy, Pharos University, Alexandria 21648, Egypt;
| | - Ahmed M. Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Ali M. Elgindy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Aya M. Mustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Manar M. Esmail
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Mahmoud Abdelrahman Alkabbani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Mohamed Magdy Senna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Riham A. El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
6
|
Sharma K, Sharma V. Allium sativum Essential Oil Supplementation Reverses the Hepatic Inflammation, Genotoxicity and Apoptotic Effects in Swiss Albino Mice Intoxicated with the Lead Nitrate. Biol Trace Elem Res 2024; 202:3258-3277. [PMID: 37964042 DOI: 10.1007/s12011-023-03924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023]
Abstract
Prolonged lead (Pb) exposure impairs human health due to its interference with physiological and biochemical processes. Therefore, it is necessary to investigate natural therapeutics to alleviate Pb-induced intoxication. In the current investigation, essential oil extracted from the fresh bulbs of Allium sativum was considered as a natural remedy. Initially, in vitro antioxidant and anti-inflammatory activity of A. sativum essential oil (ASEO) were explored. The results reported that ASEO exhibits potent antioxidant and anti-inflammatory potential. Additionally, an in vivo study was conducted to elucidate its preventive role against Lead-nitrate (LN)-induced hepatic damage in Swiss albino mice. The experimental mice were allocated into six groups: Control, LN-intoxicated group (50 mg/kg), LN + ASEO (50 mg/kg), LN + ASEO (80 mg/kg), LN + Silymarin (25 mg/kg), and LN + vehicle oil control group. The entire duration of the study was of 30 days. From the results, it was determined that LN exposure elevated the Pb content in hepatic tissues which subsequently increased the serum biomarkers, inflammatory cytokines (NF-kB, TNF-α, IL-6) as well as apoptotic factors (caspase-3, BAX), all of which contribute to DNA damage. Meanwhile, it reduced anti-inflammatory (IFN-γ and IL-10) and anti-apoptotic factors (Bcl-2). Furthermore, Pb accumulation in hepatic tissues changed the histological architecture, which was linked to necrosis, central vein dilation, inflammatory cell infiltration and Kupffer cell activation. In contrast to this, ASEO administration decreased the Pb content, which in turn reduced the level of serum biomarkers, inflammatory and apoptotic factors. At the same time, it increased the anti-inflammatory and anti-apoptotic factors, thereby reduced DNA damage and restored the hepatic histology. In conclusion, exhaustive research is of the utmost demand to elucidate the precise defense mechanisms of ASEO against LN-induced hepatotoxicity.
Collapse
Affiliation(s)
- Kusum Sharma
- Banasthali Vidyapith, Department of Bioscience and Biotechnology, Tonk, Rajasthan, 304022, India
| | - Veena Sharma
- Banasthali Vidyapith, Department of Bioscience and Biotechnology, Tonk, Rajasthan, 304022, India.
| |
Collapse
|
7
|
Liu Y, Dai C, Wang C, Wang J, Yan W, Luo M, Dong J, Li X, Liu X, Lan Y. Raspberry Ketone Prevents LPS-Induced Depression-Like Behaviors in Mice by Inhibiting TLR-4/NF-κB Signaling Pathway via the Gut-Brain Axis. Mol Nutr Food Res 2024; 68:e2400090. [PMID: 38757671 DOI: 10.1002/mnfr.202400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/28/2024] [Indexed: 05/18/2024]
Abstract
SCOPE Depression, a prevalent mental disorder, has significantly impacted the lives of 350 million people, yet it holds promise for amelioration through food-derived phenolics. Raspberries, renowned globally for their delectable flavor, harbor a phenolic compound known as raspberry ketone (RK). However, the impact of RK on depressive symptoms remains ambiguous. This study aims to investigate the impact of RK on lipopolysaccharide (LPS)-induced depressed mice and elucidates its potential mechanisms, focusing on the gut-brain axis. METHODS AND RESULTS Through behavioral tests, RK exerts a notable preventive effect on LPS-induced depression-like behaviors in mice. RK proves capable of attenuating gut inflammation, repairing gut barrier impairment, modulating the composition of the gut microbiome (Muribaculaceae, Streptococcus, Lachnospiraceae, and Akkermansia), and promoting the production of short-chain fatty acids. Furthermore, RK alleviates neuroinflammation by suppressing the TLR-4/NF-κB pathway and bolsters synaptic function by elevating levels of neurotrophic factors and synapse-associated proteins. CONCLUSION The current study provides compelling evidence that RK effectively inhibits the TLR-4/NF-κB pathway via the gut-brain axis, leading to the improvement of LPS-induced depression-like behaviors in mice. This study addresses the research gap in understanding the antidepressant effects of RK and illuminates the potential of utilizing RK as a functional food for preventing depression.
Collapse
Affiliation(s)
- Yike Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Chenlin Dai
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Chendi Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Jiayao Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Weikang Yan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Maowen Luo
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Juane Dong
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiulian Li
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Ying Lan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
8
|
Vargas-Pozada EE, Ramos-Tovar E, Muriel P. The importance of fundamental pharmacology in fighting liver diseases. Ann Hepatol 2024; 29:101286. [PMID: 38266675 DOI: 10.1016/j.aohep.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 01/26/2024]
Affiliation(s)
- Eduardo E Vargas-Pozada
- Eduardo Enrique Vargas-Pozada, Pablo Muriel, Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Apartado 14-740 Mexico City, Mexico
| | - Erika Ramos-Tovar
- Erika Ramos-Tovar, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina-IPN, Apartado Postal 11340, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, México
| | - Pablo Muriel
- Eduardo Enrique Vargas-Pozada, Pablo Muriel, Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Apartado 14-740 Mexico City, Mexico.
| |
Collapse
|
9
|
Mostafa DK, Eissa MM, Ghareeb DA, Abdulmalek S, Hewedy WA. Resveratrol protects against Schistosoma mansoni-induced liver fibrosis by targeting the Sirt-1/NF-κB axis. Inflammopharmacology 2024; 32:763-775. [PMID: 38041753 PMCID: PMC10907480 DOI: 10.1007/s10787-023-01382-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/19/2023] [Indexed: 12/03/2023]
Abstract
Hepatic schistosomiasis is a prevalent form of chronic liver disease that drastically affects human health. Nevertheless, an antifibrotic drug that could suppress the development of hepatic fibrosis does not exist yet. The current study aimed to evaluate the effect of resveratrol, a natural polyphenol with multiple biological activities, on Schistosoma mansoni (S. mansoni)-induced hepatic fibrosis and delineate the underlying molecular mechanism. Swiss male albino mice were randomly assigned into infected and non-infected groups. Hepatic schistosomiasis infection was induced via exposure to S. mansoni cercariae. 6 weeks later, resveratrol was administrated either as 20 mg/kg/day or 100 mg/kg/day for 4 weeks to two infected groups. Another group received vehicle and served as infected control group. At the end of the study, portal hemodynamic, biochemical, and histopathological evaluation of liver tissues were conducted. Remarkably, resveratrol significantly reduced portal pressure, portal and mesenteric flow in a dose-dependent manner. It improved several key features of hepatic injury as evidenced biochemically by a significant reduction of bilirubin and liver enzymes, and histologically by amelioration of the granulomatous and inflammatory reactions. In line, resveratrol reduced the expression of pro-inflammatory markers; TNF-α, IL-1β and MCP-1 mRNA, together with fibrotic markers; collagen-1, TGF-β1 and α-SMA. Moreover, resveratrol restored SIRT1/NF-κB balance in hepatic tissues which is the main switch-off control for all the fibrotic and inflammatory mechanisms. Taken together, it can be inferred that resveratrol possesses a possible anti-fibrotic effect that can halt the progression of hepatic schistosomiasis via targeting SIRT1/ NF-κB signaling.
Collapse
Affiliation(s)
- Dalia Kamal Mostafa
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Al-Moassat Medical Campus, Elhadara, Alexandria, 21561, Egypt
| | - Maha M Eissa
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Doaa A Ghareeb
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Shaymaa Abdulmalek
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Wafaa A Hewedy
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Al-Moassat Medical Campus, Elhadara, Alexandria, 21561, Egypt.
| |
Collapse
|
10
|
Ye M, Liu C, Liu J, Lu F, Xue J, Li F, Tang Y. Scoparone inhibits the development of hepatocellular carcinoma by modulating the p38 MAPK/Akt/NF-κB signaling in nonalcoholic fatty liver disease mice. ENVIRONMENTAL TOXICOLOGY 2024; 39:551-561. [PMID: 37436232 DOI: 10.1002/tox.23851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND AND STUDY AIM The mechanisms underlying the progression of non-alcoholic fatty liver disease (NAFLD) into hepatocellular carcinoma (HCC) remains confusing and the therapeutics approaches are also challenging. Here, we aimed to investigate the effects of scoparone on the treatment of HCC stemmed from NAFLD and the underlying mechanisms. MATERIALS AND METHODS A model of NAFLD-HCC was created in mice, and these mice were treated with scoparone. Biochemical assays were conducted to assess the levels of biochemical markers. Tumors were evaluated through morphological examination. Histopathological analyses were performed using oil red O, Hematoxylin and Eosin, and Masson coloration assays. Immunohistochemistry (IHC) and RT-PCR were performed to analyze protein expression and measure mRNA expression levels, respectively. RESULTS Scoparone could ameliorate the pathological alterations observed in NAFLD-HCC mouse model. IHC analysis indicated an upregulation of NF-κB p65 expression in both NAFLD and NAFLD-HCC models, which was subsequently reverted by scoparone administration. Furthermore, scoparone treatment resulted in a reversal of the increased mRNA expression levels of NF-κB target genes, including TNF-α, MCP-1, iNOS, COX-2, NF-κB, and MMP-9, which were originally elevated in the NAFLD-HCC condition. Additionally, scoparone exhibited a capacity to counteract the activation of the MAPK/Akt signaling in the NAFLD-HCC model. CONCLUSION These findings suggest that scoparone holds promise as a potential therapeutic agent for NAFLD-associated HCC, and its model of action may involve the regulation of inflammatory pathways governed by the MAPK/Akt/NF-κB signaling cascade.
Collapse
Affiliation(s)
- Miaoqing Ye
- Department of Liver Disease, Shaanxi Provincial Hospital of Chinese Medicine, Xi'an, China
| | - Chunyan Liu
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xian yang, China
| | - Jiaojiao Liu
- Department of Liver Disease, Shaanxi Provincial Hospital of Chinese Medicine, Xi'an, China
| | - Fenping Lu
- Literature research institute, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | | | - Fenping Li
- Department of Liver Disease, Shaanxi Provincial Hospital of Chinese Medicine, Xi'an, China
| | - Yinghui Tang
- Department of Liver Disease, Shaanxi Provincial Hospital of Chinese Medicine, Xi'an, China
| |
Collapse
|
11
|
Jiang Z, Liu L, Su H, Cao Y, Ma Z, Gao Y, Huang D. Curcumin and analogues in mitigating liver injury and disease consequences: From molecular mechanisms to clinical perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155234. [PMID: 38042008 DOI: 10.1016/j.phymed.2023.155234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Liver injury is a prevalent global health concern, impacting a substantial number of individuals and leading to elevated mortality rates and socioeconomic burdens. Traditional primary treatment options encounter resource constraints and high costs, prompting exploration of alternative adjunct therapies, such as phytotherapy. Curcumin demonstrates significant therapeutic potential across various medical conditions, particularly emerging as a promising candidate for liver injury treatment. PURPOSE This study aims to provide current evidence maps of curcumin and its analogs in the context of liver injury, covering aspects of biosafety, toxicology, and clinical trials. Importantly, it seeks to summarize the intricate mechanisms modulated by curcumin. METHODS We conducted a comprehensive search of MEDLINE, Web of Science, and Embase up to July 2023. Titles and abstracts were reviewed to identify studies that met our eligibility criteria. The screening process involved three authors independently assessing the potential of curcumin mitigating liver injury and its disease consequences by reviewing titles, abstracts, and full texts. RESULTS Curcumin and its analogs have demonstrated low toxicity in vitro and in vivo. However, the limited bioavailability has hindered their advanced use in liver injury. This limitation can potentially be addressed by nano-curcumin and emerging drug delivery systems. Curcumin plays a role in alleviating liver injury by modulating the antioxidant system, as well as cellular and molecular pathways. The specific mechanisms involve multiple pathways, such as NF-κB, p38/MAPK, and JAK2/STAT3, and the pro-apoptosis Bcl-2/Bax/caspase-3 axis in damaged cells. Additionally, curcumin targets nutritional metabolism, regulating the substance in liver cells and tissues. The microenvironment associated with liver injury, like extracellular matrix and immune cells and factors, is also regulated by curcumin. Initial evaluation of curcumin and its analogs through 12 clinical trials demonstrates their potential application in liver injury. CONCLUSION Curcumin emerges as a promising phytomedicine for liver injury owing to its effectiveness in hepatoprotection and low toxicity profile. Nevertheless, in-depth investigations are warranted to unravel the complex mechanisms through which curcumin influences liver tissues and overall physiological milieu. Moreover, extensive clinical trials are essential to determine optimal curcumin dosage forms, maximizing its benefits and achieving favorable clinical outcomes.
Collapse
Affiliation(s)
- Zhishen Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hengpei Su
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Zhongkai Ma
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yujie Gao
- Department of Stomatology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Alqahtani QH, Alshehri S, Alhusaini AM, Sarawi WS, Alqarni SS, Mohamed R, Kumar MN, Al-Saab J, Hasan IH. Protective Effects of Sitagliptin on Streptozotocin-Induced Hepatic Injury in Diabetic Rats: A Possible Mechanisms. Diseases 2023; 11:184. [PMID: 38131990 PMCID: PMC10743245 DOI: 10.3390/diseases11040184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Diabetes is a ubiquitous disease that causes several complications. It is associated with insulin resistance, which affects the metabolism of proteins, carbohydrates, and fats and triggers liver diseases such as fatty liver disease, steatohepatitis, fibrosis, and cirrhosis. Despite the effectiveness of Sitagliptin (ST) as an antidiabetic drug, its role in diabetes-induced liver injury is yet to be fully investigated. Therefore, this study aims to investigate the effect of ST on hepatic oxidative injury, inflammation, apoptosis, and the mTOR/NF-κB/NLRP3 signaling pathway in streptozotocin (STZ)-induced liver injury. Rats were allocated into four groups: two nondiabetic groups, control rats and ST rats (100 mg/kg), and two diabetic groups induced by STZ, and they received either normal saline or ST for 90 days. Diabetic rats showed significant hyperglycemia, hyperlipidemia, and elevation in liver enzymes. After STZ induction, the results revealed remarkable increases in hepatic oxidative stress, inflammation, and hepatocyte degeneration. In addition, STZ upregulated the immunoreactivity of NF-κB/p65, NLRP3, and mTOR but downregulated IKB-α in liver tissue. The use of ST mitigated metabolic and hepatic changes induced by STZ; it also reduced oxidative stress, inflammation, and hepatocyte degeneration. The normal expression of NF-κB/p65, NLRP3, mTOR, and IKB-α were restored with ST treatment. Based on that, our study revealed for the first time the hepatoprotective effect of ST that is mediated by controlling inflammation, oxidative stress, and mTOR/NF-κB/NLRP3 signaling.
Collapse
Affiliation(s)
- Qamraa H. Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (Q.H.A.); (S.A.); (A.M.A.); (W.S.S.); (J.A.-S.)
| | - Samiyah Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (Q.H.A.); (S.A.); (A.M.A.); (W.S.S.); (J.A.-S.)
| | - Ahlam M. Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (Q.H.A.); (S.A.); (A.M.A.); (W.S.S.); (J.A.-S.)
| | - Wedad S. Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (Q.H.A.); (S.A.); (A.M.A.); (W.S.S.); (J.A.-S.)
| | - Sana S. Alqarni
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia;
| | - Raessa Mohamed
- Department of Histology, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia;
| | - Meha N. Kumar
- Department of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai 200233, China;
| | - Juman Al-Saab
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (Q.H.A.); (S.A.); (A.M.A.); (W.S.S.); (J.A.-S.)
| | - Iman H. Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (Q.H.A.); (S.A.); (A.M.A.); (W.S.S.); (J.A.-S.)
| |
Collapse
|
13
|
Sabir U, Gu HM, Zhang DW. Extracellular matrix turnover: phytochemicals target and modulate the dual role of matrix metalloproteinases (MMPs) in liver fibrosis. Phytother Res 2023; 37:4932-4962. [PMID: 37461256 DOI: 10.1002/ptr.7959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/05/2023] [Accepted: 07/02/2023] [Indexed: 11/10/2023]
Abstract
Extracellular matrix (ECM) resolution by matrix metalloproteinases (MMPs) is a well-documented mechanism. MMPs play a dual and complex role in modulating ECM degradation at different stages of liver fibrosis, depending on the timing and levels of their expression. Increased MMP-1 combats disease progression by cleaving the fibrillar ECM. Activated hepatic stellate cells (HSCs) increase expression of MMP-2, -9, and -13 in different chemicals-induced animal models, which may alleviate or worsen disease progression based on animal models and the stage of liver fibrosis. In the early stage, elevated expression of certain MMPs may damage surrounding tissue and activate HSCs, promoting fibrosis progression. At the later stage, downregulation of MMPs can facilitate ECM accumulation and disease progression. A number of phytochemicals modulate MMP activity and ECM turnover, alleviating disease progression. However, the effects of phytochemicals on the expression of different MMPs are variable and may depend on the disease models and stage, and the dosage, timing and duration of phytochemicals used in each study. Here, we review the most recent advances in the role of MMPs in the effects of phytochemicals on liver fibrogenesis, which indicates that further studies are warranted to confirm and define the potential clinical efficacy of these phytochemicals.
Collapse
Affiliation(s)
- Usman Sabir
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Hong-Mei Gu
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Novi S, Vestuto V, Campiglia P, Tecce N, Bertamino A, Tecce MF. Anti-Angiogenic Effects of Natural Compounds in Diet-Associated Hepatic Inflammation. Nutrients 2023; 15:2748. [PMID: 37375652 DOI: 10.3390/nu15122748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are the most common causes of chronic liver disease and are increasingly emerging as a global health problem. Such disorders can lead to liver damage, resulting in the release of pro-inflammatory cytokines and the activation of infiltrating immune cells. These are some of the common features of ALD progression in ASH (alcoholic steatohepatitis) and NAFLD to NASH (non-alcoholic steatohepatitis). Hepatic steatosis, followed by fibrosis, lead to a continuous progression accompanied by angiogenesis. This process creates hypoxia, which activates vascular factors, initiating pathological angiogenesis and further fibrosis. This forms a vicious cycle of ongoing damage and progression. This condition further exacerbates liver injury and may contribute to the development of comorbidities, such as metabolic syndrome as well as hepatocellular carcinoma. Increasing evidence suggests that anti-angiogenic therapy may have beneficial effects on these hepatic disorders and their exacerbation. Therefore, there is a great interest to deepen the knowledge of the molecular mechanisms of natural anti-angiogenic products that could both prevent and control liver diseases. In this review, we focus on the role of major natural anti-angiogenic compounds against steatohepatitis and determine their potential therapeutic benefits in the treatment of liver inflammation caused by an imbalanced diet.
Collapse
Affiliation(s)
- Sara Novi
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| | - Nicola Tecce
- Unit of Endocrinology, Department of Clinical Medicine and Surgery, Medical School of Naples, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| | - Mario Felice Tecce
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| |
Collapse
|
15
|
Yalcin B, Yay AH, Tan FC, Özdamar S, Yildiz OG. Investigation of the anti-oxidative and anti-inflammatory effects of melatonin on experimental liver damage by radiation. Pathol Res Pract 2023; 246:154477. [PMID: 37148837 DOI: 10.1016/j.prp.2023.154477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/19/2023] [Accepted: 04/20/2023] [Indexed: 05/08/2023]
Abstract
Radiotherapy is one of the inevitable treatment approaches for several types of cancer. We aimed to show the protective and therapeutic effects of daily use of melatonin on liver tissues subjected to a single dose of 10 Gy (gamma-ray) total body radiation. Rats were divided into 6 groups, of which 10 were in each: control, sham, melatonin, radiation, radiation+melatonin, and melatonin+radiation. The rats received 10 Gy of external radiation throughout their entire bodies. The rats were given 10 mg/kg/day of melatonin intraperitoneally before or after radiation treatment, depending on the group. Histological methods, immunohistochemical analysis (Caspase-3, Sirtuin-1, α-SMA, NFΚB-p65), biochemical analysis by ELİSA (SOD, CAT, GSH-PX, MDA, TNF-α, TGF-β, PDGF, PGC-1α) and the Comet assay as a marker of DNA damage were applied to the liver tissues. Histopathological examinations showed structural changes in the liver tissue of the radiation group. Radiation treatment increased the immunoreactivity of Caspase-3, Sirtuin-1 and α-SMA, but these effects were relatively attenuated in the melatonin-treated groups. The melatonin+radiation group had statistically significant results close to those of the control group, in terms of Caspase-3, NFΚB-p65 and Sirtuin-1 immunoreactivity. In melatonin treated groups, hepatic biochemical markers, MDA, SOD, TNF-α, TGF-β levels, and DNA damage parameters were decreased. Administration of melatonin before and after radiation has beneficial effects, but using it before radiation may be more efficient. Accordingly, daily melatonin usage could mitigate ionizing radiation induced damage.
Collapse
Affiliation(s)
- Betul Yalcin
- Adıyaman University, Faculty of Medicine, Department of Histology and Embryology, Adıyaman, Turkey.
| | - Arzu Hanım Yay
- Erciyes University, Faculty of Medicine, Department of Histology and Embryology, Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Fazile Cantürk Tan
- Erciyes University, Faculty of Medicine, Department of Biophysics, Kayseri, Turkey
| | - Saim Özdamar
- Pamukkale University, Faculty of Medicine, Department of Histology and Embryology, Kayseri, Turkey
| | - Oğuz Galip Yildiz
- Erciyes University, Faculty of Medicine, Department of Radiation Oncology, Kayseri, Turkey
| |
Collapse
|
16
|
Vargas-Pozada EE, Ramos-Tovar E, Acero-Hernández C, Cardoso-Lezama I, Galindo-Gómez S, Tsutsumi V, Muriel P. The antioxidant and anti-inflammatory activities of caffeine effectively attenuate nonalcoholic steatohepatitis and thioacetamide-induced hepatic injury in male rats. Can J Physiol Pharmacol 2023; 101:147-159. [PMID: 36744700 DOI: 10.1139/cjpp-2022-0303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The antioxidant effect of caffeine, associated with its ability to upregulate the nuclear factor-E2-related factor-2 (Nrf2)-signaling pathway, was explored as a possible mechanism for the attenuation of liver damage. Nonalcoholic steatohepatitis (NASH) was induced in rats by the administration of a high-fat, high-sucrose, high-cholesterol diet (HFSCD) for 15 weeks. Liver damage was induced in rats by intraperitoneal administration of thioacetamide (TAA) for six weeks. Caffeine was administered orally at a daily dose of 50 mg/kg body weight during the period of NASH induction to evaluate its ability to prevent disease development. Meanwhile, rats received TAA for three weeks, after which 50 mg/kg caffeine was administered daily for three weeks with TAA to evaluate its capacity to interfere with the progression of hepatic injury. HFSCD administration induced hepatic steatosis, decreased Nrf2 levels, increased oxidative stress, induced the activation of nuclear factor-κB (NF-κB), and elevated proinflammatory cytokine levels, leading to hepatic damage. TAA administration produced similar effects, excluding steatosis. Caffeine increased Nrf2 levels; attenuated oxidative stress markers, including malondialdehyde and 4-hydroxynonenal; restored normal, reduced glutathione levels; and reduced NF-κB activation, inflammatory cytokine levels, and damage. Our findings suggest that caffeine may be useful in the treatment of human liver diseases.
Collapse
Affiliation(s)
- Eduardo E Vargas-Pozada
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 14-740, Mexico
| | - Erika Ramos-Tovar
- Postgraduate Studies and Research Section, School of Higher Education in Medicine-IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Consuelo Acero-Hernández
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 14-740, Mexico
| | - Irina Cardoso-Lezama
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 14-740, Mexico
| | - Silvia Galindo-Gómez
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Mexico City 14-740, Mexico
| | - Víctor Tsutsumi
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Mexico City 14-740, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 14-740, Mexico
| |
Collapse
|
17
|
Wei YY, Wang HR, Fan YM, Gu JH, Zhang XY, Gong XH, Hao ZH. Acute liver injury induced by carbon tetrachloride reversal by Gandankang aqueous extracts through nuclear factor erythroid 2-related factor 2 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114527. [PMID: 36628874 DOI: 10.1016/j.ecoenv.2023.114527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/25/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The aims of this study were to evaluated the effect and underlying mechanism of Gandankang (GDK) aqueous extract in alleviating the acute liver injury induced by carbon tetrachloride (CCl4) in vivo and in vitro. Mice were divided into 5 groups (n = 8) for acute (Groups: control, 0.3 % CCl4, BD (Bifendate), 1.17, 2.34 and 4.68 mg/kg GDK) liver injury study. 10 µL/g CCl4 with corn oil were injected interperitoneally (i.p) expect the control group. HepG2 cells were used in vitro study. The results showed GDK can effectively inhibit liver damage and restore the structure and function of the liver. In mechanism, GDK inhibited CCl4-induced liver fibrosis and blocked the NF-κB pathway to effectively inhibit the hepatic inflammatory response; and inhibited CCl4-induced oxidative stress by upregulating the Keap1/Nrf2 pathway-related proteins and promoting the synthesis of several antioxidants. Additionally, it inhibited ferroptosis in the liver by regulating the expression of ACSl4 and GPX4. GDK reduced lipid peroxide generation in vitro by downregulating the production of reactive oxygen species and Fe2+ aggregation, thereby inhibiting ferroptosis and alleviating CCl4-induced hepatocyte injury. In conclusion, we describe the potential complex mechanism underlying the effect of GDK against acute liver injury.
Collapse
Affiliation(s)
- Yuan-Yuan Wei
- Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, China
| | - Hui-Ru Wang
- Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, China
| | - Yi-Meng Fan
- Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, China
| | - Jin-Hua Gu
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, China; China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Xiu-Ying Zhang
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, China; China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Xu-Hao Gong
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, China; China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Zhi-Hui Hao
- Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
18
|
Vargas-Pozada EE, Ramos-Tovar E, Rodriguez-Callejas JD, Cardoso-Lezama I, Galindo-Gómez S, Gil-Becerril K, Vásquez-Garzón VR, Arellanes-Robledo J, Tsutsumi V, Villa-Treviño S, Muriel P. Activation of the NLRP3 inflammasome by CCl 4 exacerbates hepatopathogenic diet-induced experimental NASH. Ann Hepatol 2023; 28:100780. [PMID: 36309184 DOI: 10.1016/j.aohep.2022.100780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Administration of carbon tetrachloride (CCl4), along with an hepatopathogenic diet, is widely employed as a chemical inducer to replicate human nonalcoholic steatohepatitis (NASH) in rodents; however, the role of the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome in this model remains unclear. We aimed to determine the relevance of NLRP3 inflammasome activation in the development of NASH induced by CCl4 along with an hepatopathogenic diet in male Wistar rats. MATERIALS AND METHODS Animals were fed either a high fat, sucrose, and cholesterol diet (HFSCD) or a HFSCD plus intraperitoneal injections of low doses of CCl4 (400 mg/kg) once a week for 15 weeks. Liver steatosis, inflammation, fibrosis, and NLRP3 inflammasome activation were evaluated using biochemical, histological, ultrastructural, and immunofluorescence analyses, western blotting, and immunohistochemistry. RESULTS Our experimental model reproduced several aspects of the human NASH pathophysiology. NLRP3 inflammasome activation was induced by the combined effect of HFSCD plus CCl4 and significantly increased levels of both proinflammatory and profibrogenic cytokines and collagen deposition in the liver; thus, NASH severity was higher in the HFSCD+CCl4 group than that in the HFSCD group, to which CCl4 was not administered. Hepatic stellate cells, the most profibrogenic cells, were activated by HFSCD plus CCl4, as indicated by elevated levels of α-smooth muscle actin. Thus, activation of the NLRP3 inflammasome, triggered by low doses of CCl4, exacerbates the severity of NASH. CONCLUSIONS Our results indicate that NLRP3 inflammasome activation plays a key role and may be an important therapeutic target for NASH treatment.
Collapse
Affiliation(s)
- Eduardo E Vargas-Pozada
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Apartado Postal 14-740, Mexico City, Mexico
| | - Erika Ramos-Tovar
- Postgraduate Studies and Research Section, School of Higher Education in Medicine-IPN, Apartado Postal 11340, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Mexico City, Mexico
| | - Juan D Rodriguez-Callejas
- Laboratory of Neuroplasticity and Neurodegeneration, Department of Pharmacology, Cinvestav-IPN, Apartado Postal 14-740, Mexico City, Mexico
| | - Irina Cardoso-Lezama
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Apartado Postal 14-740, Mexico City, Mexico
| | - Silvia Galindo-Gómez
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Apartado Postal 14-740, Mexico City, Mexico
| | - Karla Gil-Becerril
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Apartado Postal 14-740, Mexico City, Mexico
| | - Verónica Rocío Vásquez-Garzón
- Laboratory of Fibrosis and Cancer, Faculty of Medicine and Surgery. 'Benito Juárez' Autonomous University of Oaxaca, UABJO. Oaxaca, Mexico; National Council of Science and Technology CONACYT. Mexico City, Mexico
| | - Jaime Arellanes-Robledo
- Laboratory of Liver Diseases; National Institute of Genomic Medicine, INMEGEN. Directorate of Catedras; National Council of Science and Technology, CONACYT. Mexico City, Mexico
| | - Víctor Tsutsumi
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Apartado Postal 14-740, Mexico City, Mexico
| | - Saúl Villa-Treviño
- Department of Cell Biology; Cinvestav-IPN, Apartado Postal 14-740, Mexico City, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Apartado Postal 14-740, Mexico City, Mexico.
| |
Collapse
|
19
|
Ramos-Tovar E, Muriel P. Free radicals, antioxidants, nuclear factor-E2-related factor-2 and liver damage. VITAMINS AND HORMONES 2022; 121:271-292. [PMID: 36707137 DOI: 10.1016/bs.vh.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The liver performs various biochemical and molecular functions. Its location as a portal to blood arriving from the intestines makes it susceptible to several insults, leading to diverse pathologies, including alcoholic liver disease, viral infections, nonalcoholic steatohepatitis, and hepatocellular carcinoma, which are causes of death worldwide. Illuminating the molecular mechanism underlying hepatic injury will provide targets to develop new therapeutic strategies to fight liver maladies. In this regard, reactive oxygen species (ROS) are well-recognized mediators of liver damage. ROS induce nuclear factor-κB and the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 inflammasome, which are the main proinflammatory signaling pathways that upregulate several proinflammatory and profibrogenic mediators. Additionally, oxygen-derived free radicals induce hepatic stellate cell activation to produce exacerbated quantities of extracellular matrix proteins, leading to fibrosis, cirrhosis and eventually hepatocellular carcinoma. Exogenous and endogenous antioxidants counteract the harmful effects of ROS, preventing liver necroinflammation and fibrogenesis. Therefore, several researchers have demonstrated that the administration of antioxidants, mainly derived from plants, affords beneficial effects on the liver. Notably, nuclear factor-E2-related factor-2 (Nrf2) is a major factor against oxidative stress in the liver. Increasing evidence has demonstrated that Nrf2 plays an important role in liver necroinflammation and fibrogenesis via the induction of antioxidant response element genes. The use of Nrf2 inducers seems to be an interesting approach to prevent/attenuate hepatic disorders, particularly under conditions where ROS play a causative role.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Postgraduate Studies and Research Section, School of Higher Education in Medicine-IPN, Mexico City, Mexico.
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico.
| |
Collapse
|
20
|
Ge C, Tan J, Lou D, Zhu L, Zhong Z, Dai X, Sun Y, Kuang Q, Zhao J, Wang L, Liu J, Wang B, Xu M. Mulberrin confers protection against hepatic fibrosis by Trim31/Nrf2 signaling. Redox Biol 2022; 51:102274. [PMID: 35240537 PMCID: PMC8891817 DOI: 10.1016/j.redox.2022.102274] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Mulberrin (Mul) is a key component of the traditional Chinese medicine Romulus Mori with various biological functions. However, the effects of Mul on liver fibrosis have not been addressed, and thus were investigated in our present study, as well as the underlying mechanisms. Here, we found that Mul administration significantly ameliorated carbon tetrachloride (CCl4)-induced liver injury and dysfunction in mice. Furthermore, CCl4-triggerd collagen deposition and liver fibrosis were remarkably attenuated in mice with Mul supplementation through suppressing transforming growth factor β1 (TGF-β1)/SMAD2/3 signaling pathway. Additionally, Mul treatments strongly restrained the hepatic inflammation in CCl4-challenged mice via blocking nuclear factor-κB (NF-κB) signaling. Importantly, we found that Mul markedly increased liver TRIM31 expression in CCl4-treated mice, accompanied with the inactivation of NOD-like receptor protein 3 (NLRP3) inflammasome. CCl4-triggered hepatic oxidative stress was also efficiently mitigated by Mul consumption via improving nuclear factor E2-related factor 2 (Nrf2) activation. Our in vitro studies confirmed that Mul reduced the activation of human and mouse primary hepatic stellate cells (HSCs) stimulated by TGF-β1. Consistently, Mul remarkably retarded the inflammatory response and reactive oxygen species (ROS) accumulation both in human and murine hepatocytes. More importantly, by using hepatocyte-specific TRIM31 knockout mice (TRIM31Hep-cKO) and mouse primary hepatocytes with Nrf2-knockout (Nrf2KO), we identified that the anti-fibrotic and hepatic protective effects of Mul were TRIM31/Nrf2 signaling-dependent, relieving HSCs activation and liver fibrosis. Therefore, Mul-ameliorated hepatocyte injury contributed to the suppression of HSCs activation by improving TRIM31/Nrf2 axis, thus providing a novel therapeutic strategy for hepatic fibrosis treatment.
Collapse
Affiliation(s)
- Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China.
| | - Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Zixuan Zhong
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Xianling Dai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Yan Sun
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Qin Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Junjie Zhao
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Longyan Wang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Jin Liu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China.
| | - Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China.
| |
Collapse
|
21
|
Jiao F, Zhang Z, Hu H, Zhang Y, Xiong Y. SIRT6 Activator UBCS039 Inhibits Thioacetamide-Induced Hepatic Injury In Vitro and In Vivo. Front Pharmacol 2022; 13:837544. [PMID: 35517808 PMCID: PMC9065480 DOI: 10.3389/fphar.2022.837544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
SIRT6 has been reported to have multiple functions in inflammation and metabolism. In the present study, we explored the regulatory effects and mechanisms of SIRT6 in thioacetamide (TAA)-induced mice acute liver failure (ALF) models. The SIRT6 activator UBCS039 was used in this animal and cell experiments. We observed that UBCS039 ameliorated liver damage, including inflammatory responses and oxidative stress. Further study of mechanisms showed that the upregulation of SIRT6 inhibited the inflammation reaction by suppressing the nuclear factor-κB (NF-κB) pathway in the TAA-induced ALF mice model and lipopolysaccharide-stimulated macrophages. In addition, the upregulation of SIRT6 alleviated oxidative stress damage in hepatocytes by regulating the Nrf2/HO-1 pathway. These findings demonstrate that pharmacologic activator of SIRT6 could be a promising target for ALF.
Collapse
Affiliation(s)
- Fangzhou Jiao
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zongwei Zhang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongtu Hu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yongxi Zhang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yong Xiong
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Yoshida T, Okumura T, Matsuo Y, Okuyama T, Michiura T, Kaibori M, Umezaki N, Bono H, Hirota K, Sekimoto M. Activation of transcription factor HIF inhibits IL-1β-induced NO production in primary cultured rat hepatocytes. Nitric Oxide 2022; 124:1-14. [PMID: 35460897 DOI: 10.1016/j.niox.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Roxadustat and other hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHIs) have recently been approved for the treatment of chronic renal anemia. In macrophages and monocytes, the activation of HIF-1 by pro-inflammatory cytokines induces iNOS expression and activity through the NF-κB pathway to produce nitric oxide (NO), which causes liver injury when excessively produced. Few studies have reported a relationship between HIF activity and iNOS induction in hepatocytes. We investigated the effect of drug- and hypoxia-induced HIF activations on NO production in primary cultured rat hepatocytes. Roxadustat treatment and hypoxic conditions activated HIF. Contrary to expectations, HIF-PHI treatment and hypoxia inhibited IL-1β-induced NO production. RNA-Seq analysis of mRNA expression in rat hepatocytes showed that roxadustat treatment decreased the expression of genes related to inflammation, and genes in the NF-κB signaling pathway were induced by IL-1β. Moreover, roxadustat suppressed IL-1β-activated signaling pathways in an HIF-dependent manner. GalN/LPS-treated rats were used as in vivo models of hepatic injury, and roxadustat treatment showed a tendency to suppress the death of rats. Therefore, exogenous HIF-1 activation, including HIF-PHI and hypoxia exposures, suppressed IL-1β-induced iNOS mRNA expression and subsequent NO production in hepatocytes, by suppressing the NF-κB signaling pathway. Roxadustat treatment suppresses the expression of pro-inflammatory genes by activating HIF, and thus may exhibit hepatoprotective effects.
Collapse
Affiliation(s)
- Terufumi Yoshida
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.
| | - Tadayoshi Okumura
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan; Research Organization of Science and Technology, Ritsumeikan University, 1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.
| | - Tetsuya Okuyama
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan; Research Organization of Science and Technology, Ritsumeikan University, 1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Taku Michiura
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.
| | - Masaki Kaibori
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.
| | - Nodoka Umezaki
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.
| | - Hidemasa Bono
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
| | - Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.
| | - Mitsugu Sekimoto
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.
| |
Collapse
|
23
|
Chupradit S, Bokov D, Zamanian MY, Heidari M, Hakimizadeh E. Hepatoprotective and therapeutic effects of resveratrol: A focus on anti-inflammatory and anti- oxidative activities. Fundam Clin Pharmacol 2021; 36:468-485. [PMID: 34935193 DOI: 10.1111/fcp.12746] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/16/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022]
Abstract
Being the most essential organ in the body, the liver performs critical functions. Hepatic disorders, such as alcoholic liver disease, hepatic steatosis, liver fibrosis, non-alcoholic fatty liver disease, hepatocellular carcinoma and hepatic failure, have an impact on the biochemical and physiological functions of the body. The main representative of the flavonoid subgroup of flavones, Resveratrol (RES), exhibits suitable pharmacological activities for treating various liver diseases, such as fatty hepatitis, liver steatosis, liver cancer and liver fibrosis. According to various studies, grapes and red wine are good sources of RES. RES has various health properties; it is anti-inflammatory, anti-apoptotic, anti-oxidative and hepatoprotective against several hepatic diseases and hepatoxicity. Therefore, we performed a thorough research and created a summary of the distinct targets of RES in various stages of liver diseases. We concluded that RES inhibited liver inflammation essentially by causing a significant decrease in the expression of various pro-inflammatory cytokines like TNF-α, IL-1α, IL-1β, and IL-6. It also inhibits the transcription factor nuclear NF-κB that brings about the inflammatory cascade. RES also inhibits the PI3K/Akt/mTOR pathway to induce apoptosis. Additionally, it reduces oxidative stress in hepatic tissue by markedly reducing MDA and NO contents, and significantly increasing the levels of CAT, SOD and reduced GSH, in addition to AST and ALT, against toxic chemicals like CC14, As2O3 and TTA. Due to its anti-oxidant, anti-inflammatory and anti-fibrotic properties, RES reduces liver injury markers. RES is safe natural antioxidant that provides pharmacological rectification of the hepatoxicity of toxic chemicals.
Collapse
Affiliation(s)
- Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Dmitry Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr, Moscow, Russian Federation
| | - Mohammad Yassin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,School of Nahavand Paramedical, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahsa Heidari
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Elham Hakimizadeh
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
24
|
Shalaby MA, Elbanna HA, Mohamed SM, Nabil GA, Elbanna AH. In-depth hepatoprotective mechanistic study of Echinacea purpurea flowers: In vitro and in vivo studies. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2022.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Echinacea purpurea is a flowering plant commonly used as an herbal medicine despite insufficient scientific bases to validate its usage. The present study aimed to examine in vitro and in vivo hepatoprotective effects of aqueous and alcoholic extracts of E. purpurea flowers. Methods: In vitro protection against hepato-cytotoxicity was carried out on human HepG-2 cells using colorimetric tetrazolium (MTT) assay, while the in vivo hepatoprotective activity was studied against carbon-tetrachloride (CCl4) induced acute hepatotoxicity in rats. Results: The results revealed that the extracts of E. purpurea induced discernable in vitro protection on HepG-2 cells and in vivo against CCl4 induced hepatotoxicity. Both extracts were significantly able to restore the serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total bilirubin, total protein, and albumin to normal levels compared to the CCl4 intoxicated group. In addition, the extracts markedly mitigated the oxidative stress by decreasing Malondialdehyde (MDA) and increasing superoxide dismutase (SOD) and glutathione (GSH) markers compared to the CCl4 intoxicated group. It was also associated with the down-regulation of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels in liver tissues. Histopathological examination revealed a decrease in hepatocytes’ degenerative changes and noticeable improvement of the liver damage by extracts of E. purpurea. Conclusion: These findings have proven that aqueous and alcoholic extracts of E. purpurea flowers have a significant hepatoprotective effect, probably owing to antioxidant, anti-inflammatory activities, and regulating apoptotic-related genes. This confirms the ethnomedicinal uses of E. purpurea in patients suffering from liver diseases.
Collapse
Affiliation(s)
| | - Hossny Awad Elbanna
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| | | | - Ghazal A Nabil
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Ahmed Hossny Elbanna
- Pharmacology Department, Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Jordan
| |
Collapse
|
25
|
El-Wafaey DI, Nafea OE, Faruk EM. Naringenin alleviates hepatic injury in zinc oxide nanoparticles exposed rats: impact on oxido-inflammatory stress and apoptotic cell death. Toxicol Mech Methods 2021; 32:58-66. [PMID: 34348583 DOI: 10.1080/15376516.2021.1965275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Human exposure to nanoparticles became unavoidable secondary to their massive involvement in a multitude of industrial applications. Zinc oxide nanoparticles (ZnONPs) are one of the most commonly used metal oxide nanoparticles in biological applications. Naringenin (NAR), a citrus-derived flavonoid, has favorable biological properties that promote human health. The present study was carried out to investigate the possible defensive role of NAR versus ZnONPs provoked hepatic injury in rats through an evaluation of liver enzymes, hepatic biomarkers of oxidative stress, inflammatory process, apoptotic cell death along with histopathological examination of liver tissue. Therefore, 32 adult rats were randomly divided into four equal groups as control, NAR, ZnONPs and co-treated ZnONPs with NAR groups. All treatments were administered for 14 days. Our results showed that ZnONPs induced hepatic injury as documented by the marked increased in hepatic enzymes activities, disturbed hepatic oxidant/antioxidant balance, increased hepatic inflammatory reactions, in addition to, extensive hepatic morphological alterations, marked collagen fibers accumulation as well as overexpression of apoptotic BAX and the noticeable intensified positive nuclear staining for nuclear factor Kabba-b in hepatic tissues. Concurrent NAR supplement to ZnONPs- treated rats significantly declined liver enzymes activities, restored oxidant/antioxidant balance, reversed inflammation, induced fewer collagen fibers accumulation, and antagonized BAX-mediated apoptotic cell death in hepatic tissues. We concluded that concurrent NAR supplement to ZnONPs treated rats improved hepatic function and structure by its antioxidant, anti-inflammatory and antiapoptotic potentials.
Collapse
Affiliation(s)
- Dalia Ibrahim El-Wafaey
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ola Elsayed Nafea
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.,Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Eman Mohamed Faruk
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, Egypt.,Department of Anatomy, Faculty of Medicine, Umm Al Qura University, Mecca, Saudi Arabia
| |
Collapse
|
26
|
Zhang Z, Guo C, Jiang H, Han B, Wang X, Li S, Lv Y, Lv Z, Zhu Y. Inflammation response after the cessation of chronic arsenic exposure and post-treatment of natural astaxanthin in liver: potential role of cytokine-mediated cell-cell interactions. Food Funct 2021; 11:9252-9262. [PMID: 33047770 DOI: 10.1039/d0fo01223h] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ongoing groundwater arsenic contamination throughout China was first recognized in the 1960s. Groundwater arsenic contamination is a high risk for human and animal health worldwide. Apart from drinking water, diet is the second pathway for arsenic to enter the human body and eventually cause liver injury. Natural astaxanthin extracted from the green algae Haematococcus pluvialis has dominated the nutraceutical market for potential health benefits. Nevertheless, the molecular mechanism underlying the protective effect post astaxanthin against arsenic-induced hepatotoxicity remains largely obscure. In this study, we investigate the effect of natural astaxanthin (derived from Haemotococcus pluvialis) on oxidative stress and liver inflammatory response in rats after the cessation of chronic arsenic exposure. Wistar rats were given astaxanthin (250 mg kg-1) daily for 2 weeks after the cessation of exposure to sodium arsenite (300 μg L-1, drinking water, 24 weeks) by intragastric administration. The results showed that post treatment with astaxanthin attenuated liver injury induced by long-term exposure to arsenic in rats. Most importantly, post treatment with astaxanthin decreased the increasing of inflammatory cytokine NF-κB, tumor necrosis factor-α, interleukin-1β, oxidative stress level, and total arsenic content in livers of rats exposed to arsenic. In addition, post treatment with astaxanthin reversed the increasing of protein levels of alpha-smooth muscle actin and collagen Iα1, which are the activation markers of hepatic stellate cells (HSCs). Collectively, these data demonstrate that post astaxanthin treatment attenuates inflammation response in the liver after the cessation of chronic arsenic exposure via inhibition of cytokine-mediated cell-cell interactions. Daily ingestion of natural astaxanthin might be a potential and beneficial candidate for the treatment of liver damage after the cessation of chronic exposure to sodium arsenite.
Collapse
Affiliation(s)
- Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China. and Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin 150030, China
| | - Changming Guo
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China. and Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin 150030, China
| | - Bing Han
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China. and Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Yueying Lv
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China.
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China.
| | - Yan Zhu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China. and Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin 150030, China
| |
Collapse
|
27
|
Abstract
The prevalence of obesity has increased substantially over the last several decades and several environmental factors have accelerated this trend. Poly-methoxy flavones (PMFs) exist abundantly in the peels of citrus, and their biological activities have been broadly examined in recent years. Several studies have examined the effects of PMFs on obesity and its-related diseases. This systematic review conducted to focus on the effect of PMFs on obesity and its related conditions management. The PubMed, Google Scholar, Scopus, and Science Direct databases were searched for relevant studies published before November 2020. Out of 1,615 records screened, 16 studies met the study criteria. The range of dosage of PMFs was varied from 10 to 200 mg/kg (5-26 weeks) and 1-100 μmol (2h-8 days) across selected animal and in vitro studies, respectively. The literature reviewed shows that PMFs modulate several biological processes associated with obesity such as lipid and glucose metabolism, inflammation, energy balance, and oxidative stress by different mechanisms. All of the animal studies showed significant positive effects of PMFs on obesity by reducing body weight (e.g. reduced weight gain by 21.04%), insulin resistance, energy expenditure, inhibiting lipogenesis and reduced blood lipids (e.g. reduced total cholesterol by 23.10%, TG by 44.35% and LDL by 34.41%). The results of the reviewed in vitro studies have revealed that treatment with PMFs significantly inhibits lipid accumulation in adipocytes (e.g. reduced lipid accumulation by 55-60%) and 3T3-L1 pre-adipocyte differentiation as well by decreasing the expression of PPARγ and C/EBPα and also reduces the number and size of fat cells and reduced TG content in adipocytes by 45.67% and 23.10% and 16.08% for nobiletin, tangeretin and hesperetin, respectively. Although current evidence supports the use of PMFs as a complementary treatment in obesity, future research is needed to validate this promising treatment modality.
Collapse
Affiliation(s)
- Mahdi Vajdi
- Department of Community Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
28
|
Naraki K, Rezaee R, Karimi G. A review on the protective effects of naringenin against natural and chemical toxic agents. Phytother Res 2021; 35:4075-4091. [PMID: 33724584 DOI: 10.1002/ptr.7071] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/13/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
Naringenin (NRG), as a flavanone from flavonoids family, is widely found in grapefruit, lemon tomato, and Citrus fruits. NRG has shown strong anti-inflammatory and antioxidant activities in body organs via mechanisms such as enhancement of glutathione S-transferase (GST), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activity, but reduction of serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and malondialdehyde (MDA). Furthermore, NRG anti-apoptotic potential was indicated to be mediated by regulating B-cell lymphoma (Bcl-2), Bcl-2-associated X protein (Bax) and caspase3/9. Overall, these properties make NRG a highly fascinating compound with beneficial pharmacological effects. Based on the literature, NRG-induced protective effects against toxicities produced by natural toxins, pharmaceuticals, heavy metals, and environmental chemicals, were mainly mediated via suppression of lipid peroxidation, oxidative stress (through boosting the antioxidant arsenal), and inflammatory factors (e.g., TNF-α, interleukin [IL]-6, IL-10, and IL-12), and activation of PI3K/Akt and MAPK survival signaling pathways. Despite considerable body of evidence on protective properties of NRG against a variety of toxic compounds, more well-designed experimental studies and particularly, clinical trials are required before reaching a concrete conclusion. The present review discusses how NRG protects against the above-noted toxic compounds.
Collapse
Affiliation(s)
- Karim Naraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Protective Effect of Oligonol on Dimethylnitrosamine-Induced Liver Fibrosis in Rats via the JNK/NF-κB and PI3K/Akt/Nrf2 Signaling Pathways. Antioxidants (Basel) 2021; 10:antiox10030366. [PMID: 33671028 PMCID: PMC7997446 DOI: 10.3390/antiox10030366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
Oligonol is a low molecular weight polyphenol product derived from lychee fruit by a manufacturing process. We investigated oligonol’s anti-fibrotic effect and the underlying mechanism in dimethylnitrosamine (DMN)-induced chronic liver damage in male Sprague–Dawley rats. Oral administration of oligonol (10 and 20 mg/kg body weight) ameliorated the DMN-induced abnormalities in liver histology and serum parameters in rats. Oligonol prevented the DMN-induced elevations of TNF-α, IL-1β, IL-6, cyclooxygenase-2, and inducible nitric oxide synthase expressions at the mRNA level. NF-κB activation and JNK phosphorylation in DMN-treated rats were ablated by oligonol. Oligonol reduced the enhanced production of hepatic malondialdehyde and reactive oxygen species and recovered protein SH, non-protein SH levels, and catalase activity in the DMN treated liver. Nrf2 translocation into the nucleus was enhanced, and PI3K and phosphorylated Akt levels were increased by administering oligonol. The level of hepatic fibrosis-related factors such as α-smooth muscle actin, transforming growth factor-β1, and type I collagen was reduced in rats treated with oligonol. Histology and immunohistochemistry analysis showed that the accumulation of collagen and activation of hepatic stellate cells (HSCs) in liver tissue were restored by oligonol treatment. Taken together, oligonol showed antioxidative, hepatoprotective, and anti-fibrotic effects via JNK/NF-κB and PI3K/Akt/Nrf2 signaling pathways in DMN-intoxicated rats. These results suggest that antioxidant oligonol is a potentially useful agent for the protection against chronic liver injury.
Collapse
|
30
|
Salehi E, Mashayekh M, Taheri F, Gholami M, Motaghinejad M, Safari S, Sepehr A. Curcumin Can be Acts as Effective agent for Prevent or Treatment of Alcohol-induced Toxicity in Hepatocytes: An Illustrated Mechanistic Review. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:418-436. [PMID: 34400970 PMCID: PMC8170768 DOI: 10.22037/ijpr.2020.112852.13985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Previous studies have shown that alcohol abuse can cause serious liver damage and cirrhosis. The main pathway for these types of hepatocellular cell neurodegeneration is mitochondrial dysfunction, which causes lipid peroxidation and dysfunction of the glutathione ring and the defect of antioxidant enzymes in alcoholic hepatic cells. Alcohol can also initiate malicious inflammatory pathways and trigger the initiation and activation of intestinal and extrinsic apoptosis pathways in hepatocellular tissues that lead to cirrhosis. Previous studies have shown that curcumin may inhibit lipid peroxidation, glutathione dysfunction and restore antioxidant enzymes. Curcumin also modulates inflammation and the production of alcohol-induced biomarkers. Curcumin has been shown to play a critical role in the survival of alcoholic hepatocellular tissue. It has been shown that curcumin can induce and trigger mitochondrial biogenesis and, by this mechanism, prevent the occurrence of both intrinsic and extrinsic apoptosis pathways in liver cells that have been impaired by alcohol. According to this mechanism, curcumin may protect hepatocellular tissue from alcohol-induced cell degeneration and may therefore survive alcoholic hepatocellular tissue. . Based on these mechanisms, the protective functions of curcumin against alcohol-induced cell degeneration due to oxidative stress, inflammation, and apoptosis events in hepatocellular tissue have been recorded. Hence, in this research, we have attempted to evaluate and analyze the main contribution mechanism of curcumin cell defense properties against alcohol-induced hepatocellular damage, according to previous experimental and clinical studies, and in this way we report findings from major studies.
Collapse
Affiliation(s)
- Elham Salehi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IUAPS), Tehran, Iran.
| | - Mohammad Mashayekh
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IUAPS), Tehran, Iran.
| | - Fereshteh Taheri
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Mina Gholami
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Majid Motaghinejad
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Safari
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Afrah Sepehr
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Haque MA, Jantan I, Harikrishnan H, Ahmad W. Standardized ethanol extract of Tinospora crispa upregulates pro-inflammatory mediators release in LPS-primed U937 human macrophages through stimulation of MAPK, NF-κB and PI3K-Akt signaling networks. BMC Complement Med Ther 2020; 20:245. [PMID: 32762741 PMCID: PMC7409646 DOI: 10.1186/s12906-020-03039-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/27/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Immunomodulatory effects of Tinospora crispa have been investigated due to its traditional use to treat several inflammatory disorders associated to the immune system. The present study reports the underlying mechanisms involved in the stimulation of 80% ethanol extract of T. crispa stems on pro-inflammatory mediators release in lipopolysaccharide (LPS)-primed U937 human macrophages via MyD88-dependent pathways. METHODS Release of interleukin (IL)-1β and tumor necrosis factor (TNF)-α, and production of prostaglandin E2 (PGE2) were determined by using enzyme-linked immunosorbent assay (ELISA). Immunoblot technique was executed to determine the activation of MAPKs molecules, NF-κB, PI3K-Akt and cyclooxygenase-2 (COX-2) protein. Determination of pro-inflammatory cytokines and COX-2 relative gene expression levels was by performing the real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). A reversed-phase HPLC method was developed and validated to standardize the T. crispa extract and chemical profiling of its secondary metabolites was performed by LC-MS/MS. RESULTS Qualitative and quantitative analyses of chromatographic data indicated that syringin and magnoflorine were found as the major components of the extract. T. crispa-treatment prompted activation of NF-κB by enhancing IKKα/β and NF-κB (p65) phosphorylation, and degradation of IκBα. The extract upregulated COX-2 protein expression, release of pro-inflammatory mediators and MAPKs (ERK, p38 and JNK) phosphorylation as well as Akt dose-dependently. T. crispa extract also upregulated the upstream signaling adaptor molecules, toll-like receptor 4 (TLR4) and MyD88. T. crispa-treatment also upregulated the pro-inflammatory markers mRNA expression. CONCLUSION The results suggested that T. crispa extract stimulated the MyD88-dependent signaling pathways by upregulating the various immune inflammatory related parameters.
Collapse
Affiliation(s)
- Md Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Ibrahim Jantan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Hemavathy Harikrishnan
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Waqas Ahmad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| |
Collapse
|
32
|
Ramos-Tovar E, Flores-Beltrán RE, Galindo-Gómez S, Camacho J, Tsutsumi V, Muriel P. An aqueous extract of Stevia rebaudiana variety Morita II prevents liver damage in a rat model of cirrhosis that mimics the human disease. Ann Hepatol 2020; 18:472-479. [PMID: 31053541 DOI: 10.1016/j.aohep.2018.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/10/2018] [Accepted: 10/08/2018] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND AIM Stevia has exhibited antioxidant, antihyperglycemic, antihypertensive and anti-inflammatory properties in several in vivo and in vitro models. The objective of this study was to investigate the ability of an aqueous extract of stevia (AES) to prevent experimental cirrhosis in rats and to explore its mechanism of action. MATERIALS AND METHODS Liver cirrhosis was induced by administering carbon tetrachloride (CCl4) (400mg/kg by i.p. injection 3 times a week for 12 weeks); AES was administered (100mg/kg by gavage daily) during the CCl4 treatment. Fibrosis was evaluated with histological, biochemical and molecular approaches, and liver damage was assessed with standardized procedures. The profibrotic pathways were analyzed by western blotting, qRT-PCR and immunohistochemistry. RESULTS AND CONCLUSIONS Chronic CCl4 administration increased nuclear factor kappa B (NF-κB) and proinflammatory cytokine production as well as oxidative parameters such as lipid peroxidation and 4-hydroxynonenal levels, whereas GSH and nuclear factor-E2-related factor 2 (Nrf2) levels were decreased. CCl4 induced profibrogenic mediator expression, hepatic stellate cell (HSC) activation and, consequently, extracellular matrix production. AES exhibited antioxidant, anti-inflammatory and antifibrotic properties, probably because of its capacity to induce Nrf2 expression, reduce NF-κB expression and block several profibrogenic signaling pathways, subsequently inhibiting HSC activation and preventing fibrosis induced by chronic CCl4 administration.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| | - Rosa E Flores-Beltrán
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| | - Silvia Galindo-Gómez
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Mexico City, Mexico
| | - Javier Camacho
- Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| | - Víctor Tsutsumi
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Mexico City, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico.
| |
Collapse
|
33
|
Xu T, Guo P, Pi C, He Y, Yang H, Hou Y, Feng X, Jiang Q, Wei Y, Zhao L. Synergistic Effects of Curcumin and 5-Fluorouracil on the Hepatocellular Carcinoma In vivo and vitro through regulating the expression of COX-2 and NF-κB. J Cancer 2020; 11:3955-3964. [PMID: 32328199 PMCID: PMC7171506 DOI: 10.7150/jca.41783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/04/2020] [Indexed: 12/29/2022] Open
Abstract
Curcumin (CU) has shown broad anti-cancer effects. 5-fluorouracil (5-FU) has been a conventional chemotherapeutic agent for hepatocellular carcinoma. Unfortunately, the nonspecific cytotoxicity and multidrug resistance caused by long-term use limited the clinical efficacy of 5-FU. This study was aimed to investigate whether the combination of CU and 5-FU could generate synergistic effect in inhibiting the human hepatocellular carcinoma. The results of cytotoxicity test showed that compared with applying single drugs, the combination of CU and 5-FU (1:1, 1:2, 1:4, 2:1 and 4:1, mol/mol) presented stronger cytotoxicity in SMMC-7721, Bel-7402, HepG-2 and MHCC97H cells, while the combination groups are relatively insensitive to normal hepatocytes (L02). Among them, the molar ratio of 2:1 combination group showed strong synergistic effect in SMMC-7721cells. Then, western blotting assay further verified that the mechanism of the synergistic effect may be related to the inhibition of the expression of NF-κB (overall) and COX-2 protein. In addition, the synergistic effect was also validated in the xenograft mice in vivo. This research not only provides a novel and effective combination strategy for the therapy of hepatocellular carcinoma but also provides an experimental basis for the development of CU and 5-FU compound preparation.
Collapse
Affiliation(s)
- Ting Xu
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No. 319, Zhongshan Rd Sanduan, Jiangyang District,Luzhou, Sichuan, 646000, P.R.China
| | - Pu Guo
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No. 319, Zhongshan Rd Sanduan, Jiangyang District,Luzhou, Sichuan, 646000, P.R.China
| | - Chao Pi
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No. 319, Zhongshan Rd Sanduan, Jiangyang District,Luzhou, Sichuan, 646000, P.R.China
| | - Yingmeng He
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No. 319, Zhongshan Rd Sanduan, Jiangyang District,Luzhou, Sichuan, 646000, P.R.China
| | - Hongru Yang
- The Affiliated Hospital, Southwest Medical University, No.25, Taiping Street, Luzhou, Sichuan, 646000, China
- Department of Oncology, Luzhou People's Hospital, No.316, Jiugu Dadao Erduan, Luzhou, Sichuan, 646000, China
| | - Yi Hou
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No. 319, Zhongshan Rd Sanduan, Jiangyang District,Luzhou, Sichuan, 646000, P.R.China
| | - Xianhu Feng
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No. 319, Zhongshan Rd Sanduan, Jiangyang District,Luzhou, Sichuan, 646000, P.R.China
| | - Qingsheng Jiang
- School of International Education, Southwest Medical University, No.1, Xianglin Rd Yiduan, Longmatan District, Luzhou, Sichuan, 646000, China
| | - Yumeng Wei
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No. 319, Zhongshan Rd Sanduan, Jiangyang District,Luzhou, Sichuan, 646000, P.R.China
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No. 319, Zhongshan Rd Sanduan, Jiangyang District,Luzhou, Sichuan, 646000, P.R.China
| |
Collapse
|
34
|
Roehlen N, Crouchet E, Baumert TF. Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells 2020; 9:cells9040875. [PMID: 32260126 PMCID: PMC7226751 DOI: 10.3390/cells9040875] [Citation(s) in RCA: 675] [Impact Index Per Article: 135.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis due to viral or metabolic chronic liver diseases is a major challenge of global health. Correlating with liver disease progression, fibrosis is a key factor for liver disease outcome and risk of hepatocellular carcinoma (HCC). Despite different mechanism of primary liver injury and disease-specific cell responses, the progression of fibrotic liver disease follows shared patterns across the main liver disease etiologies. Scientific discoveries within the last decade have transformed the understanding of the mechanisms of liver fibrosis. Removal or elimination of the causative agent such as control or cure of viral infection has shown that liver fibrosis is reversible. However, reversal often occurs too slowly or too infrequent to avoid life-threatening complications particularly in advanced fibrosis. Thus, there is a huge unmet medical need for anti-fibrotic therapies to prevent liver disease progression and HCC development. However, while many anti-fibrotic candidate agents have shown robust effects in experimental animal models, their anti-fibrotic effects in clinical trials have been limited or absent. Thus, no approved therapy exists for liver fibrosis. In this review we summarize cellular drivers and molecular mechanisms of fibrogenesis in chronic liver diseases and discuss their impact for the development of urgently needed anti-fibrotic therapies.
Collapse
Affiliation(s)
- Natascha Roehlen
- Université de Strasbourg, 67000 Strasbourg, France; (N.R.); (E.C.)
- Institut de Recherche sur les Maladies Virales et Hépatiques U1110, 67000 Strasbourg, France
| | - Emilie Crouchet
- Université de Strasbourg, 67000 Strasbourg, France; (N.R.); (E.C.)
- Institut de Recherche sur les Maladies Virales et Hépatiques U1110, 67000 Strasbourg, France
| | - Thomas F. Baumert
- Université de Strasbourg, 67000 Strasbourg, France; (N.R.); (E.C.)
- Institut de Recherche sur les Maladies Virales et Hépatiques U1110, 67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Correspondence: ; Tel.: +33-366853703
| |
Collapse
|
35
|
Abstract
Silymarin, an extract from milk thistle seeds, has been used for centuries to treat hepatic conditions. Preclinical data indicate that silymarin can reduce oxidative stress and consequent cytotoxicity, thereby protecting intact liver cells or cells not yet irreversibly damaged. Eurosil 85® is a proprietary formulation developed to maximize the oral bioavailability of silymarin. Most of the clinical research on silymarin has used this formulation. Silymarin acts as a free radical scavenger and modulates enzymes associated with the development of cellular damage, fibrosis and cirrhosis. These hepatoprotective effects were observed in clinical studies in patients with alcoholic or non-alcoholic fatty liver disease, including patients with cirrhosis. In a pooled analysis of trials in patients with cirrhosis, silymarin treatment was associated with a significant reduction in liver-related deaths. Moreover, in patients with diabetes and alcoholic cirrhosis, silymarin was also able to improve glycemic parameters. Patients with drug-induced liver injuries were also successfully treated with silymarin. Silymarin is generally very well tolerated, with a low incidence of adverse events and no treatment-related serious adverse events or deaths reported in clinical trials. For maximum benefit, treatment with silymarin should be initiated as early as possible in patients with fatty liver disease and other distinct liver disease manifestations such as acute liver failure, when the regenerative potential of the liver is still high and when removal of oxidative stress, the cause of cytotoxicity, can achieve the best results.
Collapse
Affiliation(s)
- Anton Gillessen
- Department of Internal Medicine, Sacred Heart Hospital, Muenster, Germany.
| | - Hartmut H-J Schmidt
- Department of Medicine B for Gastroenterology and Hepatology, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
36
|
Lo CH, Huber EC, Sachs JN. Conformational states of TNFR1 as a molecular switch for receptor function. Protein Sci 2020; 29:1401-1415. [PMID: 31960514 DOI: 10.1002/pro.3829] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
Tumor necrosis factor receptor 1 (TNFR1) is a transmembrane receptor that plays a key role in the regulation of the inflammatory pathway. While inhibition of TNFR1 has been the focus of many studies for the treatment of autoimmune diseases such as rheumatoid arthritis, activation of the receptor is important for the treatment of immunodeficiency diseases such as HIV and neurodegenerative diseases such as Alzheimer's disease where a boost in immune signaling is required. In addition, activation of other TNF receptors such as death receptor 5 or FAS receptor is important for cancer therapy. Here, we used a previously established TNFR1 fluorescence resonance energy transfer (FRET) biosensor together with a fluorescence lifetime technology as a high-throughput screening platform to identify a novel small molecule that activates TNFR1 by increasing inter-monomeric spacing in a ligand-independent manner. This shows that the conformational rearrangement of pre-ligand assembled receptor dimers can determine the activity of the receptor. By probing the interaction between the receptor and its downstream signaling molecule (TRADD) our findings support a new model of TNFR1 activation in which varying conformational states of the receptor act as a molecular switch in determining receptor function.
Collapse
Affiliation(s)
- Chih Hung Lo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Evan C Huber
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Jonathan N Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
37
|
Zhang M, Li Q, Zhou C, Zhao Y, Li R, Zhang Y. Demethyleneberberine attenuates concanavalin A-induced autoimmune hepatitis in mice through inhibition of NF-κB and MAPK signaling. Int Immunopharmacol 2020; 80:106137. [PMID: 31931366 DOI: 10.1016/j.intimp.2019.106137] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022]
Abstract
Demethyleneberberine (DMB) is a natural product which has been reported to possess mitochondria-targeting anti-oxidative and anti-inflammatory effect. However, the pharmacological action and molecular mechanism of DMB on autoimmune hepatitis (AIH) have not been explored. In this study, AIH was induced by intravenously injecting Con A (20 mg/kg) in mice for 8 h, and DMB protected against Con A-induced AIH, evidenced by obvious reduction of hepatic enzymes in serum and histological lesion. DMB significantly inhibited the infiltration of CD4+ T cell and Kupffer cell as well as the expression of inflammatory cytokines, such as TNF-α, IL-6, IL-1β and IFN-γ by ELISA and qPCR analysis. Western blotting analysis illustrated that DMB remarkably inhibited Con A-induced phosphorylation of IKK, IκB, NF-κB p65, ERK, JNK, p38 MAPK and STAT3 induced by Con A. Moreover, DMB also effectively suppressed hepatic oxidative stress with reduction of MDA and elevation of GSH. Taken together, our findings indicated that DMB could prevent Con A-induced AIH by regulating NF-κB and MAPK signaling, suggesting that DMB can serve as a promising candidate for therapy of AIH.
Collapse
Affiliation(s)
- Miao Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Qingxia Li
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Cuisong Zhou
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yaxing Zhao
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Ruiyan Li
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yubin Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
38
|
Elfeky MG, Mantawy EM, Gad AM, Fawzy HM, El-Demerdash E. Mechanistic aspects of antifibrotic effects of honokiol in Con A-induced liver fibrosis in rats: Emphasis on TGF-β/SMAD/MAPK signaling pathways. Life Sci 2019; 240:117096. [PMID: 31760097 DOI: 10.1016/j.lfs.2019.117096] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023]
Abstract
Aim Liver fibrosis represents a massive global health burden with limited therapeutic options. Thus, the need for curative options is evident. Thus, this study aimed to assess the potential antifibrotic effect of honokiol in Concanavalin A (Con A) induced immunological model of liver fibrosis as well the possible underlying molecular mechanisms. METHODS Male Sprague-Dawley rats were treated with either Con A (20 mg/kg, IV) and/or honokiol (10 mg/kg, orally) for 4 weeks. Hepatotoxicity indices were as well as histopathological evaluation was done. Hepatic fibrosis was assessed by measuring alpha smooth muscle actin (α-SMA) expression and collagen fibers deposition by Masson's trichrome stain and hydroxyproline content. To elucidate the underlying molecular mechanisms, the effect of honokiol on oxidative stress, inflammatory markers as well as transforming growth factor beta (TGF-β)/SMAD and mitogen-activated protein kinase (MAPK) pathways was assessed. KEY FINDINGS Honokiol effectively reversed the hepatotoxicity indices elevations and abnormal histopathological changes induced by Con A. Besides, honokiol attenuated Con A-induced liver fibrosis by down-regulation of hydroxyproline levels, α-SMA expression together with a marked decrease in collagen fibers deposition. Mechanistically Con A induced oxidative stress, provocation of inflammatory responses and activation of TGF-β/SMAD/MAPK pathways. Contrariwise, honokiol co-treatment significantly restored antioxidant defence mechanisms, down-regulated inflammatory cascades and inhibited TGF-β/SMAD/MAPK signaling pathways. CONCLUSION The results provide an evidence for the promising antifibrotic effect of honokiol that could be partially due to suppressing oxidative stress and inflammatory processes as well as inhibition of TGF-β/SMAD/MAPK signaling pathways.
Collapse
Affiliation(s)
- Maha G Elfeky
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Eman M Mantawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Hala M Fawzy
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
39
|
Brenjian S, Moini A, Yamini N, Kashani L, Faridmojtahedi M, Bahramrezaie M, Khodarahmian M, Amidi F. Resveratrol treatment in patients with polycystic ovary syndrome decreased pro-inflammatory and endoplasmic reticulum stress markers. Am J Reprod Immunol 2019; 83:e13186. [PMID: 31483910 DOI: 10.1111/aji.13186] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 07/17/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022] Open
Abstract
PROBLEM Polycystic ovary syndrome (PCOS) is associated with endoplasmic reticulum (ER) stress and pro-inflammatory condition. The aim of the present study was to evaluate the effect of resveratrol treatment on pro-inflammatory and ER stress markers in patients with PCOS. METHOD OF STUDY Cumulus cells were obtained from 40 patients with PCOS who were divided into two groups: placebo and resveratrol treatment (receiving 800 mg/d for 40 days) groups. Blood samples were obtained from all patients before and after the procedure to evaluate interleukin (IL)-6, IL-1β, IL-18, TNF-α, NF-κB, and C-reactive protein (CRP). Total RNA was extracted from cumulus cells, and cDNA was synthesized by reverse transcription. Expressions of five genes in ER stress response pathway (ATF4, ATF6, CHOP, GRP78, and XBP1s) were assessed with quantitative real-time PCR. Statistical analysis was performed with Student's t test. RESULTS After treatment with resveratrol, it was found that serum levels of IL-6, IL-1β, TNF-α, IL-18, NF-κB, and CRP decreased in the treatment group. In addition, gene expression results showed that the expression levels of ATF4 (P < .05) and ATF6 (P < .001) significantly increased in the resveratrol treatment group, while the expression levels of CHOP, GRP78, and XBP1 (P < .001 for all) significantly decreased. CONCLUSION Results demonstrated that resveratrol has anti-inflammatory effects through the suppression of NF-κB and NF-κB-regulated gene products. On the other hand, resveratrol can modulate ER stress in granulosa cells (GCs) by altering the expression of genes involved in unfolding protein response (UPR) process. Our findings suggest that ER stress is a potential therapeutic target for patients with PCOS.
Collapse
Affiliation(s)
- Samaneh Brenjian
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Moini
- Department of Gynecology and Obstetrics, School of Medicine, Tehran University of Medical Science, Tehran, Iran.,Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Vali-e-Asr Reproductive Health Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazila Yamini
- Embryology Laboratory, Department of ART, Arash Women's Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Ladan Kashani
- Department of Gynecology and Obstetrics, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Maryam Faridmojtahedi
- Department of Gynecology and Obstetrics, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mojdeh Bahramrezaie
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshad Khodarahmian
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Jiang J, Yan L, Shi Z, Wang L, Shan L, Efferth T. Hepatoprotective and anti-inflammatory effects of total flavonoids of Qu Zhi Ke (peel of Citrus changshan-huyou) on non-alcoholic fatty liver disease in rats via modulation of NF-κB and MAPKs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:153082. [PMID: 31541796 DOI: 10.1016/j.phymed.2019.153082] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Citrus flavonoids, consisting of naringin, narirutin, neohesperidine, etc., have therapeutic activities for the treatment of lipometabolic disorders. The peel of Citrus changshan-huyou (Qu Zhi Ke, QZK) is a new source of flavonoids, but attracted little attention so far. HYPOTHESIS QZK should possess therapeutic effects against lipometabolic disorders due to the flavonoids it contains. STUDY DESIGN In this study, we extracted and purified the flavonoids of QZK (TFCH) and established an obesity-induced non-alcoholic fatty liver disease (NAFLD) model of rats. TFCH was given orally for 8 weeks, and its anti-NAFLD effects and potential mechanism were evaluated. METHODS The flavonoid chemoprofile of TFCH was determined by using HPLC. High-fat diet was employed to induce NAFLD model in rats, and six groups were set up: negative control group, reference treatment group, model group, low-dose TFCH (25 mg/kg), intermediate-dose TFCH (50 mg/kg), and high-dose TFCH (100 mg/kg). Serum and liver levels of inflammatory cytokines and NAFLD markers were measured biochemically. The relative mRNA expressions of liver T-bet, GATA3, and TNF-α were tested by real time PCR (qPCR) analysis. The protein expression of p38 and the phosphorylation of NF-κB, ERK1/2, and p38 in liver were tested by Western blot analysis. RESULTS The histopathological observation showed that TFCH attenuated hepatic lesions with significantly decreased NAFLD activity scores. The biochemical data showed that TFCH significantly suppressed both systemic and intrahepatic inflammation by inhibiting IL-1β, IL-6, IL-12, TNF-α, and IFN-γ, and the qPCR analysis revealed a Th1/Th2 related anti-inflammatory mechanism of TFCH. Western blot results clarified that TFCH exerted hepatoprotective and anti-inflammatory effects by suppression of phosphorylated NF-κB and MAPKs, indicating a mechanism associated with NF-κB and MAPK signaling pathways. CONCLUSION QZK is a new source of Citrus flavonoids for therapeutic use, and TFCH is a promising representative of Citrus flavonoids for anti-NAFLD therapy.
Collapse
Affiliation(s)
- Jianping Jiang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China; Zhejiang You-du Biotech Limited Company, Quzhou, China
| | - Li Yan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zheng Shi
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lixia Wang
- Citrus changshan-huyou Research Institute of Changshan City, Quzhou, China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
41
|
Hernández-Aquino E, Quezada-Ramírez MA, Silva-Olivares A, Casas-Grajales S, Ramos-Tovar E, Flores-Beltrán RE, Segovia J, Shibayama M, Muriel P. Naringenin attenuates the progression of liver fibrosis via inactivation of hepatic stellate cells and profibrogenic pathways. Eur J Pharmacol 2019; 865:172730. [PMID: 31618621 DOI: 10.1016/j.ejphar.2019.172730] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023]
Abstract
There is no effective treatment for hepatic fibrosis. Previously, we demonstrated that naringenin possesses the ability to prevent experimental chronic liver damage. Therefore, the objective of this work was to investigate whether naringenin could reverse carbon tetrachloride (CCl4)-induced fibrosis in rats and, if so, to search for the mechanisms involved. CCl4 was given to male Wistar rats (400 mg/kg, three times per week, i. p.) for 12 weeks; naringenin (100 mg/kg twice per day, p. o.) was administered from weeks 9-12 of the CCl4 treatment. Liver damage and oxidative stress markers were measured. Masson's trichrome, hematoxylin-eosin staining and immunohistochemistry were performed. Zymography assays for MMP-9 and MMP-2 were carried out. TGF-β, CTGF, Col-I, MMP-13, NF-κB, IL-1β, IL-10, Smad7, pSmad3 and pJNK protein levels were determined by western blotting. In addition, α-SMA and Smad3 protein and mRNA levels were studied. Naringenin reversed liver damage, biochemical and oxidative stress marker elevation, and fibrosis and restored normal MMP-9 and MMP-2 activity. The flavonoid also preserved NF-κB, IL-1β, IL-10, TGF-β, CTGF, Col-I, MMP-13 and Smad7 protein levels. Moreover, naringenin decreased JNK activation and Smad3 phosphorylation in the linker region. Finally, α-SMA and Smad3 protein and mRNA levels were reduced by naringenin administration. The results of this study demonstrate that naringenin blocks oxidative stress, inflammation and the TGF-β-Smad3 and JNK-Smad3 pathways, thereby carrying out its antifibrotic effects and making it a good candidate to treat human fibrosis, as previously demonstrated in toxicological and clinical studies.
Collapse
Affiliation(s)
| | - Marco A Quezada-Ramírez
- Department of Physiology, Biophysics and Neurosciences, Cinvestav-IPN, Apartado Postal 14-740, Mexico City, Mexico
| | - Angélica Silva-Olivares
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Apartado Postal 14-740, Mexico City, Mexico
| | - Sael Casas-Grajales
- Department of Pharmacology, Cinvestav-IPN, Apartado Postal 14-740, Mexico City, Mexico
| | - Erika Ramos-Tovar
- Department of Pharmacology, Cinvestav-IPN, Apartado Postal 14-740, Mexico City, Mexico
| | - Rosa E Flores-Beltrán
- Department of Pharmacology, Cinvestav-IPN, Apartado Postal 14-740, Mexico City, Mexico
| | - José Segovia
- Department of Physiology, Biophysics and Neurosciences, Cinvestav-IPN, Apartado Postal 14-740, Mexico City, Mexico
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Apartado Postal 14-740, Mexico City, Mexico
| | - Pablo Muriel
- Department of Pharmacology, Cinvestav-IPN, Apartado Postal 14-740, Mexico City, Mexico.
| |
Collapse
|
42
|
Khodarahmi A, Eshaghian A, Safari F, Moradi A. Quercetin Mitigates Hepatic Insulin Resistance in Rats with Bile Duct Ligation Through Modulation of the STAT3/SOCS3/IRS1 Signaling Pathway. J Food Sci 2019; 84:3045-3053. [DOI: 10.1111/1750-3841.14793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/22/2019] [Accepted: 08/02/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Ameneh Khodarahmi
- Dept. of Biochemistry, School of MedicineShahid Sadoughi Univ. of Medical Sciences and Health Services Yazd 8915173149 Iran
| | - Azam Eshaghian
- Dept. of Biochemistry, School of MedicineShahid Sadoughi Univ. of Medical Sciences and Health Services Yazd 8915173149 Iran
| | - Fatemeh Safari
- Dept. of Physiology, School of MedicineShahid Sadoughi Univ. of Medical Sciences and Health Services Yazd 8915173149 Iran
| | - Ali Moradi
- Dept. of Biochemistry, School of MedicineShahid Sadoughi Univ. of Medical Sciences and Health Services Yazd 8915173149 Iran
| |
Collapse
|
43
|
Ramos-Tovar E, Muriel P. Free radicals, antioxidants, nuclear factor-E2-related factor-2 and liver damage. J Appl Toxicol 2019; 40:151-168. [PMID: 31389060 DOI: 10.1002/jat.3880] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
Oxidative/nitrosative stress is proposed to be a critical factor in various diseases, including liver pathologies. Antioxidants derived from medicinal plants have been studied extensively and are relevant to many illnesses, including liver diseases. Several hepatic disorders, such as viral hepatitis and alcoholic or nonalcoholic steatohepatitis, involve free radicals/oxidative stress as agents that cause or at least exacerbate liver injury, which can result in chronic liver diseases, such as liver fibrosis, cirrhosis and end-stage hepatocellular carcinoma. In this scenario, nuclear factor-E2-related factor-2 (Nrf2) appears to be an essential factor to counteract or attenuate oxidative or nitrosative stress in hepatic cells. In fact, a growing body of evidence indicates that Nrf2 plays complex and multicellular roles in hepatic inflammation, fibrosis, hepatocarcinogenesis and regeneration via the induction of its target genes. Inflammation is the most common feature of chronic liver diseases, triggering fibrosis, cirrhosis and hepatocellular carcinoma. Increasing evidence indicates that Nrf2 counteracts the proinflammatory process by modulating the recruitment of inflammatory cells and inducing the endogenous antioxidant response of the cell. In this review, the interactions between antioxidant and inflammatory molecular pathways are analyzed.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| |
Collapse
|
44
|
Tao ZS, Wu XJ, Yang M, Xu HG. Local administration with silymarin could increase osseointegration of hydroxyapatite-coated titanium implants in ovariectomized rats. J Biomater Appl 2019; 34:664-672. [PMID: 31342833 DOI: 10.1177/0885328219863290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhou-Shan Tao
- 1 Department of Trauma orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Anhui, People's Republic of China
| | - Xing-Jing Wu
- 1 Department of Trauma orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Anhui, People's Republic of China
| | - Min Yang
- 1 Department of Trauma orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Anhui, People's Republic of China
| | - Hong-Guang Xu
- 2 Department of Spine Surgery, Spine Research Center of Wannan Medical College, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan hospital of Wannan Medical College. Anhui, People's Republic of China
| |
Collapse
|
45
|
Liu Y, Zhang D, Liu GM, Chen Q, Lu Z. Ameliorative effect of dieckol-enriched extraction from Laminaria japonica on hepatic steatosis induced by a high-fat diet via β-oxidation pathway in ICR mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
46
|
Curcumin and α/ β-Adrenergic Antagonists Cotreatment Reverse Liver Cirrhosis in Hamsters: Participation of Nrf-2 and NF- κB. J Immunol Res 2019; 2019:3019794. [PMID: 31183386 PMCID: PMC6515016 DOI: 10.1155/2019/3019794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/02/2019] [Indexed: 12/20/2022] Open
Abstract
Liver cirrhosis is the result of an uncontrolled fibrogenetic process, due to the activation and subsequent differentiation into myofibroblasts of the hepatic stellate cells (HSC). It is known that HSC express adrenoreceptors (AR), and the use of AR antagonists protects experimental animals from cirrhosis. However, several studies suggest that the toxicity generated by metabolism of these antagonists would hinder its use in cirrhotic patients. In addition, liver fibrosis may be associated with a decrease of the antioxidant response of the nuclear factor erythroid 2-related factor 2 (Nrf-2) and the overregulation of the proinflammatory pathway of nuclear factor kappa B (NF-κB). Therefore, in the present work, the capacity of doxazosin (α1 antagonist), carvedilol (nonselective beta-adrenoceptor blocker with alpha 1-blocking properties), and curcumin (antioxidant and anti-inflammatory compound) to reverse liver cirrhosis and studying the possible modulation of Nrf-2 and NF-κB were evaluated. Hamsters received CCl4 for 20 weeks, and then treatments were immediately administered for 4 weeks more. The individual administration of doxazosin or carvedilol showed less ability to reverse cirrhosis in relation to concomitantly curcumin administration. However, the best effect was the combined effect of doxazosin, carvedilol, and curcumin, reversing liver fibrosis and decreasing the amount of collagen I (Sirius red stain) without affecting the morphology of hepatocytes (hematoxylin and eosin stain), showing normal hepatic function (glucose, albumin, AST, ALT, total bilirubin, and total proteins). In addition, carvedilol treatment and the combination of doxazosin with curcumin increased Nrf-2/NF-κB mRNA ratio and its protein expression in the inflammatory cells in the livers, possibly as another mechanism of hepatoprotection. Therefore, these results suggest for the first time that α/β adrenergic blockers with curcumin completely reverse hepatic damage, possibly as a result of adrenergic antagonism on HSC and conceivably by the increase of Nrf-2/NF-κB mRNA ratio.
Collapse
|
47
|
Curcumin Provides Hepatoprotection against Amoebic Liver Abscess Induced by Entamoeba histolytica in Hamster: Involvement of Nrf2/HO-1 and NF- κB/IL-1 β Signaling Pathways. J Immunol Res 2019; 2019:7431652. [PMID: 31275999 PMCID: PMC6561665 DOI: 10.1155/2019/7431652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022] Open
Abstract
Amoebic liver abscess (ALA) is the most common extraintestinal amoebiasis caused by Entamoeba histolytica (E. histolytica). However, despite current knowledge and scientific advances about this infection, there are no effective treatments to prevent it. Herein, the antiamoebic capacity of curcumin in a hamster model was evaluated. Curcumin (150 mg/kg, p.o., daily during 10 days before infection) considerably prevents liver damage induced at 12 and 48 h post-intrahepatic inoculation of trophozoites and decreases ALT, ALP, and γ-GTP activities, and macroscopic and microscopic observations were consistent with these results. On the other hand, after one week of intraportal inoculation, liver damage was prevented by curcumin (150 mg/kg, p.o., daily, 20 days before amoebic inoculation and during the week of infection); liver/body weight ratios and tissue and histological stains showed normal appearance; in addition, the increases in ALT, ALP, and γ-GTP activities were prevented; the depletion of glycogen content induced by the amoebic damage was partially but significantly prevented, while NF-κB activity was inhibited and the expression of IL-1β was reduced; Nrf2 production showed a tendency to increase it, and HO-1 protein was overexpressed. These results suggest for the first time that curcumin can be a compound with antiamoebic effect in the liver, suggesting that its daily use could help greatly decrease the incidence of this type of infection.
Collapse
|
48
|
Liposomal Curcumin is Better than Curcumin to Alleviate Complications in Experimental Diabetic Mellitus. Molecules 2019; 24:molecules24050846. [PMID: 30818888 PMCID: PMC6429477 DOI: 10.3390/molecules24050846] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 01/14/2023] Open
Abstract
Curcumin (CC) is known to have anti-inflammatory and anti-oxidative properties and has already been tested for its efficiency in different diseases including diabetes mellitus (DM). New formulations and route administration were designed to obtain products with higher bioavailability. Our study aimed to test the effect of intraperitoneal (i.p.) administration of liposomal curcumin (lCC) as pre-treatment in streptozotocin(STZ)-induced DM in rats on oxidative stress, liver, and pancreatic functional parameters. Forty-two Wistar-Bratislava rats were randomly divided into six groups (seven animals/group): control (no diabetes), control-STZ (STZ-induced DM —60 mg/100g body weight a single dose intraperitoneal administration, and no CC pre-treatment), two groups with DM and CC pre-treatment (1mg/100g bw—STZ + CC1, 2 mg/100g bw—STZ + CC2), and two groups with DM and lCC pre-treatment (1 mg/100g bw—STZ + lCC1, 2 mg/100g bw—STZ + lCC1). Intraperitoneal administration of Curcumin in diabetic rats showed a significant reduction of nitric oxide, malondialdehyde, total oxidative stress, and catalase for both evaluated formulations (CC and lCC) compared to control group (p < 0.005), with higher efficacy of lCC formulation compared to CC solution (p < 0.002, excepting catalase for STZ + CC2vs. STZ + lCC1when p = 0.0845). The CC and lCC showed hepatoprotective and hypoglycemic effects, a decrease in oxidative stress and improvement in anti-oxidative capacity status against STZ-induced DM in rats (p < 0.002). The lCC also proved better efficacy on MMP-2, and -9 plasma levels as compared to CC (p < 0.003, excepting STZ + CC2 vs. STZ + lCC1 comparison with p = 0.0553). The lCC demonstrated significantly better efficacy as compared to curcumin solution on all serum levels of the investigated markers, sustaining its possible use as adjuvant therapy in DM.
Collapse
|
49
|
Haque MA, Jantan I, Harikrishnan H, Ghazalee S. Standardized extract of Zingiber zerumbet suppresses LPS-induced pro-inflammatory responses through NF-κB, MAPK and PI3K-Akt signaling pathways in U937 macrophages. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:195-205. [PMID: 30668369 DOI: 10.1016/j.phymed.2018.09.183] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/21/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Zingiber zerumbet rhizome has been used as spices and in traditional medicine to heal various immune-inflammatory related ailments. Although the plant was reported to have potent anti-inflammatory and immunosuppressive properties by several studies, the molecular mechanisms underlying the effects have not been well justified. PURPOSE The study was carried out to investigate the molecular mechanisms underlying the anti-inflammatory properties of the standardized 80% ethanol extract of Z. zerumbet through its effect on mitogen-activated protein kinase (MyD88)-dependent nuclear factor-kappa B (NF-кB), mitogen activated protein kinase (MAPK) and phosphatidylinositol 3-kinase/Akt (PI3K-Akt) signaling pathways in lipopolysaccharide (LPS)-induced U937 human macrophages. METHODS Standardization of the 80% ethanol extract of Z. zerumbet was performed by using a validated reversed-phase HPLC method, while LC-MS/MS was used to profile the secondary metabolites. The release of pro-inflammatory markers, tumor necrosis factor (TNF)-α, interleukin (IL)-1β and prostaglandin E2 (PGE2) was evaluated by enzyme-linked immunosorbent assay (ELISA), while the Western blot technique was executed to elucidate the expression of mediators linked to MyD88-dependent respective signaling pathways. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay was carried out to quantify the relative gene expression of cyclooxygenase (COX)-2 and pro-inflammatory mediators at the transcriptional level. RESULTS The quantitative and qualitative analyses of Z. zerumbet extract showed the presence of several compounds including the major chemical marker zerumbone. Z. zerumbet extract suppressed the release of pro-inflammatory mediators, COX-2 protein expression and downregulated the mRNA expression of pro-inflammatory markers. Z. zerumbet-treatment also blocked NF-κB activation by preventing the phosphorylation of IKKα/β and NF-κB (p65) as well as the phosphorylation and degradation of IκBα. Z. zerumbet extract concentration-dependently inhibited the phosphorylation of respective MAPKs (JNK, ERK, and p38) as well as Akt. Correspondingly, Z. zerumbet extract suppressed the upstream signaling adaptor molecules, TLR4 and MyD88 prerequisite for the NF-κB, MAPKs, and PI3K-Akt activation. CONCLUSION The findings suggest that Z. zerumbet has impressive role in suppressing inflammation and related immune disorders by inhibition of various pro-inflammatory markers through the imperative MyD88-dependent NF-κB, MAPKs, and PI3K-Akt activation.
Collapse
Affiliation(s)
- Md Areeful Haque
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Ibrahim Jantan
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; School of Pharmacy, Taylor's University, Lakeside campus, Subang Jaya, Selangor 47500, Malaysia.
| | - Hemavathy Harikrishnan
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Shazliana Ghazalee
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
50
|
Wu B, Wang R, Li S, Wang Y, Song F, Gu Y, Yuan Y. Antifibrotic effects of Fraxetin on carbon tetrachloride-induced liver fibrosis by targeting NF-κB/IκBα, MAPKs and Bcl-2/Bax pathways. Pharmacol Rep 2019; 71:409-416. [PMID: 31003150 DOI: 10.1016/j.pharep.2019.01.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/18/2018] [Accepted: 01/14/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Liver fibrosis is a chronic lesion which ultimately results in cirrhosis and possible death. Although the high incidence and lethality, few therapies are effective for liver fibrosis. Fraxetin (7,8-dihydroxy-6-methoxy coumarin), a natural product extracted from cortex fraxini, has exhibited a significant hepatoprotective and anti-fibrotic properties. However, the underlying mechanism of the anti-hepatic fibrotic property remains unknown. METHODS 48 Male Sprague Dawley rats were divided into four groups at random which were named as normal group, model group, fraxetin 25 mg/kg and 50 mg/kg group. The experimental model of liver fibrosis was founded by carbon tetrachloride (CCl4) rats which were simultaneously treated with fraxetin (25 mg/kg or 50 mg/kg). Normal groups received equal volumes of saline and peanut oil. RESULTS Results showed that fraxetin ameliorated CCl4 induced liver damage and fibrosis. Furthermore, histopathology examinations revealed that fraxetin improved the morphology and alleviated collagen deposition in fibrotic liver. Fraxetin inhibited inflammation and hepatocytes apoptosis by modulating the NF-κB/IκBα, MAPKs and Bcl-2/Bax signaling pathways. CONCLUSION Our findings indicate that fraxetin is effective in preventing liver fibrosis through inhibiting inflammation and hepatocytes apoptosis which is associated with regulating NF-κB/IκBα, MAPKs and Bcl-2/Bax signaling pathways in rats.
Collapse
Affiliation(s)
- Bin Wu
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengnan Li
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuxing Song
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|