1
|
Singh R, Kumawat M, Gogoi H, Madhyastha H, Lichtfouse E, Daima HK. Engineered Nanomaterials for Immunomodulation: A Review. ACS APPLIED BIO MATERIALS 2024; 7:727-751. [PMID: 38166376 DOI: 10.1021/acsabm.3c00940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The immune system usually provides a defense against invading pathogenic microorganisms and any other particulate contaminants. Nonetheless, it has been recently reported that nanomaterials can evade the immune system and modulate immunological responses due to their unique physicochemical characteristics. Consequently, nanomaterial-based activation of immune components, i.e., neutrophils, macrophages, and other effector cells, may induce inflammation and alter the immune response. Here, it is essential to distinguish the acute and chronic modulations triggered by nanomaterials to determine the possible risks to human health. Nanomaterials size, shape, composition, surface charge, and deformability are factors controlling their uptake by immune cells and the resulting immune responses. The exterior corona of molecules adsorbed over nanomaterials surfaces also influences their immunological effects. Here, we review current nanoengineering trends for targeted immunomodulation with an emphasis on the design, safety, and potential toxicity of nanomaterials. First, we describe the characteristics of engineered nanomaterials that trigger immune responses. Then, the biocompatibility and immunotoxicity of nanoengineered particles are debated, because these factors influence applications. Finally, future nanomaterial developments in terms of surface modifications, synergistic approaches, and biomimetics are discussed.
Collapse
Affiliation(s)
| | - Mamta Kumawat
- Department of Biotechnology, School of Sciences, JECRC University, Sitapura Extension, Jaipur 303905, Rajasthan, India
| | - Himanshu Gogoi
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, University of Miyazaki, Miyazaki 8891692, Japan
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University Xi'an, Shaanxi 710049, China
| | - Hemant Kumar Daima
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindari 305817, Ajmer, India
| |
Collapse
|
2
|
Shahout F, Vanharen M, Saafane A, Gillard J, Girard D, LaPlante SR. Drug Self-Aggregation into Nano-Entities Has the Potential to Induce Immune Responses. Mol Pharm 2023; 20:4031-4040. [PMID: 37421372 DOI: 10.1021/acs.molpharmaceut.3c00196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
The free-state solution behaviors of small molecules profoundly affect their respective properties. It is becoming more obvious that compounds can adopt a three-phase equilibrium when placed in an aqueous solution, among soluble-lone molecule form, self-assembled aggregate form (nano-entities), and solid precipitate form. Recently, correlations have emerged between the existence of self-assemblies into drug nano-entities and unintended side effects. This report describes our pilot study involving a selection of drugs and dyes to explore if there may be a correlation between the existence of drug nano-entities and immune responses. We first implement practical strategies for detecting the drug self-assemblies using a combination of nuclear magnetic resonance (NMR), dynamic light scattering (DLS), transmission electron microscopy (TEM), and confocal microscopy. We then used enzyme-linked immunosorbent assays (ELISA) to monitor the modulation of immune responses on two cellular models, murine macrophage and human neutrophils, upon exposure to the drugs and dyes. The results suggest that exposure to some aggregates correlated with an increase in IL-8 and TNF-α in these model systems. Given this pilot study, further correlations merit pursuing on a larger scale given the importance and potential impact of drug-induced immune-related side effects.
Collapse
Affiliation(s)
- Fatma Shahout
- Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Marion Vanharen
- Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Abdelaziz Saafane
- Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - James Gillard
- Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal, 2950 Chem. de Polytechnique, Montréal, Québec H3T 1J4, Canada
| | - Denis Girard
- Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Steven R LaPlante
- Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada
- NMX Research and Solutions, Inc., 500 Boulevard Cartier Ouest, Laval, Québec H7V 5B7, Canada
| |
Collapse
|
3
|
Saafane A, Girard D. Interaction between iron oxide nanoparticles (IONs) and primary human immune cells: An up-to-date review of the literature. Toxicol In Vitro 2023:105635. [PMID: 37356554 DOI: 10.1016/j.tiv.2023.105635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/19/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Nanotechnology has been gaining more and more momentum lately and the potential use of nanomaterials such as nanoparticles (NPs) continues to grow in a variety of activity sectors. Among the NPs, iron oxide nanoparticles (IONs) have retained an increasing interest from the scientific community and industrials due to their superparamagnetic properties allowing their use in many fields, including medicine. However, some undesired effects of IONs and potential risk for human health are becoming increasingly reported in several studies. Although many in vivo studies reported that IONs induce immunotoxicity in different animal models, it is not clear how IONs can alter the biology of primary human immune cells. In this article, we will review the works that have been done regarding the interaction between IONs and primary immune cells. This review also outlines the importance of using primary immune cells in risk assessment of NPs as a reliable strategy for encouraging non-animal studies approaches, to determine risks that might affect the human immune system following different exposure scenarios. Taken all together, the reported observations help to get a more global picture on how IONs alter the human immune system especially the fact that inflammation, known to involve several immune cell types, is frequently reported as an undesired effect of IONs.
Collapse
Affiliation(s)
- Abdelaziz Saafane
- Laboratoire de Recherche en Inflammation et Physiologie des Granulocytes, Université du Québec, Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Denis Girard
- Laboratoire de Recherche en Inflammation et Physiologie des Granulocytes, Université du Québec, Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada.
| |
Collapse
|
4
|
Morin-Genest J, Saafane A, Girard D. Functional responsiveness of in vitro-aged human neutrophils. Cell Immunol 2023; 390:104739. [PMID: 37315500 DOI: 10.1016/j.cellimm.2023.104739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Elimination of apoptotic neutrophils by macrophages is as a major step for the resolution of inflammation. However, the fate and the cellular functionality of neutrophils aged in the absence of macrophages are not well documented. Herein, freshly isolated human neutrophils were aged for several days in vitro and then stimulated with agonists for determining their cell responsiveness. In vitro-aged neutrophils were still able to generate reactive oxygen species after 48 h, exert phagocytosis after 72 h, and increase their adhesion onto a cell substratum after 48 h. These data demonstrate that a portion of neutrophils cultivated for several days in vitro are still able to exert biological functions. This opens the possibility that, during inflammation, neutrophils may still respond to agonists, a condition that is likely to occur in vivo when they are not efficiently eliminated by efferocytosis.
Collapse
Affiliation(s)
- J Morin-Genest
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - A Saafane
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - D Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada.
| |
Collapse
|
5
|
Noga M, Milan J, Frydrych A, Jurowski K. Toxicological Aspects, Safety Assessment, and Green Toxicology of Silver Nanoparticles (AgNPs)—Critical Review: State of the Art. Int J Mol Sci 2023; 24:ijms24065133. [PMID: 36982206 PMCID: PMC10049346 DOI: 10.3390/ijms24065133] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, research on silver nanoparticles (AgNPs) has attracted considerable interest among scientists because of, among other things, their alternative application to well-known medical agents with antibacterial properties. The size of the silver nanoparticles ranges from 1 to 100 nm. In this paper, we review the progress of research on AgNPs with respect to the synthesis, applications, and toxicological safety of AgNPs, and the issue of in vivo and in vitro research on silver nanoparticles. AgNPs’ synthesis methods include physical, chemical, and biological routes, as well as “green synthesis”. The content of this article covers issues related to the disadvantages of physical and chemical methods, which are expensive and can also have toxicity. This review pays special attention to AgNP biosafety concerns, such as potential toxicity to cells, tissues, and organs.
Collapse
Affiliation(s)
- Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
| | - Justyna Milan
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
- Correspondence: or
| |
Collapse
|
6
|
Angolkar M, Paramshetti S, Halagali P, Jain V, Patil AB, Somanna P. Nanotechnological advancements in the brain tumor therapy: a novel approach. Ther Deliv 2023; 13:531-557. [PMID: 36802944 DOI: 10.4155/tde-2022-0035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Nanotechnological advancements over the past few years have led to the development of newer treatment strategies in brain cancer therapy which leads to the establishment of nano oncology. Nanostructures with high specificity, are best suitable to penetrate the blood-brain barrier (BBB). Their desired physicochemical properties, such as small sizes, shape, higher surface area to volume ratio, distinctive structural features, and the possibility to attach various substances on their surface transform them into potential transport carriers able to cross various cellular and tissue barriers, including the BBB. The review emphasizes nanotechnology-based treatment strategies for the exploration of brain tumors and highlights the current progress of different nanomaterials for the effective delivery of drugs for brain tumor therapy.
Collapse
Affiliation(s)
- Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Praveen Halagali
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Amit B Patil
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Preethi Somanna
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| |
Collapse
|
7
|
Saafane A, Durocher I, Vanharen M, Girard D. Impact of ultra-small silver nanoparticles of 2 nm (AgNP 2) on neutrophil biology: AgNP 2 alter the actin cytoskeleton and induce karyorrhexis by a mitogen-activated protein kinase-dependent mechanism in vitro and transitorily attract neutrophils in vivo. Chem Biol Interact 2022; 365:110096. [PMID: 35963315 DOI: 10.1016/j.cbi.2022.110096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022]
Abstract
Silver (Ag) is known as an antibacterial agent and there is a growing interest to use silver nanoparticles (AgNPs) in a variety of medical applications and other sectors. Some studies reported that one of the undesired effects of AgNPs is inflammation and that these NPs can alter the biology of neutrophils. Since it is commonly accepted that the more NPs are small, the more toxic they are the aim of this study was to determine the impact of ultra-small silver nanoparticles of 2 nm (AgNP2) on the biology of neutrophils, key player cells in inflammation. We report that AgNP2 are potent neutrophil activators as they rapidly induce actin polymerization and dismantling the actin network. Although AgNP2 are not necrotic for neutrophils and do not induce ROS production, kinetic studies reveal that AgNP2 are rapid inducer of apoptosis. Pyknosis (mainly 1-2 large nuclear dots) was observed after only 1h of treatment followed by karyorrhexis (several small dots) and by a complete nuclear dissolution leading to anuclear neutrophils after 6h. These observations are not associated with the release of silver ions since treatment of neutrophils with 1-50 μg/ml AgNO3 (as a source of Ag+) did not induce any apparent changes. AgNP2 induce p38 and Erk-1/2 mitogen-activated protein kinase (MAPK) and although karyorrhexis was markedly reversed by MAPK inhibitors, the cell nuclei remain with a pyknotic-like phenotype but do not return to the characteristic polylobed nucleus. Using the murine air pouch model of inflammation AgNP2 were found to induce a neutrophil influx. Our data indicate that AgNP2 are potent neutrophil activators targeting the actin cytoskeleton and the mechanism involved for inducing apoptosis is rapid, complex, and partially includes MAPK pathways. Therefore, the ultra-small AgNP2 are more potent than larger ones for inducing apoptosis and they can transitorily attract neutrophils in vivo.
Collapse
Affiliation(s)
- Abdelaziz Saafane
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Isabelle Durocher
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Marion Vanharen
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Denis Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada.
| |
Collapse
|
8
|
Saafane A, Girard D. Interaction between iron oxide nanoparticles (Fe 3O 4 NPs) and human neutrophils: Evidence that Fe 3O 4 NPs possess some pro-inflammatory activities. Chem Biol Interact 2022; 365:110053. [PMID: 35872045 DOI: 10.1016/j.cbi.2022.110053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/03/2022]
Abstract
Iron oxide nanoparticles (Fe3O4 NPs) are important for different medical applications. However, potential toxicity has been reported and several parameters must still be studied to reach highest therapeutic efficacy with minimal undesired effects. Inflammation is one of the most reported undesired effects of NP exposure in a variety of inflammatory models and conflicting data exist regarding whether Fe3O4 NPs possess pro- or anti-inflammatory activities. The aim of this study was to determine the direct effect of Fe3O4 NPs on the biology of neutrophil, a key player cell in inflammation. Freshly isolated human neutrophils were incubated in vitro with Fe3O4 NPs, and several functions have been studied. Using transmission electronic microscopy, Fe3O4 NPs were found to be ingested by neutrophils. These NPs do not induce a respiratory burst by themselves, but they increase the ability of neutrophils to adhere onto human endothelial cells as well as enhance phagocytosis. An antibody array approach revealed that Fe3O4 NPs induce the production of some cytokines, including the chemokine IL-8 (CXCL8), which was confirmed by ELISA. Fe3O4NPs were found to delay spontaneous neutrophil apoptosis regardless of sex of the donor. Using a pharmacological approach, we demonstrate that Fe3O4 NPs delay apoptosis by a de novo protein synthesis-dependent mechanism and via different cell signalling pathways. The data indicate that Fe3O4 NPs can alter the biology of human neutrophils and that they possess some pro-inflammatory effects, particularly based on their capacity to delay apoptosis and to induce the production of pro-inflammatory cytokines. Therefore, Fe3O4 NPs can regulate inflammation by targeting human neutrophil functions.
Collapse
Affiliation(s)
- Abdelaziz Saafane
- Laboratoire de Recherche en Inflammation et Physiologie des Granulocytes, Université Du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Denis Girard
- Laboratoire de Recherche en Inflammation et Physiologie des Granulocytes, Université Du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada.
| |
Collapse
|
9
|
Kovács D, Igaz N, Gopisetty MK, Kiricsi M. Cancer Therapy by Silver Nanoparticles: Fiction or Reality? Int J Mol Sci 2022; 23:839. [PMID: 35055024 PMCID: PMC8777983 DOI: 10.3390/ijms23020839] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
As an emerging new class, metal nanoparticles and especially silver nanoparticles hold great potential in the field of cancer biology. Due to cancer-specific targeting, the consequently attenuated side-effects and the massive anti-cancer features render nanoparticle therapeutics desirable platforms for clinically relevant drug development. In this review, we highlight those characteristics of silver nanoparticle-based therapeutic concepts that are unique, exploitable, and achievable, as well as those that represent the critical hurdle in their advancement to clinical utilization. The collection of findings presented here will describe the features that distinguish silver nanoparticles from other anti-cancer agents and display the realistic opportunities and implications in oncotherapeutic innovations to find out whether cancer therapy by silver nanoparticles is fiction or reality.
Collapse
Affiliation(s)
- Dávid Kovács
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (D.K.); (N.I.); (M.K.G.)
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, 660 Route des Lucioles, 06560 Valbonne, France
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (D.K.); (N.I.); (M.K.G.)
| | - Mohana K. Gopisetty
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (D.K.); (N.I.); (M.K.G.)
- Interdisciplinary Center of Excellence, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla Tér 1, H-6720 Szeged, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (D.K.); (N.I.); (M.K.G.)
| |
Collapse
|
10
|
Synergistic effects of silver nanoparticles and cisplatin in combating inflammation and hyperplasia of airway stents. Bioact Mater 2021; 9:266-280. [PMID: 34820570 PMCID: PMC8586718 DOI: 10.1016/j.bioactmat.2021.07.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/04/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022] Open
Abstract
Anti-inflammatory and antihyperplasia activities are essential requirements for the successful use of airway stents. In this work, silver nanoparticles (AgNPs) and cisplatin (DDP) were combined in a synergistic modification strategy to improve the surface function of airway stents. Using polycaprolactone (PCL) as a drug carrier, a dual-functional PCL-AgNPs-DDP fiber film-coated airway stent was fabricated by electrospinning. The physicochemical and biological properties of the obtained fiber films were examined. The ATR-FTIR, XPS, SEM-EDS and TEM results suggested that AgNPs and DDP could be successfully immobilized onto the airway stent surface. The drug release and surface degradation results revealed that AgNPs and DDP can undergo sustained release from films for 30 d, and the weight loss was approximately 50% after 35 d. In addition, the dual-functional fiber film suppressed human embryonic lung fibroblast growth and exhibited excellent antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Furthermore, the effectiveness of the dual-functional fiber film-coated airway stent was evaluated by application to the trachea of New Zealand rabbits. The in vivo results indicated that PCL-AgNPs-DDP fiber film-coated airway stent can significantly inhibit granulation tissue formation and collagen deposition, reduced the expression of IL-8, TNF-α, IL-1α, PCNA, α-SMA and CD68, and ultimately achieved anti-inflammatory and antihyperplasia effects. Hence, this study provides a dual-functional surface-coated airway stent to address the clinical complications associated with respiratory tract inflammation and granulation tissue hyperplasia, thus inhibiting tracheal stenosis. This study provides a dual-functional PCL-AgNPs-DDP nanofiber film-coated airway stent. The airway stent processes antibacterial activity and suppress CCC-HPF-1 growth. The stent inhibits tracheal stenosis by antiinflammatory and antihyperplasia treatment.
Collapse
|
11
|
Protective Role of Flavonoids against Intestinal Pro-Inflammatory Effects of Silver Nanoparticles. Molecules 2021; 26:molecules26216610. [PMID: 34771019 PMCID: PMC8588041 DOI: 10.3390/molecules26216610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Silver nanoparticles (AgNP) have been increasingly incorporated into food-related and hygiene products for their unique antimicrobial and preservative properties. The consequent oral exposure may then result in unpredicted harmful effects in the gastrointestinal tract (GIT), which should be considered in the risk assessment and risk management of these materials. In the present study, the toxic effects of polyethyleneimine (PEI)-coated AgNP (4 and 19 nm) were evaluated in GIT-relevant cells (Caco-2 cell line as a model of human intestinal cells, and neutrophils as a model of the intestinal inflammatory response). This study also evaluated the putative protective action of dietary flavonoids against such harmful effects. The obtained results showed that AgNP of 4 and 19 nm effectively induced Caco-2 cell death by apoptosis with concomitant production of nitric oxide, irrespective of the size. It was also observed that AgNP induced human neutrophil oxidative burst. Interestingly, some flavonoids, namely quercetin and quercetagetin, prevented the deleterious effects of AgNP in both cell types. Overall, the data of the present study provide a first insight into the promising protective role of flavonoids against the potentially toxic effects of AgNP at the intestinal level.
Collapse
|
12
|
Vanharen M, Durocher I, Saafane A, Girard D. Evaluating the Apoptotic Cell Death Modulatory Activity of Nanoparticles in Men and Women Neutrophils and Eosinophils. Inflammation 2021; 45:387-398. [PMID: 34536156 DOI: 10.1007/s10753-021-01553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 08/22/2021] [Indexed: 11/25/2022]
Abstract
Apoptosis is an important cell death mechanism for the resolution of inflammation. Neutrophil spontaneous apoptosis rates were reported to be slightly different in men and women and to be modulated by female sex hormones. The aim of this study was to determine whether different nanoparticles (NPs) will alter the neutrophil and eosinophil apoptotic rates differently in men and women. Using the antiapoptotic cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) and the proapoptotic plant lectin Viscum album agglutinin-I (VAA-I) as controls, we found that these factors respectively delay and induce apoptosis in both neutrophils and eosinophils with apoptotic rates remarkably similar in both sexes. The polyamidoamine (PAMAM) dendrimers of generation 0 (G0) and G3 slightly, but not significantly, accelerate neutrophil apoptosis regardless of sex. Zinc oxide (ZnO), titanium dioxide (TiO2), cerium dioxide (CeO2), and palladium (Pd) but not platinum (Pt) NPs were found to significantly delay neutrophil apoptosis. When results were compared between men and women, only ZnO and Pd NPs were found to significantly delay neutrophil apoptosis in men while ZnO, TiO2, CeO2, and Pt NPs inhibit apoptosis in women neutrophils. In eosinophils, G3, but not G0 NPs, significantly accelerate apoptosis in women. ZnO, Pt, and Pd NPs significantly delay eosinophil apoptosis but only in women. Unlike neutrophils, TiO2 and CeO2 NPs did not significantly delay eosinophil apoptosis. We propose that future studies aiming at determining potential effect NPs on cellular biological processes should incorporate a sex-based analysis based on the differences reported here studying the impact of NPs on human granulocyte apoptosis.
Collapse
Affiliation(s)
- Marion Vanharen
- Laboratoire de Recherche en Inflammation Et Physiologie Des Granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Isabelle Durocher
- Laboratoire de Recherche en Inflammation Et Physiologie Des Granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Abdelaziz Saafane
- Laboratoire de Recherche en Inflammation Et Physiologie Des Granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Denis Girard
- Laboratoire de Recherche en Inflammation Et Physiologie Des Granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
13
|
Vishnevskiy DA, Garanina AS, Chernysheva AA, Chekhonin VP, Naumenko VA. Neutrophil and Nanoparticles Delivery to Tumor: Is It Going to Carry That Weight? Adv Healthc Mater 2021; 10:e2002071. [PMID: 33734620 DOI: 10.1002/adhm.202002071] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/02/2021] [Indexed: 12/15/2022]
Abstract
The application of cell carriers for transporting nanodrugs to the tumor draws much attention as the alternative to the passive drug delivery. In this concept, the neutrophil (NΦ) is of special interest as this cell is able to uptake nanoparticles (NPs) and cross the vascular barrier in response to tumor signaling. There is a growing body of literature describing NP-NΦ interactions in vitro and in vivo that demonstrates the opportunity of using these cells to improve the efficacy of cancer therapy. However, a number of conceptual and technical issues need to be resolved for translating the technology into clinics. The current review summarizes the recent advances and challenges associated with NP-NΦ interactions, with the special focus on the complex interplay between the NP internalization pathways and the modulation of NΦ activity, and its potential consequences for nanodrug delivery.
Collapse
Affiliation(s)
- Daniil A. Vishnevskiy
- V. Serbsky National Medical Research Center for Psychiatry and Narcology Kropotkinskiy Pereulok, 23 Moscow 119034 Russia
- N. I Pirogov Russian National Research Medical University Ulitsa Ostrovityanova, 1 Moscow 117997 Russia
| | - Anastasiia S. Garanina
- National University of Science and Technology (MISIS) Leninskiy Prospekt, 4 Moscow 119049 Russia
| | - Anastasia A. Chernysheva
- V. Serbsky National Medical Research Center for Psychiatry and Narcology Kropotkinskiy Pereulok, 23 Moscow 119034 Russia
| | - Vladimir P. Chekhonin
- V. Serbsky National Medical Research Center for Psychiatry and Narcology Kropotkinskiy Pereulok, 23 Moscow 119034 Russia
- N. I Pirogov Russian National Research Medical University Ulitsa Ostrovityanova, 1 Moscow 117997 Russia
| | - Victor A. Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology Kropotkinskiy Pereulok, 23 Moscow 119034 Russia
| |
Collapse
|
14
|
Chen PM, Pan WY, Luo PK, Phung HN, Liu YM, Chiang MC, Chang WA, Tien TL, Huang CY, Wu WW, Chia WT, Sung HW. Pollen-Mimetic Metal-Organic Frameworks with Tunable Spike-Like Nanostructures That Promote Cell Interactions to Improve Antigen-Specific Humoral Immunity. ACS NANO 2021; 15:7596-7607. [PMID: 33760607 DOI: 10.1021/acsnano.1c01129] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The exine capsules of pollen particles exhibit a variety of characteristic surface morphologies that promote their cell interactions; their use as antigen carriers for vaccination has been proposed. However, the allergy-causing substances in pollen particles may not all be removed, even by vigorous chemical treatments. To resolve this issue, this work develops systemic approaches for synthesizing pollen-mimetic metal-organic frameworks (MOFs), which comprise aluminum (Al) ions and an organic linker (2-aminoterephthalic acid), with tunable spike-like nanostructures on their surfaces. The as-synthesized MOFs act not only as a delivery vehicle that carries a model antigen (ovalbumin, OVA) but also as an adjuvant (Al). Scanning and transmission electron microscopies images reveal that the aspect ratio of the nanospikes that are grown on the MOFs can be controlled. A higher aspect ratio of the nanospikes on the MOFs is associated with greater cell attachment and faster and more efficient phagocytosis in cells, which results in greater expressions of pro-inflammatory cytokines. Consequently, a more robust immune response against the antigen of interest is elicited. These findings have broad implications for the rational design of the future antigen/adjuvant-presenting particles for vaccination.
Collapse
Affiliation(s)
- Po-Ming Chen
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| | - Wen-Yu Pan
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, ROC
| | - Po-Kai Luo
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| | - Hieu Nghia Phung
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| | - Yu-Miao Liu
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| | - Min-Chun Chiang
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| | - Wan-An Chang
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| | - Ting-Lun Tien
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| | - Chih-Yang Huang
- Department of Materials Science and Engineering and Center for Intelligent Semiconductor Nano-System Technology Research, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Wen-Wei Wu
- Department of Materials Science and Engineering and Center for Intelligent Semiconductor Nano-System Technology Research, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Wei-Tso Chia
- Department of Orthopedics, National Taiwan University Hospital, Hsinchu Branch, Hsinchu 300, Taiwan, ROC
| | - Hsing-Wen Sung
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| |
Collapse
|
15
|
Silver Nanoparticles Induce Neutrophil Extracellular Traps Via Activation of PAD and Neutrophil Elastase. Biomolecules 2021; 11:biom11020317. [PMID: 33669660 PMCID: PMC7922014 DOI: 10.3390/biom11020317] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 01/08/2023] Open
Abstract
Silver nanoparticles (AgNPs) are widely used in various fields because of their antimicrobial properties. However, many studies have reported that AgNPs can be harmful to both microorganisms and humans. Reactive oxygen species (ROS) are a key factor of cytotoxicity of AgNPs in mammalian cells and an important factor in the immune reaction of neutrophils. The immune reactions of neutrophils include the expulsion of webs of DNA surrounded by histones and granular proteins. These webs of DNA are termed neutrophil extracellular traps (NETs). NETs allow neutrophils to catch and destroy pathogens in extracellular spaces. In this study, we investigated how AgNPs stimulate neutrophils, specifically focusing on NETs. Freshly isolated human neutrophils were treated with 5 or 100 nm AgNPs. The 5 nm AgNPs induced NET formation, but the 100 nm AgNPs did not. Subsequently, we investigated the mechanism of AgNP-induced NETs using known inhibitors related to NET formation. AgNP-induced NETs were dependent on ROS, peptidyl arginine deiminase, and neutrophil elastase. The result in this study indicates that treatment of 5 nm AgNPs induce NET formation through histone citrullination by peptidyl arginine deiminase and histone cleavage by neutrophil elastase.
Collapse
|
16
|
Chang X, Wang X, Li J, Shang M, Niu S, Zhang W, Li Y, Sun Z, Gan J, Li W, Tang M, Xue Y. Silver nanoparticles induced cytotoxicity in HT22 cells through autophagy and apoptosis via PI3K/AKT/mTOR signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111696. [PMID: 33396027 DOI: 10.1016/j.ecoenv.2020.111696] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
With the widespread application and inevitable environmental exposure, silver nanoparticles (AgNPs) can be accumulated in various organs. More serious concerns are raised on the biological safety and potential toxicity of AgNPs in the central nervous system (CNS), especially in the hippocampus. This study aimed to investigate the biological effects and the role of PI3K/AKT/mTOR signaling pathway in AgNPs mediated cytotoxicity using the mouse hippocampal neuronal cell line (HT22 cells). AgNPs reduced cell viability and induced membrane leakage in a dose-dependent manner, determined by the MTT and LDH assay. In doses of 25, 50, 100 μg mL-1 for 24 h, AgNPs promoted the excessive production of reactive oxygen species (ROS) and caused the oxidative stress in HT22 cells. AgNPs induced autophagy, determined by the transmission electron microscopy observation, upregulation of LC3 II/I and downregulation of p62 expression levels. The mechanistic investigation showed that the PI3K/AKT/mTOR signaling pathway was activated by phosphorylation, which was enrolled in an AgNP-induced autophagy process. AgNPs could further trigger the apoptosis by upregulation of caspase-3 and Bax and downregulation of Bcl-2 in HT22 cells. These results revealed AgNP-induced cytotoxicity in HT22 cells, which was mediated by autophagy and apoptosis via the PI3K/AKT/mTOR signaling pathway. The study could provide the experimental evidence and explanation for the potential neurotoxicity triggered by AgNPs in vitro.
Collapse
Affiliation(s)
- Xiaoru Chang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiujuan Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jiangyan Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Mengting Shang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wenli Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yunjing Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Zuoyi Sun
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Junying Gan
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wenhua Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
17
|
Lasola JJM, Kamdem H, McDaniel MW, Pearson RM. Biomaterial-Driven Immunomodulation: Cell Biology-Based Strategies to Mitigate Severe Inflammation and Sepsis. Front Immunol 2020; 11:1726. [PMID: 32849612 PMCID: PMC7418829 DOI: 10.3389/fimmu.2020.01726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
Inflammation is an essential component of a wide variety of disease processes and oftentimes can increase the deleterious effects of a disease. Finding ways to modulate this essential immune process is the basis for many therapeutics under development and is a burgeoning area of research for both basic and translational immunology. In addition to developing therapeutics for cellular and molecular targets, the use of biomaterials to modify innate and adaptive immune responses is an area that has recently sparked significant interest. In particular, immunomodulatory activity can be engineered into biomaterials to elicit heightened or dampened immune responses for use in vaccines, immune tolerance, or anti-inflammatory applications. Importantly, the inherent physicochemical properties of the biomaterials play a significant role in determining the observed effects. Properties including composition, molecular weight, size, surface charge, and others affect interactions with immune cells (i.e., nano-bio interactions) and allow for differential biological responses such as activation or inhibition of inflammatory signaling pathways, surface molecule expression, and antigen presentation to be encoded. Numerous opportunities to open new avenues of research to understand the ways in which immune cells interact with and integrate information from their environment may provide critical solutions needed to treat a variety of disorders and diseases where immune dysregulation is a key inciting event. However, to elicit predictable immune responses there is a great need for a thorough understanding of how the biomaterial properties can be tuned to harness a designed immunological outcome. This review aims to systematically describe the biological effects of nanoparticle properties-separate from additional small molecule or biologic delivery-on modulating innate immune cell responses in the context of severe inflammation and sepsis. We propose that nanoparticles represent a potential polypharmacological strategy to simultaneously modify multiple aspects of dysregulated immune responses where single target therapies have fallen short for these applications. This review intends to serve as a resource for immunology labs and other associated fields that would like to apply the growing field of rationally designed biomaterials into their work.
Collapse
Affiliation(s)
- Jackline Joy Martín Lasola
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Henry Kamdem
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Michael W. McDaniel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Ryan M. Pearson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
18
|
Alsaleh NB, Minarchick VC, Mendoza RP, Sharma B, Podila R, Brown JM. Silver nanoparticle immunomodulatory potential in absence of direct cytotoxicity in RAW 264.7 macrophages and MPRO 2.1 neutrophils. J Immunotoxicol 2020; 16:63-73. [PMID: 31282784 PMCID: PMC7135879 DOI: 10.1080/1547691x.2019.1588928] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Engineered nanomaterials (ENM) are being used in a wide range of consumer products and pharmaceuticals; hence, there is an increasing risk for human exposure and potential adverse outcomes. The immune system, vital in host defense and protection against environmental agents, is typically initiated and executed by innate effector immune cells including macrophages and neutrophils. Previous literature has reported the immune system as a major target of ENM toxicity; however, there is inconsistency regarding the immunotoxicity of ENM. This could be attributed to differences in ENM physicochemical properties, cellular models examined, biocorona formation, etc. Thus, the current study examined the toxicity and immunomodulatory effects of silver nanoparticles (AgNP), one of the most utilized ENM in consumer and medical products, in two key innate immune cell models, e.g. RAW 264.7 cells (macrophages) and differentiated MPRO 2.1 cells (promyelocytes/neutrophils). The results showed that despite a generation of reactive oxygen species, exposure to 20 nm citrate-coated AgNP was not associated with major oxidative damage, inflammatory responses, nor cytotoxicity. Nevertheless, and most importantly, pre-exposure to the AgNP for 24 h enhanced RAW 264.7 cell phagocytic ability as well as the release of inflammatory cytokine interleukin-6 in response to lipopolysaccharide (LPS). In MPRO 2.1 cells, AgNP pre-exposure also resulted in enhanced phagocytic ability; however, these cells manifest reduced cell degranulation (elastase release) and oxidative burst in response to phorbol myristate acetate (PMA). Taken together, these findings indicated to us that exposure to AgNP, despite not being directly (cyto)toxic to these cells, had the potential to alter immune cell responses. The findings underscore the import of assessing immune cell function post-exposure to ENM beyond the standard endpoints such as oxidative stress and cytotoxicity. In addition, these findings further illustrate the importance of understanding the underlying molecular mechanisms of ENM-cellular interactions, particularly in the immune system.
Collapse
Affiliation(s)
- Nasser B Alsaleh
- a Department of Pharmaceutical Sciences, Colorado Center for Nanomedicine and Nanosafety, Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Valerie C Minarchick
- a Department of Pharmaceutical Sciences, Colorado Center for Nanomedicine and Nanosafety, Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Ryan P Mendoza
- a Department of Pharmaceutical Sciences, Colorado Center for Nanomedicine and Nanosafety, Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Bipin Sharma
- b Department of Physics and Astronomy, Laboratory of Nano-biophysics , Clemson University , Clemson , SC , USA
| | - Ramakrishna Podila
- b Department of Physics and Astronomy, Laboratory of Nano-biophysics , Clemson University , Clemson , SC , USA
| | - Jared M Brown
- a Department of Pharmaceutical Sciences, Colorado Center for Nanomedicine and Nanosafety, Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|
19
|
Shaniba VS, Aziz AA, Jayasree PR, Kumar PRM. Manilkara zapota (L.) P. Royen Leaf Extract Derived Silver Nanoparticles Induce Apoptosis in Human Colorectal Carcinoma Cells Without Affecting Human Lymphocytes or Erythrocytes. Biol Trace Elem Res 2019; 192:160-174. [PMID: 30850949 DOI: 10.1007/s12011-019-1653-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/22/2019] [Indexed: 12/16/2022]
Abstract
Plant-derived synthesis of silver nanoparticles (AgNPs) has found wide biomedical applications including cancer cure. This report deals with biosynthesis of silver nanoparticles (MZLAgNPs) employing leaf extracts of Manilkara zapota (L.) under optimized conditions. Characterization of MZLAgNPs using UV-Vis spectroscopy, FTIR, XRD, and FESEM analyses revealed that the particles were predominantly spherical averaging 24 nm in size. Their cellular effects were assessed by MTT assay, fluorescence, and scanning electron microscopy of cells stained with propidium iodide, acridine orange/ethidium bromide, and annexin V-FITC to visualize signs of apoptosis. Evaluation of cell proliferation by clonogenic assay, wound healing ability by scratch assay and cell cycle distribution by flow-cytometry was also carried out. Apoptosis-related gene expressions were analyzed by RTq-PCR and western blot analysis. MZLAgNPs selectively inhibited growth of colorectal carcinoma HCT116, HeLa, and non-small lung carcinoma A549 cells, dose-dependently with IC50 concentrations of 8, 16, and 29 μg/mL respectively, following 72-h treatment, without affecting growth of normal human lymphocytes and erythrocytes. Apoptosis induction was observed by fluorescence and scanning electron microscopy. Overproduction of reactive oxygen species (ROS), reduction of mitochondrial membrane potential, upregulation of apoptotic-related genes - PUMA, cas-3, cas-8, cas-9, and BAX, expression of caspase 3, and occurrence of PARP cleavage were observed in MZLAgNPs/cisplatin treated cells. Taken together, our results clearly demonstrate the therapeutic potential of biogenic MZLAgNPs as an effective agent for killing colorectal carcinoma cells by apoptosis induction.
Collapse
Affiliation(s)
- V S Shaniba
- Recombinant DNA Laboratory, Department of Biotechnology, University of Calicut, Malappuram, Kerala, 673635, India
| | - Ahlam Abdul Aziz
- Recombinant DNA Laboratory, Department of Biotechnology, University of Calicut, Malappuram, Kerala, 673635, India
| | - P R Jayasree
- School of Health sciences, University of Calicut, Malappuram, Kerala, 673635, India
| | - P R Manish Kumar
- Recombinant DNA Laboratory, Department of Biotechnology, University of Calicut, Malappuram, Kerala, 673635, India.
| |
Collapse
|
20
|
|
21
|
Nicholas TP, Kavanagh TJ, Faustman EM, Altemeier WA. The Effects of Gene × Environment Interactions on Silver Nanoparticle Toxicity in the Respiratory System. Chem Res Toxicol 2019; 32:952-968. [PMID: 31124663 DOI: 10.1021/acs.chemrestox.8b00234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Silver nanoparticles (AgNP) are used in multiple applications but primarily in the manufacturing of antimicrobial products. AgNP toxicity in the respiratory system is well characterized, but few in vitro or in vivo studies have evaluated the effects of interactions between host genetic and acquired factors or gene × environment interactions (G × E) on AgNP toxicity in the respiratory system. The primary goal of this article is to review host genetic and acquired factors identified across in vitro and in vivo studies and prioritize those necessary for defining exposure limits to protect all populations. The impact of these exposures and the work being done to address the current limited protections are also discussed. Future research on G × E effects on AgNP toxicity is warranted and will assist with informing regulatory or recommended exposure limits that enforce special protections for all populations to AgNP exposures in occupational settings.
Collapse
Affiliation(s)
- Tyler P Nicholas
- Department of Environmental and Occupational Health Sciences , University of Washington , Seattle , Washington 98109 , United States
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences , University of Washington , Seattle , Washington 98109 , United States
| | - Elaine M Faustman
- Department of Environmental and Occupational Health Sciences , University of Washington , Seattle , Washington 98109 , United States
| | - William A Altemeier
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine , University of Washington , Seattle , Washington 98109 , United States
| |
Collapse
|
22
|
Profiling of nanoparticle–protein interactions by electrophoresis techniques. Anal Bioanal Chem 2018; 411:79-96. [DOI: 10.1007/s00216-018-1401-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/18/2018] [Accepted: 09/24/2018] [Indexed: 01/02/2023]
|
23
|
Li WT, Wang LY, Chang HW, Yang WC, Lo C, Pang VF, Chen MH, Jeng CR. Th2 cytokine bias induced by silver nanoparticles in peripheral blood mononuclear cells of common bottlenose dolphins ( Tursiops truncatus). PeerJ 2018; 6:e5432. [PMID: 30245924 PMCID: PMC6147119 DOI: 10.7717/peerj.5432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/20/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Silver nanoparticles (AgNPs) have been widely used in many commercial products due to their excellent antibacterial ability. The AgNPs are released into the environment, gradually accumulate in the ocean, and may affect animals at high trophic levels, such as cetaceans and humans, via the food chain. Hence, the negative health impacts caused by AgNPs in cetaceans are of concern. Cytokines play a major role in the modulation of immune system and can be classified into two types: Th1 and Th2. Th1/Th2 balance can be evaluated by the ratios of their polarizing cytokines (i.e., interferon [IFN]-γ/Interleukin [IL]-4), and animals with imbalanced Th1/Th2 response may become more susceptible to certain kinds of infection. Therefore, the present study evaluated the in vitro cytokine responses of cetacean peripheral blood mononuclear cells (cPBMCs) to 20 nm citrate-AgNPs (C-AgNP20) by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). METHODS Blood samples were collected from six captive common bottlenose dolphins (Tursiops truncatus). The cPBMCs were isolated and utilized for evaluating the in vitro cytokine responses. The cytokines evaluated included IL-2, IL-4, IL-10, IL-12, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α. The geometric means of two housekeeping genes (HKGs), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and β2-microglobulin (B2M), of each sample were determined and used to normalize the mRNA expression levels of target genes. RESULTS The ratio of late apoptotic/necrotic cells of cPBMCs significantly increased with or without concanavalin A (ConA) stimulation after 24 h of 10 µg/ml C-AgNP20 treatment. At 4 h of culture, the mRNA expression level of IL-10 was significantly decreased with 1 µg/ml C-AgNP20 treatment. At 24 h of culture with 1 µg/ml C-AgNP20, the mRNA expression levels of all cytokines were significantly decreased, with the exceptions of IL-4 and IL-10. The IFN-γ/IL-4 ratio was significantly decreased at 24 h of culture with 1 µg/ml C-AgNP20 treatment, and the IL-12/IL-4 ratio was significantly decreased at 4 or 24 h of culture with 0.1 or 1 µg/ml C-AgNP20 treatment, respectively. Furthermore, the mRNA expression level of TNF-α was significantly decreased by 1 µg/ml C-AgNP20 after 24 h of culture. DISCUSSION The present study demonstrated that the sublethal dose of C-AgNP20 (≤1 µg/ml) had an inhibitory effect on the cytokine mRNA expression levels of cPBMCs with the evidence of Th2 cytokine bias and significantly decreased the mRNA expression level of TNF-α. Th2 cytokine bias is associated with enhanced immunity against parasites but decreased immunity to intracellular microorganisms. TNF-α is a contributing factor for the inflammatory response against the infection of intracellular pathogens. In summary, our data indicate that C-AgNP20 suppresses the cellular immune response and thereby increases the susceptibility of cetaceans to infection by intracellular microorganisms.
Collapse
Affiliation(s)
- Wen-Ta Li
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Lei-Ya Wang
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Cheng Yang
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chieh Lo
- Farglory Ocean Park, Hualien, Taiwan
| | - Victor Fei Pang
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Hsien Chen
- Department of Oceanography and Asia-Pacific Ocean Research Center, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chian-Ren Jeng
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
24
|
Fraser JA, Kemp S, Young L, Ross M, Prach M, Hutchison GR, Malone E. Silver nanoparticles promote the emergence of heterogeneic human neutrophil sub-populations. Sci Rep 2018; 8:7506. [PMID: 29760395 PMCID: PMC5951814 DOI: 10.1038/s41598-018-25854-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/01/2018] [Indexed: 12/21/2022] Open
Abstract
Neutrophil surveillance is central to nanoparticle clearance. Silver nanoparticles (AgNP) have numerous uses, however conflicting evidence exists as to their impact on neutrophils and whether they trigger damaging inflammation. Neutrophil’s importance in innate defence and regulating immune networks mean it’s essential we understand AgNP’s impact on neutrophil function. Human neutrophil viability following AgNP or Ag Bulk treatment was analysed by flow cytometry and AnV/PI staining. Whilst AgNP exposure did not increase the total number of apoptotic neutrophils, the number of late apoptotic neutrophils was increased, suggesting AgNP increase transit through apoptosis. Mature (CD16bright/CD62Lbright), immature (CD16dim/CD62Lbright) and apoptotic (CD16dim/CD62Ldim) neutrophil populations were evident within isolated neutrophil preparations. AgNP exposure significantly reduced CD62L staining of CD16bright/CD62Lbright neutrophils, and increased CD16 staining of CD16dim/CD62Lbright populations, suggesting AgNPs trigger neutrophil activation and maturation, respectively. AgNP exposure dramatically increased IL-8, yet not classical pro-inflammatory cytokine release, suggesting AgNP triggers neutrophil activation, without pro-inflammation or damaging, necrotic cell death. For the first time, we show AgNPs differentially affect distinct sub-populations of circulating human neutrophils; activating mature neutrophils with the emergence of CD16bright/CD62Ldim neutrophils. This may stimulate particle clearance without harmful inflammation, challenging previous assumptions that silver nanomaterials induce neutrophil toxicity and damaging inflammatory responses.
Collapse
Affiliation(s)
- Jennifer A Fraser
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, EH11 4BN, UK.
| | - Sadie Kemp
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, EH11 4BN, UK
| | - Lesley Young
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, EH11 4BN, UK
| | - Mark Ross
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, EH11 4BN, UK
| | - Morag Prach
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, EH11 4BN, UK
| | - Gary R Hutchison
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, EH11 4BN, UK
| | - Eva Malone
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, EH11 4BN, UK.
| |
Collapse
|
25
|
Xue Y, Wang J, Huang Y, Gao X, Kong L, Zhang T, Tang M. Comparative cytotoxicity and apoptotic pathways induced by nanosilver in human liver HepG2 and L02 cells. Hum Exp Toxicol 2018; 37:1293-1309. [PMID: 29658330 DOI: 10.1177/0960327118769718] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Silver nanoparticles are used in many commercial products in daily life. Exposure to nanosilver has hepatotoxic effects in animals. This study investigated the cytotoxicity associated with polyvinylpyrrolidone-coated nanosilver (23.44 ± 4.92 nm in diameter) exposure in the human hepatoma cell line (HepG2) and normal hepatic cell line (L02), and the molecular mechanisms induced by nanosilver in HepG2 cells. Nanosilver, in doses of 20-160 μg mL-1 for 24 and 48 h, reduced cell viability in a dose- and time-dependent manner and induced cell membrane leakage and mitochondria injury in both cell lines; these effects were more pronounced in HepG2 cells than in L02 cells. Intracellular oxidative stress was documented by reactive oxygen species (ROS) being generated in HepG2 cells but not in L02 cells, an effect possibly due to differential uptake of nanosilver by cancer cells and normal cells. In HepG2 cells, apoptosis was documented by finding that ROS triggered a decrease in mitochondrial membrane potential, an increase in cytochrome c release, activation of caspase 3 and caspase 9, and a decrease in the ratio of Bcl-2/Bax. Furthermore, nanosilver activated the Fas death receptor pathway by downregulation of nuclear factor-κB and activation of caspase 8 and caspase 3. These results suggest that apoptosis induced by nanosilver in HepG2 cells is mediated via a mitochondria-dependent pathway and the Fas death receptor pathway. These findings provide toxicological and mechanistic information that can help in assessing the effects of nanosilver in biological systems, including the potential for anticancer activities.
Collapse
Affiliation(s)
- Y Xue
- 1 Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, China.,2 Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, China
| | - J Wang
- 1 Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, China
| | - Y Huang
- 1 Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, China
| | - X Gao
- 1 Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, China
| | - L Kong
- 1 Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, China.,2 Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, China
| | - T Zhang
- 1 Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, China.,2 Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, China
| | - M Tang
- 1 Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, China.,2 Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, China
| |
Collapse
|
26
|
Li WT, Chang HW, Yang WC, Lo C, Wang LY, Pang VF, Chen MH, Jeng CR. Immunotoxicity of Silver Nanoparticles (AgNPs) on the Leukocytes of Common Bottlenose Dolphins (Tursiops truncatus). Sci Rep 2018; 8:5593. [PMID: 29618730 PMCID: PMC5884781 DOI: 10.1038/s41598-018-23737-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/20/2018] [Indexed: 11/09/2022] Open
Abstract
Silver nanoparticles (AgNPs) have been extensively used and are considered as an emerging contaminant in the ocean. The environmental contamination of AgNPs is expected to increase greatly over time, and cetaceans, as the top ocean predators, will suffer the negative impacts of AgNPs. In the present study, we investigate the immunotoxicity of AgNPs on the leukocytes of cetaceans using several methods, including cytomorphology, cytotoxicity, and functional activity assays. The results reveal that 20 nm Citrate-AgNPs (C-AgNP20) induce different cytomorphological alterations and intracellular distributions in cetacean polymorphonuclear cells (cPMNs) and peripheral blood mononuclear cells (cPBMCs). At high concentrations of C-AgNP20 (10 and 50 μg/ml), the time- and dose-dependent cytotoxicity in cPMNs and cPBMCs involving apoptosis is demonstrated. C-AgNP20 at sub-lethal doses (0.1 and 1 μg/ml) negatively affect the functional activities of cPMNs (phagocytosis and respiratory burst) and cPBMCs (proliferative activity). The current study presents the first evidence of the cytotoxicity and immunotoxicity of AgNPs on the leukocytes of cetaceans and improves our understanding of environmental safety concerning AgNPs. The dose-response data of AgNPs on the leukocytes of cetaceans are invaluable for evaluating the adverse health effects in cetaceans and for proposing a conservation plan for marine mammals.
Collapse
Affiliation(s)
- Wen-Ta Li
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, 10617, Taiwan
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, 10617, Taiwan
| | - Wei-Cheng Yang
- College of Veterinary Medicine, National Chiayi University, Chiayi, 60004, Taiwan
| | - Chieh Lo
- Farglory Ocean Park, Hualien, 97449, Taiwan
| | - Lei-Ya Wang
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, 10617, Taiwan
| | - Victor Fei Pang
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, 10617, Taiwan
| | - Meng-Hsien Chen
- Department of Oceanography and Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Chian-Ren Jeng
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
27
|
Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties. NANOSCALE RESEARCH LETTERS 2018; 13:44. [PMID: 29417375 PMCID: PMC5803171 DOI: 10.1186/s11671-018-2457-x] [Citation(s) in RCA: 540] [Impact Index Per Article: 77.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/25/2018] [Indexed: 05/11/2023]
Abstract
Studies on the methods of nanoparticle (NP) synthesis, analysis of their characteristics, and exploration of new fields of their applications are at the forefront of modern nanotechnology. The possibility of engineering water-soluble NPs has paved the way to their use in various basic and applied biomedical researches. At present, NPs are used in diagnosis for imaging of numerous molecular markers of genetic and autoimmune diseases, malignant tumors, and many other disorders. NPs are also used for targeted delivery of drugs to tissues and organs, with controllable parameters of drug release and accumulation. In addition, there are examples of the use of NPs as active components, e.g., photosensitizers in photodynamic therapy and in hyperthermic tumor destruction through NP incorporation and heating. However, a high toxicity of NPs for living organisms is a strong limiting factor that hinders their use in vivo. Current studies on toxic effects of NPs aimed at identifying the targets and mechanisms of their harmful effects are carried out in cell culture models; studies on the patterns of NP transport, accumulation, degradation, and elimination, in animal models. This review systematizes and summarizes available data on how the mechanisms of NP toxicity for living systems are related to their physical and chemical properties.
Collapse
Affiliation(s)
- Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe shosse, Moscow, Russian Federation 115521
| | - Svetlana Bozrova
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe shosse, Moscow, Russian Federation 115521
| | - Pavel Sokolov
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe shosse, Moscow, Russian Federation 115521
| | - Mikhail Berestovoy
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe shosse, Moscow, Russian Federation 115521
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation 119992
| | - Igor Nabiev
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe shosse, Moscow, Russian Federation 115521
| |
Collapse
|
28
|
Combining CXCR4-targeted and nontargeted nanoparticles for effective unassisted in vitro magnetic hyperthermia. Biointerphases 2018; 13:011005. [PMID: 29402091 DOI: 10.1116/1.5009989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The use of targeted nanoparticles for magnetic hyperthermia (MHT) increases MHT selectivity, but often at the expense of its effectiveness. Consequently, targeted MHT is typically used in combination with other treatment modalities. This work describes an implementation of a highly effective monotherapeutic in vitro MHT treatment based on two populations of magnetic particles. Cells were sequentially incubated with two populations of magnetic particles: nonfunctionalized superparamagnetic nanoparticles and anti-CXCR4-functionalized particles. After removing the excess of free particles, an alternating magnetic field (AMF) was applied to produce MHT. The induced cytotoxicity was assessed at different time-points after AMF application. Complete loss of cell viability was observed 72 h after MHT when the iron loading of the anti-CXCR4-functionalized particles was boosted by that of a nontargeted population. Additionally, induction of necrosis resulted in more efficient cell death than did induction of apoptosis. Achieving a uniquely high effectiveness in monotherapeutic MHT demonstrates the potential of this approach to achieve complete loss of viability of cancer cells while avoiding the side effects of dual-treatment strategies that use MHT only as a sensitizing therapy.
Collapse
|
29
|
Titanium dioxide nanoparticles induce human eosinophil adhesion onto endothelial EA.hy926 cells via activation of phosphoinositide 3-kinase/Akt cell signalling pathway. Immunobiology 2018; 223:162-170. [DOI: 10.1016/j.imbio.2017.10.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/14/2017] [Indexed: 01/20/2023]
|
30
|
Chhay P, Murphy-Marion M, Samson Y, Girard D. Activation of human eosinophils with palladium nanoparticles (Pd NPs): importance of the actin cytoskeleton in Pd NPs-induced cellular adhesion. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 57:95-103. [PMID: 29245060 DOI: 10.1016/j.etap.2017.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
Palladium (Pd) is known to be released into the environment in the fine and ultrafine (at the nanoscale) airborne particle fractions mainly from automobile catalytic converters leading to an increase human exposure to this noble metal. It was reported that Pd can induce allergic reactions in individuals exposed to it via different ways. Some studies reported an increased number of eosinophils into airways following NP exposure in vivo in rodent models of allergies and inflammation. Knowing the importance of eosinophils in allergies, asthma and other lung diseases, it is surprising to observe that the direct effect of Pd at the nanoscale in eosinophils has been poorly documented. The aim of this study was to determine how Pd NPs will affect the biology of human eosinophils. Characterization of Pd NPs by dynamic light scattering indicates the presence of some aggregates when suspended in diverse solutions used here for the different experiments. Pd NPs did not significantly induce cell necrosis and apoptosis in eosinophils (0.5-150μg/ml) as assessed by trypan blue exclusion assay, flow cytometry after staining with FITC-annexin V and propidium iodide and by morphological observations by optical microscopy. PD NPs, unlike the positive controls, did not induce reactive oxygen species (ROS) but were found to target the actin cytoskeleton, since actin was differently re-located intracellularly when compared to untreated cells as determined by fluorescence microscopy. Clearly, Pd NPs were found to increase adhesion of eosinophils onto human endothelial EA.hy926 cells. Using cytochalasin D, a cell-permeable and potent inhibitor of actin polymerization, this ability to increase adhesion was drastically reversed. Our results indicate that Pd NPs can target the cytoskeleton and increase the adhesion of human eosinophils by an actin-dependent mechanism. These findings show that human eosinophils can be activated by Pd NPs emphasizing the importance of fully investigating how these NPs could alter the biology of human cells involved in allergies, asthma and other lung diseases as well as in various other inflammatory disorders.
Collapse
Affiliation(s)
- P Chhay
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| | - M Murphy-Marion
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| | - Y Samson
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| | - D Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, Quebec, Canada.
| |
Collapse
|
31
|
Murphy-Marion M, Girard D. WITHDRAWN: Titanium dioxide nanoparticles induce human eosinophil adhesion onto endothelial EA.hy926 cells via activation of phosphoinositide 3-kinase/Akt cell signalling pathway. Toxicol In Vitro 2017:S0887-2333(17)30320-X. [PMID: 29074229 DOI: 10.1016/j.tiv.2017.10.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/05/2017] [Accepted: 10/21/2017] [Indexed: 01/21/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Maxime Murphy-Marion
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | - Denis Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, Québec, Canada.
| |
Collapse
|
32
|
Silva AL, Peres C, Conniot J, Matos AI, Moura L, Carreira B, Sainz V, Scomparin A, Satchi-Fainaro R, Préat V, Florindo HF. Nanoparticle impact on innate immune cell pattern-recognition receptors and inflammasomes activation. Semin Immunol 2017; 34:3-24. [PMID: 28941640 DOI: 10.1016/j.smim.2017.09.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022]
Abstract
Nanotechnology-based strategies can dramatically impact the treatment, prevention and diagnosis of a wide range of diseases. Despite the unprecedented success achieved with the use of nanomaterials to address unmet biomedical needs and their particular suitability for the effective application of a personalized medicine, the clinical translation of those nanoparticulate systems has still been impaired by the limited understanding on their interaction with complex biological systems. As a result, unexpected effects due to unpredicted interactions at biomaterial and biological interfaces have been underlying the biosafety concerns raised by the use of nanomaterials. This review explores the current knowledge on how nanoparticle (NP) physicochemical and surface properties determine their interactions with innate immune cells, with particular attention on the activation of pattern-recognition receptors and inflammasome. A critical perspective will additionally address the impact of biological systems on the effect of NP on immune cell activity at the molecular level. We will discuss how the understanding of the NP-innate immune cell interactions can significantly add into the clinical translation by guiding the design of nanomedicines with particular effect on targeted cells, thus improving their clinical efficacy while minimizing undesired but predictable toxicological effects.
Collapse
Affiliation(s)
- Ana Luísa Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Carina Peres
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - João Conniot
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana I Matos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Liane Moura
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Bárbara Carreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Vanessa Sainz
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel and dSagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel and dSagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Véronique Préat
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium.
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| |
Collapse
|
33
|
Che B, Luo Q, Zhai B, Fan G, Liu Z, Cheng K, Xin L. Cytotoxicity and genotoxicity of nanosilver in stable GADD45α promoter-driven luciferase reporter HepG2 and A549 cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:2203-2211. [PMID: 28568508 DOI: 10.1002/tox.22433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVES The intense commercial application of silver nanoparticles (AgNPs) has been raising concerns about their potential adverse health effects to human. This study aimed to explore the potency of AgNPs to induce GADD45α gene, an important stress sensor, and its relationships with the cytotoxicity and genotoxicity elicited by AgNPs. METHODS Two established HepG2 and A549 cell lines containing the GADD45α promoter-driven luciferase reporter were treated with increasing concentrations of AgNPs for 48 hours. After the treatment, transcriptional activation of GADD45α indicated by luciferase activity, cell viability, cell cycle arrest, and levels of genotoxicity were determined. The uptake and intracellular localization of AgNPs, cellular Ag doses as well as Ag+ release were also detected. RESULTS AgNPs could activate GADD45α gene at the transcriptional level as demonstrated by the dose-dependent increases in luciferase activity in both the reporter cells. The relative luciferase activity was greater than 12× the control level in HepG2-luciferase cells at the highest concentration tested where the cell viability decreased to 17.0% of the control. These results was generally in accordance with the positive responses in cytotoxicity, cell cycle arrest of Sub G1 and G2/M phase, Olive tail moment, micronuclei frequency, and the cellular Ag content. CONCLUSIONS The cytotoxicity and genotoxicity of AgNPs seems to occur mainly via particles uptake and the subsequent liberation of ions inside the cells. And furthermore, the GADD45α promoter-driven luciferase reporter cells, especially the HepG2-luciferase cells, could provide a new and valuable tool for predicting nanomaterials genotoxicity in humans.
Collapse
Affiliation(s)
- Bizhong Che
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, China
| | - Qiulin Luo
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, China
| | - Bingzhong Zhai
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, China
| | - Guoqiang Fan
- Suzhou Industrial Park Centers for Disease Control and Prevention, 58 Suqian Road, Suzhou, Jiangsu, China
| | - Zhiyong Liu
- School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
| | - Kaiming Cheng
- Suzhou Industrial Park Centers for Disease Control and Prevention, 58 Suqian Road, Suzhou, Jiangsu, China
| | - Lili Xin
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
34
|
Durocher I, Noël C, Lavastre V, Girard D. Evaluation of the in vitro and in vivo proinflammatory activities of gold (+) and gold (-) nanoparticles. Inflamm Res 2017; 66:981-992. [PMID: 28676918 DOI: 10.1007/s00011-017-1078-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE AND DESIGN The aim of this study was to determine potential effects of gold (+) and gold (-) nanoparticles, AuNP(+) and AuNP(-), on neutrophil biology. MATERIAL OR SUBJECTS Freshly isolated human neutrophils were used for the in vitro aspects and CD-1 mice were used in the in vivo murine air pouch model of acute neutrophilic inflammation. TREATMENT Human neutrophils were treated with the indicated concentrations of AuNP(+) or AuNP(-) in vitro and mice received 100 or 500 µg/ml AuNP(+) or AuNP(-) into air pouches. METHODS Cellular uptake of AuNP by neutrophils was confirmed by transmission electron microscopy and the ability of the NP to modulate apoptosis, gelatinase activity, and chemokine production and chemotaxis was determined by cytology, zymography, ELISArray, antibody array, and ELISA and by a micro-chemotaxis chamber, respectively. In vivo, exudates were harvested after 6 h to determine the leukocyte infiltration to detect the production of several cytokines by an antibody array approach and ELISA. One-way analysis of variance was used for statistical analysis. RESULTS AuNP possess proinflammatory activities in vitro and induce mainly a neutrophil influx in vivo, albeit at different degrees. CONCLUSIONS AuNP(+) and AuNP(-) should be added as new candidates into a growing list of NP having proinflammatory activities by themselves.
Collapse
Affiliation(s)
- Isabelle Durocher
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, H7V1B7, Canada
| | - Claudie Noël
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, H7V1B7, Canada
| | - Valérie Lavastre
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, H7V1B7, Canada
| | - Denis Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, H7V1B7, Canada.
| |
Collapse
|
35
|
Engin AB, Nikitovic D, Neagu M, Henrich-Noack P, Docea AO, Shtilman MI, Golokhvast K, Tsatsakis AM. Mechanistic understanding of nanoparticles' interactions with extracellular matrix: the cell and immune system. Part Fibre Toxicol 2017; 14:22. [PMID: 28646905 PMCID: PMC5483305 DOI: 10.1186/s12989-017-0199-z] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/08/2017] [Indexed: 12/12/2022] Open
Abstract
Extracellular matrix (ECM) is an extraordinarily complex and unique meshwork composed of structural proteins and glycosaminoglycans. The ECM provides essential physical scaffolding for the cellular constituents, as well as contributes to crucial biochemical signaling. Importantly, ECM is an indispensable part of all biological barriers and substantially modulates the interchange of the nanotechnology products through these barriers. The interactions of the ECM with nanoparticles (NPs) depend on the morphological characteristics of intercellular matrix and on the physical characteristics of the NPs and may be either deleterious or beneficial. Importantly, an altered expression of ECM molecules ultimately affects all biological processes including inflammation. This review critically discusses the specific behavior of NPs that are within the ECM domain, and passing through the biological barriers. Furthermore, regenerative and toxicological aspects of nanomaterials are debated in terms of the immune cells-NPs interactions.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Hipodrom, 06330 Ankara, Turkey
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Monica Neagu
- “Victor Babes” National Institute of Pathology, Immunology Department, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| | - Petra Henrich-Noack
- Institute of Medical Psychology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy, Faculty of Pharmacy, Petru Rares, 200349 Craiova, Romania
| | - Mikhail I. Shtilman
- Master School Biomaterials, D.I. Mendeleyev University of Chemical Technology, Moscow, Russia
| | - Kirill Golokhvast
- Scientific Educational Center Nanotechnology, Engineering School, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Aristidis M. Tsatsakis
- Scientific Educational Center Nanotechnology, Engineering School, Far Eastern Federal University, Vladivostok, Russian Federation
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete Greece
| |
Collapse
|
36
|
Silver nanoparticle treatment ameliorates biliary atresia syndrome in rhesus rotavirus inoculated mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1041-1050. [DOI: 10.1016/j.nano.2016.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/28/2016] [Accepted: 11/20/2016] [Indexed: 11/22/2022]
|
37
|
Vallières F, Simard JC, Noël C, Murphy-Marion M, Lavastre V, Girard D. Activation of human AML14.3D10 eosinophils by nanoparticles: Modulatory activity on apoptosis and cytokine production. J Immunotoxicol 2016; 13:817-826. [PMID: 27404512 DOI: 10.1080/1547691x.2016.1203379] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/01/2016] [Accepted: 06/15/2016] [Indexed: 01/12/2023] Open
Abstract
Eosinophilic inflammation is frequently observed in response to nanoparticle (NP) exposure in airway rodent models of allergies where the number of eosinophils is increased in lungs. Despite this, it is surprising that the potential cytotoxic effect of NP, as well as their direct role on eosinophils is poorly documented. The present study investigated how different NP can alter the biology of the human eosinophilic cell line AML14.3D10. It was found that among NP forms of CeO2, ZnO, TiO2, and nanosilver of 20 nm (AgNP20) or 70 nm (AgNP70) diameters, only ZnO and AgNP20 induced apoptosis. Caspases-7 and -9 were not activated by the tested NP while caspase-3 was activated by AgNP20 only. However, both ZnO and AgNP20 induced cytoskeletal breakdown as evidenced by the cleavage of lamin B1. Using an ELISArray approach for the simultaneous detection of several analytes (cytokines/chemokines), it was found that only ZnO and AgNP20 increased the production of different analytes including the potent pro-inflammatory CXCL8 (IL-8) chemokine. From the data here, we conclude that toxic effects of some NP could be observed in human eosinophil-like cells and that this could be related, at least partially, by induction of apoptosis and production of cytokines and chemokines involved in inflammation. The results of this study also indicate that distinct NP do not activate similarly human eosinophils, since ZnO and AgNP20 induce apoptosis and cytokine production while others such as TiO2, CeO2, and AgNP70 do not.
Collapse
Affiliation(s)
- Francis Vallières
- a Laboratoire de Recherche en Inflammation et Physiologie des Granulocytes, Université du Québec, INRS-Institut Armand-Frappier , Laval , Québec , Canada
| | - Jean-Christophe Simard
- a Laboratoire de Recherche en Inflammation et Physiologie des Granulocytes, Université du Québec, INRS-Institut Armand-Frappier , Laval , Québec , Canada
| | - Claudie Noël
- a Laboratoire de Recherche en Inflammation et Physiologie des Granulocytes, Université du Québec, INRS-Institut Armand-Frappier , Laval , Québec , Canada
| | - Maxime Murphy-Marion
- a Laboratoire de Recherche en Inflammation et Physiologie des Granulocytes, Université du Québec, INRS-Institut Armand-Frappier , Laval , Québec , Canada
| | - Valerie Lavastre
- a Laboratoire de Recherche en Inflammation et Physiologie des Granulocytes, Université du Québec, INRS-Institut Armand-Frappier , Laval , Québec , Canada
| | - Denis Girard
- a Laboratoire de Recherche en Inflammation et Physiologie des Granulocytes, Université du Québec, INRS-Institut Armand-Frappier , Laval , Québec , Canada
| |
Collapse
|
38
|
Silva LR, Girard D. Human eosinophils are direct targets to nanoparticles: Zinc oxide nanoparticles (ZnO) delay apoptosis and increase the production of the pro-inflammatory cytokines IL-1β and IL-8. Toxicol Lett 2016; 259:11-20. [PMID: 27452280 DOI: 10.1016/j.toxlet.2016.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/29/2016] [Accepted: 07/18/2016] [Indexed: 12/25/2022]
Abstract
Zinc oxide NPs (ZnO) have been recently proposed as novel candidates for the treatment of allergic inflammatory diseases. Paradoxically, recent data suggested that ZnO could cause eosinophilic airway inflammation in rodents. Despite the above observations, there are currently no studies reporting direct interaction between a given NP and human eosinophils themselves. In this study, freshly isolated human eosinophils were incubated with ZnO and several cellular functions were studied. We found that ZnO delay human eosinophil apoptosis, partially by inhibiting caspases and by preventing caspase-4 and Bcl-xL degradation. ZnO do not induce production of reactive oxygen species but increase de novo protein synthesis. In addition, ZnO were found to increase the production of the proinflammatory IL-1β and IL-8 cytokines. Using a pharmacological approach, we demonstrated that inhibition of caspase-1 reversed the ability of ZnO to induce IL-1β and IL-8 production, whereas inhibition of caspase-4 only reversed that of IL-8. Our results indicate the necessity of conducting studies to determine the potential of using NP as nanotherapies, particularly in diseases in which eosinophils may be involved. We conclude that, indeed, human eosinophils represent potential new direct targets to NPs, ZnO in the present case.
Collapse
Affiliation(s)
- Luis Rafael Silva
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | - Denis Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, Québec, Canada.
| |
Collapse
|
39
|
Gold nanoparticles induce apoptosis, endoplasmic reticulum stress events and cleavage of cytoskeletal proteins in human neutrophils. Toxicol In Vitro 2016; 31:12-22. [DOI: 10.1016/j.tiv.2015.11.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/09/2015] [Accepted: 11/06/2015] [Indexed: 11/17/2022]
|
40
|
Ramesh S, Grijalva M, Debut A, de la Torre BG, Albericio F, Cumbal LH. Peptides conjugated to silver nanoparticles in biomedicine – a “value-added” phenomenon. Biomater Sci 2016; 4:1713-1725. [DOI: 10.1039/c6bm00688d] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review presents a glimpse of the various aspects of nanoparticles, in particular silver nanoparticles and their conjugation to peptides, thus opening an avenue for new discoveries in nanomaterials.
Collapse
Affiliation(s)
- Suhas Ramesh
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Marcelo Grijalva
- Centro de Nanociencia y Nanotecnología
- Universidad de las Fuerzas Armadas ESPE
- Sangolquí
- Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología
- Universidad de las Fuerzas Armadas ESPE
- Sangolquí
- Ecuador
| | - Beatriz G. de la Torre
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Fernando Albericio
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Luis H. Cumbal
- Centro de Nanociencia y Nanotecnología
- Universidad de las Fuerzas Armadas ESPE
- Sangolquí
- Ecuador
| |
Collapse
|
41
|
Soares T, Ribeiro D, Proença C, Chisté RC, Fernandes E, Freitas M. Size-dependent cytotoxicity of silver nanoparticles in human neutrophils assessed by multiple analytical approaches. Life Sci 2015; 145:247-54. [PMID: 26743952 DOI: 10.1016/j.lfs.2015.12.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/23/2015] [Accepted: 12/28/2015] [Indexed: 12/11/2022]
Abstract
AIMS Silver nanoparticles (AgNPs) have emerged as an important class of nanomaterials with a wide range of industrial and medical applications. The assessment of AgNPs' biological effects in the human organism is therefore essential to evaluate the impact of these nanomaterials in public health and reassure the ratio benefit/risk. In the present study, the effect of polyvinyl pyrrolidone (PVP)-coated AgNPs with distinct sizes (10 and 50nm) on neutrophils' oxidative burst and toxicity were tested. MAIN METHODS The effect of AgNPs on human neutrophils viability was evaluated by trypan blue, neutral red and propidium iodide methods. The measurement of neutrophils' oxidative burst was performed using the probe dihydrorhodamine 123. The cytomorphological alterations of human neutrophils exposed to AgNPs were evaluated by optical microscopy and transmission electron microscopy. KEY FINDINGS It was observed that PVP-coated AgNPs are toxic to human neutrophils being the 10nm AgNPs more toxic than the 50nm AgNPs. The smallest AgNPs lead to membrane damage, impaired lysosomal activity and induce neutrophils' oxidative burst. Despite the production of reactive species, the toxicity of AgNPs is not NADPH oxidase-dependent. SIGNIFICANCE These data indicate that AgNPs are toxic to human neutrophils in concentration-, time- and size-dependent manner, but independent of NADPH oxidase activation.
Collapse
Affiliation(s)
- Tânia Soares
- UCIBIO-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Daniela Ribeiro
- UCIBIO-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Carina Proença
- UCIBIO-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Renan Campos Chisté
- UCIBIO-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Eduarda Fernandes
- UCIBIO-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marisa Freitas
- UCIBIO-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
42
|
Poirier M, Simard JC, Girard D. Silver nanoparticles of 70 nm and 20 nm affect differently the biology of human neutrophils. J Immunotoxicol 2015; 13:375-85. [PMID: 26619040 DOI: 10.3109/1547691x.2015.1106622] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The influence of size of nanoparticles (NP), especially in regard to pulmonary toxicity, has been widely investigated. In general, NP with smaller diameters are more pro-inflammatory in vivo, at least in terms of neutrophil influx. Nevertheless, the influence of size of NP on polymorphonuclear neutrophil (PMN) cell biology is poorly documented. In the study here, it was decided to determine if AgNP with a diameter of 70 nm (AgNP70) will alter the biology of human PMN similarly to AgNP20 previously reported to induce apoptosis and inhibit de novo protein synthesis. The results here indicated that, in contrast to AgNP20, AgNP70 delayed PMN apoptosis. However, both AgNP20 and AgNP70 inhibited de novo protein synthesis. Both forms of AgNP did not significantly increase reactive oxygen species (ROS) production, but AgNP20 significantly increased the cell production of the CXCL8 chemokine (IL-8). In addition, AgNP20, but not AgNP70, induced the release of albumin and matrix metalloproteinase-9 (MMP-9/gelatinase B) into culture supernatants. Consistent with this latter observation, gelatinase activity was increased by AgNP20, as assessed by zymography. From these outcomes, it is concluded that two NP with different initial diameters can possess similar - as well as distinct - biological properties in modulating human PMN functions. These outcomes are testimony to the complexity of the modes of action of NP at the cellular level.
Collapse
Affiliation(s)
- Michelle Poirier
- a Laboratory for the Research on Inflammation and Physiology of Granulocytes , University of Québec, INRS-Institut Armand-Frappier , Laval , Québec , Canada
| | - Jean-Christophe Simard
- a Laboratory for the Research on Inflammation and Physiology of Granulocytes , University of Québec, INRS-Institut Armand-Frappier , Laval , Québec , Canada
| | - Denis Girard
- a Laboratory for the Research on Inflammation and Physiology of Granulocytes , University of Québec, INRS-Institut Armand-Frappier , Laval , Québec , Canada
| |
Collapse
|
43
|
Ahmad N, Bhatnagar S, Ali SS, Dutta R. Phytofabrication of bioinduced silver nanoparticles for biomedical applications. Int J Nanomedicine 2015; 10:7019-30. [PMID: 26648715 PMCID: PMC4648599 DOI: 10.2147/ijn.s94479] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Synthesis of nanomaterials holds infinite possibilities as nanotechnology is revolutionizing the field of medicine by its myriad applications. Green synthesis of nanoparticles has become the need of the hour because of its eco-friendly, nontoxic, and economic nature. In this study, leaf extract of Rosa damascena was used as a bioreductant to reduce silver nitrate, leading to synthesis of silver nanoparticles (AgNPs) in a single step, without the use of any additional reducing or capping agents. The synthesized nanoparticles were characterized by the use of UV-visible spectroscopy, fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and field emission scanning electron microscopy. Time-dependent synthesis of AgNPs was studied spectrophotometrically. Synthesized AgNPs were found to possess flower-like spherical structure where individual nanoparticles were of 16 nm in diameter, whereas the agglomerated AgNPs were in the range of 60–80 nm. These biologically synthesized AgNPs exhibited significant antibacterial activity against Gram-negative bacterial species but not against Gram-positive ones (Escherichia coli and Bacillus cereus). Anti-inflammatory and analgesic activities were studied on a Wistar rat model to gauge the impact of AgNPs for a probable role in these applications. AgNPs tested positive for both these activities, although the potency was less as compared to the standard drugs.
Collapse
Affiliation(s)
- Nabeel Ahmad
- School of Biotechnology, IFTM University, Lodhipur Rajput, Moradabad, Uttar Pradesh, India
| | - Sharad Bhatnagar
- School of Biotechnology, IFTM University, Lodhipur Rajput, Moradabad, Uttar Pradesh, India
| | - Syed Salman Ali
- School of Pharmaceutical Sciences, IFTM University, Lodhipur Rajput, Moradabad, Uttar Pradesh, India
| | - Rajiv Dutta
- Institute of Bio-Science and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
| |
Collapse
|
44
|
Taheri S, Cavallaro A, Christo SN, Majewski P, Barton M, Hayball JD, Vasilev K. Antibacterial Plasma Polymer Films Conjugated with Phospholipid Encapsulated Silver Nanoparticles. ACS Biomater Sci Eng 2015; 1:1278-1286. [PMID: 33429675 DOI: 10.1021/acsbiomaterials.5b00338] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Medical device associated infections are a persistent medical problem which has not found a comprehensive solution yet. Over the last decades, there have been intense research efforts toward developing antibacterial coatings that could potentially improve medical outcomes. Silver nanoparticles have attracted a great deal of attention as a potent alternative to conventional antibiotics. Herein, we present a biologically inspired approach to synthesize phospholipid encapsulated silver nanoparticles and their surface immobilization to a functional plasma polymer interlayer to generate antibacterial coatings. The antibacterial efficacy of the coatings was evaluated against three medically relevant pathogens including the Gram-positive Staphylococcus aureus and Staphylococcus epidermidis, and the Gram-negative Pseudomonas aeruginosa. The innate immune response to the coatings was assessed in vitro using primary bone marrow derived macrophages (BMDM). Any potential cytotoxicity was studied with primary human dermal fibroblasts (HDFs). Overall, the coatings had excellent inhibition of bacterial growth. We also observed reduced expression of pro-inflammatory cytokines from BMDM which suggests a reduced inflammatory response. The combined properties of coatings developed in this study may make them a good candidate for application on medical devices such as catheters and wound dressings.
Collapse
Affiliation(s)
- Shima Taheri
- School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Alex Cavallaro
- School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Susan N Christo
- Sansom Institute, University of South Australia, Adelaide, SA 5000, Australia
| | - Peter Majewski
- School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Mary Barton
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - John D Hayball
- Sansom Institute, University of South Australia, Adelaide, SA 5000, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Krasimir Vasilev
- School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
45
|
Babin K, Goncalves D, Girard D. Nanoparticles enhance the ability of human neutrophils to exert phagocytosis by a Syk-dependent mechanism. Biochim Biophys Acta Gen Subj 2015; 1850:2276-82. [DOI: 10.1016/j.bbagen.2015.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/30/2015] [Accepted: 08/11/2015] [Indexed: 12/21/2022]
|
46
|
Lappas CM. The immunomodulatory effects of titanium dioxide and silver nanoparticles. Food Chem Toxicol 2015; 85:78-83. [DOI: 10.1016/j.fct.2015.05.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 12/21/2022]
|
47
|
Liz R, Simard JC, Leonardi LBA, Girard D. Silver nanoparticles rapidly induce atypical human neutrophil cell death by a process involving inflammatory caspases and reactive oxygen species and induce neutrophil extracellular traps release upon cell adhesion. Int Immunopharmacol 2015; 28:616-25. [PMID: 26241783 DOI: 10.1016/j.intimp.2015.06.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/09/2015] [Accepted: 06/24/2015] [Indexed: 01/19/2023]
Abstract
Inflammation is one of the major toxic effects reported in response to in vitro or in vivo nanoparticle (NP) exposure. Among engineered NPs, silver nanoparticles (AgNPs) are very attractive for the development of therapeutic strategies, especially because of their antimicrobial properties. In humans, neutrophils, key players in inflammation, are the most abundant blood leukocytes that spontaneously undergo apoptosis, a central cell death mechanism regulating inflammation. The aim of this study was to evaluate the effect of AgNPs on neutrophil apoptosis. Transmission electronic microscopy reveals that AgNPs rapidly penetrate inside neutrophils. AgNPs induced atypical cell death where the cell volume increased and the cell surface expression of CD16 remained unaltered unlike apoptotic neutrophils where cell shrinkage and loss of CD16 are typically observed. The AgNP-induced atypical cell death is distinct from necrosis and reversed by a pancaspase inhibitor or by inhibitors of the inflammatory caspase-1 and caspase-4. In addition, AgNPs induced IL-1β production inhibited by caspase-1 and caspase-4 inhibitors and also induced caspase-1 activity. Reactive oxygen species (ROS) production was increased by AgNPs and the atypical cell death was inhibited by the antioxidant n-acetylcysteine. Under similar experimental conditions, adhesion of neutrophils leads to neutrophil extracellular trap (NET) release induced by AgNPs. However, this process was not reversed by caspase inhibitors. We conclude that AgNPs rapidly induced an atypical cell death in neutrophils by a mechanism involving caspase-1, -4 and ROS. However, in adherent neutrophils, AgNPs induced NET release and, therefore, are novel agents able to trigger NET release.
Collapse
Affiliation(s)
- Rafael Liz
- Laboratoire de recherche en inflammation et physiologie des granulocytes, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC H7V 1B7, Canada
| | - Jean-Christophe Simard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC H7V 1B7, Canada
| | - Laurien Bruna Araújo Leonardi
- Laboratoire de recherche en inflammation et physiologie des granulocytes, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC H7V 1B7, Canada
| | - Denis Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
48
|
Xue Y, Zhang T, Zhang B, Gong F, Huang Y, Tang M. Cytotoxicity and apoptosis induced by silver nanoparticles in human liver HepG2 cells in different dispersion media. J Appl Toxicol 2015. [PMID: 26198703 DOI: 10.1002/jat.3199] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Silver nanoparticles (Ag NPs) have been widely used in medical and healthcare products owing to their unique antibacterial activities. However, their safety for humans and the environment has not yet been established. This study evaluated the cellular proliferation and apoptosis of Ag NPs suspended in different solvents using human liver HepG2 cells. The ionization of Ag NPs in different dispersion media [deionized water, phosphate-buffered saline (PBS), saline and cell culture] was measured using an Ag ion selective electrode. The MTT assay was used to examine the cell proliferation activities. The effects of Ag NPs on cell cycle, induction of apoptosis, production of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were analyzed using flow cytometry. The degree of Ag NPs ionization differed with dispersion media, with the concentrations of silver ions in deionized water being the highest in all suspensions. Ag NPs could inhibit the viability of HepG2 cells in a time- and concentration-dependent manner. Ag NPs (40, 80 and 160 µg ml(-1)) exposure could cause cell-cycle arrest in the G2/M phase, significantly increasing the apoptosis rate and ROS generation, and decreasing the MMP in HepG2 cells more sensitive to deionized water than in cell culture. These results suggested that the cellular toxicological mechanism of Ag NPs might be related to the oxidative stress of cells by the generation of ROS, leading to mitochondria injury and induction of apoptosis. It also implies that it is important to assess the physicochemical properties of NPs in the media where the biological toxicity tests are performed.
Collapse
Affiliation(s)
- Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Jiangsu Key Laboratory for Biomaterials and Devices, School of Public Health, Southeast University, No.87 Dingjiaqiao, Nanjing, 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Jiangsu Key Laboratory for Biomaterials and Devices, School of Public Health, Southeast University, No.87 Dingjiaqiao, Nanjing, 210009, China
| | - Bangyong Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Jiangsu Key Laboratory for Biomaterials and Devices, School of Public Health, Southeast University, No.87 Dingjiaqiao, Nanjing, 210009, China
| | - Fan Gong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Jiangsu Key Laboratory for Biomaterials and Devices, School of Public Health, Southeast University, No.87 Dingjiaqiao, Nanjing, 210009, China
| | - Yanmei Huang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Jiangsu Key Laboratory for Biomaterials and Devices, School of Public Health, Southeast University, No.87 Dingjiaqiao, Nanjing, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Jiangsu Key Laboratory for Biomaterials and Devices, School of Public Health, Southeast University, No.87 Dingjiaqiao, Nanjing, 210009, China
| |
Collapse
|
49
|
Simard JC, Vallieres F, de Liz R, Lavastre V, Girard D. Silver nanoparticles induce degradation of the endoplasmic reticulum stress sensor activating transcription factor-6 leading to activation of the NLRP-3 inflammasome. J Biol Chem 2015; 290:5926-39. [PMID: 25593314 DOI: 10.1074/jbc.m114.610899] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the past decade, the increasing amount of nanoparticles (NP) and nanomaterials used in multiple applications led the scientific community to investigate the potential toxicity of NP. Many studies highlighted the cytotoxic effects of various NP, including titanium dioxide, zinc oxide, and silver nanoparticles (AgNP). In a few studies, endoplasmic reticulum (ER) stress was found to be associated with NP cytotoxicity leading to apoptosis in different cell types. In this study, we report for the first time that silver nanoparticles of 15 nm (AgNP15), depending on the concentration, induced different signature ER stress markers in human THP-1 monocytes leading to a rapid ER stress response with degradation of the ATF-6 sensor. Also, AgNP15 induced pyroptosis and activation of the NLRP-3 inflammasome as demonstrated by the processing and increased activity of caspase-1 and secretion of IL-1β and ASC (apoptosis-associated speck-like protein containing a CARD domain) pyroptosome formation. Transfection of THP-1 cells with siRNA targeting NLRP-3 decreased the AgNP15-induced IL-1β production. The absence of caspase-4 expression resulted in a significant reduction of pro-IL-1β. However, caspase-1 activity was significantly higher in caspase-4-deficient cells when compared with WT cells. Inhibition of AgNP15-induced ATF-6 degradation with Site-2 protease inhibitors completely blocked the effect of AgNP15 on pyroptosis and secretion of IL-1β, indicating that ATF-6 is crucial for the induction of this type of cell death. We conclude that AgNP15 induce degradation of the ER stress sensor ATF-6, leading to activation of the NLRP-3 inflammasome regulated by caspase-4 in human monocytes.
Collapse
Affiliation(s)
- Jean-Christophe Simard
- From the Laboratoire de recherche en inflammation et physiologie des granulocytes, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Québec H7V1B7, Canada
| | - Francis Vallieres
- From the Laboratoire de recherche en inflammation et physiologie des granulocytes, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Québec H7V1B7, Canada
| | - Rafael de Liz
- From the Laboratoire de recherche en inflammation et physiologie des granulocytes, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Québec H7V1B7, Canada
| | - Valerie Lavastre
- From the Laboratoire de recherche en inflammation et physiologie des granulocytes, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Québec H7V1B7, Canada
| | - Denis Girard
- From the Laboratoire de recherche en inflammation et physiologie des granulocytes, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Québec H7V1B7, Canada
| |
Collapse
|
50
|
Lazarovits J, Chen YY, Sykes EA, Chan WCW. Nanoparticle–blood interactions: the implications on solid tumour targeting. Chem Commun (Camb) 2015; 51:2756-67. [DOI: 10.1039/c4cc07644c] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review examines nanoparticle–blood interactions, their implications on solid tumour targeting, and provides an outlook to guide future nanoparticle design.
Collapse
Affiliation(s)
- James Lazarovits
- Institute of Biomaterials and Biomedical Engineering
- University of Toronto
- Toronto
- Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research
| | - Yih Yang Chen
- Institute of Biomaterials and Biomedical Engineering
- University of Toronto
- Toronto
- Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research
| | - Edward A. Sykes
- Institute of Biomaterials and Biomedical Engineering
- University of Toronto
- Toronto
- Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research
| | - Warren C. W. Chan
- Institute of Biomaterials and Biomedical Engineering
- University of Toronto
- Toronto
- Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research
| |
Collapse
|