1
|
Poplová M, Prasad A, Van Wijk E, Pospíšil P, Cifra M. Biological Auto(chemi)luminescence Imaging of Oxidative Processes in Human Skin. Anal Chem 2023; 95:14853-14860. [PMID: 37753614 DOI: 10.1021/acs.analchem.3c01566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Oxidative processes in all types of organisms cause the chemical formation of electronically excited species, with subsequent ultraweak photon emission termed biological auto(chemi)luminescence (BAL). Imaging this luminescence phenomenon using ultrasensitive devices could potentially enable monitoring of oxidative stress in optically accessible areas of the human body, such as skin. Although oxidative stress induced by UV light has been explored, for chemically induced stress, there is no in vivo-quantified imaging of oxidative processes in human skin using BAL under the controlled extent of oxidative stress conditions. Furthermore, the mechanisms and dynamics of BAL from the skin have not been fully explored. Here, we demonstrate that different degrees of chemically induced oxidative stress on the skin can be spatially resolved quantitatively through noninvasive label-free BAL imaging. Additionally, to gain insight into the underlying mechanisms, a minimal chemical model of skin based on a mixture of lipid, melanin, and water was developed and used to show that it can be used to reproduce essential features of the response of real skin to oxidative stress. Our results contribute to novel, noninvasive photonic label-free methods for quantitative sensing of oxidative processes and oxidative stress.
Collapse
Affiliation(s)
- Michaela Poplová
- Institute of Photonics and Electronics, The Czech Academy of Sciences, Prague 182 00, Czechia
- Faculty of Electrical Engineering, Czech Technical University in Prague, Prague 166 27, Czechia
| | - Ankush Prasad
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czechia
| | - Eduard Van Wijk
- Meluna Research Business & Science Park Wageningen, Agro Business Park, 10 6708 PW Wageningen, Netherlands
| | - Pavel Pospíšil
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czechia
| | - Michal Cifra
- Institute of Photonics and Electronics, The Czech Academy of Sciences, Prague 182 00, Czechia
| |
Collapse
|
2
|
Vahalová P, Cifra M. Biological autoluminescence as a perturbance-free method for monitoring oxidation in biosystems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:80-108. [PMID: 36336139 DOI: 10.1016/j.pbiomolbio.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Biological oxidation processes are in the core of life energetics, play an important role in cellular biophysics, physiological cell signaling or cellular pathophysiology. Understanding of biooxidation processes is also crucial for biotechnological applications. Therefore, a plethora of methods has been developed for monitoring oxidation so far, each with distinct advantages and disadvantages. We review here the available methods for monitoring oxidation and their basic characteristics and capabilities. Then we focus on a unique method - the only one that does not require input of additional external energy or chemicals - which employs detection of biological autoluminescence (BAL). We highlight the pros and cons of this method and provide an overview of how BAL can be used to report on various aspects of cellular oxidation processes starting from oxygen consumption to the generation of oxidation products such as carbonyls. This review highlights the application potential of this completely non-invasive and label-free biophotonic diagnostic method.
Collapse
Affiliation(s)
- Petra Vahalová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czech Republic
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
| |
Collapse
|
3
|
Zarkeshian P, Kergan T, Ghobadi R, Nicola W, Simon C. Photons guided by axons may enable backpropagation-based learning in the brain. Sci Rep 2022; 12:20720. [PMID: 36456619 PMCID: PMC9715721 DOI: 10.1038/s41598-022-24871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Despite great advances in explaining synaptic plasticity and neuron function, a complete understanding of the brain's learning algorithms is still missing. Artificial neural networks provide a powerful learning paradigm through the backpropagation algorithm which modifies synaptic weights by using feedback connections. Backpropagation requires extensive communication of information back through the layers of a network. This has been argued to be biologically implausible and it is not clear whether backpropagation can be realized in the brain. Here we suggest that biophotons guided by axons provide a potential channel for backward transmission of information in the brain. Biophotons have been experimentally shown to be produced in the brain, yet their purpose is not understood. We propose that biophotons can propagate from each post-synaptic neuron to its pre-synaptic one to carry the required information backward. To reflect the stochastic character of biophoton emissions, our model includes the stochastic backward transmission of teaching signals. We demonstrate that a three-layered network of neurons can learn the MNIST handwritten digit classification task using our proposed backpropagation-like algorithm with stochastic photonic feedback. We model realistic restrictions and show that our system still learns the task for low rates of biophoton emission, information-limited (one bit per photon) backward transmission, and in the presence of noise photons. Our results suggest a new functionality for biophotons and provide an alternate mechanism for backward transmission in the brain.
Collapse
Affiliation(s)
- Parisa Zarkeshian
- grid.22072.350000 0004 1936 7697Department of Physics & Astronomy, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4 Canada ,grid.22072.350000 0004 1936 7697Institute for Quantum Science and Technology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4 Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada ,1QB Information Technologies (1QBit), Vancouver, BC Canada
| | - Taylor Kergan
- grid.22072.350000 0004 1936 7697Department of Physics & Astronomy, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4 Canada
| | - Roohollah Ghobadi
- grid.22072.350000 0004 1936 7697Department of Physics & Astronomy, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4 Canada ,grid.22072.350000 0004 1936 7697Institute for Quantum Science and Technology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4 Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
| | - Wilten Nicola
- grid.22072.350000 0004 1936 7697Department of Physics & Astronomy, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4 Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, AB Canada
| | - Christoph Simon
- grid.22072.350000 0004 1936 7697Department of Physics & Astronomy, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4 Canada ,grid.22072.350000 0004 1936 7697Institute for Quantum Science and Technology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4 Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
| |
Collapse
|
4
|
Hao R, Li M, Li F, Sun-Waterhouse D, Li D. Protective effects of the phenolic compounds from mung bean hull against H 2O 2-induced skin aging through alleviating oxidative injury and autophagy in HaCaT cells and HSF cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156669. [PMID: 35718184 DOI: 10.1016/j.scitotenv.2022.156669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
To add value to food waste and seek skin aging suppressor, petroleum ether, ethyl acetate, n-butanol and water phenolic extracts were produced from mung bean hulls subjected to ultrasound-assisted ethanolic extraction. The four extracts all contained protocatechuic acid, isovitexin, vitexin, caffeic acid, 4-coumaric acid, ferulic acid, rutin and chlorogenic acid (revealed by UHPLC-MS/MS). The effects of the four extracts and their main phenolic compounds against H2O2-caused cell damage and aging in HaCaT and HSF cells were examined (including cell viability, ROS, MDA, SOD, GSH-px and β-galactosidase levels). The four extracts and the eight phenolic compounds exhibited different protective effects on H2O2-treated HaCaT/HSF cells viability, with the ethyl acetate extract among the extracts, and isovitexin and vitexin among the eight compounds, exerting the greatest protection. Therefore, isovitexin and vitexin may be the key oxidative stress and autophagy modulators of mung bean hull, and they inhibit skin aging and damage likely through suppressing Nrf2/keap1/HO-1 related oxidative damage and LC3II/p62/GATA4 related autophagy.
Collapse
Affiliation(s)
- Rili Hao
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, People's Republic of China
| | - Meiqi Li
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, People's Republic of China
| | - Feng Li
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, People's Republic of China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, People's Republic of China; School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Dapeng Li
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, People's Republic of China.
| |
Collapse
|
5
|
Pónya Z, Somfalvi-Tóth K. Modelling biophoton emission kinetics based on the initial intensity value in Helianthus annuus plants exposed to different types of stress. Sci Rep 2022; 12:2317. [PMID: 35145188 PMCID: PMC8831617 DOI: 10.1038/s41598-022-06323-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/24/2022] [Indexed: 11/09/2022] Open
Abstract
Biophoton radiation also referred to as ultra-weak photon emission (UPE) is used to denote a spontaneous and permanent photon emission associated with oxidative processes in cells and seems to universally occur in all living systems as a result of the generation of reactive oxygen species (ROS) that are produced under stress conditions. The measurement of this biophoton emission allows for a non-invasive approach in monitoring phenological stages throughout plant development which has direct relevance in agriculture research. In this study, the emission of photons emanating from sunflower (Helianthus annuus, L.) plants exposed to biotic and abiotic stress has been investigated. In healthy plants raised under controlled growth conditions UPE was low whereas in stressed individuals it considerably increased; particularly upon water stress. The kinetics of the signal is shown to reveal an exponential decay with characteristic dynamics, which appears to reflect different physiological states concomitantly setting in upon stress. The dynamics of the signal decay is shown to vary according to the type of stress applied (biotic vs. abiotic) hence suggesting a putative relationship between the kinetic traits of change in the signal intensity-decay and stress. Intriguingly, the determination of the change in the intensity of biophoton emission that ensued in a short time course was possible by using the initial biophoton emission intensity. The predictability level of the equations demonstrated the applicability of the model in a corroborative manner when employing it in independent UPE-measurements, thus permitting to forecast the intensity change in a very accurate way over a short time course. Our findings allow the notion that albeit stress confers complex and complicated changes on oxidative metabolism in biological systems, the employment of biophoton imaging offers a feasible method making it possible to monitor oxidative processes triggered by stress in a non-invasive and label-free way which has versatile applications especially in precision agriculture.
Collapse
Affiliation(s)
- Zsolt Pónya
- Agricultural and Food Research Centre, Széchenyi István University, Egyetem tér 1, Győr, H-9026, Hungary.
| | - Katalin Somfalvi-Tóth
- Department of Agronomy, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 40. S. Guba str, Kaposvár, H-7400, Hungary
| |
Collapse
|
6
|
Naumova EV, Vladimirov YA, Tuchin VV, Namiot VA, Volodyaev IV. Methods of Studying Ultraweak Photon Emission from Biological Objects: III. Physical Methods. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Zapata F, Pastor-Ruiz V, Ortega-Ojeda F, Montalvo G, Ruiz-Zolle AV, García-Ruiz C. Human ultra-weak photon emission as non-invasive spectroscopic tool for diagnosis of internal states - A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112141. [PMID: 33540236 DOI: 10.1016/j.jphotobiol.2021.112141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/08/2021] [Accepted: 01/25/2021] [Indexed: 11/27/2022]
Abstract
In the knowledge that human ultra-weak photon emission (UPE) is mainly due to the metabolic oxidative stress processes that the skin cells undergo in the presence of reactive oxygen species (ROS), external stressors (like UV radiation), but also internal stressors (like diseases or brain activity) might strongly influence the UPE. This manuscript revises the scientific advances focused on the influence of internal factors on the human UPE. According to literature, the UPE seems to be influenced by some diseases (including diabetes, hemiparesis, protoporphyria, or a typical cold), and even by the cerebral intention/relaxation (brain activity/meditation). These allow to consider UPE as a natural and promising non-invasive spectroscopic tool for helping during the diagnosis of a variety of illnesses or stress- / mood-state disorders. Nonetheless, further research is required for answering some still unresolved controversial points.
Collapse
Affiliation(s)
- Félix Zapata
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Madrid, Spain; Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, Campus Espinardo, 30100 Murcia, Spain
| | - Victoria Pastor-Ruiz
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Madrid, Spain
| | - Fernando Ortega-Ojeda
- Department of Physics and Mathematics, University of Alcalá, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Madrid, Spain; University Institute of Research in Police Sciences (IUICP), University of Alcalá, Libreros 27, 28801, Alcalá de Henares, Madrid, Spain
| | - Gemma Montalvo
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Madrid, Spain; University Institute of Research in Police Sciences (IUICP), University of Alcalá, Libreros 27, 28801, Alcalá de Henares, Madrid, Spain
| | | | - Carmen García-Ruiz
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Madrid, Spain; University Institute of Research in Police Sciences (IUICP), University of Alcalá, Libreros 27, 28801, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
8
|
Spectral Distribution of Ultra-Weak Photon Emission as a Response to Wounding in Plants: An In Vivo Study. BIOLOGY 2020; 9:biology9060139. [PMID: 32604795 PMCID: PMC7345010 DOI: 10.3390/biology9060139] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/17/2022]
Abstract
It is well established that every living organism spontaneously emits photons referred to as ultra-weak photon emission (synonym biophotons or low-level chemiluminescence) which inherently embodies information about the wellbeing of the source. In recent years, efforts have been made to use this feature as a non-invasive diagnostic tool related to the detection of food quality, agriculture and biomedicine. The current study deals with stress resulting from wounding (mechanical injury) on Arabidopsis thaliana and how it modifies the spontaneous ultra-weak photon emission. The ultra-weak photon emission from control (non-wounded) and stressed (wounded) plants was monitored using different modes of ultra-weak photon emission measurement sensors like charge-coupled device (CCD) cameras and photomultiplier tubes (PMT) and the collected data were analyzed to determine the level of stress generated, photon emission patterns, and underlying biochemical process. It is generally considered that electronically excited species formed during the oxidative metabolic processes are responsible for the ultra-weak photon emission. In the current study, a high-performance cryogenic full-frame CCD camera was employed for two-dimensional in-vivo imaging of ultra-weak photon emission (up to several counts/s) and the spectral analysis was done by using spectral system connected to a PMT. The results show that Arabidopsis subjected to mechanical injury enhances the photon emission and also leads to changes in the spectral pattern of ultra-weak photon emission. Thus, ultra-weak photon emission can be used as a tool for oxidative stress imaging and can pave its way into numerous plant application research.
Collapse
|
9
|
Detection of Hydroxyl Radicals Using Cerium Oxide/Graphene Oxide Composite on Prussian Blue. NANOMATERIALS 2020; 10:nano10061136. [PMID: 32526855 PMCID: PMC7353455 DOI: 10.3390/nano10061136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022]
Abstract
A composite sensor consisting of two separate inorganic layers of Prussian blue (PB) and a composite of cerium oxide nanoparticles (CeNPs) and graphene oxide (GO), is tested with •OH radicals. The signals from the interaction between the composite layers and •OH radicals are characterized using cyclic voltammetry (CV). The degradation of PB in the presence of H2O2 and •OH radicals is observed and its impact on the sensor efficiency is investigated. The results show that the composite sensor differentiates between the solutions with and without •OH radicals by the increase of electrochemical redox current in the presence of •OH radicals. The redox response shows a linear relation with the concentration of •OH radicals where the limit of detection, LOD, is found at 60 µM (100 µM without the PB layer). When additional composite layers are applied on the composite sensor to prevent the degradation of PB layer, the PB layer is still observed to be degraded. Furthermore, the sensor conductivity is found to decrease with the additional layers of composite. Although the CeNP/GO/PB composite sensor demonstrates high sensitivity with •OH radicals at low concentrations, it can only be used once due to the degradation of PB.
Collapse
|
10
|
Tsuchida K, Iwasa T, Kobayashi M. Imaging of ultraweak photon emission for evaluating the oxidative stress of human skin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 198:111562. [DOI: 10.1016/j.jphotobiol.2019.111562] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 11/26/2022]
|
11
|
Pospíšil P, Prasad A, Rác M. Mechanism of the Formation of Electronically Excited Species by Oxidative Metabolic Processes: Role of Reactive Oxygen Species. Biomolecules 2019; 9:E258. [PMID: 31284470 PMCID: PMC6681336 DOI: 10.3390/biom9070258] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 01/07/2023] Open
Abstract
It is well known that biological systems, such as microorganisms, plants, and animals, including human beings, form spontaneous electronically excited species through oxidative metabolic processes. Though the mechanism responsible for the formation of electronically excited species is still not clearly understood, several lines of evidence suggest that reactive oxygen species (ROS) are involved in the formation of electronically excited species. This review attempts to describe the role of ROS in the formation of electronically excited species during oxidative metabolic processes. Briefly, the oxidation of biomolecules, such as lipids, proteins, and nucleic acids by ROS initiates a cascade of reactions that leads to the formation of triplet excited carbonyls formed by the decomposition of cyclic (1,2-dioxetane) and linear (tetroxide) high-energy intermediates. When chromophores are in proximity to triplet excited carbonyls, the triplet-singlet and triplet-triplet energy transfers from triplet excited carbonyls to chromophores result in the formation of singlet and triplet excited chromophores, respectively. Alternatively, when molecular oxygen is present, the triplet-singlet energy transfer from triplet excited carbonyls to molecular oxygen initiates the formation of singlet oxygen. Understanding the mechanism of the formation of electronically excited species allows us to use electronically excited species as a marker for oxidative metabolic processes in cells.
Collapse
Affiliation(s)
- Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Ankush Prasad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Marek Rác
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
12
|
Calcerrada M, Garcia-Ruiz C. Human Ultraweak Photon Emission: Key Analytical Aspects, Results and Future Trends - A Review. Crit Rev Anal Chem 2018; 49:368-381. [PMID: 30582823 DOI: 10.1080/10408347.2018.1534199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Living systems emit what is called ultraweak photon emission (UPE). This visually undetectable phenomenon has only been studied in humans for the last 30 years, finding that UPE is a complex process depending on multitude factors. Considering previous literature, this review discusses the current trends in the analysis of in vivo UPE from human beings. To this aim, Analytical Approaches Employed for UPE Measurement section focuses on the analytical techniques employed (photomultipliers and charged coupled device cameras), summarizing analytical conditions and reporting figures of merit reached to date. Then, Human UPE Depending on External Factors and Human UPE Depending on Internal Factors sections address external and internal factors, which have proved to affect UPE, pointing out the important influence on oxidative processes outside and inside the body, and also highlighting some personal states of the individuals affecting UPE. Last section is devoted to give a general view on the goals and achieved up to date regarding UPE measurement, emphasizing some potential applications as well as recommendations which include: use of UPE spectra information together with UPE intensity, larger populations (≈50-100 subjects), further studies on internal states of individuals, and use of statistical tools.
Collapse
Affiliation(s)
- M Calcerrada
- a Department of Analytical Chemistry Physical Chemistry and Chemical Engineering, Multipurpose Building of Chemistry , University of Alcalá , Alcalá de Henares , Madrid , Spain
| | - C Garcia-Ruiz
- a Department of Analytical Chemistry Physical Chemistry and Chemical Engineering, Multipurpose Building of Chemistry , University of Alcalá , Alcalá de Henares , Madrid , Spain.,b University Institute of Research in Police Sciences (IUICP), Law Faculty, Colegio Máximo de Jesuitas , University of Alcalá , Alcalá de Henares , Madrid , Spain
| |
Collapse
|
13
|
Prasad A, Balukova A, Pospíšil P. Triplet Excited Carbonyls and Singlet Oxygen Formation During Oxidative Radical Reaction in Skin. Front Physiol 2018; 9:1109. [PMID: 30158877 PMCID: PMC6104306 DOI: 10.3389/fphys.2018.01109] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/23/2018] [Indexed: 11/13/2022] Open
Abstract
The skin is the largest organ in the body and is consistently exposed to aggressive environmental attacks (biological/physical/chemical, etc.). Reactive oxygen species (ROS) are formed during the normal oxidative metabolism which enhances to a lethal level under stress conditions referred to as oxidative stress. While, under normal conditions, cells are capable of dealing with ROS using non-enzymatic and enzymatic defense system, it can lead to a critical damage to cell system via the oxidation of cellular components under stress condition. Lipid peroxidation is a well-established mechanism of cellular injury in all kinds of organisms and it is often used as an indicator of oxidative stress in cells and tissues. In the presence of metal ions, ROS such as hydrogen peroxide (H2O2) produces highly reactive hydroxyl radical (HO•) via Fenton reaction. In the current study, we have used the porcine skin (intact pig ear/skin biopsies) as an ex vivo/in vitro model system to represent human skin. Experimental results have been presented on the participation of HO• in the initiation of lipid peroxidation and thereby leading to the formation of reactive intermediates and the formation of electronically excited species eventually leading to ultra-weak photon emission (UPE). To understand the participation of different electronically excited species in the overall UPE, the effect of a scavenger of singlet oxygen (1O2) on photon emission in the visible and near-infrared region of the spectrum was measured which showed its contribution. In addition, measurement with interference filter with a transmission in the range of 340-540 nm reflected a substantial contribution of triplet carbonyls (3L=O∗) in the photon emission. Thus, it is concluded that during the oxidative radical reactions, the UPE is contributed by the formation of both 3L=O∗ and 1O2. The method used in the current study is claimed to be a potential tool for non-invasive determination of the physiological and pathological state of human skin in dermatological research.
Collapse
Affiliation(s)
- Ankush Prasad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Anastasiia Balukova
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| |
Collapse
|
14
|
Naveed M, Raees M, Liaqat I, Kashif M. Clastogenic ROS and biophotonics in precancerous diagnosis. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s11515-018-1488-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
15
|
Light Emission from the Fe 2+-EGTA-H₂O₂ System: Possible Application for the Determination of Antioxidant Activity of Plant Phenolics. Molecules 2018; 23:molecules23040866. [PMID: 29642591 PMCID: PMC6017907 DOI: 10.3390/molecules23040866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 11/17/2022] Open
Abstract
Oxidative reactions can result in the formation of electronically excited species that undergo radiative decay depending on electronic transition from the excited state to the ground state with subsequent ultra-weak photon emission (UPE). We investigated the UPE from the Fe2+-EGTA (ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid)–H2O2 system with a multitube luminometer (Peltier-cooled photon counter, spectral range 380 to 630 nm). The UPE of 92.6 µmol/L Fe2+—185.2 µmol/L EGTA—2.6 mmol/L H2O2 reached 4319 ± 755 relative light units during 2 min measurement and was about seven times higher (p < 0.001) than the UPE of incomplete systems (Fe2+-H2O2, EGTA-H2O2) and medium alone. Substitution of Fe2+ with Cr2+, Co2+, Mn2+ or Cu2+ as well as of EGTA with EDTA (ethylenediaminetetraacetic acid) or citrate completely abolished UPE. Experiments with ROS scavengers revealed the dependence of UPE on hydroxyl radicals suggesting occurrence of oxidative attack and cleavage of the ether bond in EGTA backbone structure and formation of triplet excited carbonyl groups with subsequent light emission. Plant phenolics (ferulic, chlorogenic and caffec acids) at concentration 87 µmol/L and ascorbate at 0.46 mmol/L inhibited UPE by 90 ± 4%, 90 ± 5%, 97 ± 2% and 92 ± 1%, respectively. Quenching of UPE from Fe2+-EGTA-H2O2 system can be used for evaluation of antioxidant activity of phytochemicals.
Collapse
|
16
|
Measuring the Human Ultra-Weak Photon Emission Distribution Using an Electron-Multiplying, Charge-Coupled Device as a Sensor. SENSORS 2018; 18:s18041152. [PMID: 29642593 PMCID: PMC5948505 DOI: 10.3390/s18041152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/28/2018] [Accepted: 04/07/2018] [Indexed: 01/10/2023]
Abstract
Ultra-weak photon emission (UPE) is the spontaneous emission from living systems mainly attributed to oxidation reactions, in which reactive oxygen species (ROS) may play a major role. Given the capability of the next-generation electron-multiplying CCD (EMCCD) sensors and the easy use of liquid crystal tunable filters (LCTF), the aim of this work was to explore the potential of a simple UPE spectrometer to measure the UPE from a human hand. Thus, an easy setup was configured based on a dark box for inserting the subject’s hand prior to LCTF as a monochromator and an EMCCD sensor working in the full vertical binning mode (FVB) as a spectra detector. Under controlled conditions, both dark signals and left hand UPE were acquired by registering the UPE intensity at different selected wavelengths (400, 450, 500, 550, 600, 650, and 700 nm) during a period of 10 min each. Then, spurious signals were filtered out by ignoring the pixels whose values were clearly outside of the Gaussian distribution, and the dark signal was subtracted from the subject hand signal. The stepped spectrum with a peak of approximately 880 photons at 500 nm had a shape that agreed somewhat with previous reports, and agrees with previous UPE research that reported UPE from 420 to 570 nm, or 260 to 800 nm, with a range from 1 to 1000 photons s−1 cm−2. Obtaining the spectral distribution instead of the total intensity of the UPE represents a step forward in this field, as it may provide extra information about a subject’s personal states and relationship with ROS. A new generation of CCD sensors with lower dark signals, and spectrographs with a more uniform spectral transmittance, will open up new possibilities for configuring measuring systems in portable formats.
Collapse
|
17
|
Shanei A, Alinasab Z, Kiani A, Nematollahi MA. Detection of Ultraweak Photon Emission (UPE) from Cells as a Tool for Pathological Studies. J Biomed Phys Eng 2017; 7:389-396. [PMID: 29445715 PMCID: PMC5809932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/26/2016] [Indexed: 06/08/2023]
Abstract
OBJECTIVE It is well-known that all living cells emit ultra-weak photon emission (UPE), which is due to byproducts of chemical reactions in cell metabolisms. It has been shown that Reactive Oxygen Species (ROS) in the cells enhances the UPE intensity. The magnitude of such UPE is extremely weak (i.e. a few to 103 photons/ (sec.cm22)), and the detection of such ultra-weak signals is hardly possible via sensitive instruments like photomultiplier tube (PMT) that can detect single photons. MATERIALS AND METHODS H2O2 factor with various concentrations was applied on the HT-29 cells to generate ROS. H2O2 concentrations were so low to be nondestructive to the cells. Then, the effect of ROS generation on UPE intensity was investigated. PMT was used to detect UPE from HT-29 cells. RESULTS The topical application of H2O2 was significantly different (P < 0.05) in comparison with HT-29 cells without H2O2 at a concentration of 1mM in 5 min detection time. The integrated UPE in the presence of H2O2 at concentration of 3mM was significantly higher (P < 0.05) than the integrated UPE in other groups at the same detection time. The difference between the concentrations of 3mM and 4mM was not significant (P > 0.01) for integrated UPE in the cell groups in the presence of H2O2. CONCLUSION The results show that the recorded UPE from HT-29 cells increased with the topical application of exogenous ROS inducer. As a result, UPE can be used as a non-invasive technique for monitoring ROS in cells.
Collapse
Affiliation(s)
- A Shanei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Z Alinasab
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - A Kiani
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - M A Nematollahi
- Department of Biosystems engineering, Shiraz University, Shiraz, Iran
| |
Collapse
|
18
|
Yang M, Ding W, Liu Y, Fan H, Bajpai RP, Fu J, Pang J, Zhao X, Han J. Ultra-weak photon emission in healthy subjects and patients with type 2 diabetes: evidence for a non-invasive diagnostic tool. Photochem Photobiol Sci 2017; 16:736-743. [PMID: 28294270 DOI: 10.1039/c6pp00431h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Spontaneous ultra-weak photon emission (UPE) is a common phenomenon in biological systems and has been linked to pathological states. Researchers have always considered ultra-weak photon emission a potential non-invasive diagnostic tool, but its application in the medical field is stagnant due to the lack of relevant data for pathological states. METHODS Ultra-weak photon signals from five body sites (forehead, neck, heart, stomach, and navel) in fifty patients with type 2 diabetes and sixty age-matched healthy subjects were measured using a moveable whole-body biophoton detection system. Photon signal is measured for 10 min and detected in bins of 50 ms by a photomultiplier with a range of 290-630 nm. Each signal is a time series of 12 000 elements. Various parameters including photon intensity, Q value, squeezed state parameters (|α|, θ, ø, r) and SSI were analyzed. RESULTS AND CONCLUSION we found significant differences in the abovementioned parameters between groups, and all subjects could be clustered into two groups according to the results obtained by principal component analysis. Methods and results from this study could be useful for constructing a UPE database for a range of diseases, which would promote the application of UPE in clinical diagnosis in the future.
Collapse
Affiliation(s)
- Meina Yang
- Research Center for Medicinal Biotechnology, Shandong Academy of Medical Sciences, Shandong, Ji'nan 250062, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
A Chinese literature overview on ultra-weak photon emission as promising technology for studying system-based diagnostics. Complement Ther Med 2016; 25:20-6. [DOI: 10.1016/j.ctim.2015.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 12/10/2015] [Accepted: 12/26/2015] [Indexed: 10/22/2022] Open
|
20
|
Prasad A, Kikuchi H, Inoue KY, Suzuki M, Sugiura Y, Sugai T, Tomonori A, Tada M, Kobayashi M, Matsue T, Kasai S. Simultaneous Real-Time Monitoring of Oxygen Consumption and Hydrogen Peroxide Production in Cells Using Our Newly Developed Chip-Type Biosensor Device. Front Physiol 2016; 7:109. [PMID: 27065878 PMCID: PMC4810025 DOI: 10.3389/fphys.2016.00109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/07/2016] [Indexed: 01/10/2023] Open
Abstract
All living organisms bear its defense mechanism. Immune cells during invasion by foreign body undergoes phagocytosis during which monocyte and neutrophil produces reactive oxygen species (ROS). The ROS generated in animal cells are known to be involved in several diseases and ailments, when generated in excess. Therefore, if the ROS generated in cells can be measured and analyzed precisely, it can be employed in immune function evaluation and disease detection. The aim of the current study is to introduce our newly developed chip-type biosensor device with high specificity and sensitivity. It comprises of counter electrode and working electrodes I and II. The counter electrode is a platinum plate while the working electrodes I and II are platinum microelectrode and osmium-horseradish peroxidase modified gold electrode, respectively which acts as oxygen and hydrogen peroxide (H2O2) detection sensors. Simultaneous measurement of oxygen consumption and H2O2 generation were measured in animal cells under the effect of exogenous addition of differentiation inducer, phorbol 12-myristate 13-acetate. The results obtained showed considerable changes in reduction currents in the absence and presence of inducer. Our newly developed chip-type biosensor device is claimed to be a useful tool for real-time monitoring of the respiratory activity and precise detection of H2O2 in cells. It can thus be widely applied in biomedical research and in clinical trials being an advancement over other H2O2 detection techniques.
Collapse
Affiliation(s)
- Ankush Prasad
- Biomedical Engineering Research Center, Tohoku Institute of Technology Sendai, Japan
| | - Hiroyuki Kikuchi
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology Sendai, Japan
| | - Kumi Y Inoue
- Graduate School of Environmental Studies, School of Engineering, Advanced Institute for Materials Research, Tohoku University Sendai, Japan
| | - Makoto Suzuki
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology Sendai, Japan
| | - Yamato Sugiura
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology Sendai, Japan
| | - Tomoya Sugai
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology Sendai, Japan
| | - Amano Tomonori
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology Sendai, Japan
| | - Mika Tada
- Biomedical Engineering Research Center, Tohoku Institute of TechnologySendai, Japan; Center for General Education, Tohoku Institute of TechnologySendai, Japan
| | - Masaki Kobayashi
- Biomedical Engineering Research Center, Tohoku Institute of TechnologySendai, Japan; Graduate Department of Electronics, Tohoku Institute of TechnologySendai, Japan
| | - Tomokazu Matsue
- Graduate School of Environmental Studies, School of Engineering, Advanced Institute for Materials Research, Tohoku University Sendai, Japan
| | - Shigenobu Kasai
- Biomedical Engineering Research Center, Tohoku Institute of TechnologySendai, Japan; Graduate Department of Environmental Information Engineering, Tohoku Institute of TechnologySendai, Japan
| |
Collapse
|
21
|
Kobayashi K, Okabe H, Kawano S, Hidaka Y, Hara K. Biophoton emission induced by heat shock. PLoS One 2014; 9:e105700. [PMID: 25153902 PMCID: PMC4143285 DOI: 10.1371/journal.pone.0105700] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 07/28/2014] [Indexed: 01/04/2023] Open
Abstract
Ultraweak biophoton emission originates from the generation of reactive oxygen species (ROS) that are produced in mitochondria as by-products of cellular respiration. In healthy cells, the concentration of ROS is minimized by a system of biological antioxidants. However, heat shock changes the equilibrium between oxidative stress and antioxidant activity, that is, a rapid rise in temperature induces biophoton emission from ROS. Although the rate and intensity of biophoton emission was observed to increase in response to elevated temperatures, pretreatment at lower high temperatures inhibited photon emission at higher temperatures. Biophoton measurements are useful for observing and evaluating heat shock.
Collapse
Affiliation(s)
- Katsuhiro Kobayashi
- The Graduate School of Systems Life Sciences, Kyushu University, Fukuoka City, Fukuoka Pref, Japan
| | - Hirotaka Okabe
- The Graduate School of Systems Life Sciences, Kyushu University, Fukuoka City, Fukuoka Pref, Japan
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka City, Fukuoka Pref, Japan
| | - Shinya Kawano
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka City, Fukuoka Pref, Japan
| | - Yoshiki Hidaka
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka City, Fukuoka Pref, Japan
| | - Kazuhiro Hara
- The Graduate School of Systems Life Sciences, Kyushu University, Fukuoka City, Fukuoka Pref, Japan
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka City, Fukuoka Pref, Japan
| |
Collapse
|
22
|
Prasad A, Rossi C, Lamponi S, Pospíšil P, Foletti A. New perspective in cell communication: potential role of ultra-weak photon emission. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 139:47-53. [PMID: 24703082 DOI: 10.1016/j.jphotobiol.2014.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 01/11/2023]
Abstract
Evolution has permitted a wide range of medium for communication between two living organism varying from information transfer via chemical, direct contact or through specialized receptors. Past decades have evidenced the existence of cell-to-cell communication in living system. Several studies have demonstrated the existence of one cell system influencing the other cells by means of electromagnetic radiations investigated by the stimulation of cell division, neutrophils activation, respiratory burst induction and alteration in the developmental stages, etc. The responses were evaluated by methods such as chemiluminescence, ultra-weak photon emission, generation of free oxygen radicals, and level of thiobarbituric acid-reactive substances (TBARS). The cellular communication is hypothesized to occur via several physical phenomenon's, however the current review attempts to provide thorough information and a detailed overview of experimental results on the cell-to-cell communication observed in different living system via ultra-weak photon emission to bring a better understanding and new perspective to the phenomenon.
Collapse
Affiliation(s)
- Ankush Prasad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Claudio Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2-53100 Siena, Italy; Centre for Colloid and Surface Science (CSGI), University of Florence, Via della, Lastruccia 3, Sesto Fiorentino, FI, Italy.
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2-53100 Siena, Italy
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Alberto Foletti
- Laboratory of Applied Mathematics and Physics, Department of Innovative Technologies - DTI, University of Applied Sciences of Southern Switzerland-SUPSI, Manno, Switzerland
| |
Collapse
|
23
|
Pospíšil P, Prasad A, Rác M. Role of reactive oxygen species in ultra-weak photon emission in biological systems. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 139:11-23. [PMID: 24674863 DOI: 10.1016/j.jphotobiol.2014.02.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
Abstract
Ultra-weak photon emission originates from the relaxation of electronically excited species formed in the biological systems such as microorganisms, plants and animals including humans. Electronically excited species are formed during the oxidative metabolic processes and the oxidative stress reactions that are associated with the production of reactive oxygen species (ROS). The review attempts to overview experimental evidence on the involvement of superoxide anion radical, hydrogen peroxide, hydroxyl radical and singlet oxygen in both the spontaneous and the stress-induced ultra-weak photon emission. The oxidation of biomolecules comprising either the hydrogen abstraction by superoxide anion and hydroxyl radicals or the cycloaddition of singlet oxygen initiate a cascade of oxidative reactions that lead to the formation of electronically excited species such as triplet excited carbonyl, excited pigments and singlet oxygen. The photon emission of these electronically excited species is in the following regions of the spectrum (1) triplet excited carbonyl in the near UVA and blue-green areas (350-550nm), (2) singlet and triplet excited pigments in the green-red (550-750nm) and red-near IR (750-1000nm) areas, respectively and (3) singlet oxygen in the red (634 and 703nm) and near IR (1270nm) areas. The understanding of the role of ROS in photon emission allows us to use the spontaneous and stress-induced ultra-weak photon emission as a non-invasive tool for monitoring of the oxidative metabolic processes and the oxidative stress reactions in biological systems in vivo, respectively.
Collapse
Affiliation(s)
- Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic.
| | - Ankush Prasad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Marek Rác
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| |
Collapse
|
24
|
Ultra-weak photon emission from biological samples: definition, mechanisms, properties, detection and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 139:2-10. [PMID: 24726298 DOI: 10.1016/j.jphotobiol.2014.02.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 11/20/2022]
Abstract
This review attempts to summarize molecular mechanisms, spectral and intensity properties, detection techniques and applications of ultra-weak photon emission. Ultra-weak photon emission is the chemiluminescence from biological systems where electronically excited species are formed during oxidative metabolic or oxidative stress processes. It is generally accepted that photons are emitted (1) at near UVA, visible, and near IR spectral ranges from 350 to 1300nm and (2) at the intensity of photon emission in the range of several units to several hundreds (oxidative metabolic process) and several hundreds to several thousands (oxidative stress process) photons s(-1)cm(-2). Current development in detection using low-noise photomultiplier tubes and imaging using highly sensitive charge coupled device cameras allows temporal and spatial visualization of oxidative metabolic or oxidative stress processes, respectively. As the phenomenon of ultra-weak photon emission reflects oxidative metabolic or oxidative stress processes, it can be widely used as a non-invasive tool for monitoring of the physiological state of biological systems.
Collapse
|
25
|
van Wijk E, Kobayashi M, van Wijk R, van der Greef J. Imaging of ultra-weak photon emission in a rheumatoid arthritis mouse model. PLoS One 2013; 8:e84579. [PMID: 24386396 PMCID: PMC3875549 DOI: 10.1371/journal.pone.0084579] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/22/2013] [Indexed: 11/18/2022] Open
Abstract
Ultra-weak photon emission (UPE) of a living system received scientific attention because of its potential for monitoring increased levels of reactive oxygen species (ROS) in the pathogenesis of rheumatoid arthritis (RA). In this study, a highly sensitive cryogenic charge-coupled device (CCD) camera was used to monitor in a RA mouse model the photon emission both without and with luminol. For that purpose, arthritis was induced in mice utilizing a repeated co-administration of type II collagen with lipopolysaccharide. Quantitative imaging of ultra-weak photon emission of the front and back paws of the animals was initiated 70 days after the first injection. All of the animals were measured once without luminol and once again immediately after luminol injection. Data illustrated a higher UPE intensity after initiating arthritis by CII-injection of the animals. The increase in UPE intensity was measured with and without using luminol indicating that this imaging technology may be useful for the future study of human RA.
Collapse
Affiliation(s)
- Eduard van Wijk
- Sino-Dutch Centre for Preventive and Personalized Medicine/Centre for Photonics of Living Systems, Leiden University, Leiden, The Netherlands
- Division of Analytical Biosciences, Netherlands Metabolomics Centre, LACDR, Leiden University, The Netherlands
- Meluna Research, Geldermalsen, The Netherlands
- Samueli Institute, Alexandria, Virginia, United States of America
- * E-mail:
| | - Masaki Kobayashi
- Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, Sendai, Japan
| | - Roeland van Wijk
- Sino-Dutch Centre for Preventive and Personalized Medicine/Centre for Photonics of Living Systems, Leiden University, Leiden, The Netherlands
- Meluna Research, Geldermalsen, The Netherlands
| | - Jan van der Greef
- Sino-Dutch Centre for Preventive and Personalized Medicine/Centre for Photonics of Living Systems, Leiden University, Leiden, The Netherlands
- Division of Analytical Biosciences, Netherlands Metabolomics Centre, LACDR, Leiden University, The Netherlands
- TNO Netherlands Organization for Applied Scientific Research, Zeist, The Netherlands
| |
Collapse
|
26
|
Van Wijk R, Van Wijk EPA, van Wietmarschen HA, van der Greef J. Towards whole-body ultra-weak photon counting and imaging with a focus on human beings: a review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 139:39-46. [PMID: 24359911 DOI: 10.1016/j.jphotobiol.2013.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/07/2013] [Accepted: 11/14/2013] [Indexed: 11/26/2022]
Abstract
For decades, the relationship between ultra-weak photon emission (UPE) and the health state of the body is being studied. With the advent of systems biology, attention shifted from the association between UPE and reactive oxygen species towards UPE as a reflection of changed metabolic networks. Essential for this shift in thinking is the development of novel photon count statistical methods that more reflect the dynamics of the systems organization. Additionally, efforts to combine and correlate UPE data with other types of measurements such as metabolomics be key to understand the complexity of the human body. This review describes the history and developments in the area of human UPE research from a technical - methodological perspective, an experimental perspective and a theoretical perspective. There is ample evidence that human UPE research will allow a better understanding of the body as a complex dynamical system. The future lies in the further development of an integrated UPE and metabolomics platform for a personalized monitoring of changes of the system towards health or disease.
Collapse
Affiliation(s)
- Roeland Van Wijk
- Sino-Dutch Centre for Preventive and Personalized Medicine/Centre for Photonics of Living Systems, Leiden University, Leiden, The Netherlands; Meluna Research, Geldermalsen, The Netherlands.
| | - Eduard P A Van Wijk
- Sino-Dutch Centre for Preventive and Personalized Medicine/Centre for Photonics of Living Systems, Leiden University, Leiden, The Netherlands; Meluna Research, Geldermalsen, The Netherlands; Division of Analytical Biosciences, LACDR, Leiden University, Leiden, The Netherlands; Samueli Institute, 1737 King Street, Suite 600, Alexandria, VA 22314, USA
| | - Herman A van Wietmarschen
- Sino-Dutch Centre for Preventive and Personalized Medicine/Centre for Photonics of Living Systems, Leiden University, Leiden, The Netherlands; TNO Netherlands Organization for Applied Scientific Research, Zeist, The Netherlands
| | - Jan van der Greef
- Sino-Dutch Centre for Preventive and Personalized Medicine/Centre for Photonics of Living Systems, Leiden University, Leiden, The Netherlands; Division of Analytical Biosciences, LACDR, Leiden University, Leiden, The Netherlands; TNO Netherlands Organization for Applied Scientific Research, Zeist, The Netherlands
| |
Collapse
|
27
|
Highly sensitive imaging for ultra-weak photon emission from living organisms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 139:34-8. [PMID: 24360927 DOI: 10.1016/j.jphotobiol.2013.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/10/2013] [Accepted: 11/12/2013] [Indexed: 11/23/2022]
Abstract
Spontaneous ultra-weak photon emissions (UPEs) are from living organisms. Often designated as biophoton emissions, they are associated with reactive oxygen species production. They have long been explored for use in the extraction of pathophysiological information of living bodies. Because of its potential non-invasiveness and because it is completely passive, it has been anticipated for application to human diagnosis. However, because of the weakness of its signal and the complexity of the mechanisms, practical applications of UPE and efforts have remained restricted. Imaging of UPE is a powerful tool for the practical application of UPE. Furthermore, efforts to develop imaging technique have been made from the early period of UPE study. This report explains the history of UPE study, particularly describing the development of imaging technology and its application covering agriculture and medicine are reviewed. Furthermore, the issue of what was achieved and what is necessary for the additional advancement of UPE will be discussed for practical application.
Collapse
|
28
|
Ou-Yang H. The application of ultra-weak photon emission in dermatology. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 139:63-70. [PMID: 24275519 DOI: 10.1016/j.jphotobiol.2013.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 11/29/2022]
Abstract
Ultra-weak photo emission (UPE) is a phenomenon closely associated with life and provides us a rare window to look into oxidative reactions in life directly without the aid of other agents. Dozens of independent studies have investigated UPE in skin in the last 2 decades. Skin serves as a convenient target for the application of UPE. As the outmost layer of our body, skin is also subjected to the influences from environmental factors such as ultraviolet light. Therefore UPE measurement can help us better understand the interaction between skin and the outside world. A variety of dermatological interventions may benefit from UPE studies. In particular, those treatments aiming to manage the oxidative status of the skin can be monitored directly by UPE measurements. In recent years, UPE has already been used as a valuable in vivo tool to assist the selection of better skin care ingredients and products. The knowledge gained by UPE studies of skin may also help generate new insights and new targets for future treatments. This review emphasizes in vivo and clinical measurement of UPE in skin. The applications of UPE in skin research related to antioxidants and sunscreens are discussed.
Collapse
Affiliation(s)
- Hao Ou-Yang
- Johnson & Johnson Consumer Company Worldwide, 199 Grandview Road, Skillman, NJ 08558, United States.
| |
Collapse
|
29
|
Attributes characterizing spontaneous ultra-weak photon signals of human subjects. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 129:6-16. [PMID: 24141288 DOI: 10.1016/j.jphotobiol.2013.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/16/2013] [Accepted: 09/16/2013] [Indexed: 01/07/2023]
Abstract
Sixty visible range photon signals spontaneously emitted from the dorsal side of both hands of fifteen human subjects are analyzed with the aim of finding their attributes. The signals are of 30 min duration and detected in bins of 50 ms by two synchronized photo multipliers sensitive in the range (290-630 nm). Each signal is a time series of 36,000 elements. The attributes of its signal are determined from the statistical properties of time series. The mean and variance of time series determine the attributes signal strength and intercept (p₀) and slope (p₁) of the Fano Factor curve. The photon count distribution of the time series determines squeezed state parameters |α|, r, θ and ϕ, squeezed state index (SSI), and sum of the squares of residue (SSR). The correlation between simultaneously detected signals determines intercept (c₀) and slope (c₁) of their correlation curve. The variability of attributes is studied by calculating them in smaller intervals covering the entire signal. The profile of attribute at 12 sites in a subject is more informative and biologically relevant.
Collapse
|
30
|
Al-Shobaili HA, Alzolibani AA, Al Robaee AA, Meki ARMA, Rasheed Z. Biochemical markers of oxidative and nitrosative stress in acne vulgaris: correlation with disease activity. J Clin Lab Anal 2013; 27:45-52. [PMID: 23325743 DOI: 10.1002/jcla.21560] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 10/17/2012] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Acne vulgaris is a multifactorial skin disorder of unknown etiology. Free radical-mediated reactions have been implicated but their role in eliciting this response and contributing to disease progress remains unexplored. This study was undertaken to investigate the status and contribution of oxidative/nitrosative stress in patients with acne vulgaris. METHODS Sera from 50 acne vulgaris with varying levels of disease activity (mild, moderate, and severe) according to the Global Acne Grading System (GAGS) and 40 age- and sex-matched controls were evaluated for serum levels of oxidative/nitrosative stress markers, including protein oxidation, lipid peroxidation and nitric oxide (NO), superoxide dismutase (SOD), and glutathione (GSH). RESULTS Serum analysis showed significantly higher levels of carbonyl contents, malondialdehyde (MDA) and NO, in acne patients compared with healthy controls (P < 0.05). Interestingly, not only there were an increased number of subjects positive for carbonyl contents, but also the levels of these oxidants were significantly increased with the increase of the disease activity (P < 0.05). In addition, a significant correlation was observed between the levels of carbonyl contents and the GAGS scores (r = 0.341, r = 0.355, and r = 0.299, respectively). Furthermore, sera from acne patients had lower levels of SOD and GSH compared with healthy control sera. CONCLUSION These findings support an association between oxidative/nitrosative stress and acne. The stronger response observed in serum samples from patients with higher GAGS scores suggests that markers of oxidative/nitrosative stress may be useful in evaluating the progression of acne and in elucidating the mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- Hani A Al-Shobaili
- Department of Dermatology, College of Medicine, Qassim University, Kingdom of Saudi Arabia
| | | | | | | | | |
Collapse
|
31
|
Towards the two-dimensional imaging of spontaneous ultra-weak photon emission from microbial, plant and animal cells. Sci Rep 2013; 3:1211. [PMID: 23386970 PMCID: PMC3564034 DOI: 10.1038/srep01211] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/04/2013] [Indexed: 12/02/2022] Open
Abstract
Two-dimensional imaging of spontaneous ultra-weak photon emission was measured in the yeast cells, Arabidopsis plant and the human hand using highly sensitive charge coupled device (CCD) camera. For the first time, the detail analysis of measuring parameters such as accumulation time and binning is provided with the aim to achieve two-dimensional images of spontaneous ultra-weak photon emission of good quality. We present data showing that using a hardware binning with binning factor 4 × 4, the accumulation time decreases in the following order: yeast cells (30 min) > the human hand (20 min) > Arabidopsis plant (10 min). Analysis of measuring parameters provides a detailed description of standard condition to be used for two-dimensional spontaneous ultra-weak photon imaging in microbes, plants and animals. Thus, CCD imaging can be employed as a unique tool to examine the oxidative state of the living organism with the application in microbiological, plant and medical research.
Collapse
|