1
|
Zhu L, Jia X, Xie H, Zhang J, Zhu Q. Trichloroethylene exposure, multi-organ injury, and potential mechanisms: A narrative review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174029. [PMID: 38944297 DOI: 10.1016/j.scitotenv.2024.174029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/01/2024]
Abstract
Trichloroethylene (TCE) is a common environmental pollutant and industrial chemical that has been associated with adverse health effects, especially on organ systems. The purpose of this review is to summarize the current findings on organ system damage caused by TCE exposure and the underlying mechanisms involved. Numerous studies have shown that TCE exposure may cause damage to multiple organ systems, mainly the skin, liver, kidney, and circulatory system. The mechanisms leading to TCE-induced organ system damage are complex and diverse. TCE is metabolized in vivo to reactive intermediates, through which TCE can induce oxidative stress, interfere with cell signaling pathways, and promote inflammatory responses. In addition, studies have shown that TCE interferes with DNA repair mechanisms, leading to genotoxicity and potentially carcinogenic effects. This review highlights the importance of understanding the deleterious effects of TCE exposure on organ systems and provides insights into the underlying mechanisms involved. Further research is needed to elucidate the full range of organ system damage caused by TCE and to develop effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Lifu Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Xueqian Jia
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Haibo Xie
- Institute of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China; The Center for Scientific Research, AnhuiMedical University, Hefei, Anhui, China.
| | - Qixing Zhu
- Institute of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China.
| |
Collapse
|
2
|
Mrozewski L, Tharmalingam S, Michael P, Kumar A, Tai TC. C5a Induces Inflammatory Signaling and Apoptosis in PC12 Cells through C5aR-Dependent Signaling: A Potential Mechanism for Adrenal Damage in Sepsis. Int J Mol Sci 2024; 25:10673. [PMID: 39409001 PMCID: PMC11477224 DOI: 10.3390/ijms251910673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
The complement system is critically involved in the pathogenesis of sepsis. In particular, complement anaphylatoxin C5a is generated in excess during sepsis, leading to cellular dysfunction. Recent studies have shown that excessive C5a impairs adrenomedullary catecholamine production release and induces apoptosis in adrenomedullary cells. Currently, the mechanisms by which C5a impacts adrenal cell function are poorly understood. The PC12 cell model was used to examine the cellular effects following treatment with recombinant rat C5a. The levels of caspase activation and cell death, protein kinase signaling pathway activation, and changes in inflammatory protein expression were examined following treatment with C5a. There was an increase in apoptosis of PC12 cells following treatment with high-dose C5a. Ten inflammatory proteins, primarily involved in apoptosis, cell survival, and cell proliferation, were upregulated following treatment with high-dose C5a. Five inflammatory proteins, involved primarily in chemotaxis and anti-inflammatory functions, were downregulated. The ERK/MAPK, p38/MAPK, JNK/MAPK, and AKT protein kinase signaling pathways were upregulated in a C5aR-dependent manner. These results demonstrate an apoptotic effect and cellular signaling effect of high-dose C5a. Taken together, the overall data suggest that high levels of C5a may play a role in C5aR-dependent apoptosis of adrenal medullary cells in sepsis.
Collapse
Affiliation(s)
- Lucas Mrozewski
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
| | - Sujeenthar Tharmalingam
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
- Medical Science Division, NOSM University, Sudbury, ON P3E 2C6, Canada
| | - Paul Michael
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
| | - Aseem Kumar
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
- Medical Science Division, NOSM University, Sudbury, ON P3E 2C6, Canada
| | - T. C. Tai
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
- Medical Science Division, NOSM University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
3
|
Zuo X, Gao L, Peng X, Dong L, Huang M, Hu T, Deng L, Zhu Q, Zhang J. Unveiling the role of mtDNA in Liver-Kidney Crosstalk: Insights from trichloroethylene hypersensitivity syndrome. Int Immunopharmacol 2024; 138:112513. [PMID: 38917520 DOI: 10.1016/j.intimp.2024.112513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/16/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
In specific pathological conditions, addressing liver injury may yield favorable effects on renal function through the phenomenon of liver-kidney crosstalk. Mitochondrial DNA (mtDNA) possesses the capability to trigger downstream pathways of inflammatory cytokines, ultimately leading to immune-mediated organ damage. Consequently, understanding the intricate molecular mechanisms governing mtDNA involvement in diseases characterized by liver-kidney crosstalk is of paramount significance. This study seeks to elucidate the role of mtDNA in conditions marked by liver-kidney crosstalk. In previous clinical cases, it has been observed that patients with Trichloroethylene Hypersensitivity Syndrome (TCE-HS) who experience severe liver injury often also exhibit renal injury. In this study, patients diagnosed with trichloroethylene hypersensitivity syndrome were recruited from Shenzhen Occupational Disease Control Center. And Balb/c mice were treated with trichloroethylene. The correlation between liver and kidney injuries in patients with TCE-HS was assessed using Enzyme-Linked Immunosorbent Assay (ELISA). Alterations in mtDNA levels were examined in mouse hepatocytes, red blood cells (RBCs), and renal tubular epithelial cells utilizing immunofluorescence and PCR techniques. TCE-sensitized mice exhibited a significant increase in reactive oxygen species (ROS) and the opening of the mitochondrial permeability transition pore in hepatocytes, resulting in the release of mtDNA. Furthermore, heightened levels of mtDNA and Toll-like Receptor 9 (TLR9) expression were observed in RBCs. Additional experiments demonstrated elevated expression of TLR9 and its downstream mediator MyD88 in renal tubule epithelial cells of TCE-sensitized mice. In vitro investigations confirmed that mtDNA activates the TLR9 pathway in TCMK-1 cells. Collectively, these results suggest that mtDNA released from mitochondrial damage in hepatocytes is carried by RBCs to renal tubular epithelial cells and mediates inflammatory injury in renal tubular epithelial cells through activation of the TLR9 receptor.
Collapse
Affiliation(s)
- Xulei Zuo
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Lei Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Xinyu Peng
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Luolun Dong
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Meng Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Tingting Hu
- Shenzhen Prevention and Treatment Center for Occupational Disease, Shenzhen, PR China
| | - Lihua Deng
- Shenzhen Prevention and Treatment Center for Occupational Disease, Shenzhen, PR China.
| | - Qixing Zhu
- Institute of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China.
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China.
| |
Collapse
|
4
|
Kusakabe J, Hata K, Tajima T, Miyauchi H, Zhao X, Kageyama S, Tsuruyama T, Hatano E. Properdin inhibition ameliorates hepatic ischemia/reperfusion injury without interfering with liver regeneration in mice. Front Immunol 2023; 14:1174243. [PMID: 37662914 PMCID: PMC10469474 DOI: 10.3389/fimmu.2023.1174243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Hepatic ischemia/reperfusion injury (IRI) often causes serious complications in liver surgeries, including transplantation. Complement activation seems to be involved in hepatic IRI; however, no complement-targeted intervention has been clinically applied. We investigated the therapeutic potential of Properdin-targeted complement regulation in hepatic IRI. Male wild-type mice (B10D2/nSn) were exposed to 90-minute partial hepatic IRI to the left and median lobes with either monoclonal anti-Properdin-antibody (Ab) or control-immunoglobulin (IgG) administration. Since the complement system is closely involved in liver regeneration, the influence of anti-Properdin-Ab on liver regeneration was also evaluated in a mouse model of 70% partial hepatectomy. Anti-Properdin-Ab significantly reduced serum transaminases and histopathological damages at 2 and 6 hours after reperfusion (P <0.001, respectively). These improvements at 2 hours was accompanied by significant reductions in CD41+ platelet aggregation (P =0.010) and ssDNA+ cells (P <0.001), indicating significant amelioration in hepatic microcirculation and apoptosis, respectively. Characteristically, F4/80+ cells representing macrophages, mainly Kupffer cells, were maintained by anti-Properdin-Ab (P <0.001). Western blot showed decreased phosphorylation of only Erk1/2 among MAPKs (P =0.004). After 6 hours of reperfusion, anti-Properdin-Ab significantly attenuated the release of HMGB-1, which provokes the release of proinflammatory cytokines/chemokines (P =0.002). Infiltration of CD11b+ and Ly6-G+ cells, representing infiltrating macrophages and neutrophils, respectively, were significantly alleviated by anti-Properdin-Ab (both P <0.001). Notably, anti-Properdin-Ab did not affect remnant liver weight and BrdU+ cells at 48 hours after 70% partial hepatectomy (P =0.13 and 0.31, respectively). In conclusion, Properdin inhibition significantly ameliorates hepatic IRI without interfering with liver regeneration.
Collapse
Affiliation(s)
- Jiro Kusakabe
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichiro Hata
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tetsuya Tajima
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidetaka Miyauchi
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Xiangdong Zhao
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shoichi Kageyama
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tatsuaki Tsuruyama
- Center for Anatomical, Pathological, and Forensic Medical Research, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Etsuro Hatano
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Liu X, Wang W, Tan S, Liu H, Li Z, Wang N, Ma J, Han S, Wu Z, Shi K, Sha Z. C5a drives the inflammatory response with bacterial dose effect by binding to C5aR1 in zebrafish infected with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108873. [PMID: 37271327 DOI: 10.1016/j.fsi.2023.108873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
The complement system is essential to host defense, but its excessive activation caused by severe pathogen invasion is a driving force in adverse inflammatory. The binding of complement component 5a (C5a) and complement component 5a receptor 1 (C5aR1) is the key to trigger complement-mediated inflammatory response in mammals. However, the role of C5a-C5aR1 axis in fish immune response remains obscure. In this study, the role of C5a-C5aR1 axis of zebrafish (Danio rerio) after serious infection with Aeromonas hydrophila was investigated. C5a and C5aR1 of zebrafish were cloned, with CDS sequences of 228 and 1041 bp, respectively, and they were widely expressed in various tissues with the highest expression in the liver and spleen, respectively. The survival of zebrafish was closely correlated to the dose of A. hydrophila. The cytokine storm occurred at high concentrations of A. hydrophila infection. At 24 h post infection (hpi), the expression of C5a and C5aR1 in the spleen increased 26.8-fold and 9.9-fold in treatment group 1 (TG1, 3.0 × 107 CFU/mL) (P < 0.01), and 4.7-fold and 3.4-fold in treatment group 2 (TG2, 1.0 × 107 CFU/mL) (P < 0.05), respectively. Correspondingly, proinflammatory cytokines interleukin-1β (IL-1β), interleukin-8 (IL-8), and interleukin-17 (IL-17) were positively correlated to C5a and C5aR1 at mRNA and protein expression levels. The expression of IL-1β was significantly increased in the spleen at 6 hpi, with a 599.2-fold and 203.2-fold upregulation in TG1 and TG2 (P < 0.001), respectively. Moreover, after inhibition of C5a-C5aR1 binding treated with C5aR1 antagonist (W-54011), zebrafish showed lower expression of C5a, C5aR1, and cytokines, less intestinal damage, and significantly enhancement of survival (P < 0.05) after A. hydrophila challenge. This study revealed that the inflammatory effect of C5a was achieved by binding to C5aR1 in zebrafish, providing novel insights into using C5a-C5aR1 axis as an effective target to reduce bacterial inflammation and disease in fish.
Collapse
Affiliation(s)
- Xinbao Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Wenwen Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Suxu Tan
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Hongning Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Zhujun Li
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Ningning Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China; College of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jie Ma
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Sen Han
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Zhendong Wu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Kunpeng Shi
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Zhenxia Sha
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
6
|
Hu J, Tan X, Wei X, Hu W, Gao L, Cao X, Yang H, Jiang Z, Li N, Teng L, Liu M. Determination of the optimal concentration and duration of C5aR antagonist application in an inflammatory model of human dental pulp cells. FEBS Open Bio 2023; 13:570-581. [PMID: 36732060 PMCID: PMC9989919 DOI: 10.1002/2211-5463.13571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/17/2022] [Accepted: 02/01/2023] [Indexed: 02/04/2023] Open
Abstract
Deep tooth decay approaching the pulp may develop into pulpitis; to prevent this, pulp cells need to balance the rapid immune response to avoid rapid swelling of the pulp. Current treatment of deep decay that approaches the pulp involves the application of drugs that induce low-level inflammation in the dental pulp to promote its repair, but this treatment is sometimes insufficient. However, the unsuccessful treatment often resulted in pulpitis. The C5a-C5aR is the initial stage of the immune cascade response. Blocking the binding of C5a-C5aR can slow the immune response in the narrow pulp cavity, so that dental pulp cells have enough time to proliferate, migrate, and differentiate. In this study, we compared lipoteichoic acid (LTA) and lipopolysaccharides (LPS) at different concentrations and time points and used the C5aR antagonist W54011 to block the C5a-C5aR axis. The blocking effect was detected by analyzing the expression of C5a, C5aR, interleukin (IL)-6, and Toll-like receptors 2 and 4 (TLR-2, 4). Next, we determined the optimal concentration and duration of LTA and LPS treatment in combination with W54011. Based on our results, we selected 1.0 μg·mL-1 LPS treatment for 48 h to generate an inflammatory model of human dental pulp cells. We then regrouped the cells and conducted expression analyses to monitor the expression of C5a, C5aR, IL-6, and TLR-4 at the protein and mRNA levels. LPS stimulation for 48 h and treatment with W54011 for 48 h effectively inhibited inflammation and did not affect C5a expression. This study provides a basis for follow-up studies of W54011 in dental pulp cells.
Collapse
Affiliation(s)
- Junlong Hu
- Department of Craniomaxillofacial Surgery, Plastic Surgery HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaohan Tan
- Department of ProsthodonticsThe second Affiliated Hospital of Harbin Medical UniversityChina
| | | | - Weiping Hu
- Department of ProsthodonticsThe second Affiliated Hospital of Harbin Medical UniversityChina
| | - Li Gao
- Department of Oral and Maxillofacial SurgeryThe second Affiliated Hospital of Harbin Medical UniversityChina
| | - Xiaofang Cao
- Department of EndodonticsThe second Affiliated Hospital of Harbin Medical UniversityChina
| | - Huiying Yang
- Department of StomatologyQiqihar Eye & ENT HospitalChina
| | - Zhuling Jiang
- Department of Oral ImplantologyThe second Affiliated Hospital of Harbin Medical UniversityChina
| | - Ning Li
- Department of CardiologyThe second Affiliated Hospital of Harbin Medical UniversityChina
| | - Li Teng
- Department of Craniomaxillofacial Surgery, Plastic Surgery HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Mingyue Liu
- Department of ProsthodonticsThe second Affiliated Hospital of Harbin Medical University & The Key Laboratory of Myocardial Ischemia Ministry of EducationChina
| |
Collapse
|
7
|
Chen Y, Liu Y, Li H, Huna R, Tan X, Li N, Zhang Y, Jiao X, Liu M. C5aR antagonist inhibits LPS-induced inflammation in human gingival fibroblasts via NF-κB and MAPK signaling pathways. J Appl Oral Sci 2023; 31:e20220404. [PMID: 36753088 DOI: 10.1590/1678-7757-2022-0404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/21/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE Abnormal complement activation is associated with periodontitis. W54011 is a novel non-peptide C5aR antagonist (C5aRA) that exhibits favorable anti-inflammatory effects in various inflammatory models. However, whether W54011 inhibits periodontitis has not yet been fully elucidated. To address this, we have investigated the probable anti-inflammatory mechanism of W54011 in LPS-treated inflammation in human gingival fibroblasts (HGFs). METHODOLOGY HGFs were isolated from healthy gingival tissue samples using the tissue block method and were identified with immunofluorescence staining. The CCK8 assay and reverse transcription-PCR (RT-PCR) were used to select the optimal induction conditions for Lipopolysaccharide (LPS) and C5aRA (according to supplementary data S1, S2 and S3). The levels of inflammatory cytokines, C5aR, and the activation of NF-κB/MAPK signaling pathways were determined by RT-quantitative PCR (RT-qPCR) and Western blotting. RESULTS Immunofluorescence results showed that vimentin and FSP-1 were positive in HGFs and Keratin was negative in HGFs. Immunofluorescence staining demonstrated that C5aRA inhibited LPS-stimulated nuclear translocation of p-p65. RT-qPCR and Western blotting showed that C5aRA reduced the expression of IL-1β, IL-6, TNF-α, C5aR, p-p65, p-IκBα, p-JNK, p-c-JUN, and TLR4 in LPS-induced HGFs. CONCLUSION These findings suggested that C5aRA attenuated the release of inflammatory cytokines in LPS-induced HGFs by blocking the activation of the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Yan Chen
- The First Affiliated Hospital of Harbin Medical University, Department of Oral Maxillofacial Surgery, Harbin, Heilongjiang, China.,The Fourth Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Department of Stomatology, Harbin, Heilongjiang, China
| | - Yang Liu
- Heilongjiang Provincial Hospital, Department of Stomatology, Harbin, Heilongjiang, China
| | - Hao Li
- The Fourth Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Department of Stomatology, Harbin, Heilongjiang, China
| | - Risu Huna
- The Second Affiliated Hospital of Harbin Medical University, Oral Implant Center, Harbin, Heilongjiang, China
| | - Xiaohan Tan
- The Second Affiliated Hospital of Harbin Medical University, Department of Prosthodontics, Harbin, Heilongjiang, China
| | - Ning Li
- The Second Affiliated Hospital of Harbin Medical University, Department of Cardiology, Harbin, Heilongjiang, China
| | - Yiying Zhang
- The Second Affiliated Hospital of Harbin Medical University, Oral Implant Center, Harbin, Heilongjiang, China
| | - Xiaohui Jiao
- The First Affiliated Hospital of Harbin Medical University, Department of Oral Maxillofacial Surgery, Harbin, Heilongjiang, China
| | - Mingyue Liu
- The Second Affiliated Hospital of Harbin Medical University, Department of Prosthodontics, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Sahu RK, Xavier S, Chauss D, Wang L, Chew C, Taylor R, Stallcup WB, Ma JZ, Kazemian M, Afzali B, Köhl J, Portilla D. Folic acid-mediated fibrosis is driven by C5a receptor 1-mediated activation of kidney myeloid cells. Am J Physiol Renal Physiol 2022; 322:F597-F610. [PMID: 35379003 PMCID: PMC9054266 DOI: 10.1152/ajprenal.00404.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022] Open
Abstract
We have previously reported that increased expression and activation of kidney cell complement components play an important role in the pathogenesis of renal scarring. Here, we used floxed green fluorescent protein (GFP)-C5a receptor 1 (C5aR1) knockin mice (GFP-C5ar1fl/fl) and the model of folic acid (FA)-induced kidney injury to define the cell types and potential mechanisms by which increased C5aR1 activation leads to fibrosis. Using flow cytometry and confocal microscopy, we identified macrophages as the major interstitial cell type showing increased expression of C5aR1 in FA-treated mice. C5ar1fl/fl.Lyz2Cre+/- mice, in which C5aR1 has been specifically deleted in lysozyme M-expressing myeloid cells, experienced reduced fibrosis compared with control C5ar1fl/fl mice. Examination of C5aR1-expressing macrophage transcriptomes by gene set enrichment analysis demonstrated that these cells were enriched in pathways corresponding to the complement cascade, collagen formation, and the NABA matrisome, strongly pointing to their critical roles in tissue repair/scarring. Since C5aR1 was also detected in a small population of platelet-derived growth factor receptor-β+ GFP+ cells, we developed C5ar1fl/fl.Foxd1Cre+/- mice, in which C5aR1 is deleted specifically in pericytes, and found reduced FA-induced fibrosis. Primary cell cultures of platelet-derived growth factor receptor-β+ pericytes isolated from FA-treated C5ar1fl/fl.Foxd1Cre+/- mice showed reduced secretion of several cytokines, including IL-6 and macrophage inflammatory protein-2, compared with pericytes isolated from FA-treated control GFP-C5ar1fl/fl mice. Collectively, these data imply that C5a/C5aR1 axis activation primarily in interstitial cells contributes to the development of renal fibrosis.NEW & NOTEWORTHY This study used novel green fluorescent protein C5a receptor 1 floxed mice and the model of folic acid-mediated kidney fibrosis to demonstrate the pathogenic role of increased expression of this complement receptor on macrophages.
Collapse
Affiliation(s)
- Ranjit K Sahu
- Department of Medicine and Center for Immunity and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Sandhya Xavier
- Department of Medicine and Center for Immunity and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Luopin Wang
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, Indiana
| | - Claude Chew
- Flow Cytometry Core, University of Virginia, Charlottesville, Virginia
| | - Ronald Taylor
- Department of Biochemistry, University of Virginia, Charlottesville, Virginia
| | - William B Stallcup
- Sanford Burnham Prebys Medical Discovery Institute, Tumor Microenvironment and Cancer Immunology Program, La Jolla, California
| | - Jennie Z Ma
- Division of Biostatistics, Department of Public Health, University of Virginia, Charlottesville, Virginia
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, Indiana
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Germany
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Didier Portilla
- Department of Medicine and Center for Immunity and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
9
|
Toyama C, Maeda A, Kogata S, Takase K, Kodama T, Masahata K, Ueno T, Kamiyama M, Tazuke Y, Eguchi H, Matsunami K, Miyagawa S, Okuyama H. Effect of a C5a receptor antagonist on macrophage function in an intestinal transplant rat model. Transpl Immunol 2022; 72:101559. [DOI: 10.1016/j.trim.2022.101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/24/2022]
|
10
|
Wang Y, Huang M, Du X, Hong Y, Huang L, Dai Y, Wu Q, Wang F, Zhu Q. Renal tubular cell necroptosis: A novel mechanism of kidney damage in trichloroethylene hypersensitivity syndrome mice. J Immunotoxicol 2021; 18:173-182. [PMID: 34788186 DOI: 10.1080/1547691x.2021.2003486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Trichloroethylene (TCE) hypersensitivity syndrome (THS), called occupational medicamentosa-like dermatitis due to TCE (OMDT) in China, is a fatal occupational disorder caused by TCE exposure. Visceral damage, including kidney injury, is one of the major complications. Necroptosis is a regulated cell death form linked to local inflammatory response. This study aimed to investigate whether renal cell necroptosis was involved in TCE-induced kidney injury. A Balb/c mouse model of TCE sensitization was utilized to study mechanisms of modulation of TCE-induced renal necroptosis. Renal histology (using light and transmission electron microscopy) and renal tubular impairment indexes, including α1-microglobulin (α1-MG), and β2-microglobulin (β2-MG), were evaluated. In addition, tissue expression of necroptosis-related proteins, including tumor necrosis factor (TNF)-α, TNF receptor 1 (TNFR1), receptor-interacting protein kinase 3 (RIPK3), p-RIK3, mixed lineage kinase domain-like protein (MLKL), and p-MLKL, were also evaluated. The study here confirmed TCE sensitization caused damage to renal tubules and renal tubular epithelial cell (RTEC) necroptosis. In mice treated with R7050 (a specific TNFα antagonist), it was also seen that inhibition of TNFα expression could effectively inhibit RTEC necroptosis and improve renal function in the TCE-sensitized mice. Taken together, these results help to define a novel mechanism by which RTEC necroptosis plays a key role in TCE-induced kidney damage.
Collapse
Affiliation(s)
- Yican Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Meng Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Xin Du
- Department of Dermatology, The Second Hospital of Anhui Medical University, Hefei, PR China
| | - Yiting Hong
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Liping Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Yuying Dai
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Qifeng Wu
- Poison Control Center, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, PR China
| | - Feng Wang
- Department of Dermatology, The Second Hospital of Anhui Medical University, Hefei, PR China
| | - Qixing Zhu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China.,Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| |
Collapse
|
11
|
Xie H, Yang L, Yang Y, Jiang W, Wang X, Huang M, Zhang J, Zhu Q. C5b-9 membrane attack complex activated NLRP3 inflammasome mediates renal tubular immune injury in trichloroethylene sensitized mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111439. [PMID: 33039874 DOI: 10.1016/j.ecoenv.2020.111439] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Trichloroethylene (TCE) induced occupational medicamentosa-like dermatitis (OMLDT) in patients is accompanied, typically, by renal damage. But the role of C5b-9 and IL-1β in TCE-sensitized mouse renal tubular damage is unclear. This study aimed to investigate whether TCE-sensitized mouse renal tubular epithelial cell damage was induced by NLRP3 inflammasome and whether NLRP3 inflammasome was activated by sublytic C5b-9. In total, 52 specific pathogen-free BALB/c female mice, 6- to 8-week-old, were used for establishing the TCE-sensitized mouse model. Renal tubular epithelial cells were isolated and used for determining the sublytic level of C5b-9. Kidney histological examination, serum neutrophil gelatinase associated lipocalin (NGAL) level were used for kidney damage evaluation. Renal protein levels of C5b-9, NLRP3, ASC, Caspase-1, IL-1β, and IL-18 were measured. The renal lesions, serum NGAL level, renal NLRP3, ASC, Caspase-1 and IL-1β protein levels all increased significantly in TCE sensitized positive group. However, pretreatment with recombinant protein sCD59-Cys inhibited the expression of C5b-9, NLRP3 inflammasome, IL-1β, IL-18, and attenuated renal tubular epithelial cell damage. The sublytic C5b-9 activated NLRP3 inflammasome and aggravated renal tubular epithelial cell damage. Pretreatment with recombinant protein sCD59-Cys blocked the expression of the NLRP3 inflammasome by inhibiting the expression of C5b-9, and alleviating renal tubular epithelial cell damage.
Collapse
Affiliation(s)
- Haibo Xie
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Ling Yang
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yi Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Wei Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Xian Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Meng Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Qixing Zhu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.
| |
Collapse
|
12
|
Lai C, Wu F, Wang Y, Wang W, Li Y, Zhang G, Gao J, Zhu Z, Yuan J, Yang J, Zhang W. Specific epigenetic microenvironment and the regulation of tumor-related gene expression by trichloroethylene in human hepatocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111453. [PMID: 33068984 DOI: 10.1016/j.ecoenv.2020.111453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Trichloroethylene (TCE), an important volatile organic solvent, causes a series of toxic damage to human. Conventional genetic mechanisms cannot fully explain its toxicity and carcinogenicity, indicative of the possible involvement of epigenetic mechanisms. Our study was intended to investigate the epigenetic toxicity and underlying mechanisms of TCE. Data showed that 0.3 mM TCE treatment for 24 h increased the growth of L-02 cells transiently. In contrast, subacute exposure to TCE inhibited cell growth and induced the genomic DNA hypomethylation and histone hyperacetylation. Further studies have revealed the TCE-induced DNA hypomethylation in the promoter regions of tumor-related genes, N-Ras, c-Jun, c-Myc, c-Fos and IGF-II, promoting their protein levels in a time-dependent manner. These results reveal there is a negative relationship existing between DNA hypomethylation and protein expression in tumor-related gene after TCE exposure under specific epigenetic microenvironment, serving as early biomarkers for TCE-associated diseases.
Collapse
Affiliation(s)
- Caiyun Lai
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Fan Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Yan Wang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Wei Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yueqi Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Gaoqiang Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Jianji Gao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Zhiliang Zhu
- Baoan District Center for Disease Control and Prevention, Shenzhen, Guangdong 518101, PR China
| | - Jianhui Yuan
- Nanshan District Center for Disease Control and Prevention, Shenzhen, Guangdong 518054, PR China
| | - Jianping Yang
- Shenzhen Taike Test Co., Ltd, Shenzhen, Guangdong 518053, PR China.
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China.
| |
Collapse
|
13
|
Yang X, Jiang W, Huang M, Dai Y, Li B, Wang X, Yu Y, Shen T, Wu C, Zhu Q. Intracellular complement activation in podocytes aggravates immune kidney injury in trichloroethylene-sensitized mice. J Toxicol Sci 2020; 45:681-693. [PMID: 33132242 DOI: 10.2131/jts.45.681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Trichloroethylene (TCE) as a common organic solvent in industrial production can cause occupational medicamentosa-like dermatitis (OMDT) in some exposed workers. In addition to systemic skin damage, OMDT is also accompanied by severe kidney injury. Our previous studies show that complement (C) plays an important role in immune kidney injury caused by TCE. Specifically, C3 is mainly deposited on glomeruli. Recent studies have found that intracellular complement can be activated by cathepsin L (CTSL) and exert a series of biological effects. The purpose of this study was to explore where C3 on glomeruli comes from and what role it plays. A BALB/c mouse model of skin sensitization induced by TCE in the presence or absence of CTSL inhibitor (CTSLi,10 mg/kg). In TCE sensitization-positive mice, C3 was mainly expressed on podocytes and the expression of CTSL significantly increased in podocytes. Kidney function test and related indicators showed abnormal glomerular filtration and transmission electron microscopy revealed ultrastructure damage to podocytes. These lesions were alleviated in TCE/CTSLi positive mice. These results provide the first evidence that in TCE-induced immune kidney injury, intracellular complement in podocytes can be over-activated by CTSL and aggravates podocytes injury, thereby damaging glomerular filtration function. Intracellular complement activation and cathepsin L in podocytes may be a potential target for treating immune kidney injury induced by TCE.
Collapse
Affiliation(s)
- Xiaodong Yang
- Anhui Cancer Institute, The First Affiliated Hospital of Anhui Medical University, China.,Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, China
| | - Wei Jiang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, China
| | - Meng Huang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, China
| | - Yuying Dai
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, China
| | - Bodong Li
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, China
| | - Xian Wang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, China
| | - Yun Yu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, China
| | - Tong Shen
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, China
| | - Changhao Wu
- School of Biosciences and Medicine, FHMS, University of Surrey, UK
| | - Qixing Zhu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, China.,Key Laboratory of Dermatology, Ministry of Education, China
| |
Collapse
|
14
|
Kong F, Tao Y, Yuan D, Zhang N, Li Q, Yu T, Yang X, Kong D, Ding X, Liu X, You H, Zheng K, Tang R. Hepatitis B Virus Core Protein Mediates the Upregulation of C5α Receptor 1 via NF-κB Pathway to Facilitate the Growth and Migration of Hepatoma Cells. Cancer Res Treat 2020; 53:506-527. [PMID: 33197304 PMCID: PMC8053866 DOI: 10.4143/crt.2020.397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/01/2020] [Indexed: 02/08/2023] Open
Abstract
Purpose C5α receptor 1 (C5AR1) is associated with the development of various human cancers. However, whether it is involved in the development of hepatitis B virus (HBV)–related hepatocellular carcinoma (HCC) is poorly understood. We explored the expression, biological role, and associated mechanisms of C5AR1 in HBV-related hepatoma cells. Materials and Methods The expression of C5AR1 mediated by HBV and HBV core protein (HBc) was detected in hepatoma cells. The function of nuclear factor κB (NF-κB) pathway in HBc-induced C5AR1 expression was assessed. The roles of C5AR1 in the activation of intracellular signal pathways, the upregulation of inflammatory cytokines, and the growth and migration of hepatoma cells mediated by HBc, were investigated. The effect of C5α in the development of HCC mediated by C5AR1 was also measured. Results C5AR1 expression was increased in HBV-positive hepatoma cells. Dependent on HBc, HBV enhanced the expression of C5AR1 at the mRNA and protein levels. Besides, HBc could promote C5AR1 expression via the NF-κB pathway. Based on the C5AR1, HBc facilitated the activation of JNK and ERK pathways and the expression and secretion of interleukin-6 in hepatoma cells. Furthermore, C5AR1 was responsible for enhancing the growth and migration of hepatoma cells mediated by HBc. Except these, C5α could promote the malignant development of HBc-positive HCC via C5AR1. Conclusion We provide new insight into the mechanisms of hepatocarcinogenesis mediated by HBc. C5AR1 has a significant role in the functional abnormality of hepatoma cells mediated by HBc, and might be utilized as a potential therapeutic target for HBV-related HCC.
Collapse
Affiliation(s)
- Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yukai Tao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,Clinical Research & Lab Center, The First People's Hospital of Kunshan, Kunshan, China
| | - Dongchen Yuan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Ning Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Qi Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Tong Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Delong Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiaohui Ding
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiangye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
15
|
Wang G, Zhang J, Dai Y, Xu Q, Zhu Q. Local renal complement activation mediates immune kidney injury by inducing endothelin-1 signalling and inflammation in trichloroethylene-sensitised mice. Toxicol Lett 2020; 333:130-139. [PMID: 32763311 DOI: 10.1016/j.toxlet.2020.07.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022]
Abstract
Trichloroethylene (TCE) is a widely used industrial solvent that causes trichloroethylene hypersensitivity syndrome (THS) with multi-system damage, including kidney injury. Clinical studies have shown that the complement system is important for TCE-induced kidney injury. Our previous study found excessive deposition of complement C3, mainly on the glomerulus, indicating that local renal complement is activated after TCE sensitisation. However, whether local renal complement activation mediates TCE-induced immune kidney injury and the underlying mechanisms remain unknown. Therefore, we established a TCE percutaneous sensitisation BALB/c mouse model to explore the mechanisms by pretreating with or without the complement activation antagonist, cathepsin L inhibitor (CatLi). As expected, more C3 and C3a were detected mainly on glomerulus of TCE positive sensitisation (TCE+) mice. Renal dysfunction and pathological damage were also clearly observed in TCE+ mice. Moreover, the mRNA and protein expression of ET-1 increased significantly with local renal complement activation after TCE sensitisation, leading to cytokines release and inflammation. In addition, activation of p38MAPK and NF-κBp65 pathways were detected in kidneys of TCE+ mice, and CatLi pretreatment decreased these changes through complement activation antagonisation. Our research uncovered a novel role of local renal complement activation during immune kidney injury after TCE sensitisation through induction of ET-1 signalling and inflammation.
Collapse
Affiliation(s)
- Guoxiu Wang
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jiaxiang Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuying Dai
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qiongying Xu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qixing Zhu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
16
|
Wang F, Huang LP, Yang P, Ye LP, Wu C, Zhu QX. Inflammatory kidney injury in trichloroethylene hypersensitivity syndrome mice: Possible role of C3a receptor in the accumulation of Th17 phenotype. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109772. [PMID: 31614297 DOI: 10.1016/j.ecoenv.2019.109772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Trichloroethylene (TCE) is a common organic solvent which can cause TCE hypersensitivity syndrome (THS) in exposure workers. THS is an adverse skin disorder with severe inflammatory kidney damage. Complement C3a receptor (C3aR) acts as a specific receptor for the key complement cleavage product C3a and involves multiple inflammatory responses, but the role of C3aR in TCE induced kidney inflammatory injury remains unknown. In this study, BALB/c mouse model of skin sensitization induced by TCE was set up in the presence or absence of C3aR antagonist (C3aRA). Kidney pathology and renal function, expression of inflammatory mediators and C3aR, changes in Th17 cell numbers, and activation of signal transducer and activator of transcription 3 (STAT3) in the kidney were examined. TCE sensitization produced histopathological and functional damage to the kidney, accompanied by increased levels of interleukin (IL-) 1β, IL-6, and IL-23. Local accumulation of Th17 cells and enhanced phosphorylation of STAT3 were also seen in the impaired kidney in TCE sensitization-positive mice. C3aR was mainly located in the impaired glomerulus and upregulated in TCE sensitization-positive mice. C3aRA pretreatment alleviated the structural and functional kidney damage and the inflammatory cytokine and Th17 responses by TCE sensitization, and specifically reduced the phosphorylation of STAT3. Together, our results demonstrate that C3aR signaling promotes the inflammatory responses and regulates the accumulation of Th17 phenotype via phosphorylation of STAT3 in TCE sensitization induced inflammatory kidney damage. C3aR may serve as a potential therapeutic target in TCE sensitization mediated kidney injury.
Collapse
Affiliation(s)
- Feng Wang
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China
| | - Li-Ping Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Peng Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Liang-Ping Ye
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Changhao Wu
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Qi-Xing Zhu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China.
| |
Collapse
|
17
|
Wang F, Huang LP, Dai YY, Huang M, Jiang W, Ye LP, Zhu QX. Terminal complement complex C5b-9 reduced megalin and cubilin-mediated tubule proteins uptake in a mouse model of trichloroethylene hypersensitivity syndrome. Toxicol Lett 2019; 317:110-119. [PMID: 31618666 DOI: 10.1016/j.toxlet.2019.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022]
Abstract
Trichloroethylene (TCE), a commonly used industrial solvent and degreasing agent, is known to cause trichloroethylene hypersensitivity syndrome (THS) with multi-system damage, including skin, liver and kidney. Clinical evidence have shown that the kidney injury occurs in THS and our previous studies suggested that the terminal complement complex C5b-9 deposited in impaired renal tubules induced by TCE with unclear mechanisms. In the present study, we questioned whether activation of the complement system with renal deposition of C5b-9 contributes to TCE-induced kidney injury in THS. We established a BALB/c mouse model of TCE sensitization with or without pretreatment of exogenous CD59, a C5b-9 inhibitory protein. H&E staining, PAS staining, and biochemical detection of urinary proteins were performed to assess renal function. Deposition of C5b-9 and expression of CD59 were evaluated by immunohistochemistry. Sub-lytic effects of C5b-9 in tubular epithelial cells were assessed by lactate dehydrogenase (LDH) cytotoxicity assay. Expression of endocytosis receptors megalin and cubilin on proximal tubules were assessed by immunofluorescence and qRT-PCR. We found that TCE sensitization induced structural and functional changes of renal tubules in mice, associated with the deposition of sub-lytic C5b-9 on proximal tubular epithelial cells. TCE sensitization decreased proximal tubule uptake of filtered proteins and renal expression of megalin and cubilin, phenotypes that were attenuated by pretreatment with exogenous CD59. Overall, our findings reveal a novel mechanism underlying sub-lytic C5b-9 acting on megalin and cubilin, contributes to the renal tubules damage by TCE exposure.
Collapse
Affiliation(s)
- Feng Wang
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, Anhui, China
| | - Li-Ping Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yu-Ying Dai
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Meng Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Wei Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Liang-Ping Ye
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qi-Xing Zhu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
18
|
N-Acetylcysteine Attenuates Cisplatin-Induced Acute Kidney Injury by Inhibiting the C5a Receptor. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4805853. [PMID: 31111056 PMCID: PMC6487137 DOI: 10.1155/2019/4805853] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/17/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
N-acetylcysteine has been widely used as a nutritional supplement and drug in humans for its antioxidant properties. The complement activation fragment C5a is a strong proinflammatory molecule that mediates cell adhesion, chemotaxis, and the complex biological functions. However, the effect of NAC on the C5a, and the relationship of those two with cisplatin-induced acute kidney injury are unknown. In cisplatin induced AKI mouse model, mice with NAC administration had a marked improvement in renal function (BUN and Cr), decreased pathological damage, reduced inflammation, and alleviated renal oxidative stress. Furthermore, C5a and C5aR expression in the cisplatin-treated group was notably increased compared with the control group, and this increase could be significantly inhibited by NAC. In addition, neutrophils coexpressed distinctly with C5aR, and the number of infiltrating neutrophils (MPO+ly6G+) and inflammatory factors decreased with NAC treatment in the cisplatin-treated group. Overall, these data demonstrate that NAC could ameliorate cisplatin-induced nephrotoxicity in mice and the protective effects may be conducted by inhibiting the activation of kidney inflammation and the complement system.
Collapse
|
19
|
Li B, Xie H, Wang X, Yang X, Yang L, Zhang J, Wang F, Shen T, Zhu Q. Oxidative stress mediates renal endothelial cell damage in trichloroethylene-sensitized mice. J Toxicol Sci 2019; 44:317-326. [PMID: 31068537 DOI: 10.2131/jts.44.317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Bodong Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, China
| | - Haibo Xie
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, China
- Institute of Dermatology, First Affiliated Hospital of Anhui Medical University, China
| | - Xian Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, China
| | - Xiaodong Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, China
| | - Ling Yang
- Institute of Dermatology, First Affiliated Hospital of Anhui Medical University, China
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, China
- Institute of Dermatology, First Affiliated Hospital of Anhui Medical University, China
| | - Feng Wang
- Institute of Dermatology, First Affiliated Hospital of Anhui Medical University, China
| | - Tong Shen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, China
| | - Qixing Zhu
- Institute of Dermatology, First Affiliated Hospital of Anhui Medical University, China
- Key Laboratory of Dermatology, Ministry of Education, China
| |
Collapse
|
20
|
Liu M, Wang H, Zhang J, Yang X, Li B, Wu C, Zhu Q. NF-κB signaling pathway-enhanced complement activation mediates renal injury in trichloroethylene-sensitized mice. J Immunotoxicol 2018. [PMID: 29534626 DOI: 10.1080/1547691x.2017.1420712] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Both NF-κB pathway and complement activation appear to be involved in kidney damage induced by trichloroethylene (TCE). However, any relationship between these two systems has not yet been established. The present study aimed to clarify the role of NF-κB in complement activation and renal injury in TCE-sensitized BALB/c mice. Mice were sensitized by an initial subcutaneous injection and repeated focal applications of TCE to dorsal skin at specified timepoints. NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) was injected (intraperitoneal) before the final two focal TCE challenges. In the experiments, mice had their blood and kidneys collected. Kidney function was evaluated via blood urea nitrogen (BUN) and creatinine (Cr) content; renal histology was examined using transmission electron microscopy (TEM). Kidney levels of phospho-p65 were assessed by Western blot and kidney mRNA levels of interleukin (IL)-1β, IL-6, IL-17, tumor necrosis factor (TNF)-α, and p65 by real-time quantitative PCR. Presence of C3 and C5b-9 membrane attack complexes in the kidneys was evaluated via immunohistochemistry. The results showed there was significant swelling, vacuolar degeneration in mitochondria, shrinkage of microvilli, disappearance of brush borders, segmental foot process fusion, and glomerular basement membrane thickening (or disrobing) in kidneys from TCE-sensitized mice. In conjunction with these changes, serum BUN and Cr levels were increased and IL-1β, IL-6, IL-17, and TNFα mRNA levels were elevated. Levels of p65 and phospho-p65 protein were also up-regulated, and there was significant C3 and C5b-9 deposition. PDTC pretreatment attenuated TCE-induced up-regulation of p65 and its phosphorylation, complement deposition, cytokine release, and renal damage. These results provide the first evidence that NF-κB pathway has an important role in TCE-induced renal damage mediated by enhanced complement activation in situ.
Collapse
Affiliation(s)
- Min Liu
- a Department of Occupational Health and Environment Health (School of Public Health) , Anhui Medical University , Hefei , Anhui , China
| | - Hui Wang
- b Department of Nutrition , Chaohu Hospital of Anhui Medical University , Hefei , Anhui , China.,c Institute of Dermatology , Anhui Medical University , Hefei , Anhui , China
| | - Jiaxiang Zhang
- a Department of Occupational Health and Environment Health (School of Public Health) , Anhui Medical University , Hefei , Anhui , China.,c Institute of Dermatology , Anhui Medical University , Hefei , Anhui , China
| | - Xiaodong Yang
- a Department of Occupational Health and Environment Health (School of Public Health) , Anhui Medical University , Hefei , Anhui , China
| | - Bodong Li
- a Department of Occupational Health and Environment Health (School of Public Health) , Anhui Medical University , Hefei , Anhui , China
| | - Changhao Wu
- d Faculty of Health and Medical Sciences , University of Surrey , Guildford , UK
| | - Qixing Zhu
- c Institute of Dermatology , Anhui Medical University , Hefei , Anhui , China
| |
Collapse
|
21
|
Yang L, Zhang J, Li N, Xie H, Chen S, Wang H, Shen T, Zhu QX. Bradykinin receptor in immune-mediated renal tubular injury in trichloroethylene-sensitized mice: Impact on NF-κB signaling pathway. J Immunotoxicol 2018; 15:126-136. [DOI: 10.1080/1547691x.2018.1532974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Ling Yang
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Jiaxiang Zhang
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Na Li
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Haibo Xie
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shuangping Chen
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Hui Wang
- Department of Nutrition, Chaohu Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Tong Shen
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qi-xing Zhu
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
22
|
Dysinger M, Ma M. A Gyrolab Assay for the Quantitation of Free Complement Protein C5a in Human Plasma. AAPS JOURNAL 2018; 20:106. [DOI: 10.1208/s12248-018-0266-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/14/2018] [Indexed: 12/20/2022]
|
23
|
Zhang C, Yu Y, Yu JF, Li BD, Zhou CF, Yang XD, Wang X, Wu C, Shen T, Zhu QX. Viral mimic polyinosine-polycytidylic acid potentiates liver injury in trichloroethylene-sensitized mice - Viral-chemical interaction as a novel mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 155:101-108. [PMID: 29510304 DOI: 10.1016/j.ecoenv.2018.02.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/07/2018] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Occupational trichloroethylene (TCE) exposure can induce hypersensitivity dermatitis and severe liver injury. Recently, several clinical investigations indicate that viral infection, such as human herpesvirus-6, is associated with hepatic dysfunction in patients with TCE-related generalized skin disorders. However, whether viral infection potentiates TCE-induced liver injury remains unknown. This study aimed to explore the contribution of viral infection to the development of TCE-sensitization-induced liver injury in BALB/c mice. Female BALB/c mice were randomly assigned into four groups: solvent control group (n = 20), TCE group (n = 80), poly(I:C) group (n = 20) and combination of TCE and poly(I:C) (poly(I:C)+TCE) group (n = 80). Poly(I:C) (50 μg) was i.p. administrated. TCE and poly(I:C)+TCE groups were further divided into sensitization and non-sensitization subgroup. Complement 3 and C3a protein levels, and complement factors were measured. Combination treatment significantly enhanced TCE-induced liver injury, decreased complement 3, but increased C3a in serum and liver tissues in sensitization group. These changes were not correlated with the hepatic complement 3 transcription. Moreover, combination treatment specifically promoted complement factor B, but not factor D and factor H expressions. These data provide first evidence that poly(I:C) potentiates liver injury in BALB/c mouse model of TCE-sensitization. Upregulated C3a and factor B contributes to the poly(I:C) action in TCE-induced liver injury. This new mode of action may explain increased risk of chemical-sensitization induced tissue damage by viral infection.
Collapse
Affiliation(s)
- Cheng Zhang
- Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China; Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yun Yu
- Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China; Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jun-Feng Yu
- Institute of Dermatology, the Fifth Affiliated Hospital of Xinjiang Medical University, 118 Henan Road, Urumchi, Xinjiang, China
| | - Bo-Dong Li
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Cheng-Fan Zhou
- Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China; Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiao-Dong Yang
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xian Wang
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Changhao Wu
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Tong Shen
- Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China; Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Qi-Xing Zhu
- Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China; Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
24
|
Zhang JX, Li N, Wang H, Shen T, Zhu QX. The immune response in trichloroethylene hypersensitivity syndrome: A review. Toxicol Ind Health 2017; 33:876-883. [PMID: 29020883 DOI: 10.1177/0748233717731213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Trichloroethylene (TCE) has been used for a variety of industrial and consumer cleaning purposes because of its ability to dissolve organic substances. The multisystem injuries include those of skin, liver, and kidney, which are defined as TCE hypersensitivity syndrome (THS). THS is a serious occupational health issue. However, the mechanism of immune dysfunction leading to organ injury is poorly understood. Many studies reveal that skin lesions and organ injury caused by TCE are consistent with type IV hypersensitivity, also called delayed hypersensitivity, mediated by T cells. However, many researchers found T cell-mediated type IV hypersensitivity could not account for the pathogenesis of THS fully. Humoral immunity, including immunoglobulins and complement activation, may also play a possible role in THS pathogenesis. This review will describe the history, current understanding, and future research directions of the mechanism of THS.
Collapse
Affiliation(s)
- Jia-Xiang Zhang
- 1 Institute of Dermatology, Anhui Medical University, Anhui, China.,2 Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Anhui, China
| | - Na Li
- 2 Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Anhui, China
| | - Hui Wang
- 3 Department of Nutrition, Chaohu Hospital of Anhui Medical University, Anhui, China
| | - Tong Shen
- 2 Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Anhui, China
| | - Qi-Xing Zhu
- 1 Institute of Dermatology, Anhui Medical University, Anhui, China
| |
Collapse
|
25
|
Martin IV, Bohner A, Boor P, Shagdarsuren E, Raffetseder U, Lammert F, Floege J, Ostendorf T, Weber SN. Complement C5a receptors C5L2 and C5aR in renal fibrosis. Am J Physiol Renal Physiol 2017; 314:F35-F46. [PMID: 28903945 DOI: 10.1152/ajprenal.00060.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Complement factor C5a has two known receptors, C5aR, which mediates proinflammatory effects, and C5L2, a potential C5a decoy receptor. We previously identified C5a/C5aR signaling as a potent profibrotic pathway in the kidney. Here we tested for the first time the role of C5L2 in renal fibrosis. In unilateral ureteral obstruction (UUO)-induced kidney fibrosis, the expression of C5aR and C5L2 increased similarly and gradually as fibrosis progressed and was particularly prominent in injured dilated tubules. Genetic deficiency of either C5aR or C5L2 significantly reduced UUO-induced tubular injury. Expression of key proinflammatory mediators, however, significantly increased in C5L2- compared with C5aR-deficient mice, but this had no effect on the number of renal infiltrating macrophages or T cells. Moreover, in C5L2-/- mice, the cytokine and matrix metalloproteinase-inhibitor tissue inhibitor of matrix metalloproteinase-1 was specifically enhanced. Consequently, in C5L2-/- mice the degree of renal fibrosis was similar to wild type (WT), albeit with reduced mRNA expression of some fibrosis-related genes. In contrast, C5aR-/- mice had significantly reduced renal fibrosis compared with WT and C5L2-/- mice in UUO. In vitro experiments with primary tubular cells demonstrated that deficiency for either C5aR or C5L2 led to a significantly reduced expression of tubular injury and fibrosis markers. Vice versa, stimulation of WT tubular cells with C5a significantly induced the expression of these markers, whereas the absence of either receptor abolished this induction. In conclusion, in experimental renal fibrosis C5L2 and C5aR both contribute to tubular injury, and, while C5aR acts profibrotic, C5L2 does not play a role in extracellular matrix accumulation, arguing against C5L2 functioning simply as a decoy receptor.
Collapse
Affiliation(s)
- Ina V Martin
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule (RWTH) University of Aachen , Aachen , Germany
| | - Annika Bohner
- Division of Gastroenterology, Saarland University Medical Center , Homburg , Germany
| | - Peter Boor
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule (RWTH) University of Aachen , Aachen , Germany.,Institute of Pathology, RWTH University of Aachen , Aachen , Germany
| | | | - Ute Raffetseder
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule (RWTH) University of Aachen , Aachen , Germany
| | - Frank Lammert
- Division of Gastroenterology, Saarland University Medical Center , Homburg , Germany
| | - Jürgen Floege
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule (RWTH) University of Aachen , Aachen , Germany
| | - Tammo Ostendorf
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule (RWTH) University of Aachen , Aachen , Germany
| | - Susanne N Weber
- Division of Gastroenterology, Saarland University Medical Center , Homburg , Germany
| |
Collapse
|
26
|
Kaida T, Nitta H, Kitano Y, Yamamura K, Arima K, Izumi D, Higashi T, Kurashige J, Imai K, Hayashi H, Iwatsuki M, Ishimoto T, Hashimoto D, Yamashita Y, Chikamoto A, Imanura T, Ishiko T, Beppu T, Baba H. C5a receptor (CD88) promotes motility and invasiveness of gastric cancer by activating RhoA. Oncotarget 2016; 7:84798-84809. [PMID: 27756879 PMCID: PMC5356699 DOI: 10.18632/oncotarget.12656] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 10/01/2016] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Anaphylatoxin C5a is a strong chemoattractant of the complement system that binds the C5a receptor (C5aR). The expression of C5aR is associated with poor prognosis in several cancers. However, the role of C5aR in gastric cancer (GC) is unknown. The aim of this study was to examine the role of C5aR on GC cell motility and invasion. EXPERIMENTAL DESIGN The mechanism of invasion via C5aR was assessed by analyzing cytoskeletal rearrangement and RhoA activity after C5a treatment. Moreover, we investigated the relationship between C5aR expression and the prognosis of GC patients. RESULTS Two human GC cell lines (MKN1 and MKN7) had high C5aR expression. An invasion assay revealed that C5a stimulation promoted the invasive ability of MKN1 and MKN7 cells and that this was suppressed by knockdown of C5aR using siRNA or a C5aR-antagonist. Moreover, overexpression of C5aR in GC cells enhanced the conversion of RhoA-guanosine diphosphate (RhoA-GDP) to RhoA-guanosine triphosphate (RhoA-GTP) after C5a stimulation and caused morphological changes, including increased expression of stress fibers and filopodia. Examination of tumor specimens from 100 patients with GC revealed that high C5aR expression (35 of 100 samples, 35.0%) was associated with increased invasion depth, vascular invasion and advanced stage. The 5-year overall survival of patients with high or low C5aR expression was 58.2% and 68.5%, respectively (p=0.008). CONCLUSIONS This study is the first to demonstrate that C5aR promotes GC cell invasion by activating RhoA and is associated with a poor prognosis in GC patients. Therefore, this study provides a biomarker for GC patients who require an advanced therapeutic strategy.
Collapse
Affiliation(s)
- Takayoshi Kaida
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidetoshi Nitta
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Kitano
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kensuke Yamamura
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kota Arima
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Daisuke Izumi
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takaaki Higashi
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Junji Kurashige
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsunori Imai
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromitsu Hayashi
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Daisuke Hashimoto
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoichi Yamashita
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akira Chikamoto
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takahisa Imanura
- Department of Molecular Pathology, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatoshi Ishiko
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Toru Beppu
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
27
|
Ji M, Lu Y, Zhao C, Gao W, He F, Zhang J, Zhao D, Qiu W, Wang Y. C5a Induces the Synthesis of IL-6 and TNF-α in Rat Glomerular Mesangial Cells through MAPK Signaling Pathways. PLoS One 2016; 11:e0161867. [PMID: 27583546 PMCID: PMC5008626 DOI: 10.1371/journal.pone.0161867] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/13/2016] [Indexed: 12/16/2022] Open
Abstract
Inflammatory response has been reported to contribute to the renal lesions in rat Thy-1 nephritis (Thy-1N) as an animal model of human mesangioproliferative glomerulonephritis (MsPGN). Besides C5b-9 complex, C5a is also a potent pro-inflammatory mediator and correlated to severity of various nephritic diseases. However, the role of C5a in mediating pro-inflammatory cytokine production in rats with Thy-1N is poorly defined. In the present studies, the levels of C5a, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were first determined in the renal tissues of rats with Thy-1N. Then, the expression of IL-6 and TNF-α was detected in rat glomerular mesangial cells (GMC) stimulated with our recombinant rat C5a in vitro. Subsequently, the activation of mitogen-activated protein kinase (MAPK) signaling pathways (p38 MAPK, ERK1/2 and JNK) and their roles in the regulation of IL-6 and TNF-α production were examined in the GMC induced by C5a. The results showed that the levels of C5a, IL-6 and TNF-α were markedly increased in the renal tissues of Thy-1N rats. Rat C5a stimulation in vitro could up-regulate the expression of IL-6 and TNF-α in rat GMC, and the activation of MAPK signaling pathways was involved in the induction of IL-6 and TNF-α. Mechanically, p38 MAPK activation promoted IL-6 production, while either ERK1/2 or JNK activation promoted TNF-α production in the GMC with exposure to C5a. Taken together, these data implicate that C5a induces the synthesis of IL-6 and TNF-α in rat GMC through the activation of MAPK signaling pathways.
Collapse
Affiliation(s)
- Mingde Ji
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
- Department of Laboratory Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, 210029, P.R. China
| | - Yanlai Lu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Chenhui Zhao
- Department of Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P.R. China
| | - Wenxing Gao
- Basic Medical Science of Basic Medical College, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Fengxia He
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Jing Zhang
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Dan Zhao
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Wen Qiu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
- * E-mail:
| | - Yingwei Wang
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| |
Collapse
|