1
|
Ahmed RYS, Tanoue R, Chen X, Kawai YK, Kubota A. Assessment of developmental toxicity and the potential mode of action underlying single and binary exposure to estrogenic endocrine disrupting chemicals in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109821. [PMID: 38128895 DOI: 10.1016/j.cbpc.2023.109821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The current study investigated the effect of single and binary exposure to distinct xenoestrogens, including diethylstilbestrol (DES) and zearalenone (ZEN), on zebrafish embryos subjected to continuous exposure for 4 days starting from 4 h post fertilization. Noteworthy impact on cumulative mortality, hatchability, spinal and tail curvature, pericardial edema, and reduction in blood circulation were observed in DES-treated embryos, with lower incidence and intensity shown for ZEN at the same nominal concentration (3 μM). An interactive effect was seen for the combined exposure to DES and ZEN, in which deformities and circulatory failure mediated by DES were mitigated by co-treatment with low concentrations of ZEN. Similarly, ZEN-induced spinal and tail curvature, pericardial edema, and blood flow reduction declined dramatically following DES co-exposure at low concentrations. A significant counteracting effect has been observed against DES- and ZEN-induced developmental anomalies following co-treatment with an estrogen receptor (ER) antagonist, fulvestrant (FUL). The assessment of the aromatase gene (CYP19A1b) showed that DES strongly upregulated mRNA expression of CYP19A1b with a lower EC50 (1.1 × 10-3 nM) than a natural estrogen, 17β-estradiol (2.5 nM). Similarly, ZEN induced CYP19A1b mRNA expression with an EC50 of 57 nM. Exposure to 10 or 20 μM FUL inhibited the expression of CYP19A1b induced by a single treatment of DES or ZEN. Overall, the competitive action against ER could be the main mechanism underlying the developmental toxicity induced by DES and ZEN.
Collapse
Affiliation(s)
- Rehab Youssef Salama Ahmed
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Department of Poultry Diseases, Veterinary Medicine, Aswan University, Aswan 097-81528, Egypt
| | - Rumi Tanoue
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Xing Chen
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Yusuke K Kawai
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Akira Kubota
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
2
|
Huang W, Shi X, Zhang Q, Chen Y, Zheng S, Wu W, Luo C, Wu K. Transgenerational effects of BDE-47 to zebrafish based on histomorphometry and toxicogenomic analyses. CHEMOSPHERE 2023; 344:140401. [PMID: 37839753 DOI: 10.1016/j.chemosphere.2023.140401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Exposure to 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) has been found to have an impact on reproductive output and endocrine function in female zebrafish (Danio rerio). However, the transgenerational effects of BDE-47 have not been fully explored in previous reports. In this study, female zebrafish were exposed to BDE-47 for three consecutive weeks. The oogenesis, sex hormones, reproductive histology, and transcriptional profiles of genes along the hypothalamus-pituitary-gonad (HPG) axis were assessed in the exposed-F0 generation. After mating with unexposed males, the transgenerational effects of BDE-47 were evaluated on the basis of histopathology, morphometry and toxicogenome of the unexposed F1 generations at the larval stage. Results indicated that exposure to BDE-47 impaired reproductive capacity, disrupted endocrine system in F0 zebrafish, and compromised craniofacial skeletons and vertebrae development in F1 generations. In addition, through the use of toxicogenomics approach, immune-responsive pathways were found to be significantly enriched, and the transcript expression profiling of immune-related DEGs (IRDs) were dramatically inhibited in F1 generations following maternal BDE-47 exposure, indicating its immunotoxicity to offspring larvae. These findings advance our understanding of the transgenerational toxicity of BDE-47 and advocate for a more comprehensive assessment of other PBDE congeners through histomorphometry and toxicogenomic approaches.
Collapse
Affiliation(s)
- Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Yuequn Chen
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Shukai Zheng
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Wenying Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
| |
Collapse
|
3
|
Hou Y, Liu X, Qin Y, Hou Y, Hou J, Wu Q, Xu W. Zebrafish as model organisms for toxicological evaluations in the field of food science. Compr Rev Food Sci Food Saf 2023; 22:3481-3505. [PMID: 37458294 DOI: 10.1111/1541-4337.13213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 09/13/2023]
Abstract
Food safety has long been an area of concern. The selection of stable and efficient model organisms is particularly important for food toxicology studies. Zebrafish (Danio rerio) are small model vertebrates, and 70% of human genes have at least one zebrafish ortholog. Zebrafish have advantages as model organisms due to their short life cycle, strong reproductive ability, easy rearing, and low cost. Zebrafish embryos have the advantage of being sensitive to the breeding environment and thus have been used as biosensors. Zebrafish and their embryos have been widely used for food toxicology assessments. This review provides a systematic and comprehensive summary of food toxicology studies using zebrafish as model organisms. First, we briefly introduce the multidimensional mechanisms and structure-activity relationship studies of food toxicological assessment. Second, we categorize these studies according to eight types of hazards in foods, including mycotoxins, pesticides, antibiotics, heavy metals, endocrine disruptors, food additives, nanoparticles, and other food-related ingredients. Finally, we list the applications of zebrafish in food toxicology studies in line with future research prospects, aiming to provide a valuable reference for researchers in the field of food science.
Collapse
Affiliation(s)
- Yingyu Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Yanlin Qin
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Yaoyao Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Rong X, Wang Y, Ouyang F, Song W, Li S, Li F, Zhao S, Li D. Combined effects of zearalenone and deoxynivalenol on oxidative stress, hepatotoxicity, apoptosis, and inflammation in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160233. [PMID: 36403834 DOI: 10.1016/j.scitotenv.2022.160233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/22/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Co-existence of mycotoxins may pose a greater risk. It remains less known about the toxic effect of co-exposure of zearalenone (ZEA) and deoxynivalenol (DON) on aquatic life. In the present study, the toxic effects of the combine treatment of ZEA and DON on zebrafish (Danio rerio) embryos were investigated. The results showed that the combined treatment of ZEA (200, 400, 800 μg/L) and DON (4000 μg/L) did not cause apparent deaths, but induced a developmental toxicity as indicated by decreased movement times and heartbeat. At 96 h post-fertilization (hpf), co-exposure of ZEA and DON (Z400 + D4000 and Z800 + D4000 group) led to significant oxidative stress as evidenced by the increased ROS level and MDA content, as well as the changes of antioxidant enzymes (SOD, CAT and GPX) and their genes. Besides, the combined treatment of ZEA and DON triggered hepatotoxicity as shown by the changes of Fabp10a, Gclc, Gsr, Nqo1 genes, apoptosis through upregulating apoptosis-related genes (p53, Caspase-9, Caspase-3) and downregulating Bcl-2 gene, as well as inflammation by promoting the expression of IL-1β, IL-6, TNF-α, TLR4, MyD88, NF-κBp65 genes. These results indicated the co-exposure of ZEA and DON caused oxidative stress, leading to stronger potential toxic effects to zebrafish embryos than their respective single treatment. Therefore, more attention should be paid to risk management of the co-contamination of mycotoxins.
Collapse
Affiliation(s)
- Xue Rong
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yuli Wang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Fangxin Ouyang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Weixuan Song
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Songhua Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Feng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Shancang Zhao
- Central Laboratory of Shandong Academy of Agricultural Sciences, Key Laboratory of Test Technology on Food Quality and Safety of Shandong Province, Jinan 250100, Shandong, China
| | - Dapeng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
5
|
Zearalenone Promotes Uterine Development of Weaned Gilts by Interfering with Serum Hormones and Up-Regulating Expression of Estrogen and Progesterone Receptors. Toxins (Basel) 2022; 14:toxins14110732. [PMID: 36355982 PMCID: PMC9695532 DOI: 10.3390/toxins14110732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 01/26/2023] Open
Abstract
In this study, we aimed to assess the effect of diet ZEA on serum hormones, the location and expression of estrogen receptor ERα/β and progesterone receptor (PR) of the uterus in weaned piglets and to reveal the mechanism underneath. A total of 40 healthy weaned gilts were randomly allocated to basal diet supplemented with 0 (Control), 0.5 (ZEA0.5), 1.0 (ZEA1.0) and 1.5 (ZEA1.5) mg ZEA/kg and fed individually for 35 days. Meanwhile, the porcine endometrial epithelial cells (PECs) were incubated for 24 h with ZEA at 0 (Control), 5 (ZEA5), 20 (ZEA20) and 80 (ZEA80) μmol/L, respectively. The results showed that nutrient apparent digestibility (CP and GE), nutrient apparent availability (ME/GE, BV and NPU), the uterine immunoreactive integrated optic density (IOD), relative mRNA and protein expression of ER-α, ER-β and PR and the relative mRNA and protein expression of ER-α and ER-β in PECs all increased linearly (p < 0.05) with ZEA. Collectively, ZEA can interfere with the secretion of some reproductive hormones in the serum and promote the expression of estrogen/progesterone receptors in the uterus and PECs. All these indicate that ZEA may promote the development of the uterus in weaned gilts through estrogen receptor pathway.
Collapse
|
6
|
Jing S, Liu C, Zheng J, Dong Z, Guo N. Toxicity of zearalenone and its nutritional intervention by natural products. Food Funct 2022; 13:10374-10400. [PMID: 36165278 DOI: 10.1039/d2fo01545e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zearalenone (ZEN) is a toxic secondary metabolite mainly produced by fungi of the genus Fusarium, and is often present in various food and feed ingredients such as corn and wheat. The structure of ZEN is similar to that of natural estrogen, and it can bind to estrogen receptors and has estrogenic activity. Therefore, it can cause endocrine-disrupting effects and promote the proliferation of estrogen receptor-positive cell lines. In addition, ZEN can cause oxidative damage, endoplasmic reticulum stress, apoptosis, and other hazards, resulting in systemic toxic effects, including reproductive toxicity, hepatotoxicity, and immunotoxicity. In the past few decades, researchers have tried many ways to remove ZEN from food and feed, but it is still a challenge to eliminate it. In recent years, natural compounds have become of interest for their excellent protective effects on human health from food contaminants. Researchers have discovered that natural compounds often used as dietary supplements can effectively alleviate ZEN-induced systemic toxic effects. Most of the compounds mitigate ZEN-induced toxicity through antioxidant effects. In this article, the contamination of food and feed by ZEN and the various toxic effects and mechanisms of ZEN are reviewed, as well as the mitigation effects of natural compounds on ZEN-induced toxicity.
Collapse
Affiliation(s)
- Siyuan Jing
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chunmei Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jian Zheng
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Zhijian Dong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
7
|
Cimbalo A, Frangiamone M, Font G, Manyes L. The importance of transcriptomics and proteomics for studying molecular mechanisms of mycotoxin exposure: A review. Food Chem Toxicol 2022; 169:113396. [PMID: 36087620 DOI: 10.1016/j.fct.2022.113396] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022]
Abstract
This review aims to highlight recent advances where transcriptomics and proteomics have been used as a key tool to understand molecular toxicity of mycotoxins. The most studied mycotoxin by using transcriptomic approach is deoxynivalenol (DON), followed by aflatoxins (AFs) and zearalenone (ZEA). Instead, proteomics mostly focuses on AFs but also in this case, mildly to ZEA and DON. However, in both omics approaches, fewer studies investigated the toxicological effect of emerging mycotoxins, patulin, ochratoxin A, T-2 toxin, alternariol and amino-14,16-dimethyloctadecan-3-ol. The study of changes in the expression of genes involved in immune system are the most common purposes for transcriptomics whereas cellular processes in proteomics field. Concerning the techniques used to perform the experiments, RT-qPCR is the most employed in gene expression analysis whereas liquid chromatography coupled with mass spectrometry is the master technique for proteomics assays. The gathered data have reported that the interest in using these omic approaches has increased in the last five years. However, in vitro models take precedence over the in vivo and ex vivo ones. Therefore, there is a need to enhance the use of in vivo models and alternative methods to better understand mycotoxins mode of action on animal and human health.
Collapse
Affiliation(s)
- A Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - M Frangiamone
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Spain.
| | - G Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - L Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| |
Collapse
|
8
|
Yang J, Chen Y, Luan H, Li J, Liu W. Persistent impairment of gonadal development in rare minnow (Gobiocypris rarus) after chronic exposure to chlorinated polyfluorinated ether sulfonate. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106256. [PMID: 35917675 DOI: 10.1016/j.aquatox.2022.106256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 07/13/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
The delayed and persistent adverse effects caused by developmental exposure to per- and poly-fluorinated substances are of significant concern. Juvenile rare minnows (Gobiocypris rarus), were exposed to chlorinated polyfluoroalkyl ether sulfonate (Cl-PFESA) at measured medium concentrations of 86.5 μg/L, 162 μg/L and 329 μg/L, for 4 weeks followed by 12 weeks of depuration. After 4 weeks of exposure, the body weight and length of the juvenile fish were increased compared to controls. Gene expression of gnrh3, lhβ, and cyp19a was decreased, and ar and erα were upregulated. Transcriptomic analysis revealed enrichment of multiple pathways related to gonadal development. After 12 weeks of depuration, the gonadosomatic indices were decreased in female fish in a concentration-dependent manner, with a significant decrease to 59% of control in 329 μg/L group. Histological analysis found increasing numbers of degenerating oocytes and perinucleolar oocytes, and decreasing numbers of mature vitellogenic oocytes in female fish treated by Cl-PFESA. Enlarged interstitial space of the testis was observed in the exposed male fish. Gene expression levels of gnrh3, lhβ, ar, erα, and vtg were upregulated in the adult fish. Chronic developmental exposure to Cl-PFESA caused persistent effects on gonadal development of fish, highlighting the necessity of a comprehensive ecological risk assessment.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yumeng Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Haiyang Luan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
9
|
Moraes ACN, Fallah HP, Magalhães VF, Habibi HR. Cylindrospermopsin directly disrupts spermatogenesis in isolated male zebrafish testis. Gen Comp Endocrinol 2021; 313:113891. [PMID: 34428427 DOI: 10.1016/j.ygcen.2021.113891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Cylindrospermopsin (CYN) is a cytotoxin, and its documented effects in mammals include damage to several organs. CYN also has hormone-disrupting properties, including estrogenic activity, progesterone production inhibition, and apoptosis induction. While CYN has been reported to exert reproductive toxicity in mice, little is known about its effect on fish reproductive function. Using ex vivo organ culture, we investigated the direct action of CYN on the male reproductive system. Isolated zebrafish testis was exposed to 250, 500, and 1000 µg/L CYN for 24 h and 7 d, followed by histo-morphological analysis. The results demonstrate that exposure to CYN led to a decrease in cell types from all three phases of spermatogenesis in zebrafish testis. There were also significant changes in fshr, lhr, and igf3 transcript levels, as well as testosterone secretion following exposure to CYN. In summary, this study provides novel information on the adverse effects of CYN on testicular spermatogenesis and male reproduction in zebrafish. These results provide a framework for a better understanding of CYN toxicity and the mechanism underlying the adverse action of CYN on male reproduction in fish.
Collapse
Affiliation(s)
- A C N Moraes
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Biological Science, University of Calgary, Calgary, Alberta, Canada
| | - H P Fallah
- Department of Biological Science, University of Calgary, Calgary, Alberta, Canada
| | - V F Magalhães
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - H R Habibi
- Department of Biological Science, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
10
|
Yang G, Wang Y, Wang T, Wang D, Weng H, Wang Q, Chen C. Variations of enzymatic activity and gene expression in zebrafish (Danio rerio) embryos co-exposed to zearalenone and fumonisin B1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112533. [PMID: 34303040 DOI: 10.1016/j.ecoenv.2021.112533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
The natural co-occurrence of multiple mycotoxins has been reported in cereals and cereal products worldwide. Even though the dietary exposure to mycotoxins constitutes a serious human health, most reports are limited to the toxic effect of individual mycotoxins. The purpose of the present study was to assess the combined toxic effects of zearalenone (ZEN) and fumonisin B1 (FB1) and the potential interaction of their mixture on zebrafish (Danio rerio) embryos. Our results showed that ZEN possessed the higher toxicity to embryonic zebrafish (7-day LC50 value of 0.78 mg a.i. L-1) compared with FB1 (7-day LC50 value of 227.7 mg a.i. L-1). The combination of ZEN and FB1 exerted an additive effect on zebrafish embryos. Meanwhile, the activities of antioxidant CAT, caspase-3, and detoxification enzyme CYP450, as well as the expressions of six genes (Mn-sod, cas9, bax, cc-chem, ERα, and crh) associated with oxidative stress, cellular apoptosis, immune system, and endocrine system were prominently altered in the mixture exposure compared with the corresponding single treatment group of ZEN or FB1. Taken together, the regulatory standards of mycotoxins in food and feed should be updated based on the mixture effects of mycotoxins, and there is an increased need on effective detoxification methods for controlling and reducing the toxicity of multiple mycotoxins in animal feed and throughout the food supply chain.
Collapse
Affiliation(s)
- Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Tiancai Wang
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Chen Chen
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Public Health, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
11
|
Kong L, Zhao AH, Wang QW, Feng YQ, Yan ZH, Li MH, Zhang FL, Wang H, Shen KY, Liu Y, Sun YJ, Shen W, Li L. Maternal Zearalenone exposure impacted ovarian follicle formation and development of suckled offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147792. [PMID: 34134368 DOI: 10.1016/j.scitotenv.2021.147792] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 05/10/2023]
Abstract
Zearalenone (ZEN) is a secondary metabolite, which is mainly produced by Fusarium fungi and exists in various feeds and agricultural products. Recently, an increasing amount of data has shown that ZEN, as an estrogen-like hormone, can have harmful effects on the female reproductive system, especially on oogenesis and folliculogenesis. Breast milk is considered to be the ideal form of nutrition for infants; however, there are some records of contaminants in food, such as mycotoxins, which may be transferred from maternal blood to milk. In this study, we investigated the toxic effects of breast milk on folliculogenesis in offspring following maternal ZEN exposure. Our results showed that maternal ZEN exposure significantly inhibited the process of primordial follicle (PF) assembly and reduced the number of PFs in suckled offspring's ovaries. In addition, RNA-seq analysis showed that RIG-I-like receptor (RLRs) signaling pathways were activated after exposed to ZEN, which increased the expression levels of DNA damage (γ-H2AX, RAD51, and PARP1) and apoptosis related protein (BAX/BCL2 and Caspase-3). Finally, ZEN exposure interfered with follicular development, as evidenced by the reduced percentages of oocyte maturation and embryonic development when the offspring grew to adolescence. It is worth noting that maternal ZEN exposure disrupted the tri-methylation levels of H3K4, H3K9, and H3K27 in the offspring's oocytes. Our results indicated that maternal ZEN exposure affected ovarian development in offspring through the breast milk, which may be detrimental to their reproductive capability in adult life.
Collapse
Affiliation(s)
- Li Kong
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Ai-Hong Zhao
- Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Qian-Wen Wang
- Central Laboratory, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan-Qin Feng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Zi-Hui Yan
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Ming-Hao Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Fa-Li Zhang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Han Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Kai-Yu Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Ying Liu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu-Jiang Sun
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao 266109, China; Dongying Vocational Institute, Dongying 257091, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
12
|
Mo J, Sun L, Cheng J, Lu Y, Wei Y, Qin G, Liang J, Lan G. Non-targeted Metabolomics Reveals Metabolic Characteristics of Porcine Atretic Follicles. Front Vet Sci 2021; 8:679947. [PMID: 34381832 PMCID: PMC8350117 DOI: 10.3389/fvets.2021.679947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/25/2021] [Indexed: 01/27/2023] Open
Abstract
Follicular atresia is one of the main factors limiting the reproductive power of domestic animals. At present, the molecular mechanisms involved in porcine follicular atresia at the metabolic level remain unclear. In this study, we divided the follicles of Bama Xiang pigs into healthy follicles (HFs) and atretic follicles (AFs) based on the follicle morphology. The expression of genes related to atresia in granulosa cells (GCs) and the concentration of hormones in the follicular fluid (FF) from HFs and AFs were detected. We then used liquid chromatography–mass spectrometry-based non-targeted metabolomic approach to analyze the metabolites in the FF from HFs and AFs. The results showed that the content of estradiol was significantly lower in AFs than in HFs, whereas that of progesterone was significantly higher in AFs than that in HFs. The expression of BCL2, VEGFA, and CYP19A1 was significantly higher in HFs than in AFs. In contrast, the expression of BAX and CASPASE3 was significantly lower in HFs. A total of 18 differential metabolites (DMs) were identified, including phospholipids, bioactive substances, and amino acids. The DMs were involved in 12 metabolic pathways, including arginine biosynthesis and primary bile acid biosynthesis. The levels of eight DMs were higher in the HF group than those in the AF group (p < 0.01), and those of 10 DMs were higher in the AF group than those in the HF group (p < 0.01). These findings indicate that the metabolic characteristics of porcine AFs are lower levels of lipids such as phospholipids and higher levels of amino acids and bile acids than those in HFs. Disorders of amino acid metabolism and cholic acid metabolism may contribute to porcine follicular atresia.
Collapse
Affiliation(s)
- Jiayuan Mo
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Le Sun
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Juanru Cheng
- Key Laboratory of Buffalo Genetics, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, China
| | - Yujie Lu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yaochang Wei
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Guangsheng Qin
- Key Laboratory of Buffalo Genetics, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, China
| | - Jing Liang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ganqiu Lan
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
13
|
Bhuiyan MNH, Kang H, Choi J, Lim S, Kho Y, Choi K. Effects of 3,4-dichloroaniline (3,4-DCA) and 4,4'-methylenedianiline (4,4'-MDA) on sex hormone regulation and reproduction of adult zebrafish (Danio rerio). CHEMOSPHERE 2021; 269:128768. [PMID: 33153842 DOI: 10.1016/j.chemosphere.2020.128768] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
3,4-dichloroaniline (3,4-DCA) and 4,4'-methylenedianiline (4,4'-MDA) have been widely used in manufacture of many industrial and consumer products, and hence often detected in aquatic environment. Reproductive toxicity of aniline and its derivatives in aquatic organisms has been suggested, however, knowledge on the endocrine disruption potentials and toxicological consequences of both anilines are not well understood, especially in fish. In this study, we aimed to understand the effects of 3,4-DCA and 4,4'-MDA on sex hormone regulation and reproduction of adult zebrafish (Danio rerio). Following 21 d exposure, significant decreases of the reproduction were observed at 0.38 mg/L 3,4-DCA, and 4.6 mg/L 4,4'-MDA. Moreover, plasma concentrations of testosterone (T) and 17β-estradiol (E2) level were significantly decreased in both male and female fish following the exposure. The sex hormone changes could be explained by the regulatory changes of the genes along the hypothalamic-pituitary-gonadal (HPG) axis, including significant down-regulation of steroidogenic acute regulatory protein (star) and cytochrome P450 family 19 subfamily A (cyp19a) genes in the gonad. Moreover, inhibition of gonadotropin hormone signaling and prostaglandin-endoperoxide synthase 2 (ptgs2) gene expression were observed, suggesting potential disruption of oocyte maturation and ovulation by the exposure. Our observations indicate that 3,4-DCA and 4,4'-MDA can impair reproduction of zebrafish potentially through disruption of steroid hormone synthesis and ovulation.
Collapse
Affiliation(s)
- Md Nurul Huda Bhuiyan
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea; Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| | - Habyeong Kang
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jiwon Choi
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soyoung Lim
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment and Safety, Eulji University, Seongnam, 34824, Republic of Korea
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
14
|
Fallah HP, Habibi HR. Role of GnRH and GnIH in paracrine/autocrine control of final oocyte maturation. Gen Comp Endocrinol 2020; 299:113619. [PMID: 32956700 DOI: 10.1016/j.ygcen.2020.113619] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/13/2020] [Indexed: 12/28/2022]
Abstract
The control of oocyte growth and its final maturation is multifactorial and involves a number of hypothalamic, hypophyseal, and peripheral hormones. In this study, we investigated the direct actions of the gonadotropin-releasing hormone (GnRH) and the gonadotropin-inhibitory hormone (GnIH), which are expressed in the ovarian follicles, on final oocyte maturation in zebrafish, in vitro. Our study demonstrates the expression of GnRH and GnIH in the ovarian follicles of zebrafish (Danio rerio) at different stages of development and provides information on the direct action of these hormones on final oocyte maturation. Treatment with both GnRH and GnIH peptides stimulated the germinal vesicle breakdown (GVBD) of the late-vitellogenic oocyte. Both the GnRH and GnIH treatments showed no significant change in the caspase-3 activity of pre-vitellogenic and mid-vitellogenic oocytes, while they displayed different responses in the late-vitellogenic follicles. The GnRH treatment increased caspase-3 activity, whereas the GnIH reduced caspase-3 activity in the late-vitellogenic follicles. We also investigated the effects of GnRH and GnIH on the hCG-induced resumption of meiosis and caspase activity in vitro. GnRH and GnIH were found to have a similar effect on the hCG-induced resumption of meiosis, while they showed the opposite effect on caspase-3 activity. Furthermore, we investigated the effects of concomitant treatment of GnRH and GnIH peptides with hCG. The results demonstrated that the presence of both GnRH3 and GnIH are necessary for the normal induction of final oocyte maturation by gonadotropins. The findings support the hypothesis that GnIH and GnRH peptides produced in the ovary are part of a complex multifactorial regulatory system that controls zebrafish final oocyte maturation in paracrine/autocrine manner working in concert with gonadotropin hormones.
Collapse
Affiliation(s)
- Hamideh P Fallah
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
15
|
Juan-García A, Bind MA, Engert F. Larval zebrafish as an in vitro model for evaluating toxicological effects of mycotoxins. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110909. [PMID: 32800244 PMCID: PMC7431674 DOI: 10.1016/j.ecoenv.2020.110909] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 05/03/2023]
Abstract
The presence of mycotoxins in food has created concern. Mycotoxin prevalence in our environment has changed in the last few years maybe due to climatic and other environmental changes. Evidence has emerged from in vitro and in vivo models: some mycotoxins have been found to be potentially carcinogenic, embryogenically harmful, teratogenic, and to generate nephrotoxicity. The risk assessment of exposures to mycotoxins at early life stages became mandatory. In this regard, the effects of toxic compounds on zebrafish have been widely studied, and more recently, mycotoxins have been tested with respect to their effects on developmental and teratogenic effects in this model system, which offers several advantages as it is an inexpensive and an accessible vertebrate model to study developmental toxicity. External post-fertilization and quick maturation make it sensitive to environmental effects and facilitate the detection of endpoints such as morphological deformities, time of hatching, and behavioral responses. Therefore, there is a potential for larval zebrafish to provide new insights into the toxicological effects of mycotoxins. We provide an overview of recent mycotoxin toxicological research in zebrafish embryos and larvae, highlighting its usefulness to toxicology and discuss the strengths and limitations of this model system.
Collapse
Affiliation(s)
- Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés S/n, 46100, Burjassot, València, Spain; Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, USA.
| | - Marie-Abèle Bind
- Department of Statistics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, USA
| |
Collapse
|
16
|
Maharajan K, Muthulakshmi S, Karthik C, Nataraj B, Nambirajan K, Hemalatha D, Jiji S, Kadirvelu K, Liu KC, Ramesh M. Pyriproxyfen induced impairment of reproductive endocrine homeostasis and gonadal histopathology in zebrafish (Danio rerio) by altered expression of hypothalamus-pituitary-gonadal (HPG) axis genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139496. [PMID: 32480152 DOI: 10.1016/j.scitotenv.2020.139496] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Pyriproxyfen (PPF), a broad-spectrum insecticide known to cause reproductive and endocrine disruption in invertebrates, while the data is scarce in aquatic vertebrates. The goal of this study is to investigate the impact of PPF on reproductive endocrine system of male and female zebrafish along hypothalamus-pituitary-gonadal (HPG) axis. In brain, PPF caused significant alteration in the transcripts of erα, lhβ, and cyp19b genes in male and fshβ, lhβ, and cyp19b genes in female zebrafish. The downstream genes of steroidogenic pathway like, star, 3βhsd, 17βhsd, and cyp19a expression were significantly altered in gonad of both sexes. Subsequent changes in circulatory steroid hormone levels lead to imbalance in hormone homeostasis as revealed from estradiol/testosterone (E2/T) ratio. Further, the vitellogenin transcript level was enhanced in hepatic tissues and their blood plasma content was increased in male (16.21%) and declined in female (21.69%). PPF also induced histopathological changes in gonads such as, reduction of mature spermatocytes in male and vitellogenic oocytes in female zebrafish. The altered E2/T ratio and gonadal histopathology were supported by the altered transcript levels of HPG axis genes. Overall, these findings provide new insights of PPF in zebrafish reproductive system and highlights for further investigations on its potential risks in aquatic environment.
Collapse
Affiliation(s)
- Kannan Maharajan
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore 641046, India; Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore 641046, India; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, China
| | - Sellamani Muthulakshmi
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore 641046, India
| | - Chinnannan Karthik
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore 641046, India
| | - Bojan Nataraj
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore 641046, India
| | - Kanthan Nambirajan
- Division of Ecotoxicology, Sálim Ali Centre for Ornithology and Natural History, Coimbatore 641108, India
| | - Devan Hemalatha
- Department of Zoology, PSG College of Arts & Science, Coimbatore 641014, India
| | - Swaminathan Jiji
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore 641046, India
| | - Krishna Kadirvelu
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore 641046, India
| | - Ke-Chun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, China
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
17
|
Unuofin JO. Garbage in garbage out: the contribution of our industrial advancement to wastewater degeneration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22319-22335. [PMID: 32347482 DOI: 10.1007/s11356-020-08944-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Natural water sources are habitually marred by insidious anthropogenic practices and municipal wastewater discharges that contain either of xenobiotic pollutants and their sometimes more toxic degradation products, or both. Although wastewater is considered as both a resource and a problem, as explained in this review, it is however daunting that, while the global village is still struggling to decipher the mode of proper handling, subsequent discharge and regulation of already established aromatic contaminants in wastewater, there emanates some more aggressive, stealth and sinister groups of compounds. It is quite ironic that majority of these compounds are the 'go through' consumables in our present society and have been suspected to pose several health risks to the aquatic ecosystem, eliciting unfavourable clinical manifestations in aquatic animals and humans, which has heightened the uncertainties conferred on freshwater use and consumption of some aquatic foods. This review therefore serves to give a brief account on the metamorphosis of approach in detection of aromatic pollutants and ultimately their implications along the trophic chains in the community.
Collapse
Affiliation(s)
- John O Unuofin
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa.
- Department of Environmental, Earth and Water Sciences, Tshwane University of Technology, Private bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|
18
|
Cimbalo A, Alonso-Garrido M, Font G, Manyes L. Toxicity of mycotoxins in vivo on vertebrate organisms: A review. Food Chem Toxicol 2020; 137:111161. [PMID: 32014537 DOI: 10.1016/j.fct.2020.111161] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/31/2022]
Abstract
Mycotoxins are considered to be a major risk factor affecting human and animal health as they are one of the most dangerous contaminants of food and feed. This review aims to compile the research developed up to date on the toxicological effects that mycotoxins can induce on human health, through the examination of a selected number of studies in vivo. AFB1 shows to be currently the most studied mycotoxin in vivo, followed by DON, ZEA and OTA. Scarce data was found for FBs, PAT, CIT, AOH and Fusarium emerging mycotoxins. The majority of them concerned the investigation of immunotoxicity, whereas the rest consisted in the study of genotoxicity, oxidative stress, hepatotoxicity, cytotoxicity, teratogenicity and neurotoxicity. In order to assess the risk, a wide range of different techniques have been employed across the reviewed studies: qPCR, ELISA, IHC, WB, LC-MS/MS, microscopy, enzymatic assays, microarray and RNA-Seq. In the last decade, the attention has been drawn to immunologic and transcriptomic aspects of mycotoxins' action, confirming their toxicity at molecular level. Even though, more in vivo studies are needed to further investigate their mechanism of action on human health.
Collapse
Affiliation(s)
- A Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain.
| | - M Alonso-Garrido
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain
| | - G Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain
| | - L Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain
| |
Collapse
|
19
|
Zearalenone Biodegradation by the Combination of Probiotics with Cell-Free Extracts of Aspergillus oryzae and its Mycotoxin-Alleviating Effect on Pig Production Performance. Toxins (Basel) 2019; 11:toxins11100552. [PMID: 31547122 PMCID: PMC6832534 DOI: 10.3390/toxins11100552] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 11/23/2022] Open
Abstract
In order to remove zearalenone (ZEA) detriment—Bacillus subtilis, Candida utilis, and cell-free extracts from Aspergillus oryzae were used to degrade ZEA in this study. The orthogonal experiment in vitro showed that the ZEA degradation rate was 92.27% (p < 0.05) under the conditions that Candida utilis, Bacillus subtilis SP1, and Bacillus subtilis SP2 were mixed together at 0.5%, 1.0%, and 1.0%. When cell-free extracts from Aspergillus oryzae were combined with the above probiotics at a ratio of 2:1 to make mycotoxin-biodegradation preparation (MBP), the ZEA degradation rate reached 95.15% (p < 0.05). In order to further investigate the MBP effect on relieving the negative impact of ZEA for pig production performance, 120 young pigs were randomly divided into 5 groups, with 3 replicates in each group and 8 pigs for each replicate. Group A was given the basal diet with 86.19 μg/kg ZEA; group B contained 300 μg/kg ZEA without MBP addition; and groups C, D, and E contained 300 μg/kg ZEA added with 0.05%, 0.10%, and 0.15% MBP, respectively. The results showed that MBP addition was able to keep gut microbiota stable. ZEA concentrations in jejunal contents in groups A and D were 89.47% and 80.07% lower than that in group B (p < 0.05), indicating that MBP was effective in ZEA biodegradation. In addition, MBP had no significant effect on pig growth, nutrient digestibility, and the relative mRNA abundance of estrogen receptor alpha (ERα) genes in ovaries and the uterus (p > 0.05).
Collapse
|