1
|
Tabares-Mosquera OE, Juárez-Díaz JA, Camacho-Carranza R, Ramos-Morales P. Transgenerational Reproductive and Developmental Toxicity Induced by N-Nitrosodimethylamine and Its Metabolite Formaldehyde in Drosophila melanogaster. J Appl Toxicol 2025. [PMID: 39775945 DOI: 10.1002/jat.4749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
N-Nitrosodimethylamine (NDMA) is a known water disinfection byproduct (DBP) characterized as a potent hepatotoxin, promutagen, and probable human carcinogen; this is because of the metabolites associated with its biotransformation. The metabolism of NDMA produces formaldehyde, another alkylating agent and DBP. Both compounds are generated from natural and anthropogenic sources, but the safety restrictions applied to NDMA do not extend to the uses of formaldehyde. Hence, potential health and ecological risks are of concern. Due to limited information on the long-term effects of exposure to these compounds at environmentally relevant concentrations, this work aimed to compare the transgenerational reproductive and developmental toxicity of separate exposures to NDMA or its metabolite formaldehyde in Drosophila melanogaster over four generations. The parental flies were fed NDMA or formaldehyde (1.19E-06 to 5 mM) for 48 h during the third larval instar. Subsequent offspring (F1-F3) were grown under compound-free conditions. In the parental generation, both exposures modified the time to emergence and reduced the number of progenies. NDMA, but not formaldehyde, was lethal, affected fertility, and weakly induced malformations. In the next generations, both exposures induced malformed flies and modified the number of offspring. Reproductive toxicity and malformations were maintained for at least three generations, suggesting that detrimental effects could extend to unexposed offspring. This is the first study reporting the associated individual transgenerational effects on reproduction and development between NDMA and its metabolite formaldehyde in D. melanogaster, highlighting the relevance of evaluating multiple generations to accurately determine the health and environmental risks of pollutants.
Collapse
Affiliation(s)
- Oscar Eduardo Tabares-Mosquera
- Laboratorio de Genética y Toxicología Ambiental-Banco de Moscas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Javier Andrés Juárez-Díaz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rafael Camacho-Carranza
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Patricia Ramos-Morales
- Laboratorio de Genética y Toxicología Ambiental-Banco de Moscas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
2
|
Wang Y, Wu J, Wang D. 6-PPD quinone causes lipid accumulation across multiple generations differentially affected by metabolic sensors and components of COMPASS complex in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 366:125539. [PMID: 39689833 DOI: 10.1016/j.envpol.2024.125539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/06/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
The toxicity of 6-PPD quinone (6-PPDQ) has been frequently detected. However, the possible transgenerational effects of 6-PPDQ remain largely unclear. Due to short life cycle and high sensitivity to environmental exposure, Caenorhabditis elegans is useful for study of transgenerational toxicology. In C. elegans, we observed the transgenerational increase in lipid accumulation after parental generation (P0-G) exposure to 6-PPDQ at 0.1-10 μg/L. Accompanied with this, transgenerational increase in expressions of genes governing fatty acid synthesis and monounsaturated fatty acyl-CoAs synthesis and decrease in genes governing fatty acid β-oxidation were induced by 6-PPDQ exposure. Moreover, 6-PPDQ exposure at P0-G caused transgenerational activation of mdt-15 and sbp-1 encoding lipid metabolic sensors. Meanwhile, exposure to 6-PPDQ induced transgenerational activation of set-2 and inhibition in rbr-2, two genes encoding components of COMPASS complex. The 6-PPDQ induced transgenerational lipid accumulation could be strengthened by RNAi of set-2 and suppressed by RNAi of rbr-2. Additionally, 6-PPDQ induced transgenerational neurotoxicity could be increased by RNAi of mdt-15, sbp-1, and rbr-2, and inhibited by RNAi of set-2. Therefore, our results demonstrated the possibility in resulting in transgenerational lipid accumulation by exposure to 6-PPDQ.
Collapse
Affiliation(s)
- Yuxing Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Jingwei Wu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
3
|
Wu J, Shao Y, Hua X, Wang D. Activated hedgehog and insulin ligands by decreased transcriptional factor DAF-16 mediate transgenerational nanoplastic toxicity in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135909. [PMID: 39303612 DOI: 10.1016/j.jhazmat.2024.135909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/25/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
In Caenorhabditis elegans, transcriptional factor DAF-16 in insulin signaling pathway played important role in regulating transgenerational nanoplastic toxicity. Activation of insulin signals mediated transgenerational toxicity of polystyrene nanoparticle (PS-NP) by inhibiting DAF-16. Among identified germline ligands, expression of wrt-3 encoding hedgehog ligand was increased by RNAi of daf-16 in PS-NP exposed C. elegans. In PS-NP exposed C. elegans, expressions of 4 other germline hedgehog ligand genes and 10 hedgehog receptor genes were increased by daf-16 RNAi. Among these candidate genes, expressions of hedgehog ligand genes (grl-15, grl-16, qua-1, and wrt-1) and hedgehog receptor genes (ptr-23, scp-1, ptd-2, and ncr-1) could be increased by PS-NP (1-100 μg/L), and their transgenerational expressions were observed after PS-NP exposure. RNAi of grl-15, grl-16, qua-1, wrt-1, ptr-23, scp-1, ptd-2, and ncr-1 caused resistance to transgenerational PS-NP toxicity. In nematodes exposed to PS-NPs, RNAi of wrt-3, grl-15, grl-16, qua-1, and wrt-1 at parental generation (P0-G) inhibited expressions of ptr-23, scp-1, ptd-2, and ncr-1 in their offspring. Moreover, we observed increased expressions of insulin peptides genes (ins-3, ins-39, and daf-28) in PS-NP exposed daf-16(RNAi) nematodes, suggesting formation of feedback loop. We raise the molecular basis for formation of toxicity on multiple generations after nanoplastic exposure at P0-G.
Collapse
Affiliation(s)
- Jingwei Wu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Yuting Shao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
4
|
Wu Z, Wang L, Chen W, Wang Y, Cui K, Chen W, Liu J, Jin H, Zhou Z. Reproductive Toxicity and Multi/Transgenerational Effects of Emerging Pollutants on C. elegans. TOXICS 2024; 12:785. [PMID: 39590964 PMCID: PMC11598590 DOI: 10.3390/toxics12110785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
Emerging pollutants (EPs) are receiving increasing attention due to the threats they pose to the environment and human health. As EPs continue to emerge, risk assessment requires many model animals. Caenorhabditis elegans (C. elegans) has been an outstanding toxicological model organism due to its growth and development characteristics. Particularly, in studying the transgenerational influences of EPs, C. elegans has advantages in saving time and cost due to its short generation cycle. As infertility has become a major problem in human reproductive health, reproductive toxicities of EPs on contemporary nematodes and across generations of C. elegans were introduced in this review. Moreover, the underlying mechanisms involved in germ cell apoptosis, spermatogenesis, and epigenetic alteration were discussed. Future research opportunities and challenges are also discussed to expand our understanding of the reproductive influences of EPs.
Collapse
Affiliation(s)
- Zhiling Wu
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Lingqiao Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Weihua Chen
- Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd., Wuhan 430010, China;
| | - Yiqi Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Ke Cui
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Weiyan Chen
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Jijun Liu
- Chongqing Center for Disease Control and Prevention, Chongqing 400707, China;
| | - Huidong Jin
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Ziyuan Zhou
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| |
Collapse
|
5
|
Mo A, Liang Y, Cao X, Jiang J, Liu Y, Cao X, Qiu Y, He D. Polymer chain extenders induce significant toxicity through DAF-16 and SKN-1 pathways in Caenorhabditis elegans: A comparative analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134730. [PMID: 38797076 DOI: 10.1016/j.jhazmat.2024.134730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Polymer chain extenders, commonly used in plastic production, have garnered increasing attention due to their potential environmental impacts. However, a comprehensive understanding of their ecological risks remains largely unknown. In this study, we employed the model organism Caenorhabditis elegans to investigate toxicological profiles of ten commonly-used chain extenders. Exposure to environmentally relevant concentrations of these chain extenders (ranging from 0.1 µg L-1 to 10 mg L-1) caused significant variations in toxicity. Lethality assays demonstrated the LC50 values ranged from 92.42 µg L-1 to 1553.65 mg L-1, indicating marked differences in acute toxicity. Sublethal exposures could inhibit nematodes' growth, shorten lifespan, and induce locomotor deficits, neuronal damage, and reproductive toxicity. Molecular analyses further elucidated the involvement of the DAF-16 and SKN-1 signaling pathways, as evidenced by upregulated expression of genes including ctl-1,2,3, sod-3, gcs-1, and gst-4. It implicates these pathways in mediating oxidative stress and toxicities induced by chain extenders. Particularly, hexamethylene diisocyanate and diallyl maleate exhibited markedly high toxicity among the chain extenders, as revealed through a comparative analysis of multiple endpoints. These findings demonstrate the potential ecotoxicological risks of polymer chain extenders, and suggest the need for more rigorous environmental safety assessments.
Collapse
Affiliation(s)
- Aoyun Mo
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China
| | - Yuqing Liang
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China
| | - Xiaomu Cao
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Jie Jiang
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Yan Liu
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China
| | - Xuelong Cao
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China
| | - Yuping Qiu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Defu He
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai 200062, China.
| |
Collapse
|
6
|
Errázuriz León R, Araya Salcedo VA, Novoa San Miguel FJ, Llanquinao Tardio CRA, Tobar Briceño AA, Cherubini Fouilloux SF, de Matos Barbosa M, Saldías Barros CA, Waldman WR, Espinosa-Bustos C, Hornos Carneiro MF. Photoaged polystyrene nanoplastics exposure results in reproductive toxicity due to oxidative damage in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123816. [PMID: 38508369 DOI: 10.1016/j.envpol.2024.123816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
The increase of plastic production together with the incipient reuse/recycling system has resulted in massive discards into the environment. This has facilitated the formation of micro- and nanoplastics (MNPs) which poses major risk for environmental health. Although some studies have investigated the effects of pristine MNPs on reproductive health, the effects of weathered MNPs have been poorly investigated. Here we show in Caenorhabditis elegans that exposure to photoaged polystyrene nanoplastics (PSNP-UV) results in worse reproductive performance than pristine PSNP (i.e., embryonic/larval lethality plus a decrease in the brood size, accompanied by a high number of unfertilized eggs), besides it affects size and locomotion behavior. Those effects were potentially generated by reactive products formed during UV-irradiation, since we found higher levels of reactive oxygen species and increased expression of GST-4 in worms exposed to PSNP-UV. Those results are supported by physical-chemical characterization analyses which indicate significant formation of oxidative degradation products from PSNP under UV-C irradiation. Our study also demonstrates that PSNP accumulate predominantly in the gastrointestinal tract of C. elegans (with no accumulation in the gonads), being completely eliminated at 96 h post-exposure. We complemented the toxicological analysis of PSNP/PSNP-UV by showing that the activation of the stress response via DAF-16 is dependent of the nanoplastics accumulation. Our data suggest that exposure to the wild PSNP, i.e., polystyrene nanoplastics more similar to those actually found in the environment, results in more important reprotoxic effects. This is associated with the presence of degradation products formed during UV-C irradiation and their interaction with biological targets.
Collapse
Affiliation(s)
- Rocío Errázuriz León
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | | | | | | | | | | | - Marcela de Matos Barbosa
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto/SP, 14040-901, Brazil
| | | | | | - Christian Espinosa-Bustos
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | | |
Collapse
|
7
|
Zhao Y, Ni S, Pei C, Sun L, Wu L, Xu A, Nie Y, Liu Y. Parental treatment with selenium protects Caenorhabditis elegans and their offspring against the reproductive toxicity of mercury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169461. [PMID: 38141982 DOI: 10.1016/j.scitotenv.2023.169461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Mercury (Hg) is one of the major pollutants in the environment, which requires effective countermeasures to manage its risk to both human health and the ecosystem. The antagonistic effect of selenium (Se) against methyl mercury (MeHg) and HgCl2 was evaluated using parent and offspring Caenorhabditis elegans (C. elegans) in this study. Through designated acute exposure of 24 h, our results showed that both MeHg and HgCl2 induced dose-dependent reproductive toxicity, including increased germ cell apoptosis, decrease in the number of oocytes, brood size, and sperm activation. The increased germ cell apoptosis was even higher in F1 and F2 generations, but returned to control level in F3 generation. Pretreatment with Se significantly suppressed the reproductive toxicity caused by Hg in both parental worms and their offspring, but had little influence on Hg accumulation. The protective role of Se was found closely related to the chemical forms of Hg: mtl-1 and mtl-2 genes participated in reducing the toxicity of HgCl2, while the gst-4 gene was involved in the reduced toxicity of MeHg. The formation of Se-Hg complex and the antioxidant function of Se were considered as possible antagonistic mechanisms. Our data indicated that pretreatment with Se could effectively protect C. elegans and their offspring against the reproductive toxicity of Hg in different chemical forms, which provided a reference for the prevention of Hg poisoning and essential information for better understanding the detoxification potential of Se on heavy metals.
Collapse
Affiliation(s)
- Yanan Zhao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Shenyao Ni
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Chengcheng Pei
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Lingyan Sun
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - An Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China
| | - Yaguang Nie
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| | - Yun Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China.
| |
Collapse
|
8
|
Dong B. A comprehensive review on toxicological mechanisms and transformation products of tebuconazole: Insights on pesticide management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168264. [PMID: 37918741 DOI: 10.1016/j.scitotenv.2023.168264] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Tebuconazole has been widely applied over three decades because of its high efficiency, low toxicity, and broad spectrum, and it is still one of the most popular fungicides worldwide. Tebuconazole residues have been frequently detected in environmental samples and food, posing potential hazards for humans. Understanding the toxicity of pesticides is crucial to ensuring human and ecosystem health, but the toxic mechanisms and toxicity of tebuconazole are still unclear. Moreover, pesticides could transform into transformation products (TPs) that may be more persistent and toxic than their parents. Herein, the toxicities of tebuconazole to humans, mammals, aquatic organisms, soil animals, amphibians, soil microorganisms, birds, honeybees, and plants were summarized, and its TPs were reviewed. In addition, the toxicity of tebuconazole TPs to aquatic organisms and mammals was predicted. Tebuconazole posed potential developmental toxicity, genotoxicity, reproductive toxicity, mutagenicity, hepatotoxicity, neurotoxicity, cardiotoxicity, and nephrotoxicity, which were induced via reactive oxygen species-mediated apoptosis, metabolism and hormone perturbation, DNA damage, and transcriptional abnormalities. In addition, tebuconazole exhibited apparent endocrine-disrupting effects by modulating hormone levels and gene transcription. The toxicity of some TPs was equivalent to and higher than tebuconazole. Therefore, further investigation is necessary into the toxicological mechanisms of tebuconazole and the combined toxicity of a mixture of tebuconazole and its TPs.
Collapse
Affiliation(s)
- Bizhang Dong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
9
|
Lin Y, Lin C, Cao Y, Chen Y. Caenorhabditis elegans as an in vivo model for the identification of natural antioxidants with anti-aging actions. Biomed Pharmacother 2023; 167:115594. [PMID: 37776641 DOI: 10.1016/j.biopha.2023.115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
Natural antioxidants have recently emerged as a highly exciting and significant topic in anti-aging research. Diverse organism models present a viable protocol for future research. Notably, many breakthroughs on natural antioxidants have been achieved in the nematode Caenorhabditis elegans, an animal model frequently utilized for the study of aging research and anti-aging drugs in vivo. Due to the conservation of signaling pathways on oxidative stress resistance, lifespan regulation, and aging disease between C. elegans and multiple high-level organisms (humans), as well as the low and controllable cost of time and labor, it gradually develops into a trustworthy in vivo model for high-throughput screening and validation of natural antioxidants with anti-aging actions. First, information and models on free radicals and aging are presented in this review. We also describe indexes, detection methods, and molecular mechanisms for studying the in vivo antioxidant and anti-aging effects of natural antioxidants using C. elegans. It includes lifespan, physiological aging processes, oxidative stress levels, antioxidant enzyme activation, and anti-aging pathways. Furthermore, oxidative stress and healthspan improvement induced by natural antioxidants in humans and C. elegans are compared, to understand the potential and limitations of the screening model in preclinical studies. Finally, we emphasize that C. elegans is a useful model for exploring more natural antioxidant resources and uncovering the mechanisms underlying aging-related risk factors and diseases.
Collapse
Affiliation(s)
- Yugui Lin
- Microbiology Laboratory, Zhongshan Bo'ai Hospital, Southern Medical University, Zhongshan 528400, China; Department of Microbiology, Guangxi Medical University, Nanning 530021, China
| | - Chunxiu Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China; State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China.
| |
Collapse
|
10
|
Shi C, Wang C, Zeng L, Peng Y, Li Y, Hao H, Zheng Y, Chen C, Chen H, Zhang J, Xiang M, Huang Y, Li H. Triphenyl phosphate induced reproductive toxicity through the JNK signaling pathway in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130643. [PMID: 36586333 DOI: 10.1016/j.jhazmat.2022.130643] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Triphenyl phosphate (TPHP) is a widely used aryl organophosphate flame retardant (OPFR) that has attracted attention due to its frequent detection in the environment and living organisms. To date, the reproductive toxicity of TPHP has been investigated in organisms, but its molecular mechanisms are not fully understood. Caenorhabditis elegans (C. elegans) is the ideal animal for the study of reproductive toxicity following environmental pollutants, with short generation times, intact reproductive structures, and hermaphroditic fertilization. This study aimed to explore the reproductive dysfunction and molecular mechanisms induced by TPHP exposure in C. elegans. Specifically, exposure to TPHP resulted in a reduction in the number of eggs laid and developing embryos in utero, an increase in the number of apoptotic gonadal cells, and germ cell cycle arrest. The JNK signaling pathway is a potential pathway inducing reproductive toxicity following TPHP exposure based on transcriptome sequencing (RNA-seq). Moreover, TPHP exposure induced down-regulation of vhp-1 and kgb-2 gene transcription levels, and the knockout of vhp-1 and kgb-2 in the mutant strains exhibited more severe toxicity in apoptotic gonad cells, embryos, and eggs developing in utero, suggesting that vhp-1 and kgb-2 genes play a crucial role in TPHP-induced reproductive toxicity. Our data provide convergent evidence showing that TPHP exposure results in reproductive dysfunction through the JNK signaling pathway and improve our understanding of the ecotoxicity and toxicological mechanisms of aryl-OPFRs.
Collapse
Affiliation(s)
- Chongli Shi
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chen Wang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Lingjun Zeng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yi Peng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yeyong Li
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haibin Hao
- Department of Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210000, China
| | - Yang Zheng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jin Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Minghui Xiang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yuan Huang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hui Li
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
11
|
Li W, Ma L, Shi Y, Wang J, Yin J, Wang D, Luo K, Liu R. Meiosis-mediated reproductive toxicity by fenitrothion in Caenorhabditis elegans from metabolomic perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114680. [PMID: 36857914 DOI: 10.1016/j.ecoenv.2023.114680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Fenitrothion (FNT), an organophosphorus insecticide, is widely detected in the living environment. The reproductive and endocrine toxicity of FNT to biological communities has been ever reported, but potential mechanism and reproductive toxicity dose effect remain unclear. In our study, we constructed Caenorhabditis elegans model to analyze the reproductive toxicity mechanism of FNT based on metabolomics and evaluated its reproductive toxicity dose effect using benchmark dose (BMD)method. Our results showed that FNT exposure significantly reduced brood size, number of germ cells, and delayed gonadal development in nematodes. Non-targeted metabolomics revealed that FNT exposure caused significant metabolic disturbances in nematodes, leading to a significant reduction in the synthesis of cortisol and melatonin, and the latter played a mediating role in the effects of FNT on number of germ cells. We further found that the levels of these two hormones were significantly negative correlated with the expression of the androgen receptor nhr-69 and affected the meiosis of germ cells by regulating the nhr-69/ fbf-1/2 /gld-3 /fog-1/3 pathway. Meanwhile, the study found the BMDL10s for N2 and him-5 mutant were 0.411 μg/L by number of germ cells and 0.396 μg/L by number of germ cells in the meiotic zone, respectively, providing a more protective reference dose for ecological risk assessment of FNT. This study suggested that FNT can affect androgen receptor expression by inhibiting cortisol and melatonin secretion, which further mediate the meiotic pathway to affect sperm formation and exert reproductive toxicity, and provides a basis for setting reproductive toxicity limits for FNT.
Collapse
Affiliation(s)
- Weixi Li
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Lingyi Ma
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yingchi Shi
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jia Wang
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jiechen Yin
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- School of Medical, Southeast University, Nanjing 210009, China
| | - Kai Luo
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Ran Liu
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
12
|
Yan W, Li G, Lu Q, Hou J, Pan M, Peng M, Peng X, Wan H, Liu X, Wu Q. Molecular Mechanisms of Tebuconazole Affecting the Social Behavior and Reproduction of Zebrafish. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3928. [PMID: 36900939 PMCID: PMC10002025 DOI: 10.3390/ijerph20053928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was to explore the underlying mechanism of adverse effects caused by tebuconazole (TEB) on the reproduction of aquatic organisms In the present study, in order to explore the effects of TEB on reproduction, four-month-old zebrafish were exposed to TEB (0, DMSO, 0.4 mg/L, 0.8 mg/L, and 1.6 mg/L) for 21 days. After exposure, the accumulations of TEB in gonads were observed and the cumulative egg production was evidently decreased. The decline of fertilization rate in F1 embryos was also observed. Then the changes in sperm motility and histomorphology of gonads were discovered, evaluating that TEB had adverse effects on gonadal development. Additionally, we also found the alternations of social behavior, 17β-estradiol (E2) level, and testosterone (T) level. Furthermore, the expression levels of genes involved in the hypothalamic-pituitary-gonadal (HPG) axis and social behavior were remarkably altered. Taken together, it could be concluded that TEB affected the egg production and fertilization rate by interfering with gonadal development, sex hormone secretion, and social behavior, which were eventually attributed to the disruption of the expressions of genes associated with the HPG axis and social behavior. This study provides a new perspective to understanding the mechanism of TEB-induced reproductive toxicity.
Collapse
Affiliation(s)
- Wei Yan
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiqi Lu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
- Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
- Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Meiqi Pan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Maomin Peng
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xitian Peng
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Hui Wan
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
- Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
- Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
- Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| |
Collapse
|
13
|
Zhao Y, Chen J, Wang R, Pu X, Wang D. A review of transgenerational and multigenerational toxicology in the in vivo model animal Caenorhabditis elegans. J Appl Toxicol 2023; 43:122-145. [PMID: 35754092 DOI: 10.1002/jat.4360] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
A large number of pollutants existing in the environment can last for a long time, and their potential toxic effects can transfer from parents to their offspring. Thus, it is necessary to investigate the toxicity of environmental pollutants across multigenerations and the underlying mechanisms in organisms. Due to its short life cycle and sensitivity to environmental exposures, Caenorhabditis elegans is an important animal model for toxicity assessment of environmental pollutants across multigenerations. In this review, we introduced the transgenerational and multigenerational toxicity caused by various environmental pollutants in C. elegans. Moreover, we discussed the underlying mechanisms for the observed transgenerational and multigenerational toxicity of environmental contaminants in C. elegans.
Collapse
Affiliation(s)
- Yunli Zhao
- Medical School, Southeast University, Nanjing, China.,School of Public Health, Bengbu Medical College, Bengbu, China
| | - Jingya Chen
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Rui Wang
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Xiaoxiao Pu
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China
| |
Collapse
|
14
|
Li H, Zeng L, Wang C, Shi C, Li Y, Peng Y, Chen H, Zhang J, Cheng B, Chen C, Xiang M, Huang Y. Review of the toxicity and potential molecular mechanisms of parental or successive exposure to environmental pollutants in the model organism Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119927. [PMID: 35970344 DOI: 10.1016/j.envpol.2022.119927] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollutants such as heavy metals, nano/microparticles, and organic compounds have been detected in a wide range of environmental media, causing long-term exposure in various organisms and even humans through breathing, contacting, ingestion, and other routes. Long-term exposure to environmental pollutants in organisms or humans promotes exposure of offspring to parental and environmental pollutants, and subsequently results in multiple biological defects in the offspring. This review dialectically summarizes and discusses the existing studies using Caenorhabditis elegans (C. elegans) as a model organism to explore the multi/transgenerational toxicity and potential underlying molecular mechanisms induced by environmental pollutants following parental or successive exposure patterns. Parental and successive exposure to environmental pollutants induces various biological defects in C. elegans across multiple generations, including multi/transgenerational developmental toxicity, neurotoxicity, reproductive toxicity, and metabolic disturbances, which may be transmitted to progeny through reactive oxygen species-induced damage, epigenetic mechanisms, insulin/insulin-like growth factor-1 signaling pathway. This review aims to arouse researchers' interest in the multi/transgenerational toxicity of pollutants and hopes to explore the possible long-term effects of environmental pollutants on organisms and even humans, as well as to provide constructive suggestions for the safety and management of emerging alternatives.
Collapse
Affiliation(s)
- Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Lingjun Zeng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Chongli Shi
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yeyong Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yi Peng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Jin Zhang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Biao Cheng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Minghui Xiang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yuan Huang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| |
Collapse
|
15
|
Xu R, Hua X, Rui Q, Wang D. Alteration in Wnt signaling mediates induction of transgenerational toxicity of polystyrene nanoplastics in C. elegans. NANOIMPACT 2022; 28:100425. [PMID: 36075376 DOI: 10.1016/j.impact.2022.100425] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 05/21/2023]
Abstract
Polystyrene nanoparticles (PS-NPs) have a potential toxicity on offspring after the exposure. However, the molecular basis for PS-NP in inducing transgenerational toxicity remains largely unknown. In this study, the role and the underlying mechanism of germline Wnt signaling in regulating transgenerational toxicity of PS-NPs were determined using an in vivo animal model of Caenorhabditis elegans. Exposure to PS-NP (1-100 μg/L) increased expression of Wnt ligand LIN-44 and decreased expression of Wnt receptor MIG-1. After the exposure, the transgenerational PS-NP toxicity on locomotion behavior and brood size were inhibited in lin-44(RNAi) nematodes, while enhanced in mig-1(RNAi) nematodes. The resistance to transgenerational PS-NP toxicity induced by RNAi of lin-44 in P0 generation (P0-G) was inhibited by RNAi of mig-1 in F1-G. In addition, after PS-NP exposure, germline RNAi of lin-44 at P0-G could increase the mig-1 expression in F1-G. Exposure to PS-NP (1-100 μg/L) further decreased expressions of Dishevelled proteins of DSH-1/2, increased APC complex component APR-1, and decreased expression of BAR-1/β-catenin. Meanwhile, transgenerational PS-NP toxicity was enhanced by RNAi of dsh-1, dsh-2, or bar-1 and inhibited by RNAi of apr-1, suggesting that the DSH-1/2-APR-1-BAR-1 signaling cascade acted downstream of Wnt receptor MIG-1 to control transgenerational PS-NP toxicity. Moreover, BAR-1 acted upstream of DVE-1 to activate mitochondrial unfolded protein response (mt UPR) against the transgenerational PS-NP toxicity. Our data highlights the potential link between alteration in germline Wnt signaling and induction of transgenerational nanoplastic toxicity in organisms.
Collapse
Affiliation(s)
- Ruoran Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Hua
- Medical School, Southeast University, Nanjing 210009, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dayong Wang
- Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
16
|
Zheng F, Chen C, Aschner M. Neurotoxicity Evaluation of Nanomaterials Using C. elegans: Survival, Locomotion Behaviors, and Oxidative Stress. Curr Protoc 2022; 2:e496. [PMID: 35849041 PMCID: PMC9299521 DOI: 10.1002/cpz1.496] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanomaterials are broadly used in a variety of industries and consumer products. However, studies have demonstrated that many nanomaterials, including metal-containing nanoparticles and nanoplastics, have neurotoxic effects. Caenorhabditis elegans (C. elegans) is a widely used model organism with numerous advantages for research, including transparency, short life span, well-characterized nervous system, complete connectome, available genome, and numerous genetic tools. C. elegans has been extensively used to assess the neurotoxicity of multiple chemicals via survival assays, behavioral tests, neuronal morphology studies, and various molecular and mechanistic analyses. However, detailed protocols describing general assays in C. elegans to examine the neurotoxic effects of nanomaterials are limited. Here, we describe protocols for assessing nanomaterial neurotoxicity in C. elegans. We describe the steps for exposure and subsequent evaluation of survival, locomotion behavior, and oxidative stress. Survival and locomotion behavior are measured in wild-type N2 strains to assess acute neurotoxicity. Oxidative stress is used as an endpoint here since it is one of the most predominant and common changes induced by nanomaterials. VP596 nematodes, which express GFP upon activation of skn-1 (the worm homolog of Nrf2), are evaluated for assays of oxidative stress in response to test nanomaterials. These assays can be readily used to quickly examine the neurotoxicity of nanomaterials in vivo, laying the foundation for mechanistic studies of nanomaterials and their impacts on health and physiology. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Exposure of C. elegans to nanomaterials Basic Protocol 2: Survival assessment Basic Protocol 3: Assessment of locomotion behavior Basic Protocol 4: Analysis of oxidative stress.
Collapse
Affiliation(s)
- Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, 1 Xueyuan Road, University Town, Fuzhou, Fujian, P. R. China
| | - Cheng Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461 Bronx, NY, USA
| |
Collapse
|
17
|
Athar F, Templeman NM. C. elegans as a model organism to study female reproductive health. Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111152. [PMID: 35032657 DOI: 10.1016/j.cbpa.2022.111152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Female reproductive health has been historically understudied and underfunded. Here, we present the advantages of using a free-living nematode, Caenorhabditis elegans, as an animal system to study fundamental aspects of female reproductive health. C. elegans is a powerful high-throughput model organism that shares key genetic and physiological similarities with humans. In this review, we highlight areas of pressing medical and biological importance in the 21st century within the context of female reproductive health. These include the decline in female reproductive capacity with increasing chronological age, reproductive dysfunction arising from toxic environmental insults, and cancers of the reproductive system. C. elegans has been instrumental in uncovering mechanistic insights underlying these processes, and has been valuable for developing and testing therapeutics to combat them. Adopting a convenient model organism such as C. elegans for studying reproductive health will encourage further research into this field, and broaden opportunities for making advancements into evolutionarily conserved mechanisms that control reproductive function.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.
| |
Collapse
|
18
|
Yu Y, Hua X, Chen H, Wang Z, Han Y, Chen X, Yang Y, Xiang M. Glutamatergic transmission associated with locomotion-related neurotoxicity to lindane over generations in Caenorhabditis elegans. CHEMOSPHERE 2022; 290:133360. [PMID: 34929275 DOI: 10.1016/j.chemosphere.2021.133360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Organochlorine pesticide lindane in the environment and biota results in the potential risks on ecosystem and human health. Lindane can adversely affect the locomotion and nervous system, yet the potential neurotoxicity of lindane over generations remains uncertain. In this study, the neurotoxicity and underlying mechanisms in Caenorhabditis elegans (C. elegans) were investigated after parental (P0) exposure to lindane at environmentally relevant concentrations over generations. Exposure to lindane at concentrations of 10-100 ng/L significantly decreased body bends and head thrashes in P0 generation. Significant decrease of fluorescence labeled different neurotransmitters, and clear morphological changes by exposure to lindane at 10-100 ng/L suggested that lindane could induce the neuronal damage in C. elegans. During the transgenerational process, decreased locomotive behaviors were also observed in F1-F3 generations, and head thrashes returned to normal levels in F4 generation. Moreover, lindane exposure down-regulated the expression of dat-1, dop-1, glr-1 and mod-1genes, while up-regulated unc-30 gene in P0 generation, which recovered to normal levels in F4 generation. Interestingly, eat-4 continued to be regulated from inhibition to stimulation in P0-F4 generations, suggesting that glutamatergic transmission may more contribute to the neurotoxicity of lindane over generations.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Xin Hua
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Zhengdong Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Yajing Han
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Xichao Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Yue Yang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Public Health, China Medical University, Liaoning, 110122, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| |
Collapse
|
19
|
Reproductive Toxicity of Furfural Acetone in Meloidogyne incognita and Caenorhabditis elegans. Cells 2022; 11:cells11030401. [PMID: 35159211 PMCID: PMC8834415 DOI: 10.3390/cells11030401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023] Open
Abstract
Furfural acetone (FAc) is a promising alternative to currently available nematicides, and it exhibits equivalent control efficiency on root-knot nematodes with avermectin in fields. However, its effect on the reproduction of root-knot nematode is poorly understood. In this study, the natural metabolite FAc was found to exhibit reproductive toxicity on Meloidogyne incognita and Caenorhabditis elegans. The number of germ cells of C. elegans was observed to decrease after exposure to FAc, with a reduction of 59.9% at a dose of 200 mg/L. FAc in various concentrations induced the germ-cell apoptosis of C. elegans, with an increase over six-fold in the number of apoptotic germ cells at 200 mg/L. These findings suggested that FAc decreased the brood size of nematode by inducing germ-cell apoptosis. Moreover, FAc-induced germ-cell apoptosis was suppressed by the mutation of gene hus-1, clk-2, cep-1, egl-1, ced-3, ced-4, or ced-9. The expression of genes spo-11, cep-1, and egl-1 in C. elegans was increased significantly after FAc treatment. Taken together, these results indicate that nematode exposure to FAc might inflict DNA damage through protein SPO-11, activate CEP-1 and EGL-1, and induce the core apoptosis pathway to cause germ-cell apoptosis, resulting in decreased brood size of C. elegans.
Collapse
|
20
|
van der Voet M, Teunis M, Louter-van de Haar J, Stigter N, Bhalla D, Rooseboom M, Wever KE, Krul C, Pieters R, Wildwater M, van Noort V. Towards a reporting guideline for developmental and reproductive toxicology testing in C. elegans and other nematodes. Toxicol Res (Camb) 2021; 10:1202-1210. [PMID: 34950447 PMCID: PMC8692742 DOI: 10.1093/toxres/tfab109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Implementation of reliable methodologies allowing Reduction, Refinement, and Replacement (3Rs) of animal testing is a process that takes several decades and is still not complete. Reliable methods are essential for regulatory hazard assessment of chemicals where differences in test protocol can influence the test outcomes and thus affect the confidence in the predictive value of the organisms used as an alternative for mammals. Although test guidelines are common for mammalian studies, they are scarce for non-vertebrate organisms that would allow for the 3Rs of animal testing. Here, we present a set of 30 reporting criteria as the basis for such a guideline for Developmental and Reproductive Toxicology (DART) testing in the nematode Caenorhabditis elegans. Small organisms like C. elegans are upcoming in new approach methodologies for hazard assessment; thus, reliable and robust test protocols are urgently needed. A literature assessment of the fulfilment of the reporting criteria demonstrates that although studies describe methodological details, essential information such as compound purity and lot/batch number or type of container is often not reported. The formulated set of reporting criteria for C. elegans testing can be used by (i) researchers to describe essential experimental details (ii) data scientists that aggregate information to assess data quality and include data in aggregated databases (iii) regulators to assess study data for inclusion in regulatory hazard assessment of chemicals.
Collapse
Affiliation(s)
| | - Marc Teunis
- Utrecht University of Applied Sciences, Innovative testing in Life Sciences & Chemistry, 3584 CH, Utrecht, the Netherlands
| | - Johanna Louter-van de Haar
- Utrecht University of Applied Sciences, Innovative testing in Life Sciences & Chemistry, 3584 CH, Utrecht, the Netherlands
| | - Nienke Stigter
- Utrecht University of Applied Sciences, Innovative testing in Life Sciences & Chemistry, 3584 CH, Utrecht, the Netherlands
| | - Diksha Bhalla
- KU Leuven, Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, 3001, Leuven, Belgium
| | - Martijn Rooseboom
- Toxicology group Shell International B.V., 2596 HR, The Hague, the Netherlands
| | - Kimberley E Wever
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department for Health Evidence, 6525 GA, Nijmegen, the Netherlands
| | - Cyrille Krul
- Utrecht University of Applied Sciences, Innovative testing in Life Sciences & Chemistry, 3584 CH, Utrecht, the Netherlands
| | - Raymond Pieters
- Utrecht University of Applied Sciences, Innovative testing in Life Sciences & Chemistry, 3584 CH, Utrecht, the Netherlands
- Utrecht University, Institute for Risk Assessment Sciences, 3584 CM, Utrecht, the Netherlands
| | | | - Vera van Noort
- KU Leuven, Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, 3001, Leuven, Belgium
- Leiden University, Institute of Biology Leiden, 2333 BE, Leiden, the Netherlands
| |
Collapse
|
21
|
Liu H, Tian L, Wang S, Wang D. Size-dependent transgenerational toxicity induced by nanoplastics in nematode Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148217. [PMID: 34111783 DOI: 10.1016/j.scitotenv.2021.148217] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 05/21/2023]
Abstract
Nanoplastic exposure can potentially cause the severe transgenerational toxicity in organisms. However, the transgenerational nanoplastic toxicity and the underlying mechanisms are still largely unclear. Using Caenorhabditis elegans as an animal model, we here compared the transgenerational toxicity of two sizes of polystyrene nanoparticles (PS-NPs, 20 and 100 nm). The nematodes were exposed to PS-NPs at the P0 generation, and from the F1 generation the nematodes were grown under the normal condition. Exposure to 20 nm PS-NPs resulted in more severe transgenerational toxicity than exposure to 100 nm PS-NPs. At the concentration of 100 μg/L, the toxicity of 20 nm PS-NPs on locomotion and reproduction was detected at the F1-F6 generations, whereas the toxicity of 100 nm PS-NPs could only be observed at the F1-F3 generations. The difference in transgeneration toxicity between PS-NPs (20 nm) and PS-NPs (100 nm) was associated with the difference in transgenerational activation of oxidative stress. Based on observations on SOD-3::GFP, HSP-6::GFP, and HSP-4::GFP expressions, PS-NPs (20 nm) and PS-NPs (100 nm) further induced different transgenerational responses of anti-oxidation, mt UPR, and ER UPR. Our data suggested that the induction of transgenerational toxicity of PS-NPs was size dependent in nematodes. The results are helpful for our understanding the cellular mechanisms for the induction of transgenerational nanoplastic toxicity in organisms.
Collapse
Affiliation(s)
- Huanliang Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Lijie Tian
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Shuting Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China.
| |
Collapse
|
22
|
Liu H, Kwak JI, Wang D, An YJ. Multigenerational effects of polyethylene terephthalate microfibers in Caenorhabditis elegans. ENVIRONMENTAL RESEARCH 2021; 193:110569. [PMID: 33275924 DOI: 10.1016/j.envres.2020.110569] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/25/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Microfibers (MFs) have recently become an increasingly prevalent pollutant in ecosystems and pose a direct threat to organisms and an indirect threat via adsorption of other pollutants. Here, we used Caenorhabditis elegans to study multigenerational effects of polyethylene terephthalate (PET) MFs (diameter 17.4 μm) by observing the maternal generation (P0) to the seventh offspring generation (F7) with continuous MF exposure. Exposure to 250-μm PET MFs decreased locomotion behavior and induced intestinal reactive oxygen species (ROS) in the P0 generation compared with other PET MF sizes. Moreover, no notably negative effects on survival were observed in any generation during continuous exposure to 250-μm PET MFs. However, the reproduction rate clearly decreased in the F2 and F3 generations but gradually recovered in the F4-F7 generations. Developmental abnormalities showed a close relationship with body length. Although some recovery was confirmed, there were significant decreases in body length in the F2-F5 generations. Interestingly, growth inhibition was also observed in the F6 generation without MF exposure. ROS production and dermal damage in the P0-F5 generations might have resulted in the toxicological responses. To the best of our knowledge, this is the first study to provide evidence of multigenerational toxicity of MFs in C. elegans.
Collapse
Affiliation(s)
- Huanliang Liu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Jin Il Kwak
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, South Korea
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|