1
|
Sheikh E, Liu Q, Burk D, Beavers WN, Fu X, Gartia MR. Mapping lipid species remodeling in high fat diet-fed mice: Unveiling adipose tissue dysfunction with Raman microspectroscopy. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159557. [PMID: 39128539 PMCID: PMC11380576 DOI: 10.1016/j.bbalip.2024.159557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Dysregulated lipid metabolism in obesity leads to adipose tissue expansion, a major contributor to metabolic dysfunction and chronic disease. Lipid metabolism and fatty acid changes play vital roles in the progression of obesity. In this proof-of-concept study, Raman techniques combined with histochemical imaging methods were utilized to analyze the impact of a high-fat diet (HFD) on different types of adipose tissue in mice, using a small sample size (n = 3 per group). After six weeks of high-fat diet (HFD) feeding, our findings showed hypertrophy, elevated collagen levels, and increased macrophage presence in the adipose tissues of the HFD group compared to the low-fat diet (LFD) group. Statistical analysis of Raman spectra revealed significantly lower unsaturated lipid levels and higher lipid to protein content in different fat pads (brown adipose tissue (BAT), subcutaneous white adipose tissue (SWAT), and visceral white adipose tissue (VWAT)) with HFD. Raman images of adipose tissues were analyzed using Empty modeling and DCLS methods to spatially profile unsaturated and saturated lipid species in the tissues. It revealed elevated levels of ω-3, ω-6, cholesterol, and triacylglycerols in BAT adipose tissues of HFD compared to LFD tissues. These findings indicated that while cholesterol, ω-6/ω-3 ratio, and triacylglycerol levels have risen in the SWAT and VWAT adipose tissues of the HFD group, the levels of ω-3 and ω-6 have decreased following the HFD. The study showed that Raman spectroscopy provided invaluable information at the molecular level for investigating lipid species remodeling and spatial mapping of adipose tissues during HFD.
Collapse
Affiliation(s)
- Elnaz Sheikh
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Qianglin Liu
- LSU AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - David Burk
- Cell Biology and Bioimaging Core, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - William N Beavers
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; Louisiana State University School of Veterinary Medicine, Mass Spectrometry Resource Center, Baton Rouge, LA 70803, USA
| | - Xing Fu
- LSU AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
2
|
Hachem M, Ahmmed MK, Nacir-Delord H. Phospholipidomics in Clinical Trials for Brain Disorders: Advancing our Understanding and Therapeutic Potentials. Mol Neurobiol 2024; 61:3272-3295. [PMID: 37981628 PMCID: PMC11087356 DOI: 10.1007/s12035-023-03793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
Phospholipidomics is a specialized branch of lipidomics that focuses on the characterization and quantification of phospholipids. By using sensitive analytical techniques, phospholipidomics enables researchers to better understand the metabolism and activities of phospholipids in brain disorders such as Alzheimer's and Parkinson's diseases. In the brain, identifying specific phospholipid biomarkers can offer valuable insights into the underlying molecular features and biochemistry of these diseases through a variety of sensitive analytical techniques. Phospholipidomics has emerged as a promising tool in clinical studies, with immense potential to advance our knowledge of neurological diseases and enhance diagnosis and treatment options for patients. In the present review paper, we discussed numerous applications of phospholipidomics tools in clinical studies, with a particular focus on the neurological field. By exploring phospholipids' functions in neurological diseases and the potential of phospholipidomics in clinical research, we provided valuable insights that could aid researchers and clinicians in harnessing the full prospective of this innovative practice and improve patient outcomes by providing more potent treatments for neurological diseases.
Collapse
Affiliation(s)
- Mayssa Hachem
- Department of Chemistry and Healthcare Engineering Innovation Center, Khalifa University of Sciences and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Mirja Kaizer Ahmmed
- Department of Fishing and Post-Harvest Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Houda Nacir-Delord
- Department of Chemistry, Khalifa University of Sciences and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Abstract
Lipids are essential cellular components forming membranes, serving as energy reserves, and acting as chemical messengers. Dysfunction in lipid metabolism and signaling is associated with a wide range of diseases including cancer and autoimmunity. Heterogeneity in cell behavior including lipid signaling is increasingly recognized as a driver of disease and drug resistance. This diversity in cellular responses as well as the roles of lipids in health and disease drive the need to quantify lipids within single cells. Single-cell lipid assays are challenging due to the small size of cells (∼1 pL) and the large numbers of lipid species present at concentrations spanning orders of magnitude. A growing number of methodologies enable assay of large numbers of lipid analytes, perform high-resolution spatial measurements, or permit highly sensitive lipid assays in single cells. Covered in this review are mass spectrometry, Raman imaging, and fluorescence-based assays including microscopy and microseparations.
Collapse
Affiliation(s)
- Ming Yao
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; , ,
| | | | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; , ,
| |
Collapse
|
4
|
Alkhuder K. Raman Scattering-Based Optical Sensing Of Chronic Liver Diseases. Photodiagnosis Photodyn Ther 2023; 42:103505. [PMID: 36965755 DOI: 10.1016/j.pdpdt.2023.103505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/27/2023]
Abstract
Chronic liver diseases (CLDs) are a major public health problem. Despite the progress achieved in fighting against viral hepatitis, the emergence of non-alcoholic fatty liver disease might pose a serious challenge to the public's health in the coming decades. Medical management of CLDs represents a substantial burden on the public health infrastructures. The health care cost of these diseases is an additional burden that weighs heavily on the economies of developing countries. Effective management of CLDs requires the adoption of reliable and cost-effective screening and diagnosing methods to ensure early detection and accurate clinical assessment of these diseases. Vibrational spectroscopies have emerged as universal analytical methods with promising applications in various industrial and biomedical fields. These revolutionary analytical techniques rely on analyzing the interaction between a light beam and the test sample to generate a spectral fingerprint. This latter is defined by the analyte's chemical structure and the molecular vibrations of its functional groups. Raman spectroscopy and surface-enhanced Raman spectroscopy have been used in combination with various chemometric tests to diagnose a wide range of malignant, metabolic and infectious diseases. The aim of the current review is to cast light on the use of these optical sensing methods in the diagnosis of CLDs. The vast majority of research works that investigated the potential application of these spectroscopic techniques in screening and detecting CLDs were discussed here. The advantages and limitations of these modern analytical methods, as compared with the routine and gold standard diagnostic approaches, were also reviewed in details.
Collapse
|
5
|
Mochizuki K, Kumamoto Y, Maeda S, Tanuma M, Kasai A, Takemura M, Harada Y, Hashimoto H, Tanaka H, Smith NI, Fujita K. High-throughput line-illumination Raman microscopy with multislit detection. BIOMEDICAL OPTICS EXPRESS 2023; 14:1015-1026. [PMID: 36950233 PMCID: PMC10026569 DOI: 10.1364/boe.480611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
Raman microscopy is an emerging tool for molecular imaging and analysis of living samples. Use of Raman microscopy in life sciences is, however, still limited because of its slow measurement speed for spectral imaging and analysis. We developed a multiline-illumination Raman microscope to achieve ultrafast Raman spectral imaging. A spectrophotometer equipped with a periodic array of confocal slits detects Raman spectra from a sample irradiated by multiple line illuminations. A comb-like Raman hyperspectral image is formed on a two-dimensional detector in the spectrophotometer, and a hyperspectral Raman image is acquired by scanning the sample with multiline illumination array. By irradiating a sample with 21 simultaneous illumination lines, we achieved high-throughput Raman hyperspectral imaging of mouse brain tissue, acquiring 1108800 spectra in 11.4 min. We also measured mouse kidney and liver tissue as well as conducted label-free live-cell molecular imaging. The ultrafast Raman hyperspectral imaging enabled by the presented technique will expand the possible applications of Raman microscopy in biological and medical fields.
Collapse
Affiliation(s)
- Kentaro Mochizuki
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- These authors contributed equally
| | - Yasuaki Kumamoto
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- These authors contributed equally
| | - Shunsuke Maeda
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masato Tanuma
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsushi Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masashi Takemura
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hitoshi Hashimoto
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
- Institute for Datability Science, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Nicholas Isaac Smith
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Biophotonics Laboratory, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Purevsuren K, Shibuta Y, Shiozaki S, Tsunoda M, Mizukami K, Tobita S, Yoshihara T. Blue-emitting lipid droplet probes based on coumarin dye for multi-color imaging of living cells and fatty livers of mice. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Patil NP, Gómez-Hernández A, Zhang F, Cancel L, Feng X, Yan L, Xia K, Takematsu E, Yang EY, Le V, Fisher ME, Gonzalez-Rodriguez A, Garcia-Monzon C, Tunnell J, Tarbell J, Linhardt RJ, Baker AB. Rhamnan sulfate reduces atherosclerotic plaque formation and vascular inflammation. Biomaterials 2022; 291:121865. [DOI: 10.1016/j.biomaterials.2022.121865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 11/28/2022]
|
8
|
Patsenker E, Thangapandi VR, Knittelfelder O, Palladini A, Hefti M, Beil-Wagner J, Rogler G, Buch T, Shevchenko A, Hampe J, Stickel F. The Pnpla3 Variant I148M Reveals Protective Effects Towards Hepatocellular Carcinoma in Mice via Restoration of Omega-3 Polyunsaturated Fats. J Nutr Biochem 2022; 108:109081. [PMID: 35691594 DOI: 10.1016/j.jnutbio.2022.109081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 02/02/2022] [Accepted: 05/03/2022] [Indexed: 12/02/2022]
Abstract
Alcohol consumption and high caloric diet are leading causes of progressive fatty liver disease. Genetic variant rs738409 in patatin-like phospholipase domain-containing protein 3 (PNPLA3 rs738409 C>G) has been repeatedly described as one of the major risk loci for alcoholic liver cirrhosis (ALC) and hepatocellular carcinoma (HCC) in humans, however, the mechanism behind this association is incompletely understood. We generated mice carrying the rs738409 variant (PNPLA3 I148M) in order to detect genotype-phenotype relationships in mice upon chow and alcohol-high fat/high sugar diet (EtOH/WD). We could clearly demonstrate that the presence of rs738409 per se is sufficient to induce spontaneous development of steatosis after one year in mice on a chow diet, whereas in the setting of unhealthy diet feeding, PNPLA3 I148M did not affect hepatic inflammation or fibrosis, but induced a striking lipid remodelling, microvesicular steatosis and protected from HCC formation. Using shot gun lipidomics, we detected a striking restoration of reduced long chain-polyunsaturated fatty acids (LC-PUFA)-containing TGs, docosapentaenoic acid (C22:5 n3) and omega-3-derived eicosanoids (5-HEPE, 20-HEPE, 19,20-EDP, 21-HDHA) in PNPLA3 I148M mice upon EtOH/WD. At the molecular level, PNPLA3 I148M modulated enzymes for fatty acid and TG transport and metabolism. These findings suggest (dietary) lipids as an important and independent driver of hepatic tumorigenesis. Genetic variant in PNPLA3 exerted protective effects in mice, conflicting with findings in humans. Species-related differences in physiology and metabolism should be taken into account when modelling unhealthy human lifestyle, as genetic mouse models may not always allow for translation of insight gained in humans.
Collapse
Affiliation(s)
- Eleonora Patsenker
- Department of Gastroenterology and Hepatology, University of Zurich, 8091 Zurich, Switzerland.
| | - Veera Raghavan Thangapandi
- Department of Gastroenterology and Hepatology, Universitätsklinikum Dresden, 01304 Dresden, Germany; Center for Regenerative Therapies, TU Dresden, 01307 Dresden, Germany
| | - Oskar Knittelfelder
- Max Plank Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Alessandra Palladini
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Michaela Hefti
- Department of Gastroenterology and Hepatology, University of Zurich, 8091 Zurich, Switzerland
| | - Jane Beil-Wagner
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University of Zurich, 8091 Zurich, Switzerland
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland
| | - Andrej Shevchenko
- Max Plank Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jochen Hampe
- Department of Gastroenterology and Hepatology, Universitätsklinikum Dresden, 01304 Dresden, Germany; Center for Regenerative Therapies, TU Dresden, 01307 Dresden, Germany
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
9
|
Tratwal J, Falgayrac G, During A, Bertheaume N, Bataclan C, Tavakol DN, Campos V, Duponchel L, Daley GQ, Penel G, Chauveau C, Naveiras O. Raman microspectroscopy reveals unsaturation heterogeneity at the lipid droplet level and validates an in vitro model of bone marrow adipocyte subtypes. Front Endocrinol (Lausanne) 2022; 13:1001210. [PMID: 36506047 PMCID: PMC9727239 DOI: 10.3389/fendo.2022.1001210] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
Bone marrow adipocytes (BMAds) constitute the most abundant stromal component of adult human bone marrow. Two subtypes of BMAds have been described, the more labile regulated adipocytes (rBMAds) and the more stable constitutive adipocytes (cBMAds), which develop earlier in life and are more resilient to environmental and metabolic disruptions. In vivo, rBMAds are enriched in saturated fatty acids, contain smaller lipid droplets (LDs) and more readily provide hematopoietic support than their cBMAd counterparts. Mouse models have been used for BMAds research, but isolation of primary BMAds presents many challenges, and thus in vitro models remain the current standard to study nuances of adipocyte differentiation. No in vitro model has yet been described for the study of rBMAds/cBMAds. Here, we present an in vitro model of BM adipogenesis with differential rBMAd and cBMAd-like characteristics. We used OP9 BM stromal cells derived from a (C57BL/6xC3H)F2-op/op mouse, which have been extensively characterized as feeder layer for hematopoiesis research. We observed similar canonical adipogenesis transcriptional signatures for spontaneously-differentiated (sOP9) and induced (iOP9) cultures, while fatty acid composition and desaturase expression of Scd1 and Fads2 differed at the population level. To resolve differences at the single adipocyte level we tested Raman microspectroscopy and show it constitutes a high-resolution method for studying adipogenesis in vitro in a label-free manner, with resolution to individual LDs. We found sOP9 adipocytes have lower unsaturation ratios, smaller LDs and higher hematopoietic support than iOP9 adipocytes, thus functionally resembling rBMAds, while iOP9 more closely resembled cBMAds. Validation in human primary samples confirmed a higher unsaturation ratio for lipids extracted from stable cBMAd-rich sites (femoral head upon hip-replacement surgery) versus labile rBMAds (iliac crest after chemotherapy). As a result, the 16:1/16:0 fatty acid unsaturation ratio, which was already shown to discriminate BMAd subtypes in rabbit and rat marrow, was validated to discriminate cBMAds from rBMAd in both the OP9 model in vitro system and in human samples. We expect our model will be useful for cBMAd and rBMAd studies, particularly where isolation of primary BMAds is a limiting step.
Collapse
Affiliation(s)
- Josefine Tratwal
- Laboratory of Regenerative Hematopoiesis, Ecole Polytechnique Fédérale de Lausanne (EPFL) & Department of Biomedical Sciences, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Guillaume Falgayrac
- Univ. Lille, CHU Lille, Univ. Littoral Côte d’Opale, ULR 4490 - MABLab- Marrow Adiposity Laboratory, Lille, France
| | - Alexandrine During
- Univ. Lille, CHU Lille, Univ. Littoral Côte d’Opale, ULR 4490 - MABLab- Marrow Adiposity Laboratory, Lille, France
| | - Nicolas Bertheaume
- Univ. Lille, CHU Lille, Univ. Littoral Côte d’Opale, ULR 4490 - MABLab- Marrow Adiposity Laboratory, Lille, France
| | - Charles Bataclan
- Laboratory of Regenerative Hematopoiesis, Ecole Polytechnique Fédérale de Lausanne (EPFL) & Department of Biomedical Sciences, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Daniel N. Tavakol
- Laboratory of Regenerative Hematopoiesis, Ecole Polytechnique Fédérale de Lausanne (EPFL) & Department of Biomedical Sciences, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Vasco Campos
- Laboratory of Regenerative Hematopoiesis, Ecole Polytechnique Fédérale de Lausanne (EPFL) & Department of Biomedical Sciences, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ludovic Duponchel
- Univ. Lille, CNRS, UMR 8516 - LASIRe - Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l’Environnement, Lille, France
| | - George Q. Daley
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Boston, MA, United States
| | - Guillaume Penel
- Univ. Lille, CHU Lille, Univ. Littoral Côte d’Opale, ULR 4490 - MABLab- Marrow Adiposity Laboratory, Lille, France
| | - Christophe Chauveau
- Univ. Lille, CHU Lille, Univ. Littoral Côte d’Opale, ULR 4490 - MABLab- Marrow Adiposity Laboratory, Lille, France
| | - Olaia Naveiras
- Laboratory of Regenerative Hematopoiesis, Ecole Polytechnique Fédérale de Lausanne (EPFL) & Department of Biomedical Sciences, University of Lausanne (UNIL), Lausanne, Switzerland
- Service of Hematology, Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of Hematology, Department of Laboratory Medicine Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- *Correspondence: Olaia Naveiras,
| |
Collapse
|
10
|
Raman Study on Lipid Droplets in Hepatic Cells Co-Cultured with Fatty Acids. Int J Mol Sci 2021; 22:ijms22147378. [PMID: 34298998 PMCID: PMC8307330 DOI: 10.3390/ijms22147378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 01/03/2023] Open
Abstract
The purpose of the present study was to investigate molecular compositions of lipid droplets changing in live hepatic cells stimulated with major fatty acids in the human body, i.e., palmitic, stearic, oleic, and linoleic acids. HepG2 cells were used as the model hepatic cells. Morphological changes of lipid droplets were observed by optical microscopy and transmission electron microscopy (TEM) during co-cultivation with fatty acids up to 5 days. The compositional changes in the fatty chains included in the lipid droplets were analyzed via Raman spectroscopy and chemometrics. The growth curves of the cells indicated that palmitic, stearic, and linoleic acids induced cell death in HepG2 cells, but oleic acid did not. Microscopic observations suggested that the rates of fat accumulation were high for oleic and linoleic acids, but low for palmitic and stearic acids. Raman analysis indicated that linoleic fatty chains taken into the cells are modified into oleic fatty chains. These results suggest that the signaling pathway of cell death is independent of fat stimulations. Moreover, these results suggest that hepatic cells have a high affinity for linoleic acid, but linoleic acid induces cell death in these cells. This may be one of the causes of inflammation in nonalcoholic fatty liver disease (NAFLD).
Collapse
|
11
|
Chaichi A, Hasan SMA, Mehta N, Donnarumma F, Ebenezer P, Murray KK, Francis J, Gartia MR. Label-free lipidome study of paraventricular thalamic nucleus (PVT) of rat brain with post-traumatic stress injury by Raman imaging. Analyst 2021; 146:170-183. [PMID: 33135036 DOI: 10.1039/d0an01615b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a widespread psychiatric injury that develops serious life-threatening symptoms like substance abuse, severe depression, cognitive impairments, and persistent anxiety. However, the mechanisms of post-traumatic stress injury in brain are poorly understood due to the lack of practical methods to reveal biochemical alterations in various brain regions affected by this type of injury. Here, we introduce a novel method that provides quantitative results from Raman maps in the paraventricular nucleus of the thalamus (PVT) region. By means of this approach, we have shown a lipidome comparison in PVT regions of control and PTSD rat brains. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry was also employed for validation of the Raman results. Lipid alterations can reveal invaluable information regarding the PTSD mechanisms in affected regions of brain. We have showed that the concentration of cholesterol, cholesteryl palmitate, phosphatidylinositol, phosphatidylserine, phosphatidylethanolamine, sphingomyelin, ganglioside, glyceryl tripalmitate and sulfatide changes in the PVT region of PTSD compared to control rats. A higher concentration of cholesterol suggests a higher level of corticosterone in the brain. Moreover, concentration changes of phospholipids and sphingolipids suggest the alteration of phospholipase A2 (PLA2) which is associated with inflammatory processes in the brain. Our results have broadened the understanding of biomolecular mechanisms for PTSD in the PVT region of the brain. This is the first report regarding the application of Raman spectroscopy for PTSD studies. This method has a wide spectrum of applications and can be applied to various other brain related disorders or other regions of the brain.
Collapse
Affiliation(s)
- Ardalan Chaichi
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Minamikawa T, Ichimura-Shimizu M, Takanari H, Morimoto Y, Shiomi R, Tanioka H, Hase E, Yasui T, Tsuneyama K. Molecular imaging analysis of microvesicular and macrovesicular lipid droplets in non-alcoholic fatty liver disease by Raman microscopy. Sci Rep 2020; 10:18548. [PMID: 33122711 PMCID: PMC7596489 DOI: 10.1038/s41598-020-75604-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Predominant evidence of non-alcoholic fatty liver disease (NAFLD) is the accumulation of excess lipids in the liver. A small group with NAFLD may have a more serious condition named non-alcoholic steatohepatitis (NASH). However, there is a lack of investigation of the accumulated lipids with spatial and molecular information. Raman microscopy has the potential to characterise molecular species and structures of lipids based on molecular vibration and can achieve high spatial resolution at the organelle level. In this study, we aim to demonstrate the feasibility of Raman microscopy for the investigation of NAFLD based on the molecular features of accumulated lipids. By applying the Raman microscopy to the liver of the NASH model mice, we succeeded in visualising the distribution of lipid droplets (LDs) in hepatocytes. The detailed analysis of Raman spectra revealed the difference of molecular structural features of the LDs, such as the degree of saturation of lipids in the LDs. We also found that the inhomogeneous distribution of cholesterol in the LDs depending on the histology of lipid accumulation. We visualised and characterised the lipids of NASH model mice by Raman microscopy at organelle level. Our findings demonstrated that the Raman imaging analysis was feasible to characterise the NAFLD in terms of the molecular species and structures of lipids.
Collapse
Affiliation(s)
- Takeo Minamikawa
- Department of Post-LED Photonics Research, Institute of Post-LED Photonics, Tokushima University, 2-1 Minami-Josanjima, Tokushima, 770-8506, Japan. .,Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan. .,PRESTO, Japan Science and Technology Agency (JST), 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan. .,Research Cluster On "Multi-Scale Vibrational Microscopy for Comprehensive Diagnosis and Treatment of Cancer", Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan.
| | - Mayuko Ichimura-Shimizu
- Research Cluster On "Multi-Scale Vibrational Microscopy for Comprehensive Diagnosis and Treatment of Cancer", Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan.,Department of Pathology and Laboratory Medicine, Graduate School of Medical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Hiroki Takanari
- Research Cluster On "Multi-Scale Vibrational Microscopy for Comprehensive Diagnosis and Treatment of Cancer", Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan.,Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Yuki Morimoto
- Research Cluster On "Multi-Scale Vibrational Microscopy for Comprehensive Diagnosis and Treatment of Cancer", Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan.,Department of Pathology and Laboratory Medicine, Graduate School of Medical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Ryosuke Shiomi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Hiroki Tanioka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Eiji Hase
- Department of Post-LED Photonics Research, Institute of Post-LED Photonics, Tokushima University, 2-1 Minami-Josanjima, Tokushima, 770-8506, Japan.,Research Cluster On "Multi-Scale Vibrational Microscopy for Comprehensive Diagnosis and Treatment of Cancer", Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Takeshi Yasui
- Department of Post-LED Photonics Research, Institute of Post-LED Photonics, Tokushima University, 2-1 Minami-Josanjima, Tokushima, 770-8506, Japan.,Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan.,Research Cluster On "Multi-Scale Vibrational Microscopy for Comprehensive Diagnosis and Treatment of Cancer", Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Koichi Tsuneyama
- Research Cluster On "Multi-Scale Vibrational Microscopy for Comprehensive Diagnosis and Treatment of Cancer", Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan.,Department of Pathology and Laboratory Medicine, Graduate School of Medical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan.,Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| |
Collapse
|
13
|
Lipid droplets in prostate cancer cells and effect of irradiation studied by Raman microspectroscopy. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158753. [DOI: 10.1016/j.bbalip.2020.158753] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022]
|
14
|
Distinct Chemical Changes in Abdominal but Not in Thoracic Aorta upon Atherosclerosis Studied Using Fiber Optic Raman Spectroscopy. Int J Mol Sci 2020; 21:ijms21144838. [PMID: 32650594 PMCID: PMC7402309 DOI: 10.3390/ijms21144838] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 01/02/2023] Open
Abstract
Fiber optic Raman spectroscopy and Raman microscopy were used to investigate alterations in the aorta wall and the surrounding perivascular adipose tissue (PVAT) in the murine model of atherosclerosis (Apoe-/-/Ldlr-/- mice). Both abdominal and thoracic parts of the aorta were studied to account for the heterogenic chemical composition of aorta and its localization-dependent response in progression of atherosclerosis. The average Raman spectra obtained for both parts of aorta cross sections revealed that the chemical composition of intima-media layers along aorta remains relatively homogeneous while the lipid content in the adventitia layer markedly increases with decreasing distance to PVAT. Moreover, our results demonstrate that the increase of the lipid to protein ratio in the aorta wall correlates directly with the increased unsaturation level of lipids in PVAT and these changes occur only in the abdominal, but not in thoracic, aorta. In summary, distinct pathophysiological response in the aortic vascular wall could be uncovered by fiber optic Raman spectroscopy based on simple parameters detecting chemical contents of lipids in PVAT.
Collapse
|
15
|
Lipid Droplet Composition Varies Based on Medaka Fish Eggs Development as Revealed by NIR-, MIR-, and Raman Imaging. Molecules 2020; 25:molecules25040817. [PMID: 32070018 PMCID: PMC7070833 DOI: 10.3390/molecules25040817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 01/23/2023] Open
Abstract
In fertilized fish eggs, lipids are an energy reservoir for the embryo development and substrate for organogenesis. They occur in the cytoplasmic area and form lipid droplets (LDs), but also the yolk egg is composed of lipids and proteins. Insight on the LD formation and distribution and their interactions with other cellular organelles could provide information about the role based on the egg development. For non-destructive, macro-scale visualization of biochemical components of fish eggs, such as lipids proteins and water, near-infrared (NIR) imaging is the method of choice. Mid-infrared (MIR) and Raman spectroscopy imaging were used to provide details on chemical composition of LDs and other egg organelles. NIR imaging illustrated main compartments of the egg including membrane, LDs, yolk, relative protein, and lipid content in well-localized egg structures and their interactions with water molecules. In the yolk, a co-existence of lipids and proteins with carotenoids and carbohydrates was detected by Raman spectroscopy. Results showed a prominent decrease of unsaturated fatty acids, phospholipids, and triglycerides/cholesteryl esters content in the eggs due to the embryo development. An opposite trend of changes was observed by MIR spectroscopy for the glycogen, suggesting that consumption of lipids occurred with production of this carbohydrate. The comprehensive vibrational spectroscopic analysis based on NIR, MIR, and Raman imaging is a unique tool in studying in situ dynamic biological processes.
Collapse
|
16
|
Determination of cadmium induced acute and chronic reproductive toxicity with Raman spectroscopy. Lasers Med Sci 2020; 35:1919-1926. [PMID: 32026165 DOI: 10.1007/s10103-020-02976-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022]
Abstract
Cadmium (Cd) is one of the toxic heavy metals which is confirmed to be related to male sterile. Here, confocal Raman spectroscopy was employed to detect biomolecular composition and changes in testis under acute and chronic Cd treatment. Specific Raman shifts associated with mitochondria, nucleic acids, proteins, lipids, and cholesterol were identified which were distinguishing among groups undergoing different Cd treatment times. Supporting evidences were provided by conventional experimental detections. The relevant biochemical parameters, pathological changes, and protein expression related to testosterone synthesis were all changed and consistent with Raman spectrum information. In conclusion, confocal Raman spectroscopy presents a reliable data and provides a novel method which is expected to be a promising strategy in reproduction toxicity research.
Collapse
|
17
|
Li Y, Shen R, Wu H, Yu L, Wang Z, Wang D. Liver changes induced by cadmium poisoning distinguished by confocal Raman imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 225:117483. [PMID: 31493713 DOI: 10.1016/j.saa.2019.117483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Heavy metal pollution has become an important issue threatening human health and the liver is a very important metabolic organ. Here, we use label-free Raman confocal imaging to study the alterations of the liver tissue after cadmium pollution. Raman imaging has been performed on 100μmx100μm liver tissues to study the distribution of important macromolecules and the average Raman spectrum of the entire region has been used to characterize and quantize the change of biochemical compositions in liver tissue. The poisoned livers displayed a significant decrease in the intensity of 748 cm-1, 1128 cm-1 and 1585 cm-1 bands of cytochrome C, in comparison to the control. The collagen peak at 1082 cm-1 is significantly higher than that of control, suggesting the increasing fibrosis of Cd liver tissues. To confirm the results, we selected a 30μmx15μm liver cell area for high-resolution Raman imaging. We observed a substantial increase of lipids and proteins at specific points of hepatocytes. The confocal Raman imaging of liver tissues provided a unique tool to better understand disease-induced changes in the biochemical phenotype of primary liver tissues. Our study provides valuable references as in vitro models for studying Cd accumulation and toxicity in human liver.
Collapse
Affiliation(s)
- Yuee Li
- School of Information Science and Engineering, Lanzhou University, Gansu 730000, China.
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Gansu 73000, China
| | - Haining Wu
- School of Information Science and Engineering, Lanzhou University, Gansu 730000, China
| | - Linghui Yu
- School of Basic Medical Sciences, Lanzhou University, Gansu 73000, China
| | - Zhong Wang
- School of Information Science and Engineering, Lanzhou University, Gansu 730000, China
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Gansu 73000, China.
| |
Collapse
|
18
|
Segovia-Miranda F, Morales-Navarrete H, Kücken M, Moser V, Seifert S, Repnik U, Rost F, Brosch M, Hendricks A, Hinz S, Röcken C, Lütjohann D, Kalaidzidis Y, Schafmayer C, Brusch L, Hampe J, Zerial M. Three-dimensional spatially resolved geometrical and functional models of human liver tissue reveal new aspects of NAFLD progression. Nat Med 2019; 25:1885-1893. [PMID: 31792455 PMCID: PMC6899159 DOI: 10.1038/s41591-019-0660-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Early disease diagnosis is key to the effective treatment of diseases. Histopathological analysis of human biopsies is the gold standard to diagnose tissue alterations. However, this approach has low resolution and overlooks 3D (three-dimensional) structural changes resulting from functional alterations. Here, we applied multiphoton imaging, 3D digital reconstructions and computational simulations to generate spatially resolved geometrical and functional models of human liver tissue at different stages of non-alcoholic fatty liver disease (NAFLD). We identified a set of morphometric cellular and tissue parameters correlated with disease progression, and discover profound topological defects in the 3D bile canalicular (BC) network. Personalized biliary fluid dynamic simulations predicted an increased pericentral biliary pressure and micro-cholestasis, consistent with elevated cholestatic biomarkers in patients' sera. Our spatially resolved models of human liver tissue can contribute to high-definition medicine by identifying quantitative multiparametric cellular and tissue signatures to define disease progression and provide new insights into NAFLD pathophysiology.
Collapse
Affiliation(s)
| | | | - Michael Kücken
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany
| | - Vincent Moser
- Department of Medicine I, Gastroenterology and Hepatology, University Hospital Carl-Gustav-Carus, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Sarah Seifert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Urska Repnik
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Fabian Rost
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Mario Brosch
- Department of Medicine I, Gastroenterology and Hepatology, University Hospital Carl-Gustav-Carus, Technische Universität Dresden (TU Dresden), Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Alexander Hendricks
- Department of General Surgery, University Hospital Rostock, Rostock, Germany
| | - Sebastian Hinz
- Department of General Surgery, University Hospital Rostock, Rostock, Germany
| | | | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Clemens Schafmayer
- Department of General Surgery, University Hospital Rostock, Rostock, Germany
| | - Lutz Brusch
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany
| | - Jochen Hampe
- Department of Medicine I, Gastroenterology and Hepatology, University Hospital Carl-Gustav-Carus, Technische Universität Dresden (TU Dresden), Dresden, Germany.
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden (TU Dresden), Dresden, Germany.
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
19
|
Yanina IY, Navolokin NA, Bucharskaya AB, Мaslyakova GN, Tuchin VV. Skin and subcutaneous fat morphology alterations under the LED or laser treatment in rats in vivo. JOURNAL OF BIOPHOTONICS 2019; 12:e201900117. [PMID: 31454458 DOI: 10.1002/jbio.201900117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/26/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
The main objective of this work is to quantify the impact of photodynamic/photothermal treatment by using visible LED and NIR laser irradiation through the skin of subcutaneous fat in vivo followed up by tissue sampling and histology. The optical method may provide reduction of regional or site-specific accumulations of abdominal or subcutaneous adipose tissue precisely and least-invasively by inducing cell apoptosis and controlled necrosis of fat tissue. As photodynamic/photothermal adipose tissue sensitizers Brilliant Green (BG) or Indocyanine Green (ICG) dyes were injected subcutaneously in rats. The CW LED device (625 nm) or CW diode laser (808 nm) were used as light sources, respectively. Biopsies of skin together with subcutaneous tissues were taken for histology. The combined action BG-staining and LED-irradiation (BG + LED) or ICG-staining and NIR-laser irradiation (ICG + NIR) causes pronounced signs of damage of adipose tissue characterized by a strong stretching, thinning, folding and undulating of cell membranes and appearance of necrotic areas. As a posttreatment after 14 days only connective tissue was observed at the site of necrotic areas. The data obtained are important for safe light treatment of site-specific fat accumulations, including cellulite. This work provides a basis for the development of fat lipolysis technologies and to move them to clinical applications. Schematics of animal experiment.
Collapse
Affiliation(s)
- Irina Y Yanina
- Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov, Russia
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, Russia
| | - Nikita A Navolokin
- Department of Pathological Anatomy, Saratov State Medical University, Saratov, Russia
| | - Alla B Bucharskaya
- Department of Pathological Anatomy, Saratov State Medical University, Saratov, Russia
| | - Galina N Мaslyakova
- Department of Pathological Anatomy, Saratov State Medical University, Saratov, Russia
| | - Valery V Tuchin
- Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov, Russia
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|
20
|
Szafraniec E, Tott S, Kus E, Augustynska D, Jasztal A, Filipek A, Chlopicki S, Baranska M. Vibrational spectroscopy-based quantification of liver steatosis. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165526. [DOI: 10.1016/j.bbadis.2019.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022]
|
21
|
Helal KM, Taylor JN, Cahyadi H, Okajima A, Tabata K, Itoh Y, Tanaka H, Fujita K, Harada Y, Komatsuzaki T. Raman spectroscopic histology using machine learning for nonalcoholic fatty liver disease. FEBS Lett 2019; 593:2535-2544. [PMID: 31254349 DOI: 10.1002/1873-3468.13520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/03/2019] [Accepted: 06/27/2019] [Indexed: 01/01/2023]
Abstract
Histopathology requires the expertise of specialists to diagnose morphological features of cells and tissues. Raman imaging can provide additional biochemical information to benefit histological disease diagnosis. Using a dietary model of nonalcoholic fatty liver disease in rats, we combine Raman imaging with machine learning and information theory to evaluate cellular-level information in liver tissue samples. After increasing signal-to-noise ratio in the Raman images through superpixel segmentation, we extract biochemically distinct regions within liver tissues, allowing for quantification of characteristic biochemical components such as vitamin A and lipids. Armed with microscopic information about the biochemical composition of the liver tissues, we group tissues having similar composition, providing a descriptor enabling inference of tissue states, contributing valuable information to histological inspection.
Collapse
Affiliation(s)
- Khalifa Mohammad Helal
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Department of Mathematics, Comilla University, Cumilla, Bangladesh
| | - James Nicholas Taylor
- Research Center of Mathematics for Social Creativity, Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Harsono Cahyadi
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Japan
| | - Akira Okajima
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Japan
| | - Koji Tabata
- Research Center of Mathematics for Social Creativity, Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Yoshito Itoh
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Japan
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Osaka University, Japan.,Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Japan.,Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Osaka University, Japan
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Japan
| | - Tamiki Komatsuzaki
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Research Center of Mathematics for Social Creativity, Institute for Electronic Science, Hokkaido University, Sapporo, Japan.,Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo, Japan.,Laboratoire Interdisciplinaire Carnot de Bourgogne, Université de Bourgogne, Dijon, France
| |
Collapse
|
22
|
O Connor D, Byrne A, Berselli GB, Long C, Keyes TE. Mega-stokes pyrene ceramide conjugates for STED imaging of lipid droplets in live cells. Analyst 2019; 144:1608-1621. [PMID: 30631867 DOI: 10.1039/c8an02260g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipid droplets are dynamic subcellular organelles that participate in a range of physiological processes including metabolism, regulation and lipid storage. Their role in disease, such as cancer, where they are involved in metabolism and in chemoresistance, has emerged over recent years. Thus, the value of lipid droplets as diagnostic markers is increasingly apparent where number and size of droplets can be a useful prognostic. Although diverse in size, LDs are typically too small to be easily enumerated by conventional microscopy. The advent of super-resolution microscopy methods offers the prospect of detailed insights but there are currently no commercial STED probes suited to this task and STED, where this method has been used to study LDs it has relied on fixed samples. Here, we report a pyrene-based ceramide conjugate PyLa-C17Cer, that stains lipid droplets with exceptionally high precision in living cells and shows excellent performance in stimulated emission depletion microscopy. The parent compound PyLa comprises a pyrene carboxyl core appended with 3,4-dimethylaminophenyl. The resulting luminophore exhibits high fluorescent quantum yield, mega-Stokes shift and low cytotoxicity. From DFT calculations the Stokes shifted fluorescent state arises from a dimethylaminophenyl to pyrene charge-transfer transition. While the parent compound is cell permeable, it is relatively promiscuous, emitting from both protein and membranous structures within the living mammalian cell. However, on conjugation of C17 ceramide to the free carboxylic acid, the resulting PyLa-C17Cer, remains passively permeable to the cell membrane but targets lipid droplets within the cell through a temperature dependent mechanism, with high selectivity. Targeting was confirmed through colocalisation with the commercial lipid probe Nile Red. PyLa-C17Cer offers outstanding contrast of LDs both in fluorescence intensity and lifetime imaging due to its large Stokes shift and very weak emission from aqueous media. Moreover, because the compound is exceptionally photochemically stable with no detectable triplet emission under low temperature conditions, it can be used as an effective probe for fluorescence correlation spectroscopy (FCS). These versatile fluorophores are powerful multimodal probes for combined STED/FCS/lifetime studies of lipid droplets and domains in live cells.
Collapse
Affiliation(s)
- Darragh O Connor
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland.
| | | | | | | | | |
Collapse
|
23
|
Kochan K, Peng H, Gwee ESH, Izgorodina E, Haritos V, Wood BR. Raman spectroscopy as a tool for tracking cyclopropane fatty acids in genetically engineered Saccharomyces cerevisiae. Analyst 2019; 144:901-912. [PMID: 30207333 DOI: 10.1039/c8an01477a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclopropane fatty acids (CFAs) are a group of lipids with unique physical and chemical properties between those of saturated and monounsaturated fatty acids. The distinctive physicochemical characteristics of CFAs (e.g. oxidative stability, self-polymerization at high temperatures, etc.) results from the presence of a cyclopropane ring within their structure making them highly useful in industrial applications. CFAs are present in several species of plants and bacteria and are typically detected with standard lipid profiling techniques, such as gas or liquid chromatography. In this work we investigated several strains of S. cerevisiae, genetically modified to introduce the production of CFAs, in comparison to control strain using confocal Raman spectroscopy (CRS). The aim of our work was to demonstrate the potential of CRS not only to detect changes introduced due to the CFAs presence, but also to track CFAs within the cells. We present for the first time Raman and IR spectra of CFA standard (cis-9,10-methyleneoctadecanoic acid), completed with quantum chemical calculations and band assignment. We identified marker bands of CFA (e.g. 2992, 1222, 942 cm-1) attributed to the vibrations of the cyclopropyl ring. Furthermore, we analysed lipid bodies (LBs) from modified and control yeast using CRS imaging and identified multiple changes in size, number and composition of LBs from engineered strains. We observed a significant reduction in the degree of unsaturation of LBs using the ratio of bands located at 1660 cm-1 (ν(C[double bond, length as m-dash]C)) and 1448 cm-1 (δ(CH2)) in the modified cell lines. In addition, we were able to detect the presence of CFAs in LBs, using the established marker bands. CRS shows tremendous potential as technique to identify CFAs in lipid bodies providing a new way to track lipid production in genetically modified single yeast cells.
Collapse
Affiliation(s)
- Kamila Kochan
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton Campus, 3800, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
24
|
Beaudry KM, Devries MC. Sex-based differences in hepatic and skeletal muscle triglyceride storage and metabolism 1. Appl Physiol Nutr Metab 2019; 44:805-813. [PMID: 30702924 DOI: 10.1139/apnm-2018-0635] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Women and men store lipid differently within the body with men storing more fat in the android region and women storing more fat in the gynoid region. Fat is predominately stored in adipose tissue as triacylglycerides (TG); however, TG are also stored in other tissues including the liver and skeletal muscle. Excess hepatic TG storage, defined as a TG concentration >5% of liver weight and known as nonalcoholic fatty liver disease (NAFLD), is related to the metabolic syndrome. Similarly, elevated skeletal muscle TG, termed intramyocellular lipids (IMCL), are related to insulin resistance in obesity and type II diabetes. Men store more hepatic TG than women and, unsurprisingly, NAFLD is more prevalent in men than women. Women store more IMCL than men, yet type II diabetes risk is not greater, which is likely due to the manner in which women store TG within muscle. Sex-based differences in TG storage between men and women are underpinned by differences in messenger RNA expression, protein content, and enzyme activities of skeletal muscle and hepatic lipid metabolic pathways. Furthermore, women have a greater reliance on lipid during exercise because of upregulation of lipid oxidative pathways. The purpose of this review is to discuss the role of sex in mediating lipid storage and metabolism within skeletal muscle and the liver at rest and during exercise and its relationship with metabolic disease.
Collapse
Affiliation(s)
- Kayleigh M Beaudry
- Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada.,Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Michaela C Devries
- Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada.,Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
25
|
Jones AD, Boundy-Mills KL, Barla GF, Kumar S, Ubanwa B, Balan V. Microbial Lipid Alternatives to Plant Lipids. Methods Mol Biol 2019; 1995:1-32. [PMID: 31148119 DOI: 10.1007/978-1-4939-9484-7_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lipids are in high demand in food production, nutritional supplements, detergents, lubricants, and biofuels. Different oil seeds produced from plants are conventionally extracted to yield lipids. With increasing population and reduced availability of cultivable land, conventional methods of producing lipids alone will not satisfy increasing demand. Lipids produced using different microbial sources are considered as sustainable alternative to plant derived lipids. Various microorganisms belonging to the genera of algae, bacteria, yeast, fungi, or marine-derived microorganisms such as thraustochytrids possess the ability to accumulate lipids in their cells. A variety of microbial production technologies are being used to cultivate these organisms under specific conditions using agricultural residues as carbon source to be cost competitive with plant derived lipids. Microbial oils, also known as single cell oils, have many advantages when compared with plant derived lipids, such as shorter life cycle, less labor required, season and climate independence, no use of arable land and ease of scale-up. In this chapter we compare the lipids derived from plants and different microorganisms. We also highlight various analytical techniques that are being used to characterize the lipids produced in oleaginous organisms and their applications in various processes.
Collapse
Affiliation(s)
- A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Kyria L Boundy-Mills
- Phaff Yeast Culture Collection, Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - G Florin Barla
- Faculty of Food Engineering, University of Suceava, Suceava, Romania
- Tyton Biosciences, Danville, VA, USA
| | - Sandeep Kumar
- Department of Civil and Environmental Engineering, Old Dominion University, Norfolk, VA, USA
| | - Bryan Ubanwa
- Department of Engineering Technology, Biotechnology Program, College of Technology, University of Houston, Houston, TX, USA
| | - Venkatesh Balan
- Department of Engineering Technology, Biotechnology Program, College of Technology, University of Houston, Houston, TX, USA.
| |
Collapse
|
26
|
Mignolet A, Wood BR, Goormaghtigh E. Intracellular investigation on the differential effects of 4 polyphenols on MCF-7 breast cancer cells by Raman imaging. Analyst 2018; 143:258-269. [PMID: 29214243 DOI: 10.1039/c7an01460k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The past decades have seen significant interest in the study of polyphenolic compounds as potential therapeutic agents in medicine because they display a vast array of cellular effects beneficial to treat or manage a plethora of chronic diseases including inflammatory diseases, cardiovascular abnormalities and several types of cancer. These compounds act at different stages of carcinogenesis but deciphering their mode of action is a complex task. Live MCF-7 breast cancer cells were investigated using Raman imaging to evaluate the perturbations induced after incubating cells with four different polyphenols: EGCG, gallic acid, resveratrol and tannic acid. First, clear spectral changes could be observed between the spectra of the cytoplasm and the nucleus of live MCF-7 cancer cells demonstrating a difference in their respective global chemical composition. The treatments induced significant modifications in the cells but no clear common pattern of modifications from the 4 drugs could be observed in the cell spectra in the 1800-600 cm-1 region. The high spatial resolution of Raman confocal microscopy enabled both the nucleus and cytoplasm to be independently targeted to study the impact of the polyphenols on the cell line. Positive spectral variations at 2851 cm-1 and 2920 cm-1 as well as in the 1460-1420 cm-1 and 1660-1650 cm-1 spectral regions inside cell cytoplasm reflected an increase of the lipid content after exposure to polyphenols. Lipid accumulation appears to be an early biomarker of drug-induced cell stress and subsequent apoptosis. Interestingly an increase of cytochrome c into the cytosol was also induced by EGCG. These multiple events are possibly associated with cell apoptosis. In conclusion, Raman micro-spectroscopy provides a complementary spectroscopic method to realize biological investigations on live cancer cells and to evaluate the effects of polyphenols at the subcellular level.
Collapse
Affiliation(s)
- A Mignolet
- Center for Structural Biology and Bioinformatics, Laboratory for the Structure and Function of Biological Membranes; Université Libre de Bruxelles, Campus Plaine, Bld du Triomphe 2, CP206/2, B1050 Brussels, Belgium
| | | | | |
Collapse
|
27
|
Kochan K, Kus E, Szafraniec E, Wislocka A, Chlopicki S, Baranska M. Changes induced by non-alcoholic fatty liver disease in liver sinusoidal endothelial cells and hepatocytes: spectroscopic imaging of single live cells at the subcellular level. Analyst 2018; 142:3948-3958. [PMID: 28944783 DOI: 10.1039/c7an00865a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is the most prevalent liver disorder worldwide, involving pathogenic mechanisms of liver sinusoidal endothelial cells (LSECs), hepatocytes and other liver cells. Here, we used a novel approach of label-free Raman confocal imaging to study primary LSECs and hepatocytes freshly isolated from the livers of mice with NAFLD induced by a high fat diet (HFD), in comparison to healthy controls. Our aim was to characterize changes in the biochemical composition in LSECs and hepatocytes that occur in a single cell at the subcellular level. LSECs from NAFLD livers displayed a significant increase in the intensity of marker bands of nuclear DNA that was not associated with changes in LSEC nucleus size. A number of changes in the cytoplasm of hepatocytes were identified. However, the most prominent change in hepatocytes was a substantial increase in the degree of unsaturation of LBs' (lipid bodies) lipids in NAFLD, suggesting an increase in the de novo lipogenesis of unsaturated lipids. The confocal Raman imaging of single live cells isolated from the liver provided a unique tool to better understand disease-induced cell-specific changes in the biochemical phenotype of primary liver cells.
Collapse
Affiliation(s)
- Kamila Kochan
- Centre for Biospectroscopy and School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
28
|
Kumamoto Y, Harada Y, Takamatsu T, Tanaka H. Label-free Molecular Imaging and Analysis by Raman Spectroscopy. Acta Histochem Cytochem 2018; 51:101-110. [PMID: 30083018 PMCID: PMC6066646 DOI: 10.1267/ahc.18019] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/25/2018] [Indexed: 01/06/2023] Open
Abstract
Raman scattering of a cell conveys the intrinsic information inherent to chemical structures of biomolecules. The spectroscopy of Raman scattering, or Raman spectroscopy, allows label-free and quantitative molecular sensing of a biological sample in situ without disruption. For the last five decades Raman spectroscopy has been widely utilized in biological research fields. However, it is just within the latest decade that molecular imaging and discrimination of living cells and tissues have become practically available. Here we overview recent progress in Raman spectroscopy and its application to life sciences. We discuss imaging of functional molecules in living cells and tissues; e.g., cancer cells and ischemic or infarcted hearts, together with a number of studies in the biomedical fields. We further explore comprehensive understandings of a complex spectrum by multivariate analysis for, e.g., accurate peripheral nerve detection, and characterization of the histological differences in the healing process of myocardial infarct. Although limitations still remain, e.g., weakness of the scattering intensity and practical difficulty in comprehensive molecular analysis, continuous progress in related technologies will allow wider use of Raman spectroscopy for biomedical applications.
Collapse
Affiliation(s)
- Yasuaki Kumamoto
- Department of Pathology and Cell Regulation, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine
| | - Tetsuro Takamatsu
- Department of Medical Photonics, Kyoto Prefectural University of Medicine
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine
| |
Collapse
|
29
|
Kochan K, Peng H, Wood BR, Haritos VS. Single cell assessment of yeast metabolic engineering for enhanced lipid production using Raman and AFM-IR imaging. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:106. [PMID: 29643936 PMCID: PMC5891968 DOI: 10.1186/s13068-018-1108-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/04/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Biodiesel is a valuable renewable fuel made from derivatized fatty acids produced in plants, animals, and oleaginous microbes. Of the latter, yeasts are of special interest due to their wide use in biotechnology, ability to synthesize fatty acids and store large amounts of triacylglycerols while utilizing non-food carbon sources. While yeast efficiently produce lipids, genetic modification and indeed, lipid pathway metabolic engineering, is usually required for cost-effective production. Traditionally, gas chromatography (GC) is used to measure fatty acid production and to track the success of a metabolic engineering strategy in a microbial culture; here we have employed vibrational spectroscopy approaches at population and single cell level of engineered yeast while simultaneously investigating metabolite levels in subcellular structures. RESULTS Firstly, a strong correlation (r2 > 0.99) was established between Fourier transform infrared (FTIR) lipid in intact cells and GC analysis of fatty acid methyl esters in the differently engineered strains. Confocal Raman spectroscopy of individual cells carrying genetic modifications to enhance fatty acid synthesis and lipid accumulation revealed changes to the lipid body (LB), the storage organelle for lipids in yeast, with their number increasing markedly (up to tenfold higher); LB size was almost double in the strain that also expressed a LB stabilizing gene but considerable variation was also noted between cells. Raman spectroscopy revealed a clear trend toward reduced unsaturated fatty acid content in lipids of cells carrying more complex metabolic engineering. Atomic force microscopy-infrared spectroscopy (AFM-IR) analysis of individual cells indicated large differences in subcellular constituents between strains: cells of the most highly engineered strain had elevated lipid and much reduced carbohydrate in their cytoplasm compared with unmodified cells. CONCLUSIONS Vibrational spectroscopy analysis allowed the simultaneous measurement of strain variability in metabolite production and impact on cellular structures as a result of different gene introductions or knockouts, within a lipid metabolic engineering strategy and these inform the next steps in comprehensive lipid engineering. Additionally, single cell spectroscopic analysis measures heterogeneity in metabolite production across microbial cultures under genetic modification, an emerging issue for efficient biotechnological production.
Collapse
Affiliation(s)
- Kamila Kochan
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton Campus, Clayton, VIC 3800 Australia
| | - Huadong Peng
- Department of Chemical Engineering, Monash University, Clayton Campus, Clayton, VIC 3800 Australia
| | - Bayden R. Wood
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton Campus, Clayton, VIC 3800 Australia
| | - Victoria S. Haritos
- Department of Chemical Engineering, Monash University, Clayton Campus, Clayton, VIC 3800 Australia
| |
Collapse
|
30
|
Lysophosphatidylcholine acyltransferase 2-mediated lipid droplet production supports colorectal cancer chemoresistance. Nat Commun 2018; 9:322. [PMID: 29358673 PMCID: PMC5778070 DOI: 10.1038/s41467-017-02732-5] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022] Open
Abstract
Lipid droplet (LD) accumulation is a now well-recognised hallmark of cancer. However, the significance of LD accumulation in colorectal cancer (CRC) biology is incompletely understood under chemotherapeutic conditions. Since drug resistance is a major obstacle to treatment success, we sought to determine the contribution of LD accumulation to chemotherapy resistance in CRC. Here we show that LD content of CRC cells positively correlates with the expression of lysophosphatidylcholine acyltransferase 2 (LPCAT2), an LD-localised enzyme supporting phosphatidylcholine synthesis. We also demonstrate that LD accumulation drives cell-death resistance to 5-fluorouracil and oxaliplatin treatments both in vitro and in vivo. Mechanistically, LD accumulation impairs caspase cascade activation and ER stress responses. Notably, droplet accumulation is associated with a reduction in immunogenic cell death and CD8+ T cell infiltration in mouse tumour grafts and metastatic tumours of CRC patients. Collectively our findings highlight LPCAT2-mediated LD accumulation as a druggable mechanism to restore CRC cell sensitivity. Lipid droplets (LD) accumulation correlates with colorectal cancer (CRC) relapse. Here the authors show that chemotherapy induces LD synthesis via acyltransferase LPCAT2 which, in turn, promotes chemoresistance via LD accumulation both in vitro and in vivo by blocking chemotherapy-induced ER stress.
Collapse
|
31
|
Quaroni L, Pogoda K, Wiltowska-Zuber J, Kwiatek WM. Mid-infrared spectroscopy and microscopy of subcellular structures in eukaryotic cells with atomic force microscopy – infrared spectroscopy. RSC Adv 2018; 8:2786-2794. [PMID: 35541450 PMCID: PMC9077331 DOI: 10.1039/c7ra10240b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 09/25/2019] [Accepted: 12/21/2017] [Indexed: 01/30/2023] Open
Abstract
Atomic force microscopy – infrared (AFM-IR) spectroscopy allows spectroscopic studies in the mid-infrared (mid-IR) spectral region with a spatial resolution better than is allowed by the diffraction limit. We show that the high spatial resolution can be used to perform spectroscopic and imaging studies at the subcellular level in fixed eukaryotic cells. We collect AFM-IR images of subcellular structures that include lipid droplets, vesicles and cytoskeletal filaments, by relying on the intrinsic contrast from IR light absorption. We also obtain AFM-IR absorption spectra of individual subcellular structures. Most spectra show features that are recognizable in the IR absorption spectra of cells and tissue obtained with FTIR technology, including absorption bands characteristic of phospholipids and polypeptides. The quality of the spectra and of the images opens the way to structure and composition studies at the subcellular level using mid-IR absorption spectroscopy. Atomic force microscopy – infrared (AFM-IR) spectroscopy allows spectroscopic studies in the mid-infrared (mid-IR) spectral region with a spatial resolution better than is allowed by the diffraction limit.![]()
Collapse
Affiliation(s)
- Luca Quaroni
- Department of Experimental Physics of Complex Systems
- Institute of Nuclear Physics
- Polish Academy of Sciences
- Kraków
- Poland
| | - Katarzyna Pogoda
- Department of Experimental Physics of Complex Systems
- Institute of Nuclear Physics
- Polish Academy of Sciences
- Kraków
- Poland
| | - Joanna Wiltowska-Zuber
- Department of Experimental Physics of Complex Systems
- Institute of Nuclear Physics
- Polish Academy of Sciences
- Kraków
- Poland
| | - Wojciech M. Kwiatek
- Department of Experimental Physics of Complex Systems
- Institute of Nuclear Physics
- Polish Academy of Sciences
- Kraków
- Poland
| |
Collapse
|
32
|
Pacia MZ, Czamara K, Zebala M, Kus E, Chlopicki S, Kaczor A. Rapid diagnostics of liver steatosis by Raman spectroscopyviafiber optic probe: a pilot study. Analyst 2018; 143:4723-4731. [DOI: 10.1039/c8an00289d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Raman spectroscopyviafiber optic probes enables assessment of the liver condition and rapid quantification of liver steatosis, thus, this technique has the potential as a diagnostic tool.
Collapse
Affiliation(s)
- Marta Z. Pacia
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- 30-348 Krakow
- Poland
- Faculty of Chemistry
| | - Krzysztof Czamara
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- 30-348 Krakow
- Poland
- Faculty of Chemistry
| | - Magdalena Zebala
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- 30-348 Krakow
- Poland
- Faculty of Chemistry
| | - Edyta Kus
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- 30-348 Krakow
- Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- 30-348 Krakow
- Poland
- Chair of Pharmacology
| | - Agnieszka Kaczor
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- 30-348 Krakow
- Poland
- Faculty of Chemistry
| |
Collapse
|
33
|
Yan J, Yu Y, Kang JW, Tam ZY, Xu S, Fong ELS, Singh SP, Song Z, Tucker-Kellogg L, So PTC, Yu H. Development of a classification model for non-alcoholic steatohepatitis (NASH) using confocal Raman micro-spectroscopy. JOURNAL OF BIOPHOTONICS 2017; 10. [PMID: 28635128 PMCID: PMC5902180 DOI: 10.1002/jbio.201600303] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder in developed countries [1]. A subset of individuals with NAFLD progress to non-alcoholic steatohepatitis (NASH), an advanced form of NAFLD which predisposes individuals to cirrhosis, liver failure and hepatocellular carcinoma. The current gold standard for NASH diagnosis and staging is based on histological evaluation, which is largely semi-quantitative and subjective. To address the need for an automated and objective approach to NASH detection, we combined Raman micro-spectroscopy and machine learning techniques to develop a classification model based on a well-established NASH mouse model, using spectrum pre-processing, biochemical component analysis (BCA) and logistic regression. By employing a selected pool of biochemical components, we identified biochemical changes specific to NASH and show that the classification model is capable of accurately detecting NASH (AUC=0.85-0.87) in mice. The unique biochemical fingerprint generated in this study may serve as a useful criterion to be leveraged for further validation in clinical samples.
Collapse
Affiliation(s)
- Jie Yan
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), Singapore 138669
| | - Yang Yu
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), Singapore 138669
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117597
- BioSyM, Singapore-MIT Alliance for Research and Technology, Singapore 138602
| | - Jeon Woong Kang
- Laser Biomedical Research Center, George R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Zhi Yang Tam
- BioSyM, Singapore-MIT Alliance for Research and Technology, Singapore 138602
| | - Shuoyu Xu
- InvitroCue Pte Ltd, Singapore 138667
| | - Eliza Li Shan Fong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117597
| | - Surya Pratap Singh
- Laser Biomedical Research Center, George R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Ziwei Song
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), Singapore 138669
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117597
| | - Lisa Tucker-Kellogg
- BioSyM, Singapore-MIT Alliance for Research and Technology, Singapore 138602
- Duke-NUS Graduate Medical School Singapore, National University of Singapore, Singapore 169857
| | - Peter T. C. So
- BioSyM, Singapore-MIT Alliance for Research and Technology, Singapore 138602
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Hanry Yu
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), Singapore 138669
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117597
- BioSyM, Singapore-MIT Alliance for Research and Technology, Singapore 138602
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- Corresponding author: , Tel. No. +65 65163466, Fax No. +65 68748261
| |
Collapse
|
34
|
Hunt AN, Malur A, Monfort T, Lagoudakis P, Mahajan S, Postle AD, Thomassen MJ. Hepatic Steatosis Accompanies Pulmonary Alveolar Proteinosis. Am J Respir Cell Mol Biol 2017; 57:448-458. [PMID: 28489415 DOI: 10.1165/rcmb.2016-0242oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Maintenance of tissue-specific organ lipid compositions characterizes mammalian lipid homeostasis. The lungs and liver synthesize mixed phosphatidylcholine (PC) molecular species that are subsequently tailored for function. The lungs progressively enrich disaturated PC directed to lamellar body surfactant stores before secretion. The liver accumulates polyunsaturated PC directed to very-low-density lipoprotein assembly and secretion, or to triglyceride stores. In each tissue, selective PC species enrichment mechanisms lie at the heart of effective homeostasis. We tested for potential coordination between these spatially separated but possibly complementary phenomena under a major derangement of lung PC metabolism, pulmonary alveolar proteinosis (PAP), which overwhelms homeostasis and leads to excessive surfactant accumulation. Using static and dynamic lipidomics techniques, we compared (1) tissue PC compositions and contents, and (2) in lungs, the absolute rates of synthesis in both control mice and the granulocyte-macrophage colony-stimulating factor knockout model of PAP. Significant disaturated PC accumulation in bronchoalveolar lavage fluid, alveolar macrophage, and lavaged lung tissue occurred alongside increased PC synthesis, consistent with reported defects in alveolar macrophage surfactant turnover. However, microscopy using oil red O staining, coherent anti-Stokes Raman scattering, second harmonic generation, and transmission electron microscopy also revealed neutral-lipid droplet accumulations in alveolar lipofibroblasts of granular macrophage colony-stimulating factor knockout animals, suggesting that lipid homeostasis deficits extend beyond alveolar macrophages. PAP plasma PC composition was significantly polyunsaturated fatty acid enriched, but the content was unchanged and hepatic polyunsaturated fatty acid-enriched PC content increased by 50% with an accompanying micro/macrovesicular steatosis and a fibrotic damage pattern consistent with nonalcoholic fatty liver disease. These data suggest a hepatopulmonary axis of PC metabolism coordination, with wider implications for understanding and managing lipid pathologies in which compromise of one organ has unexpected consequences for another.
Collapse
Affiliation(s)
- Alan N Hunt
- 1 Clinical and Experimental Sciences, Faculty of Medicine
| | - Anagha Malur
- 2 Division of Pulmonary, Critical Care and Sleep Medicine, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | | | - Pavlos Lagoudakis
- 4 School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom; and
| | | | | | - Mary Jane Thomassen
- 2 Division of Pulmonary, Critical Care and Sleep Medicine, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| |
Collapse
|
35
|
Jurowski K, Kochan K, Walczak J, Barańska M, Piekoszewski W, Buszewski B. Analytical Techniques in Lipidomics: State of the Art. Crit Rev Anal Chem 2017; 47:418-437. [PMID: 28340309 DOI: 10.1080/10408347.2017.1310613] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Current studies related to lipid identification and determination, or lipidomics in biological samples, are one of the most important issues in modern bioanalytical chemistry. There are many articles dedicated to specific analytical strategies used in lipidomics in various kinds of biological samples. However, in such literature, there is a lack of articles dedicated to a comprehensive review of the actual analytical methodologies used in lipidomics. The aim of this article is to characterize the lipidomics methods used in modern bioanalysis according to the methodological point of view: (1) chromatography/separation methods, (2) spectroscopic methods and (3) mass spectrometry and also hyphenated methods. In the first part, we discussed thin layer chromatography (TLC), high-pressure liquid chromatography (HPLC), gas chromatography (GC) and capillary electrophoresis (CE). The second part includes spectroscopic techniques such as Raman spectroscopy (RS), Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR). The third part is a synthetic review of mass spectrometry, matrix-assisted laser desorption/ionization (MALDI), hyphenated methods, which include liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS) and also multidimensional techniques. Other aspects are the possibilities of the application of the described methods in lipidomics studies. Due to the fact that the exploration of new methods of lipidomics analysis and their applications in clinical and medical studies are still challenging for researchers working in life science, we hope that this review article will be very useful for readers.
Collapse
Affiliation(s)
- Kamil Jurowski
- a Kraków Higher School of Health Promotion , Krakow , Poland
| | - Kamila Kochan
- b Jagiellonian Centre for Experimental Therapeutics (JCET) , Jagiellonian University in Cracow , Cracow , Poland.,c Centre for Biospectroscopy and School of Chemistry , Monash University , Clayton , Victoria , Australia
| | - Justyna Walczak
- d Department of Environmental Chemistry and Bioanalytics , Faculty of Chemistry, Nicolaus Copernicus University , Torun , Poland
| | - Małgorzata Barańska
- b Jagiellonian Centre for Experimental Therapeutics (JCET) , Jagiellonian University in Cracow , Cracow , Poland.,e Department of Chemical Physics, Faculty of Chemistry , Jagiellonian University in Cracow , Cracow , Poland
| | - Wojciech Piekoszewski
- f Department of Analytical Chemistry, Faculty of Chemistry , Jagiellonian University in Cracow , Cracow , Poland.,g School of Biomedicine , Far Eastern Federal University , Vladivostok , Russia
| | - Bogusław Buszewski
- d Department of Environmental Chemistry and Bioanalytics , Faculty of Chemistry, Nicolaus Copernicus University , Torun , Poland
| |
Collapse
|
36
|
Stiebing C, Schmölz L, Wallert M, Matthäus C, Lorkowski S, Popp J. Raman imaging of macrophages incubated with triglyceride-enriched oxLDL visualizes translocation of lipids between endocytic vesicles and lipid droplets. J Lipid Res 2017; 58:876-883. [PMID: 28143895 DOI: 10.1194/jlr.m071688] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/15/2017] [Indexed: 01/01/2023] Open
Abstract
Raman spectroscopic imaging was used to investigate the uptake of oxidized LDLs (oxLDLs) by human macrophages. To better understand the endocytic pathway and the intracellular fate of modified lipoproteins is of foremost interest with regard to the development of atherosclerotic plaques. To obtain information on the storage process of lipids caused by oxLDL uptake, Raman spectroscopic imaging was used because of its unique chemical specificity, especially for lipids. For the present study, a protocol was established to incorporate deuterated tripalmitate into oxLDL. Subsequently, human THP-1 macrophages were incubated for different time points and their chemical composition was analyzed using Raman spectroscopic imaging. β-Carotene was found to be a reliable marker molecule for the uptake of lipoproteins into macrophages. In addition, lipoprotein administration led to small endocytic vesicles with different concentrations of deuterated lipids within the cells. For the first time, the translocation of deuterated lipids from endocytic vesicles into lipid droplets over time is reported in mature human THP-1 macrophages.
Collapse
Affiliation(s)
- Clara Stiebing
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Lisa Schmölz
- Institute of Nutrition and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany.,Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Maria Wallert
- Institute of Nutrition and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany.,Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Christian Matthäus
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Stefan Lorkowski
- Institute of Nutrition and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany.,Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany .,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
37
|
Czamara K, Majzner K, Selmi A, Baranska M, Ozaki Y, Kaczor A. Unsaturated lipid bodies as a hallmark of inflammation studied by Raman 2D and 3D microscopy. Sci Rep 2017; 7:40889. [PMID: 28098251 PMCID: PMC5241649 DOI: 10.1038/srep40889] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023] Open
Abstract
Endothelial HMEC-1 cells incubated with pro-inflammatory cytokine TNF-α for 6 and 24 hours were studied as a model of inflammation using Raman imaging. Striking changes in distribution, composition and concentration of cellular lipids were observed after exposure to TNF-α compared to the control. In particular, 3D Raman imaging revealed a significant increase in the amount of lipid entities formed under inflammation. Lipid bodies were randomly distributed in the cytoplasm and two types of droplets were assembled: more saturated one, in spectral characteristics resembling phosphatidylcholine and saturated cholesteryl esters, observed also in the control, and highly unsaturated one, containing also cholesterols, being a hallmark of inflamed cells. The statistical analysis showed that the number of lipid bodies was significantly dependent on the exposure time to TNF-α. Overall, observed formation of unsaturated lipid droplets can be directly correlated with the increase in production of prostacyclins - endogenous inflammation mediators.
Collapse
Affiliation(s)
- K Czamara
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland.,Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - K Majzner
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland.,Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - A Selmi
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - M Baranska
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland.,Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Y Ozaki
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo 669-1337, Japan
| | - A Kaczor
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland.,Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| |
Collapse
|
38
|
Dybas J, Marzec KM, Pacia MZ, Kochan K, Czamara K, Chrabaszcz K, Staniszewska-Slezak E, Malek K, Baranska M, Kaczor A. Raman spectroscopy as a sensitive probe of soft tissue composition – Imaging of cross-sections of various organs vs. single spectra of tissue homogenates. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Kumar B. N. V, Guo S, Bocklitz T, Rösch P, Popp J. Demonstration of Carbon Catabolite Repression in Naphthalene Degrading Soil Bacteria via Raman Spectroscopy Based Stable Isotope Probing. Anal Chem 2016; 88:7574-82. [DOI: 10.1021/acs.analchem.6b01046] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Vinay Kumar B. N.
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University of Jena, Helmholtzweg 4, D-07743 Jena, Germany
- InfectoGnostics, Forschungscampus Jena, Philosophenweg
7, D-07743 Jena, Germany
| | - Shuxia Guo
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University of Jena, Helmholtzweg 4, D-07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, D-07745 Jena, Germany
| | - Thomas Bocklitz
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University of Jena, Helmholtzweg 4, D-07743 Jena, Germany
- InfectoGnostics, Forschungscampus Jena, Philosophenweg
7, D-07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, D-07745 Jena, Germany
| | - Petra Rösch
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University of Jena, Helmholtzweg 4, D-07743 Jena, Germany
- InfectoGnostics, Forschungscampus Jena, Philosophenweg
7, D-07743 Jena, Germany
| | - Jürgen Popp
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University of Jena, Helmholtzweg 4, D-07743 Jena, Germany
- InfectoGnostics, Forschungscampus Jena, Philosophenweg
7, D-07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, D-07745 Jena, Germany
| |
Collapse
|
40
|
Single cell analysis in native tissue: Quantification of the retinoid content of hepatic stellate cells. Sci Rep 2016; 6:24155. [PMID: 27063397 PMCID: PMC4827054 DOI: 10.1038/srep24155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/18/2016] [Indexed: 01/13/2023] Open
Abstract
Hepatic stellate cells (HSCs) are retinoid storing cells in the liver: The retinoid content of those cells changes depending on nutrition and stress level. There are also differences with regard to a HSC’s anatomical position in the liver. Up to now, retinoid levels were only accessible from bulk measurements of tissue homogenates or cell extracts. Unfortunately, they do not account for the intercellular variability. Herein, Raman spectroscopy relying on excitation by the minimally destructive wavelength 785 nm is introduced for the assessment of the retinoid state of single HSCs in freshly isolated, unprocessed murine liver lobes. A quantitative estimation of the cellular retinoid content is derived. Implications of the retinoid content on hepatic health state are reported. The Raman-based results are integrated with histological assessments of the tissue samples. This spectroscopic approach enables single cell analysis regarding an important cellular feature in unharmed tissue.
Collapse
|
41
|
Kochan K, Chrabaszcz K, Szczur B, Maslak E, Dybas J, Marzec KM. IR and Raman imaging of murine brains from control and ApoE/LDLR−/− mice with advanced atherosclerosis. Analyst 2016; 141:5329-38. [DOI: 10.1039/c6an00107f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
IR and Raman imaging combined with chemometric analyses were used to study the biochemical profile of the murine brain tissue from control (C57BL/6J) and ApoE/LDLR−/− mice with advanced atherosclerosis.
Collapse
Affiliation(s)
- Kamila Kochan
- Jagiellonian University
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- 30-348 Krakow
- Poland
- Jagiellonian University
| | - Karolina Chrabaszcz
- Jagiellonian University
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- 30-348 Krakow
- Poland
| | - Barbara Szczur
- Jagiellonian University
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- 30-348 Krakow
- Poland
- Jagiellonian University
| | - Edyta Maslak
- Jagiellonian University
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- 30-348 Krakow
- Poland
| | - Jakub Dybas
- Jagiellonian University
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- 30-348 Krakow
- Poland
- Jagiellonian University
| | - Katarzyna M. Marzec
- Jagiellonian University
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- 30-348 Krakow
- Poland
| |
Collapse
|
42
|
Vascular diseases investigated ex vivo by using Raman, FT-IR and complementary methods. Pharmacol Rep 2015; 67:744-50. [DOI: 10.1016/j.pharep.2015.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 11/20/2022]
|