1
|
Deng W, Zhou Y, Wan Q, Li L, Deng H, Yin Y, Zhou Q, Li Q, Cheng D, Hu X, Wang Y, Feng G. Nano-enzyme hydrogels for cartilage repair effectiveness based on ternary strategy therapy. J Mater Chem B 2024; 12:6242-6256. [PMID: 38842217 DOI: 10.1039/d4tb00307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Designing artificial nano-enzymes for scavenging reactive oxygen species (ROS) in chondrocytes (CHOs) is considered the most feasible pathway for the treatment of osteoarthritis (OA). However, the accumulation of ROS due to the amount of nano-enzymatic catalytic site exposure and insufficient oxygen supply seriously threatens the clinical application of this therapy. Although metal-organic framework (MOF) immobilization of artificial nano-enzymes to enhance active site exposure has been extensively studied, artificial nano-enzymes/MOFs for ROS scavenging in OA treatment are still lacking. In this study, a biocompatible lubricating hydrogel-loaded iron-doped zeolitic imidazolate framework-8 (Fe/ZIF-8/Gel) centrase was engineered to scavenge endogenous overexpressed ROS synergistically generating dissolved oxygen and enhancing sustained lubrication for CHOs as a ternary artificial nano-enzyme. This property enabled the nano-enzymatic hydrogels to mitigate OA hypoxia and inhibit oxidative stress damage successfully. Ternary strategy-based therapies show excellent cartilage repair in vivo. The experimental results suggest that nano-enzyme-enhanced lubricating hydrogels are a potentially effective OA treatment and a novel strategy.
Collapse
Affiliation(s)
- Wei Deng
- Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, 17 Gaopeng Avenue, Chengdu 610041, China.
- Department of Orthopedics, Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, 611730, China
| | - Yue Zhou
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qinlin Wan
- Medical College of Soochow University, Suzhou, 215123, China
| | - Lei Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Hui Deng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yong Yin
- Department of Orthopedics, Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, 611730, China
| | - Qingsong Zhou
- Department of Orthopedics, Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, 611730, China
| | - Qiujiang Li
- Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, 17 Gaopeng Avenue, Chengdu 610041, China.
| | - Duo Cheng
- Department of Orthopedics, Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, 611730, China
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Ganjun Feng
- Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, 17 Gaopeng Avenue, Chengdu 610041, China.
| |
Collapse
|
2
|
Koshev N, Kapralov P, Evstigneeva S, Leontyev A, Lutsenko O, Zharkov M, Pyataev N, Darwish A, Timin A, Ostras M, Radchenko I, Sukhorukov G, Vetoshko P. YIG-Based Sensor System for Millisecond Time Range Magnetorelaxometry. IEEE Trans Biomed Eng 2024; 71:1640-1650. [PMID: 38133972 DOI: 10.1109/tbme.2023.3346203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
In the current study we propose a magneto-optical system for registration and analysis of magnetic nano- and microparticles magnetic relaxation. The core of our system is the novel compact magnetometer based on an yttrium-iron garnet film and working at room temperature. The sensor demonstrates sensitivity of 35 pT/√{Hz} at 79 Hz and recovery time less than 100 µs, which allows to register quite fast magnetic relaxations of a low amplitude. All these facts make the system feasible for usage in biological magnetorelaxometry and theranostics. Statistical processing of the relaxation curves allowed us to estimate both amplitudes and relaxation times for various biocompatible magnetic particles at the amount of 100 µg in the test tubes experiments. The system has a great potential of further development for usage in the areas of targeted drug delivery, hyperthermia, magnetic imaging. Being comparatively cheap, the system potentially is of a great interest in the fields of biomedicine and nanomedicine.
Collapse
|
3
|
Nowak-Jary J, Machnicka B. In vivo Biodistribution and Clearance of Magnetic Iron Oxide Nanoparticles for Medical Applications. Int J Nanomedicine 2023; 18:4067-4100. [PMID: 37525695 PMCID: PMC10387276 DOI: 10.2147/ijn.s415063] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/29/2023] [Indexed: 08/02/2023] Open
Abstract
Magnetic iron oxide nanoparticles (magnetite and maghemite) are intensively studied due to their broad potential applications in medical and biological sciences. Their unique properties, such as nanometric size, large specific surface area, and superparamagnetism, allow them to be used in targeted drug delivery and internal radiotherapy by targeting an external magnetic field. In addition, they are successfully used in magnetic resonance imaging (MRI), hyperthermia, and radiolabelling. The appropriate design of nanoparticles allows them to be delivered to the desired tissues and organs. The desired biodistribution of nanoparticles, eg, cancerous tumors, is increased using an external magnetic field. Thus, knowledge of the biodistribution of these nanoparticles is essential for medical applications. It allows for determining whether nanoparticles are captured by the desired organs or accumulated in other tissues, which may lead to potential toxicity. This review article presents the main organs where nanoparticles accumulate. The sites of their first uptake are usually the liver, spleen, and lymph nodes, but with the appropriate design of nanoparticles, they can also be accumulated in organs such as the lungs, heart, or brain. In addition, the review describes the factors affecting the biodistribution of nanoparticles, including their size, shape, surface charge, coating molecules, and route of administration. Modern techniques for determining nanoparticle accumulation sites and concentration in isolated tissues or the body in vivo are also presented.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- University of Zielona Gora, Faculty of Biological Sciences, Department of Biotechnology, Zielona Gora, 65-516, Poland
| | - Beata Machnicka
- University of Zielona Gora, Faculty of Biological Sciences, Department of Biotechnology, Zielona Gora, 65-516, Poland
| |
Collapse
|
4
|
Mariano A, Bigioni I, Marchetti M, Scotto d'Abusco A, Superti F. Repositioned Natural Compounds and Nanoformulations: A Promising Combination to Counteract Cell Damage and Inflammation in Respiratory Viral Infections. Molecules 2023; 28:molecules28104045. [PMID: 37241786 DOI: 10.3390/molecules28104045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Respiratory viral diseases are among the most important causes of disability, morbidity, and death worldwide. Due to the limited efficacy or side effects of many current therapies and the increase in antiviral-resistant viral strains, the need to find new compounds to counteract these infections is growing. Since the development of new drugs is a time-consuming and expensive process, numerous studies have focused on the reuse of commercially available compounds, such as natural molecules with therapeutic properties. This phenomenon is generally called drug repurposing or repositioning and represents a valid emerging strategy in the drug discovery field. Unfortunately, the use of natural compounds in therapy has some limitations, due to their poor kinetic performance and consequently reduced therapeutic effect. The advent of nanotechnology in biomedicine has allowed this limitation to be overcome, showing that natural compounds in nanoform may represent a promising strategy against respiratory viral infections. In this narrative review, the beneficial effects of some promising natural molecules, curcumin, resveratrol, quercetin, and vitamin C, which have been already studied both in native form and in nanoform, against respiratory viral infections are presented and discussed. The review focuses on the ability of these natural compounds, analyzed in in vitro and in vivo studies, to counteract inflammation and cellular damage induced by viral infection and provide scientific evidence of the benefits of nanoformulations in increasing the therapeutic potential of these molecules.
Collapse
Affiliation(s)
- Alessia Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Irene Bigioni
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Magda Marchetti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Anna Scotto d'Abusco
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Fabiana Superti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
5
|
Yang K, Shang Y, Yang N, Pan S, Jin J, He Q. Application of nanoparticles in the diagnosis and treatment of chronic kidney disease. Front Med (Lausanne) 2023; 10:1132355. [PMID: 37138743 PMCID: PMC10149997 DOI: 10.3389/fmed.2023.1132355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/22/2023] [Indexed: 05/05/2023] Open
Abstract
With the development of nanotechnology, nanoparticles have been used in various industries. In medicine, nanoparticles have been used in the diagnosis and treatment of diseases. The kidney is an important organ for waste excretion and maintaining the balance of the internal environment; it filters various metabolic wastes. Kidney dysfunction may result in the accumulation of excess water and various toxins in the body without being discharged, leading to complications and life-threatening conditions. Based on their physical and chemical properties, nanoparticles can enter cells and cross biological barriers to reach the kidneys and therefore, can be used in the diagnosis and treatment of chronic kidney disease (CKD). In the first search, we used the English terms "Renal Insufficiency, Chronic" [Mesh] as the subject word and terms such as "Chronic Renal Insufficiencies," "Chronic Renal Insufficiency," "Chronic Kidney Diseases," "Kidney Disease, Chronic," "Renal Disease, Chronic" as free words. In the second search, we used "Nanoparticles" [Mesh] as the subject word and "Nanocrystalline Materials," "Materials, Nanocrystalline," "Nanocrystals," and others as free words. The relevant literature was searched and read. Moreover, we analyzed and summarized the application and mechanism of nanoparticles in the diagnosis of CKD, application of nanoparticles in the diagnosis and treatment of renal fibrosis and vascular calcification (VC), and their clinical application in patients undergoing dialysis. Specifically, we found that nanoparticles can detect CKD in the early stages in a variety of ways, such as via breath sensors that detect gases and biosensors that detect urine and can be used as a contrast agent to avoid kidney damage. In addition, nanoparticles can be used to treat and reverse renal fibrosis, as well as detect and treat VC in patients with early CKD. Simultaneously, nanoparticles can improve safety and convenience for patients undergoing dialysis. Finally, we summarize the current advantages and limitations of nanoparticles applied to CKD as well as their future prospects.
Collapse
Affiliation(s)
- Kaibi Yang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiwei Shang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nan Yang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shujun Pan
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Juan Jin
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- *Correspondence: Juan Jin,
| | - Qiang He
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- Qiang He,
| |
Collapse
|
6
|
Application of Genetically Encoded Molecular Imaging Probes in Tumor Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:5473244. [PMID: 36101803 PMCID: PMC9440812 DOI: 10.1155/2022/5473244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/05/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
In recent years, imaging technology has made rapid progress to improve the sensitivity of tumor diagnostic. With the development of genetic engineering and synthetic biology, various genetically encoded molecular imaging probes have also been extensively developed. As a biomedical imaging method with excellent detectable sensitivity and spatial resolution, genetically encoded molecular imaging has great application potential in the visualization of cellular and molecular functions during tumor development. Compared to chemosynthetic dyes and nanoparticles with an imaging function, genetically encoded molecular imaging probes can more easily label specific cells or proteins of interest in tumor tissues and have higher stability and tissue contrast in vivo. Therefore, genetically encoded molecular imaging probes have attracted increasing attention from researchers in engineering and biomedicine. In this review, we aimed to introduce the genetically encoded molecular imaging probes and further explained their applications in tumor imaging.
Collapse
|
7
|
Frtús A, Smolková B, Uzhytchak M, Lunova M, Jirsa M, Henry SJW, Dejneka A, Stephanopoulos N, Lunov O. The interactions between DNA nanostructures and cells: A critical overview from a cell biology perspective. Acta Biomater 2022; 146:10-22. [PMID: 35523414 PMCID: PMC9590281 DOI: 10.1016/j.actbio.2022.04.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022]
Abstract
DNA nanotechnology has yielded remarkable advances in composite materials with diverse applications in biomedicine. The specificity and predictability of building 3D structures at the nanometer scale make DNA nanotechnology a promising tool for uses in biosensing, drug delivery, cell modulation, and bioimaging. However, for successful translation of DNA nanostructures to real-world applications, it is crucial to understand how they interact with living cells, and the consequences of such interactions. In this review, we summarize the current state of knowledge on the interactions of DNA nanostructures with cells. We identify key challenges, from a cell biology perspective, that influence progress towards the clinical translation of DNA nanostructures. We close by providing an outlook on what questions must be addressed to accelerate the clinical translation of DNA nanostructures. STATEMENT OF SIGNIFICANCE: Self-assembled DNA nanostructures (DNs) offers unique opportunities to overcome persistent challenges in the nanobiotechnology field. However, the interactions between engineered DNs and living cells are still not well defined. Critical systematization of current cellular models and biological responses triggered by DNs is a crucial foundation for the successful clinical translation of DNA nanostructures. Moreover, such an analysis will identify the pitfalls and challenges that are present in the field, and provide a basis for overcoming those challenges.
Collapse
Affiliation(s)
- Adam Frtús
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Barbora Smolková
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Mariia Uzhytchak
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic; Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | - Skylar J W Henry
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85281, United States; Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ 85281, United States
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85281, United States; Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ 85281, United States.
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic.
| |
Collapse
|
8
|
Long-Term Clearance and Biodistribution of Magnetic Nanoparticles Assessed by AC Biosusceptometry. MATERIALS 2022; 15:ma15062121. [PMID: 35329574 PMCID: PMC8948936 DOI: 10.3390/ma15062121] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Once administered in an organism, the physiological parameters of magnetic nanoparticles (MNPs) must be addressed, as well as their possible interactions and retention and elimination profiles. Alternating current biosusceptometry (ACB) is a biomagnetic detection system used to detect and quantify MNPs. The aims of this study were to evaluate the biodistribution and clearance of MNPs profiles through long-time in vivo analysis and determine the elimination time carried out by the association between the ACB system and MnFe2O4 nanoparticles. The liver, lung, spleen, kidneys, and heart and a blood sample were collected for biodistribution analysis and, for elimination analysis, and over 60 days. During the period analyzed, the animal’s feces were also collectedd. It was possible to notice a higher uptake by the liver and the spleen due to their characteristics of retention and uptake. In 60 days, we observed an absence of MNPs in the spleen and a significant decay in the liver. We also determined the MNPs’ half-life through the liver and the spleen elimination. The data indicated a concentration decay profile over the 60 days, which suggests that, in addition to elimination via feces, there is an endogenous mechanism of metabolization or possible agglomeration of MNPs, resulting in loss of ACB signal intensity.
Collapse
|
9
|
Assessing the Biocompatibility of Multi-Anchored Glycoconjugate Functionalized Iron Oxide Nanoparticles in a Normal Human Colon Cell Line CCD-18Co. NANOMATERIALS 2021; 11:nano11102465. [PMID: 34684906 PMCID: PMC8537094 DOI: 10.3390/nano11102465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022]
Abstract
We have previously demonstrated that iron oxide nanoparticles with dopamine-anchored heterobifunctional polyethylene oxide (PEO) polymer, namely PEO-IONPs, and bio-functionalized with sialic-acid specific glycoconjugate moiety (Neu5Ac(α2-3)Gal(β1-4)-Glcβ-sp), namely GM3-IONPs, can be effectively used as antibacterial agents against target Escherichia coli. In this study, we evaluated the biocompatibility of PEO-IONPs and GM3-IONPs in a normal human colon cell line CCD-18Co via measuring cell proliferation, membrane integrity, and intracellular adenosine triphosphate (ATP), glutathione GSH, dihydrorhodamine (DHR) 123, and caspase 3/7 levels. PEO-IONPs caused a significant decrease in cell viability at concentrations above 100 μg/mL whereas GM3-IONPs did not cause a significant decrease in cell viability even at the highest dose of 500 μg/mL. The ATP synthase activity of CCD-18Co was significantly diminished in the presence of PEO-IONPs but not GM3-IONPs. PEO-IONPs also compromised the membrane integrity of CCD-18Co. In contrast, cells exposed to GM3-IONPs showed significantly different cell morphology, but with no apparent membrane damage. The interaction of PEO-IONPs or GM3-IONPs with CCD-18Co resulted in a substantial decrease in the intracellular GSH levels in a time- and concentration-dependent manner. Conversely, levels of DHR-123 increased with IONP concentrations. Levels of caspase 3/7 proteins were found to be significantly elevated in cells exposed to PEO-IONPs. Based on the results, we assume GM3-IONPs to be biocompatible with CCD-18Co and could be further evaluated for selective killing of pathogens in vivo.
Collapse
|
10
|
Marasini S, Yue H, Ho SL, Park JA, Kim S, Jung KH, Cha H, Liu S, Tegafaw T, Ahmad MY, Ghazanfari A, Chae KS, Chang Y, Lee GH. Synthesis, Characterizations, and 9.4 Tesla T 2 MR Images of Polyacrylic Acid-Coated Terbium(III) and Holmium(III) Oxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1355. [PMID: 34065511 PMCID: PMC8160651 DOI: 10.3390/nano11051355] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022]
Abstract
Polyacrylic acid (PAA)-coated lanthanide oxide (Ln2O3) nanoparticles (NPs) (Ln = Tb and Ho) with high colloidal stability and good biocompatibility were synthesized, characterized, and investigated as a new class of negative (T2) magnetic resonance imaging (MRI) contrast agents at high MR fields. Their r2 values were appreciable at a 3.0 T MR field and higher at a 9.4 T MR field, whereas their r1 values were negligible at all MR fields, indicating their exclusive induction of T2 relaxations with negligible induction of T1 relaxations. Their effectiveness as T2 MRI contrast agents at high MR fields was confirmed from strong negative contrast enhancements in in vivo T2 MR images at a 9.4 T MR field after intravenous administration into mice tails.
Collapse
Affiliation(s)
- Shanti Marasini
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (S.M.); (H.Y.); (S.L.H.); (S.L.); (T.T.); (M.Y.A.); (A.G.)
| | - Huan Yue
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (S.M.); (H.Y.); (S.L.H.); (S.L.); (T.T.); (M.Y.A.); (A.G.)
| | - Son Long Ho
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (S.M.); (H.Y.); (S.L.H.); (S.L.); (T.T.); (M.Y.A.); (A.G.)
| | - Ji Ae Park
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Science (KIRAMS), Seoul 01817, Korea; (J.A.P.); (S.K.)
| | - Soyeon Kim
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Science (KIRAMS), Seoul 01817, Korea; (J.A.P.); (S.K.)
| | - Ki-Hye Jung
- Medical Device-Bio Research Institute, Korea Testing and Research Institute, Gwacheon 13810, Korea;
| | - Hyunsil Cha
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41944, Korea;
| | - Shuwen Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (S.M.); (H.Y.); (S.L.H.); (S.L.); (T.T.); (M.Y.A.); (A.G.)
| | - Tirusew Tegafaw
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (S.M.); (H.Y.); (S.L.H.); (S.L.); (T.T.); (M.Y.A.); (A.G.)
| | - Mohammad Yaseen Ahmad
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (S.M.); (H.Y.); (S.L.H.); (S.L.); (T.T.); (M.Y.A.); (A.G.)
| | - Adibehalsadat Ghazanfari
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (S.M.); (H.Y.); (S.L.H.); (S.L.); (T.T.); (M.Y.A.); (A.G.)
| | - Kwon-Seok Chae
- Department of Biology Education, Teacher’s College, Kyungpook National University, Taegu 41566, Korea;
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41944, Korea;
| | - Gang Ho Lee
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (S.M.); (H.Y.); (S.L.H.); (S.L.); (T.T.); (M.Y.A.); (A.G.)
| |
Collapse
|
11
|
Souza MR, Mazaro-Costa R, Rocha TL. Can nanomaterials induce reproductive toxicity in male mammals? A historical and critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144354. [PMID: 33736249 DOI: 10.1016/j.scitotenv.2020.144354] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 12/05/2020] [Indexed: 05/28/2023]
Abstract
The nanotechnology enabled the development of nanomaterials (NMs) with a variety of industrial, biomedical, and consumer applications. However, the mechanism of action (MoA) and toxicity of NMs remain unclear, especially in the male reproductive system. Thus, this study aimed to perform a bibliometric and systematic review of the literature on the toxic effects of different types of NMs on the male reproductive system and function in mammalian models. A series of 236 articles related to the in vitro and in vivo reproductive toxicity of NMs in mammalian models were analyzed. The data concerning the bioaccumulation, experimental conditions (types of NMs, species, cell lines, exposure period, and routes of exposure), and the MoA and toxicity of NMs were summarized and discussed. Results showed that this field of research began in 2005 and has experienced an exponential increase since 2012. Revised data confirmed that the NMs have the ability to cross the blood-testis barrier and bioaccumulate in several organs of the male reproductive system, such as testis, prostate, epididymis, and seminal vesicle. A similar MoA and toxicity were observed after in vitro and in vivo exposure to NMs. The NM reproductive toxicity was mainly related to ROS production, oxidative stress, DNA damage and apoptosis. In conclusion, the NM exposure induces bioaccumulation and toxic effects on male reproductive system of mammal models, confirming its potential risk to human and environmental health. The knowledge concerning the NM reproductive toxicity contributes to safety and sustainable use of nanotechnology.
Collapse
Affiliation(s)
- Maingredy Rodrigues Souza
- Laboratory of Physiology and Pharmacology of Reproduction, Institute of Biological Sciences, Federal University of Goiás, Goiás, Brazil; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil
| | - Renata Mazaro-Costa
- Laboratory of Physiology and Pharmacology of Reproduction, Institute of Biological Sciences, Federal University of Goiás, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil.
| |
Collapse
|
12
|
Najahi-Missaoui W, Arnold RD, Cummings BS. Safe Nanoparticles: Are We There Yet? Int J Mol Sci 2020; 22:ijms22010385. [PMID: 33396561 PMCID: PMC7794803 DOI: 10.3390/ijms22010385] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 12/14/2022] Open
Abstract
The field of nanotechnology has grown over the last two decades and made the transition from the benchtop to applied technologies. Nanoscale-sized particles, or nanoparticles, have emerged as promising tools with broad applications in drug delivery, diagnostics, cosmetics and several other biological and non-biological areas. These advances lead to questions about nanoparticle safety. Despite considerable efforts to understand the toxicity and safety of these nanoparticles, many of these questions are not yet fully answered. Nevertheless, these efforts have identified several approaches to minimize and prevent nanoparticle toxicity to promote safer nanotechnology. This review summarizes our current knowledge on nanoparticles, their toxic effects, their interactions with mammalian cells and finally current approaches to minimizing their toxicity.
Collapse
Affiliation(s)
- Wided Najahi-Missaoui
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA;
- Correspondence: ; Tel.: +1-706-542-6552; Fax: +70-6542-5358
| | - Robert D. Arnold
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA;
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Brian S. Cummings
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA;
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
13
|
Frtús A, Smolková B, Uzhytchak M, Lunova M, Jirsa M, Kubinová Š, Dejneka A, Lunov O. Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: A road from failure to success in clinical applications. J Control Release 2020; 328:59-77. [DOI: 10.1016/j.jconrel.2020.08.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/31/2022]
|
14
|
Matusiak K, Drozdz A, Setkowicz Z, Kubala-Kukus A, Stabrawa I, Ciarach M, Janeczko K, Horak D, Babic M, Chwiej J. Intravenously administered d-mannitol-coated maghemite nanoparticles cause elemental anomalies in selected rat organs. Metallomics 2020; 12:1811-1821. [PMID: 33094772 DOI: 10.1039/d0mt00158a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study novel d-mannitol coated maghemite nanoparticles (MIONPs) are presented in terms of their influence on elemental homeostasis of living organisms and for this purpose highly sensitive total reflection X-ray fluorescence was used. Because of the biological indifference of d-mannitol and presumed lower toxicity of maghemite, compared to the most commonly used magnetite in nanomedicine, such nanoparticles seem to be promising candidates for biomedical applications. The examined dose of MIONPs was comparable with one of the lowest doses used in medical diagnostics. However, it should be emphasized that the amount of iron injected in this form is still significant compared to its total content in organs, especially in kidneys or the heart, and may easily disrupt their elemental homeostasis. The aim of the present study was to evaluate the elemental changes occurring in selected rat organs after injecting a low dose of MIONPs. The results were compared with those obtained for previously examined PEG-coated nanoparticles with magnetite cores. In the light of our findings the elemental changes observed after exposure to MIONPs were less extensive than those following PEG-coated magnetite nanoparticle administration.
Collapse
Affiliation(s)
- Katarzyna Matusiak
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zenych A, Fournier L, Chauvierre C. Nanomedicine progress in thrombolytic therapy. Biomaterials 2020; 258:120297. [DOI: 10.1016/j.biomaterials.2020.120297] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/10/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
|
16
|
Sharifi M, Jafari S, Hasan A, Paray BA, Gong G, Zheng Y, Falahati M. Antimetastatic Activity of Lactoferrin-Coated Mesoporous Maghemite Nanoparticles in Breast Cancer Enabled by Combination Therapy. ACS Biomater Sci Eng 2020; 6:3574-3584. [DOI: 10.1021/acsbiomaterials.0c00086] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1234567, Iran
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Shadi Jafari
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1234567, Iran
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China
| | - Yuzhong Zheng
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1234567, Iran
| |
Collapse
|
17
|
Colino CI, Lanao JM, Gutierrez-Millan C. Targeting of Hepatic Macrophages by Therapeutic Nanoparticles. Front Immunol 2020; 11:218. [PMID: 32194546 PMCID: PMC7065596 DOI: 10.3389/fimmu.2020.00218] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatic macrophage populations include different types of cells with plastic properties that can differentiate into diverse phenotypes to modulate their properties in response to different stimuli. They often regulate the activity of other cells and play an important role in many hepatic diseases. In response to those pathological situations, they are activated, releasing cytokines and chemokines; they may attract circulating monocytes and exert functions that can aggravate the symptoms or drive reparation processes. As a result, liver macrophages are potential therapeutic targets that can be oriented toward a variety of aims, with emergent nanotechnology platforms potentially offering new perspectives for macrophage vectorization. Macrophages play an essential role in the final destination of nanoparticles (NPs) in the organism, as they are involved in their uptake and trafficking in vivo. Different types of delivery nanosystems for macrophage recognition and targeting, such as liposomes, solid-lipid, polymeric, or metallic nanoparticles, have been developed. Passive targeting promotes the accumulation of the NPs in the liver due to their anatomical and physiological features. This process is modulated by NP characteristics such as size, charge, and surface modifications. Active targeting approaches with specific ligands may also be used to reach liver macrophages. In order to design new systems, the NP recognition mechanism of macrophages must be understood, taking into account that variations in local microenvironment may change the phenotype of macrophages in a way that will affect the uptake and toxicity of NPs. This kind of information may be applied to diseases where macrophages play a pathogenic role, such as metabolic disorders, infections, or cancer. The kinetics of nanoparticles strongly affects their therapeutic efficacy when administered in vivo. Release kinetics could predict the behavior of nanosystems targeting macrophages and be applied to improve their characteristics. PBPK models have been developed to characterize nanoparticle biodistribution in organs of the reticuloendothelial system (RES) such as liver or spleen. Another controversial issue is the possible toxicity of non-degradable nanoparticles, which in many cases accumulate in high percentages in macrophage clearance organs such as the liver, spleen, and kidney.
Collapse
Affiliation(s)
- Clara I Colino
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Salamanca, Spain.,The Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - José M Lanao
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Salamanca, Spain.,The Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Carmen Gutierrez-Millan
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Salamanca, Spain.,The Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
18
|
Abdelrahman MS, Nassar SH, Mashaly H, Mahmoud S, Maamoun D, Khattab TA. Polymerization products of lactic acid as synthetic thickening agents for textile printing. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Polyacrylic acid-coated iron oxide nanoparticles could be a useful tool for tracking inflammatory monocytes. Future Sci OA 2019; 5:FSO423. [PMID: 31827892 PMCID: PMC6900970 DOI: 10.2144/fsoa-2019-0066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: To establish the effect of poly(acrylic acid)-coated iron oxide nanoparticles (PAC-IONs) and later exposure to a magnetic field on the differentiation of mononuclear phagocytes into macrophages. Methods: By flow cytometry, cell death was evaluated with DIOC6 and PI, Poly (ADP-ribose) Polymerases (PARP) fragmentation, H2AX phosphorylation and TUNEL assay. Cytokines by Cytokine bead array and the intracellular amount of iron by atomic absorption spectrometry. Results: PAC-IONs did not induce apoptosis, modify the cell membrane integrity or alter the mitochondrial membrane potential. They did not affect the cell morphology, the pattern of cytokine accumulation or the activating role of differentiation of mononuclear phagocytes into macrophages on the proliferation of autologous T cells. Conclusion: This evidence indicates that the PAC-IONs are safe and biocompatible. Moreover, the selectivity of the PAC-IONs for mononuclear phagocytes, as well as their increased uptake by non-classical monocytes, warrant future research with a view to their use as a contrast agent, a useful tool for in vivo tracking of tissue-infiltrating mononuclear phagocytes. In the search for materials that allow the study of inflammatory processes when biopsies are not feasible, magnetic nanoparticles have become an alternative tool for use in MRI. This article examined whether supermagnetic iron nanoparticles can affect the basic function of phagocytic cells, with a view to their use in clinical imaging applications.
Collapse
|
20
|
Hannon G, Lysaght J, Liptrott NJ, Prina‐Mello A. Immunotoxicity Considerations for Next Generation Cancer Nanomedicines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900133. [PMID: 31592123 PMCID: PMC6774033 DOI: 10.1002/advs.201900133] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/02/2019] [Indexed: 05/12/2023]
Abstract
Although interest and funding in nanotechnology for oncological applications is thriving, translating these novel therapeutics through the earliest stages of preclinical assessment remains challenging. Upon intravenous administration, nanomaterials interact with constituents of the blood inducing a wide range of associated immunotoxic effects. The literature on the immunological interactions of nanomaterials is vast and complicated. A small change in a particular characteristic of a nanomaterial (e.g., size, shape, or charge) can have a significant effect on its immunological profile in vivo, and poor selection of specific assays for establishing these undesirable effects can overlook this issue until the latest stages of preclinical assessment. This work describes the current literature on unintentional immunological effects associated with promising cancer nanomaterials (liposomes, dendrimers, mesoporous silica, iron oxide, gold, and quantum dots) and puts focus on what is missing in current preclinical evaluations. Opportunities for avoiding or limiting immunotoxicity through efficient preclinical assessment are discussed, with an emphasis placed on current regulatory views and requirements. Careful consideration of these issues will ensure a more efficient preclinical assessment of cancer nanomedicines, enabling a smoother clinical translation with less failures in the future.
Collapse
Affiliation(s)
- Gary Hannon
- Nanomedicine and Molecular Imaging GroupTrinity Translational Medicine Institute (TTMI)Trinity College DublinDublin 8Ireland
| | - Joanne Lysaght
- Department of SurgeryTTMITrinity College DublinDublin 8Ireland
| | - Neill J. Liptrott
- Department of Molecular and Clinical PharmacologyInstitute of Translational MedicineThe University of LiverpoolLiverpoolL69 3GFUK
| | - Adriele Prina‐Mello
- Nanomedicine and Molecular Imaging GroupTrinity Translational Medicine Institute (TTMI)Trinity College DublinDublin 8Ireland
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM)TTMITrinity College DublinDublin 8Ireland
- Advanced Materials and Bioengineering Research (AMBER) CentreCRANN InstituteTrinity College DublinDublin 2Ireland
| |
Collapse
|
21
|
Skoczeń A, Matusiak K, Setkowicz Z, Kubala-Kukuś A, Stabrawa I, Ciarach M, Janeczko K, Chwiej J. Low Doses of Polyethylene Glycol Coated Iron Oxide Nanoparticles Cause Significant Elemental Changes within Main Organs. Chem Res Toxicol 2018; 31:876-884. [PMID: 30070467 DOI: 10.1021/acs.chemrestox.8b00110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The main goal of this study was to evaluate the elemental changes occurring in the main rat organs (kidneys, spleen, heart, brain) as a result of polyethylene glycol-coated magnetic iron oxide nanoparticles (PEG-IONPs) administration. For this purpose, 24 animals were divided into four equinumerous groups, and the three of them were intravenously injected with PEG-IONPs dispersed in 15% solution of mannitol in dose of 0.03 mg of Fe per 1 kg of body weight. The organs were collected 2 h, 24 h and 7 days passing from NPs administration, respectively, for the 2H, 24H, and 7D experimental groups. The forth group of animals, namely control group, was injected with 1 mL of physiological saline solution. For the analysis of subtle elemental changes occurring in the organs after nanoparticles injection, highly sensitive method of total reflection X-ray fluorescence spectroscopy was used. Obtained results showed that administration of even such low doses of PEG-IONPs may lead to statistically significant changes in the accumulation of selected elements within kidneys and heart. Two hours and 7 days from NPs injection, the Fe level in kidneys was higher compared to that of control rats. Elevated levels of Cu, possibly associated with systemic action of ceruloplasmine enzyme, were found within kidneys in 24H and 7D groups, while in heart the similar observation was done only for 24H group. The levels of Ca and Zn increased in kidneys and heart during the first 2 h from the injection and were again elevated in these organs 7 days later. The abnormalities in Ca and Zn accumulations occurring exactly in the same manner may suggest that these elements may interplay either in the mechanisms responsible for the detoxification of the PEG-IONPs or pathological processes occurring as a result of their action.
Collapse
Affiliation(s)
- Agnieszka Skoczeń
- Faculty of Physics and Applied Computer Science, Department of Medical Physics and Biophysics , AGH University of Science and Technology , 30-059 Krakow , Poland
| | - Katarzyna Matusiak
- Faculty of Physics and Applied Computer Science, Department of Medical Physics and Biophysics , AGH University of Science and Technology , 30-059 Krakow , Poland
| | - Zuzanna Setkowicz
- Institute of Zoology and Biomedical Research, Department of Neuroanatomy , Jagiellonian University , 31-007 Krakow , Poland
| | - Aldona Kubala-Kukuś
- Institute of Physics , Jan Kochanowski University , 25-001 Kielce , Poland.,Holy Cross Cancer Center, 25-734 Kielce , Poland
| | - Ilona Stabrawa
- Institute of Physics , Jan Kochanowski University , 25-001 Kielce , Poland.,Holy Cross Cancer Center, 25-734 Kielce , Poland
| | - Małgorzata Ciarach
- Institute of Zoology and Biomedical Research, Department of Neuroanatomy , Jagiellonian University , 31-007 Krakow , Poland
| | - Krzysztof Janeczko
- Institute of Zoology and Biomedical Research, Department of Neuroanatomy , Jagiellonian University , 31-007 Krakow , Poland
| | - Joanna Chwiej
- Faculty of Physics and Applied Computer Science, Department of Medical Physics and Biophysics , AGH University of Science and Technology , 30-059 Krakow , Poland
| |
Collapse
|
22
|
Abstract
The field of nanotechnology has grown exponentially during the last few decades, due in part to the use of nanoparticles in many manufacturing processes, as well as their potential as clinical agents for treatment of diseases and for drug delivery. This has created several new avenues by which humans can be exposed to nanoparticles. Unfortunately, investigations assessing the toxicological impacts of nanoparticles (i.e. nanotoxicity), as well as their possible risks to human health and the environment, have not kept pace with the rapid rise in their use. This has created a gap-in-knowledge and a substantial need for more research. Studies are needed to help complete our understanding of the mechanisms of toxicity of nanoparticles, as well as the mechanisms mediating their distribution and accumulation in cells and tissues and their elimination from the body. This review summarizes our knowledge on nanoparticles, including their various applications, routes of exposure, their potential toxicity and risks to human health.
Collapse
|
23
|
Ugga L, Romeo V, Tedeschi E, Brunetti A, Quarantelli M. Superparamagnetic iron oxide nanocolloids in MRI studies of neuroinflammation. J Neurosci Methods 2018; 310:12-23. [PMID: 29913184 DOI: 10.1016/j.jneumeth.2018.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
Iron oxide (IO) nanocolloids are being increasingly used to image cellular contribution to neuroinflammation using MRI, as these particles are capable of labeling circulating cells with phagocytic activity, allowing to assess cell trafficking from the blood to neuroinflammation sites. The use of IOs relies on the natural phagocytic properties of immune cells, allowing their labeling either in vitro or directly in vivo, following intravenous injection. Despite concerns on the specificity of the latter approach, the widespread availability and relatively low cost of these techniques, coupled to a sensitivity that allows to reach single cell detection, have promoted their use in several preclinical and clinical studies. In this review, we discuss the results of currently available preclinical and clinical IO-enhanced MRI studies of immune cell trafficking in neuroinflammation, examining the specificity of the existing findings, in view of the different possible mechanisms underlying IO accumulation in the brain. From this standpoint, we assess the implications of the temporal and spatial differences in the enhancement pattern of IOs, compared to gadolinium-based contrast agents, a clinically established MRI marker blood-brain barrier breakdown. While concerns on the specificity of cell labeling obtained using the in-vivo labeling approach still need to be fully addressed, these techniques have indeed proved able to provide additional information on neuroinflammatory phenomena, as compared to conventional Gadolinium-enhanced MRI.
Collapse
Affiliation(s)
- Lorenzo Ugga
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Valeria Romeo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Enrico Tedeschi
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Mario Quarantelli
- Biostructure and Bioimaging Institute, National Research Council, Naples, Italy.
| |
Collapse
|
24
|
Shah A, Dobrovolskaia MA. Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: Therapeutic benefits, toxicity, mechanistic insights, and translational considerations. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:977-990. [PMID: 29409836 PMCID: PMC5899012 DOI: 10.1016/j.nano.2018.01.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 12/14/2022]
Abstract
Nanotechnology offers several advantages for drug delivery. However, there is the need for addressing potential safety concerns regarding the adverse health effects of these unique materials. Some such effects may occur due to undesirable interactions between nanoparticles and the immune system, and they may include hypersensitivity reactions, immunosuppression, and immunostimulation. While strategies, models, and approaches for studying the immunological safety of various engineered nanoparticles, including metal oxides, have been covered in the current literature, little attention has been given to the interactions between iron oxide-based nanomaterials and various components of the immune system. Here we provide a comprehensive review of studies investigating the effects of iron oxides and iron-based nanoparticles on various types of immune cells, highlight current gaps in the understanding of the structure-activity relationships of these materials, and propose a framework for capturing their immunotoxicity to streamline comparative studies between various types of iron-based formulations.
Collapse
Affiliation(s)
- Ankit Shah
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD.
| |
Collapse
|
25
|
Wu T, Tang M. Review of the effects of manufactured nanoparticles on mammalian target organs. J Appl Toxicol 2017; 38:25-40. [DOI: 10.1002/jat.3499] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing 210009 China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing 210009 China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing 210009 China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing 210009 China
| |
Collapse
|
26
|
Rodrigues D, Freitas M, Marisa Costa V, Arturo Lopez-Quintela M, Rivas J, Freitas P, Carvalho F, Fernandes E, Silva P. Quantitative histochemistry for macrophage biodistribution on mice liver and spleen after the administration of a pharmacological-relevant dose of polyacrylic acid-coated iron oxide nanoparticles. Nanotoxicology 2017; 11:256-266. [PMID: 28166432 DOI: 10.1080/17435390.2017.1291865] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniela Rodrigues
- UCIBIO, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- UCIBIO, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Manuel Arturo Lopez-Quintela
- Laboratory of Nanotechnology and Magnetism, Institute of Technological Research, IIT, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - José Rivas
- Laboratory of Nanotechnology and Magnetism, Institute of Technological Research, IIT, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Paulo Freitas
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- UCIBIO, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Paula Silva
- UCIBIO, REQUIMTE, Laboratory of Histology and Embryology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|