1
|
Daly S, Ferreira Fernandes J, Bruggeman E, Handa A, Peters R, Benaissa S, Zhang B, Beckwith JS, Sanders EW, Sims RR, Klenerman D, Davis SJ, O'Holleran K, Lee SF. High-density volumetric super-resolution microscopy. Nat Commun 2024; 15:1940. [PMID: 38431671 PMCID: PMC10908787 DOI: 10.1038/s41467-024-45828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
Volumetric super-resolution microscopy typically encodes the 3D position of single-molecule fluorescence into a 2D image by changing the shape of the point spread function (PSF) as a function of depth. However, the resulting large and complex PSF spatial footprints reduce biological throughput and applicability by requiring lower labeling densities to avoid overlapping fluorescent signals. We quantitatively compare the density dependence of single-molecule light field microscopy (SMLFM) to other 3D PSFs (astigmatism, double helix and tetrapod) showing that SMLFM enables an order-of-magnitude speed improvement compared to the double helix PSF by resolving overlapping emitters through parallax. We demonstrate this optical robustness experimentally with high accuracy ( > 99.2 ± 0.1%, 0.1 locs μm-2) and sensitivity ( > 86.6 ± 0.9%, 0.1 locs μm-2) through whole-cell (scan-free) imaging and tracking of single membrane proteins in live primary B cells. We also exemplify high-density volumetric imaging (0.15 locs μm-2) in dense cytosolic tubulin datasets.
Collapse
Affiliation(s)
- Sam Daly
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - João Ferreira Fernandes
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Ezra Bruggeman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Anoushka Handa
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ruby Peters
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, CB2 3EL, UK
| | - Sarah Benaissa
- Cambridge Advanced Imaging Centre, Downing Site, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Boya Zhang
- Cambridge Advanced Imaging Centre, Downing Site, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Joseph S Beckwith
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Edward W Sanders
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ruth R Sims
- Wavefront-Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Simon J Davis
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Kevin O'Holleran
- Cambridge Advanced Imaging Centre, Downing Site, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Steven F Lee
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
2
|
Lucidi M, Capecchi G, Visaggio D, Gasperi T, Parisi M, Cincotti G, Rampioni G, Visca P, Kolmakov K. Expanding the microbiologist toolbox via new far-red-emitting dyes suitable for bacterial imaging. Microbiol Spectr 2024; 12:e0369023. [PMID: 38095476 PMCID: PMC10782969 DOI: 10.1128/spectrum.03690-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/17/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE By harnessing the versatility of fluorescence microscopy and super-resolution imaging, bacteriologists explore critical aspects of bacterial physiology and resolve bacterial structures sized beyond the light diffraction limit. These techniques are based on fluorophores with profitable photochemical and tagging properties. The paucity of available far-red (FR)-emitting dyes for bacterial imaging strongly limits the multicolor choice of bacteriologists, hindering the possibility of labeling multiple structures in a single experiment. The set of FR fluorophores characterized in this study expands the palette of dyes useful for microbiologists, as they can be used for bacterial LIVE/DEAD staining and for tagging the membranes of viable Escherichia coli and Bacillus subtilis cells. The absence of toxicity makes these dyes suitable for live-cell imaging and allows monitoring of bacterial membrane biogenesis. Moreover, a newly synthesized FR-fluorophore can be employed for imaging bacterial membranes with stimulated emission depletion microscopy, a super-resolution technique capable of increasing the resolving power of conventional microscopes.
Collapse
Affiliation(s)
- Massimiliano Lucidi
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | | | - Daniela Visaggio
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Tecla Gasperi
- Department of Science, Roma Tre University, Rome, Italy
| | - Miranda Parisi
- Department of Engineering, University Roma Tre, Rome, Italy
| | | | - Giordano Rampioni
- Department of Science, Roma Tre University, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | | |
Collapse
|
3
|
Mrestani A, Dannhäuser S, Pauli M, Kollmannsberger P, Hübsch M, Morris L, Langenhan T, Heckmann M, Paul MM. Nanoscaled RIM clustering at presynaptic active zones revealed by endogenous tagging. Life Sci Alliance 2023; 6:e202302021. [PMID: 37696575 PMCID: PMC10494931 DOI: 10.26508/lsa.202302021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023] Open
Abstract
Chemical synaptic transmission involves neurotransmitter release from presynaptic active zones (AZs). The AZ protein Rab-3-interacting molecule (RIM) is important for normal Ca2+-triggered release. However, its precise localization within AZs of the glutamatergic neuromuscular junctions of Drosophila melanogaster remains elusive. We used CRISPR/Cas9-assisted genome engineering of the rim locus to incorporate small epitope tags for targeted super-resolution imaging. A V5-tag, derived from simian virus 5, and an HA-tag, derived from human influenza virus, were N-terminally fused to the RIM Zinc finger. Whereas both variants are expressed in co-localization with the core AZ scaffold Bruchpilot, electrophysiological characterization reveals that AP-evoked synaptic release is disturbed in rimV5-Znf but not in rimHA-Znf In addition, rimHA-Znf synapses show intact presynaptic homeostatic potentiation. Combining super-resolution localization microscopy and hierarchical clustering, we detect ∼10 RIMHA-Znf subclusters with ∼13 nm diameter per AZ that are compacted and increased in numbers in presynaptic homeostatic potentiation.
Collapse
Affiliation(s)
- Achmed Mrestani
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Sven Dannhäuser
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Martin Pauli
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
| | | | - Martha Hübsch
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Lydia Morris
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Tobias Langenhan
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Manfred Heckmann
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Mila M Paul
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
- Department of Orthopedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Friedl K, Mau A, Boroni-Rueda F, Caorsi V, Bourg N, Lévêque-Fort S, Leterrier C. Assessing crosstalk in simultaneous multicolor single-molecule localization microscopy. CELL REPORTS METHODS 2023; 3:100571. [PMID: 37751691 PMCID: PMC10545913 DOI: 10.1016/j.crmeth.2023.100571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/03/2023] [Accepted: 08/04/2023] [Indexed: 09/28/2023]
Abstract
Single-molecule localization microscopy (SMLM) can reach sub-50 nm resolution using techniques such as stochastic optical reconstruction microscopy (STORM) or DNA-point accumulation for imaging in nanoscale topography (PAINT). Here we implement two approaches for faster multicolor SMLM by splitting the emitted fluorescence toward two cameras: simultaneous two-color DNA-PAINT (S2C-DNA-PAINT) that images spectrally separated red and far-red imager strands on each camera, and spectral demixing dSTORM (SD-dSTORM) where spectrally close far-red fluorophores appear on both cameras before being identified by demixing. Using S2C-DNA-PAINT as a reference for low crosstalk, we evaluate SD-dSTORM crosstalk using three types of samples: DNA origami nanorulers of different sizes, single-target labeled cells, or cells labeled for multiple targets. We then assess if crosstalk can affect the detection of biologically relevant subdiffraction patterns. Extending these approaches to three-dimensional acquisition and SD-dSTORM to three-color imaging, we show that spectral demixing is an attractive option for robust and versatile multicolor SMLM investigations.
Collapse
Affiliation(s)
- Karoline Friedl
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France; Abbelight, 191 Avenue Aristide Briand, 94230 Cachan, France
| | - Adrien Mau
- Abbelight, 191 Avenue Aristide Briand, 94230 Cachan, France; Université Paris Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Fanny Boroni-Rueda
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France
| | | | - Nicolas Bourg
- Abbelight, 191 Avenue Aristide Briand, 94230 Cachan, France
| | - Sandrine Lévêque-Fort
- Université Paris Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Christophe Leterrier
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France.
| |
Collapse
|
5
|
Lloyd BA, Han Y, Roth R, Zhang B, Aoto J. Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and essential for excitatory synapse nanoscale organization in the hippocampus. Nat Commun 2023; 14:4706. [PMID: 37543682 PMCID: PMC10404257 DOI: 10.1038/s41467-023-40419-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023] Open
Abstract
Proteins critical for synaptic transmission are non-uniformly distributed and assembled into regions of high density called subsynaptic densities (SSDs) that transsynaptically align in nanocolumns. Neurexin-1 and neurexin-3 are essential presynaptic adhesion molecules that non-redundantly control NMDAR- and AMPAR-mediated synaptic transmission, respectively, via transsynaptic interactions with distinct postsynaptic ligands. Despite their functional relevance, fundamental questions regarding the nanoscale properties of individual neurexins, their influence on the subsynaptic organization of excitatory synapses and the mechanisms controlling how individual neurexins engage in precise transsynaptic interactions are unknown. Using Double Helix 3D dSTORM and neurexin mouse models, we identify neurexin-3 as a critical presynaptic adhesion molecule that regulates excitatory synapse nano-organization in hippocampus. Furthermore, endogenous neurexin-1 and neurexin-3 form discrete and non-overlapping SSDs that are enriched opposite their postsynaptic ligands. Thus, the nanoscale organization of neurexin-1 and neurexin-3 may explain how individual neurexins signal in parallel to govern different synaptic properties.
Collapse
Affiliation(s)
- Brian A Lloyd
- University of Colorado Anschutz School of Medicine, Department of Pharmacology, Aurora, CO, 80045, USA
| | - Ying Han
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Rebecca Roth
- University of Colorado Anschutz School of Medicine, Department of Pharmacology, Aurora, CO, 80045, USA
| | - Bo Zhang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Jason Aoto
- University of Colorado Anschutz School of Medicine, Department of Pharmacology, Aurora, CO, 80045, USA.
| |
Collapse
|
6
|
Parisi M, Lucidi M, Visca P, Cincotti G. Super-Resolution Optical Imaging of Bacterial Cells. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 2023; 29:1-13. [DOI: 10.1109/jstqe.2022.3228121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Miranda Parisi
- Engineering Department, University Roma Tre, Rome, Italy
| | | | - Paolo Visca
- Science Department, University Roma Tre, Rome, Italy
| | | |
Collapse
|
7
|
Huang K, Qiu H, Zhang X, Luo W, Chen Y, Zhang J, Chen Y, Wang G, Zheng K. Orthogonal Trichromatic Upconversion with High Color Purity in Core-Shell Nanoparticles for a Full-Color Display. Angew Chem Int Ed Engl 2023; 62:e202218491. [PMID: 36759322 DOI: 10.1002/anie.202218491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
Materials with tunable emission colors has attracted increasing interest in both fundamental research and applications. As a key member of light-emitting materials family, lanthanide doped upconversion nanoparticles (UCNPs) have been intensively demonstrated to emit light in any color upon near-infrared excitation. However, realizing the trichromatic emission in UCNPs with a fixed composition remains a great challenge. Here, without excitation pulsed modulation and three different near-infrared pumping, we report an experimental design to fine-control emission in the full color gamut from core-shell-structured UCNPs by manipulating the energy migration through dual-channel pump scheme. We also demonstrate their potential application in full-color display. These findings may benefit the future development of convenient and versatile optical methos for multicolor tuning and open up the possibility of constructing full-color volumetric display systems with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Kaofeng Huang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Haiyi Qiu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Xintong Zhang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Wang Luo
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Jiacheng Zhang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Yihang Chen
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Guannan Wang
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, China.,School of Pharmacy, Shenyang Medical University, Shenyang, 110034, China
| | - Kezhi Zheng
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
8
|
Boukhatem H, Durel B, Raimbault M, Laurent A, Olivier N. Evaluation of Slowfade Diamond as a buffer for STORM microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:550-558. [PMID: 36874488 PMCID: PMC9979685 DOI: 10.1364/boe.473463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
We study the potential of the commercial mounting medium Slowfade diamond as a buffer for STORM microscopy. We show that although it does not work with the popular far-red dyes typically used for STORM imaging, such as Alexa Fluor 647, it performs really well with a wide variety of green-excited dyes such as Alexa Fluor 532, Alexa Fluor 555 or CF 568. Moreover, imaging can be performed several months after the samples are mounted in this environment and kept in the fridge, providing a convenient way to preserve samples for STORM imaging, as well as to keep calibration samples, for example for metrology or teaching in particular in imaging facilities.
Collapse
Affiliation(s)
- Hadjer Boukhatem
- Laboratory for Optics and Biosciences (LOB), CNRS, INSERM, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Beatrice Durel
- Cell Imaging Platform, Structure Fédérative de Recherche Necker, INSERM US24, CNRS UMS3633, Paris, F-75015, France
| | - Manon Raimbault
- Cell Imaging Platform, Structure Fédérative de Recherche Necker, INSERM US24, CNRS UMS3633, Paris, F-75015, France
| | - Audrey Laurent
- Université de Paris, Institut-Necker-Enfants-Malades, Inserm, CNRS, Paris, France
- École Doctorale BioSPC 562, Université de Paris, Paris, France
| | - Nicolas Olivier
- Laboratory for Optics and Biosciences (LOB), CNRS, INSERM, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
9
|
Kikuchi K, Adair LD, Lin J, New EJ, Kaur A. Photochemical Mechanisms of Fluorophores Employed in Single-Molecule Localization Microscopy. Angew Chem Int Ed Engl 2023; 62:e202204745. [PMID: 36177530 PMCID: PMC10100239 DOI: 10.1002/anie.202204745] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 02/02/2023]
Abstract
Decoding cellular processes requires visualization of the spatial distribution and dynamic interactions of biomolecules. It is therefore not surprising that innovations in imaging technologies have facilitated advances in biomedical research. The advent of super-resolution imaging technologies has empowered biomedical researchers with the ability to answer long-standing questions about cellular processes at an entirely new level. Fluorescent probes greatly enhance the specificity and resolution of super-resolution imaging experiments. Here, we introduce key super-resolution imaging technologies, with a brief discussion on single-molecule localization microscopy (SMLM). We evaluate the chemistry and photochemical mechanisms of fluorescent probes employed in SMLM. This Review provides guidance on the identification and adoption of fluorescent probes in single molecule localization microscopy to inspire the design of next-generation fluorescent probes amenable to single-molecule imaging.
Collapse
Affiliation(s)
- Kai Kikuchi
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Melbourne, VIC 305, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Liam D Adair
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jiarun Lin
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth J New
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Amandeep Kaur
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Melbourne, VIC 305, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
10
|
Zöldi M, Katona I. STORM Super-Resolution Imaging of CB 1 Receptors in Tissue Preparations. Methods Mol Biol 2023; 2576:437-451. [PMID: 36152208 DOI: 10.1007/978-1-0716-2728-0_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Single-molecule localization microscopy (SMLM) opened new possibilities to study the spatial arrangement of molecular distribution and disease-associated redistribution at a previously unprecedented resolution that was not achievable with optical microscopy approaches. Recent discoveries based on SMLM techniques uncovered specific nanoscale organizational principles of signaling proteins in several biological systems including the chemical synapses in the brain. Emerging data suggest that the spatial arrangement of the molecular players of the endocannabinoid system is also precisely regulated at the nanoscale level in synapses and in other neuronal and glial subcellular compartments. The precise nanoscale distribution pattern is likely to be important to subserve several specific signaling functions of this important messenger system in a cell-type- and subcellular domain-specific manner.STochastic Optical Reconstruction Microscopy (STORM) is an especially suitable SMLM modality for cell-type-specific nanoscale molecular imaging due to its compatibility with traditional diffraction-limited microscopy approaches and classical staining methods. Here, we describe a detailed protocol for STORM imaging in mouse brain tissue samples with a focus on the CB1 cannabinoid receptor, one of the most abundant synaptic receptors in the brain. We also summarize important conceptual and methodical details that are essential for the valid interpretation of single-molecule localization microscopy data.
Collapse
Affiliation(s)
- Miklós Zöldi
- Department of Psychological and Brain Sciences, Indiana University, IN, USA
- School of Ph.D. Studies, Semmelweis University, Budapest, Hungary
| | - István Katona
- Department of Psychological and Brain Sciences, Indiana University, IN, USA.
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary.
| |
Collapse
|
11
|
Trumpp M, Oliveras A, Gonschior H, Ast J, Hodson DJ, Knaus P, Lehmann M, Birol M, Broichhagen J. Enzyme self-label-bound ATTO700 in single-molecule and super-resolution microscopy. Chem Commun (Camb) 2022; 58:13724-13727. [PMID: 36427021 DOI: 10.1039/d2cc04823j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Herein, we evaluate near-infrared ATTO700 as an acceptor in SNAP- and Halo-tag protein labelling for Förster Resonance Energy Transfer (FRET) by ensemble and single molecule measurements. Microscopy of cell surface proteins in live cells is perfomed including super-resolution stimulated emission by depletion (STED) nanoscopy.
Collapse
Affiliation(s)
- Michael Trumpp
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany. .,Freie Universität Berlin, Institute of Chemistry and Biochemistry - Biochemistry, Thielallee 63, 14195 Berlin, Germany
| | - Anna Oliveras
- Berlin Institute of Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115 Berlin, Germany.
| | - Hannes Gonschior
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| | - Julia Ast
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
| | - Petra Knaus
- Freie Universität Berlin, Institute of Chemistry and Biochemistry - Biochemistry, Thielallee 63, 14195 Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| | - Melissa Birol
- Berlin Institute of Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115 Berlin, Germany.
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| |
Collapse
|
12
|
Choosing the Probe for Single-Molecule Fluorescence Microscopy. Int J Mol Sci 2022; 23:ijms232314949. [PMID: 36499276 PMCID: PMC9735909 DOI: 10.3390/ijms232314949] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Probe choice in single-molecule microscopy requires deeper evaluations than those adopted for less sensitive fluorescence microscopy studies. Indeed, fluorophore characteristics can alter or hide subtle phenomena observable at the single-molecule level, wasting the potential of the sophisticated instrumentation and algorithms developed for advanced single-molecule applications. There are different reasons for this, linked, e.g., to fluorophore aspecific interactions, brightness, photostability, blinking, and emission and excitation spectra. In particular, these spectra and the excitation source are interdependent, and the latter affects the autofluorescence of sample substrate, medium, and/or biological specimen. Here, we review these and other critical points for fluorophore selection in single-molecule microscopy. We also describe the possible kinds of fluorophores and the microscopy techniques based on single-molecule fluorescence. We explain the importance and impact of the various issues in fluorophore choice, and discuss how this can become more effective and decisive for increasingly demanding experiments in single- and multiple-color applications.
Collapse
|
13
|
splitSMLM, a spectral demixing method for high-precision multi-color localization microscopy applied to nuclear pore complexes. Commun Biol 2022; 5:1100. [PMID: 36253454 PMCID: PMC9576791 DOI: 10.1038/s42003-022-04040-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Single molecule localization microscopy (SMLM) with a dichroic image splitter can provide invaluable multi-color information regarding colocalization of individual molecules, but it often suffers from technical limitations. Classical demixing algorithms tend to give suboptimal results in terms of localization precision and correction of chromatic errors. Here we present an image splitter based multi-color SMLM method (splitSMLM) that offers much improved localization precision and drift correction, compensation of chromatic distortions, and optimized performance of fluorophores in a specific buffer to equalize their reactivation rates for simultaneous imaging. A novel spectral demixing algorithm, SplitViSu, fully preserves localization precision with essentially no data loss and corrects chromatic errors at the nanometer scale. Multi-color performance is further improved by using optimized fluorophore and filter combinations. Applied to three-color imaging of the nuclear pore complex (NPC), this method provides a refined positioning of the individual NPC proteins and reveals that Pom121 clusters act as NPC deposition loci, hence illustrating strength and general applicability of the method. The development of an image splitter based multi-colour single-molecule localization microscopy method (splitSMLM) in combination with a spectral demixing algorithm improves localization accuracy as exemplified by three-colour imaging of nuclear pore complex proteins.
Collapse
|
14
|
Li Y, Shi W, Liu S, Cavka I, Wu YL, Matti U, Wu D, Koehler S, Ries J. Global fitting for high-accuracy multi-channel single-molecule localization. Nat Commun 2022; 13:3133. [PMID: 35668089 PMCID: PMC9170706 DOI: 10.1038/s41467-022-30719-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/16/2022] [Indexed: 11/09/2022] Open
Abstract
Multi-channel detection in single-molecule localization microscopy greatly increases information content for various biological applications. Here, we present globLoc, a graphics processing unit based global fitting algorithm with flexible PSF modeling and parameter sharing, to extract maximum information from multi-channel single molecule data. As signals in multi-channel data are highly correlated, globLoc links parameters such as 3D coordinates or photon counts across channels, improving localization precision and robustness. We show, both in simulations and experiments, that global fitting can substantially improve the 3D localization precision for biplane and 4Pi single-molecule localization microscopy and color assignment for ratiometric multicolor imaging.
Collapse
Affiliation(s)
- Yiming Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
- European Molecular Biology Laboratory, Cell Biology and Biophysics, 69117, Heidelberg, Germany.
| | - Wei Shi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sheng Liu
- European Molecular Biology Laboratory, Cell Biology and Biophysics, 69117, Heidelberg, Germany
| | - Ivana Cavka
- European Molecular Biology Laboratory, Cell Biology and Biophysics, 69117, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Yu-Le Wu
- European Molecular Biology Laboratory, Cell Biology and Biophysics, 69117, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Ulf Matti
- European Molecular Biology Laboratory, Cell Biology and Biophysics, 69117, Heidelberg, Germany
| | - Decheng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Simone Koehler
- European Molecular Biology Laboratory, Cell Biology and Biophysics, 69117, Heidelberg, Germany
| | - Jonas Ries
- European Molecular Biology Laboratory, Cell Biology and Biophysics, 69117, Heidelberg, Germany.
| |
Collapse
|
15
|
Gimber N, Strauss S, Jungmann R, Schmoranzer J. Simultaneous Multicolor DNA-PAINT without Sequential Fluid Exchange Using Spectral Demixing. NANO LETTERS 2022; 22:2682-2690. [PMID: 35290738 PMCID: PMC9011399 DOI: 10.1021/acs.nanolett.1c04520] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/21/2022] [Indexed: 05/19/2023]
Abstract
Several variants of multicolor single-molecule localization microscopy (SMLM) have been developed to resolve the spatial relationship of nanoscale structures in biological samples. The oligonucleotide-based SMLM approach "DNA-PAINT" robustly achieves nanometer localization precision and can be used to count binding sites within nanostructures. However, multicolor DNA-PAINT has primarily been realized by "Exchange-PAINT", which requires sequential exchange of the imaging solution and thus leads to extended acquisition times. To alleviate the need for fluid exchange and to speed up the acquisition of current multichannel DNA-PAINT, we here present a novel approach that combines DNA-PAINT with simultaneous multicolor acquisition using spectral demixing (SD). By using newly designed probes and a novel multichannel registration procedure, we achieve simultaneous multicolor SD-DNA-PAINT with minimal crosstalk. We demonstrate high localization precision (3-6 nm) and multicolor registration of dual- and triple-color SD-DNA-PAINT by resolving patterns on DNA origami nanostructures and cellular structures.
Collapse
Affiliation(s)
- Niclas Gimber
- Advanced Medical Bioimaging Core Facility, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Sebastian Strauss
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, 80799 Munich, Germany
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, 80799 Munich, Germany
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Jan Schmoranzer
- Advanced Medical Bioimaging Core Facility, Charité-Universitätsmedizin, 10117 Berlin, Germany
| |
Collapse
|
16
|
The synaptic scaffold protein MPP2 interacts with GABAA receptors at the periphery of the postsynaptic density of glutamatergic synapses. PLoS Biol 2022; 20:e3001503. [PMID: 35312684 PMCID: PMC8970474 DOI: 10.1371/journal.pbio.3001503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/31/2022] [Accepted: 12/02/2021] [Indexed: 01/08/2023] Open
Abstract
Recent advances in imaging technology have highlighted that scaffold proteins and receptors are arranged in subsynaptic nanodomains. The synaptic membrane-associated guanylate kinase (MAGUK) scaffold protein membrane protein palmitoylated 2 (MPP2) is a component of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor–associated protein complexes and also binds to the synaptic cell adhesion molecule SynCAM 1. Using superresolution imaging, we show that—like SynCAM 1—MPP2 is situated at the periphery of the postsynaptic density (PSD). In order to explore MPP2-associated protein complexes, we used a quantitative comparative proteomics approach and identified multiple γ-aminobutyric acid (GABA)A receptor subunits among novel synaptic MPP2 interactors. In line with a scaffold function for MPP2 in the assembly and/or modulation of intact GABAA receptors, manipulating MPP2 expression had effects on inhibitory synaptic transmission. We further show that GABAA receptors are found together with MPP2 in a subset of dendritic spines and thus highlight MPP2 as a scaffold that serves as an adaptor molecule, linking peripheral synaptic elements critical for inhibitory regulation to central structures at the PSD of glutamatergic synapses. This study shows that the MAGUK scaffold protein MPP2 is located at the periphery of postsynaptic densities in excitatory neurons, where it interacts with GABA-A receptors, thereby serving as a functional adaptor that links excitatory and inhibitory components of synaptic transmission at glutamatergic synapses.
Collapse
|
17
|
Wang B, Xiong M, Susanto J, Li X, Leung W, Xu K. Transforming Rhodamine Dyes for (d)STORM Super‐Resolution Microscopy via 1,3‐Disubstituted Imidazolium Substitution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bowen Wang
- Department of Chemistry University of California, Berkeley 456 Stanley Hall Berkeley CA 94720 USA
| | - Michael Xiong
- Department of Chemistry University of California, Berkeley 456 Stanley Hall Berkeley CA 94720 USA
| | - Josephine Susanto
- Biotium Inc. 46117 Landing Parkway Fremont CA 94538 USA
- Department of Pharmacology and Pharmaceutical Sciences University of Southern California Los Angeles CA 90033 USA
| | - Xue Li
- Biotium Inc. 46117 Landing Parkway Fremont CA 94538 USA
| | - Wai‐Yee Leung
- Biotium Inc. 46117 Landing Parkway Fremont CA 94538 USA
| | - Ke Xu
- Department of Chemistry University of California, Berkeley 456 Stanley Hall Berkeley CA 94720 USA
- Chan Zuckerberg Biohub San Francisco CA 94158 USA
| |
Collapse
|
18
|
Wang B, Xiong M, Susanto J, Li X, Leung WY, Xu K. Transforming Rhodamine Dyes for (d)STORM Super-Resolution Microscopy via 1,3-Disubstituted Imidazolium Substitution. Angew Chem Int Ed Engl 2021; 61:e202113612. [PMID: 34919772 DOI: 10.1002/anie.202113612] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 11/06/2022]
Abstract
We introduce a strategy to optimize the photoswitching behavior of rhodamines for (d)STORM super-resolution microscopy. By replacing the benzene ring in the rhodamine core with a permanently charged 1,3-disubstituted imidazolium, the resultant dyes are markedly sensitized toward photoswitching, and exhibit outstanding (d)STORM performance with fast on-off switching, long-lasting blinking, and bright single-molecule emission. We thus attain excellent (d)STORM images under green excitation that are on par with the "ideal" red-excited dyes, including for difficult structures as the mammalian actin cytoskeleton, and demonstrate high-quality two-color three-dimensional (d)STORM.
Collapse
Affiliation(s)
- Bowen Wang
- University of California Berkeley, Chemistry, UNITED STATES
| | - Michael Xiong
- University of California Berkeley, Chemistry, UNITED STATES
| | | | - Xue Li
- Biotium Inc., n/a, UNITED STATES
| | | | - Ke Xu
- University of California Berkeley, Department of Chemistry, 478 Stanley Hall, 94720, Berkeley, UNITED STATES
| |
Collapse
|
19
|
Kaskova ZM, Bolt YV, Baleeva NS, Nelyubina YV, Andrianova AA, Tsarkova AS. Novel Benzothiophene-Based Fluorescent Dye Exhibiting a Large Stokes Shift. Synlett 2021. [DOI: 10.1055/s-0040-1720925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractWe report a simple two-step method for the synthesis of a novel highly fluorescent benzothiophene-based dye comprising five fused rings and exhibiting a large Stokes shift (Δλ = 152 nm or Δν = 5482 cm–1 in ethanol). Structural features of the obtained compound allow easy functionalization of the carbon core and open new possibility for the development of a series of new classes of fluorescent dyes.
Collapse
Affiliation(s)
- Zinaida M. Kaskova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
- Pirogov Russian National Research Medical University
| | - Yaroslav V. Bolt
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| | - Nadezhda S. Baleeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
- Pirogov Russian National Research Medical University
| | - Yulia V. Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
| | | | - Aleksandra S. Tsarkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
- Pirogov Russian National Research Medical University
| |
Collapse
|
20
|
Valli J, Sanderson J. Super-Resolution Fluorescence Microscopy Methods for Assessing Mouse Biology. Curr Protoc 2021; 1:e224. [PMID: 34436832 DOI: 10.1002/cpz1.224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Super-resolution (diffraction unlimited) microscopy was developed 15 years ago; the developers were awarded the Nobel Prize in Chemistry in recognition of their work in 2014. Super-resolution microscopy is increasingly being applied to diverse scientific fields, from single molecules to cell organelles, viruses, bacteria, plants, and animals, especially the mammalian model organism Mus musculus. In this review, we explain how super-resolution microscopy, along with fluorescence microscopy from which it grew, has aided the renaissance of the light microscope. We cover experiment planning and specimen preparation and explain structured illumination microscopy, super-resolution radial fluctuations, stimulated emission depletion microscopy, single-molecule localization microscopy, and super-resolution imaging by pixel reassignment. The final section of this review discusses the strengths and weaknesses of each super-resolution technique and how to choose the best approach for your research. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Jessica Valli
- Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Jeremy Sanderson
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, United Kingdom
| |
Collapse
|
21
|
Dahlberg PD, Moerner WE. Cryogenic Super-Resolution Fluorescence and Electron Microscopy Correlated at the Nanoscale. Annu Rev Phys Chem 2021; 72:253-278. [PMID: 33441030 PMCID: PMC8877847 DOI: 10.1146/annurev-physchem-090319-051546] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
We review the emerging method of super-resolved cryogenic correlative light and electron microscopy (srCryoCLEM). Super-resolution (SR) fluorescence microscopy and cryogenic electron tomography (CET) are both powerful techniques for observing subcellular organization, but each approach has unique limitations. The combination of the two brings the single-molecule sensitivity and specificity of SR to the detailed cellular context and molecular scale resolution of CET. The resulting correlative data is more informative than the sum of its parts. The correlative images can be used to pinpoint the positions of fluorescently labeled proteins in the high-resolution context of CET with nanometer-scale precision and/or to identify proteins in electron-dense structures. The execution of srCryoCLEM is challenging and the approach is best described as a method that is still in its infancy with numerous technical challenges. In this review, we describe state-of-the-art srCryoCLEM experiments, discuss the most pressing challenges, and give a brief outlook on future applications.
Collapse
Affiliation(s)
- Peter D Dahlberg
- Department of Chemistry, Stanford University, Stanford, California 94305, USA;
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
22
|
Arista-Romero M, Pujals S, Albertazzi L. Towards a Quantitative Single Particle Characterization by Super Resolution Microscopy: From Virus Structures to Antivirals Design. Front Bioeng Biotechnol 2021; 9:647874. [PMID: 33842446 PMCID: PMC8033170 DOI: 10.3389/fbioe.2021.647874] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
In the last year the COVID19 pandemic clearly illustrated the potential threat that viruses pose to our society. The characterization of viral structures and the identification of key proteins involved in each step of the cycle of infection are crucial to develop treatments. However, the small size of viruses, invisible under conventional fluorescence microscopy, make it difficult to study the organization of protein clusters within the viral particle. The applications of super-resolution microscopy have skyrocketed in the last years, converting this group into one of the leading techniques to characterize viruses and study the viral infection in cells, breaking the diffraction limit by achieving resolutions up to 10 nm using conventional probes such as fluorescent dyes and proteins. There are several super-resolution methods available and the selection of the right one it is crucial to study in detail all the steps involved in the viral infection, quantifying and creating models of infection for relevant viruses such as HIV-1, Influenza, herpesvirus or SARS-CoV-1. Here we review the use of super-resolution microscopy (SRM) to study all steps involved in the viral infection and antiviral design. In light of the threat of new viruses, these studies could inspire future assays to unveil the viral mechanism of emerging viruses and further develop successful antivirals against them.
Collapse
Affiliation(s)
- Maria Arista-Romero
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Silvia Pujals
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Electronics and Biomedical Engineering, Faculty of Physics, Universitat de Barcelona, Barcelona, Spain
| | - Lorenzo Albertazzi
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
23
|
Harper CB, Smillie KJ. Current molecular approaches to investigate pre-synaptic dysfunction. J Neurochem 2021; 157:107-129. [PMID: 33544872 DOI: 10.1111/jnc.15316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022]
Abstract
Over the course of the last few decades it has become clear that many neurodevelopmental and neurodegenerative disorders have a synaptic defect, which contributes to pathogenicity. A rise in new techniques, and in particular '-omics'-based methods providing large datasets, has led to an increase in potential proteins and pathways implicated in synaptic function and related disorders. Additionally, advancements in imaging techniques have led to the recent discovery of alternative modes of synaptic vesicle recycling. This has resulted in a lack of clarity over the precise role of different pathways in maintaining synaptic function and whether these new pathways are dysfunctional in neurodevelopmental and neurodegenerative disorders. A greater understanding of the molecular detail of pre-synaptic function in health and disease is key to targeting new proteins and pathways for novel treatments and the variety of new techniques currently available provides an ideal opportunity to investigate these functions. This review focuses on techniques to interrogate pre-synaptic function, concentrating mainly on synaptic vesicle recycling. It further examines techniques to determine the underlying molecular mechanism of pre-synaptic dysfunction and discusses methods to identify molecular targets, along with protein-protein interactions and cellular localization. In combination, these techniques will provide an expanding and more complete picture of pre-synaptic function. With the application of recent technological advances, we are able to resolve events with higher spatial and temporal resolution, leading research towards a greater understanding of dysfunction at the presynapse and the role it plays in pathogenicity.
Collapse
Affiliation(s)
- Callista B Harper
- Centre for Discovery Brain Sciences, University of Edinburgh, Scotland, UK
| | - Karen J Smillie
- Centre for Discovery Brain Sciences, University of Edinburgh, Scotland, UK
| |
Collapse
|
24
|
Peaucelle A, Wightman R, Haas KT. Multicolor 3D-dSTORM Reveals Native-State Ultrastructure of Polysaccharides' Network during Plant Cell Wall Assembly. iScience 2020; 23:101862. [PMID: 33336161 PMCID: PMC7733027 DOI: 10.1016/j.isci.2020.101862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/07/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
The plant cell wall, a form of the extracellular matrix, is a complex and dynamic network of polymers mediating a plethora of physiological functions. How polysaccharides assemble into a coherent and heterogeneous matrix remains mostly undefined. Further progress requires improved molecular-level visualization methods that would gain a deeper understanding of the cell wall nanoarchitecture. dSTORM, a type of super-resolution microscopy, permits quantitative nanoimaging of the cell wall. However, due to the lack of single-cell model systems and the requirement of tissue-level imaging, its use in plant science is almost absent. Here we overcome these limitations; we compare two methods to achieve three-dimensional dSTORM and identify optimal photoswitching dyes for tissue-level multicolor nanoscopy. Combining dSTORM with spatial statistics, we reveal and characterize the ultrastructure of three major polysaccharides, callose, mannan, and cellulose, in the plant cell wall precursor and provide evidence for cellulose structural re-organization related to callose content.
Collapse
Affiliation(s)
- Alexis Peaucelle
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Raymond Wightman
- Microscopy Core Facility, Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
| | - Kalina Tamara Haas
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| |
Collapse
|
25
|
Vissa A, Giuliani M, Kim PK, Yip CM. Hyperspectral super-resolution imaging with far-red emitting fluorophores using a thin-film tunable filter. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:123703. [PMID: 33379995 DOI: 10.1063/1.5143319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
New innovations in single-molecule localization microscopy (SMLM) have revolutionized optical imaging, enabling the characterization of biological structures and interactions with unprecedented detail and resolution. However, multi-color or hyperspectral SMLM can pose particular challenges which affect image quality and data interpretation, such as unequal photophysical performance of fluorophores and non-linear image registration issues, which arise as two emission channels travel along different optical paths to reach the detector. In addition, using evanescent-wave based approaches (Total Internal Reflection Fluorescence: TIRF) where beam shape, decay depth, and power density are important, different illumination wavelengths can lead to unequal imaging depth across multiple channels on the same sample. A potential useful approach would be to use a single excitation wavelength to perform hyperspectral localization imaging. We report herein on the use of a variable angle tunable thin-film filter to spectrally isolate far-red emitting fluorophores. This solution was integrated into a commercial microscope platform using an open-source hardware design, enabling the rapid acquisition of SMLM images arising from fluorescence emission captured within ∼15 nm to 20 nm spectral windows (or detection bands). By characterizing intensity distributions, average intensities, and localization frequency through a range of spectral windows, we investigated several far-red emitting fluorophores and identified an optimal fluorophore pair for two-color SMLM using this method. Fluorophore crosstalk between the different spectral windows was assessed by examining the effect of varying the photon output thresholds on the localization frequency and fraction of data recovered. The utility of this approach was demonstrated by hyper-spectral super-resolution imaging of the interaction between the mitochondrial protein, TOM20, and the peroxisomal protein, PMP70.
Collapse
Affiliation(s)
- Adriano Vissa
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Maximiliano Giuliani
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Peter K Kim
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christopher M Yip
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
26
|
Dahlberg PD, Saurabh S, Sartor AM, Wang J, Mitchell PG, Chiu W, Shapiro L, Moerner WE. Cryogenic single-molecule fluorescence annotations for electron tomography reveal in situ organization of key proteins in Caulobacter. Proc Natl Acad Sci U S A 2020; 117:13937-13944. [PMID: 32513734 PMCID: PMC7321984 DOI: 10.1073/pnas.2001849117] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Superresolution fluorescence microscopy and cryogenic electron tomography (CET) are powerful imaging methods for exploring the subcellular organization of biomolecules. Superresolution fluorescence microscopy based on covalent labeling highlights specific proteins and has sufficient sensitivity to observe single fluorescent molecules, but the reconstructions lack detailed cellular context. CET has molecular-scale resolution but lacks specific and nonperturbative intracellular labeling techniques. Here, we describe an imaging scheme that correlates cryogenic single-molecule fluorescence localizations with CET reconstructions. Our approach achieves single-molecule localizations with an average lateral precision of 9 nm, and a relative registration error between the set of localizations and CET reconstruction of ∼30 nm. We illustrate the workflow by annotating the positions of three proteins in the bacterium Caulobacter crescentus: McpA, PopZ, and SpmX. McpA, which forms a part of the chemoreceptor array, acts as a validation structure by being visible under both imaging modalities. In contrast, PopZ and SpmX cannot be directly identified in CET. While not directly discernable, PopZ fills a region at the cell poles that is devoid of electron-dense ribosomes. We annotate the position of PopZ with single-molecule localizations and confirm its position within the ribosome excluded region. We further use the locations of PopZ to provide context for localizations of SpmX, a low-copy integral membrane protein sequestered by PopZ as part of a signaling pathway that leads to an asymmetric cell division. Our correlative approach reveals that SpmX localizes along one side of the cell pole and its extent closely matches that of the PopZ region.
Collapse
Affiliation(s)
- Peter D Dahlberg
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Saumya Saurabh
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Annina M Sartor
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Jiarui Wang
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Patrick G Mitchell
- Division of Cryo-EM and Bioimaging, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Wah Chiu
- Division of Cryo-EM and Bioimaging, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, CA 94305;
| |
Collapse
|
27
|
Jacquemet G, Carisey AF, Hamidi H, Henriques R, Leterrier C. The cell biologist's guide to super-resolution microscopy. J Cell Sci 2020; 133:133/11/jcs240713. [PMID: 32527967 DOI: 10.1242/jcs.240713] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fluorescence microscopy has become a ubiquitous method to observe the location of specific molecular components within cells. However, the resolution of light microscopy is limited by the laws of diffraction to a few hundred nanometers, blurring most cellular details. Over the last two decades, several techniques - grouped under the 'super-resolution microscopy' moniker - have been designed to bypass this limitation, revealing the cellular organization down to the nanoscale. The number and variety of these techniques have steadily increased, to the point that it has become difficult for cell biologists and seasoned microscopists alike to identify the specific technique best suited to their needs. Available techniques include image processing strategies that generate super-resolved images, optical imaging schemes that overcome the diffraction limit and sample manipulations that expand the size of the biological sample. In this Cell Science at a Glance article and the accompanying poster, we provide key pointers to help users navigate through the various super-resolution methods by briefly summarizing the principles behind each technique, highlighting both critical strengths and weaknesses, as well as providing example images.
Collapse
Affiliation(s)
- Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland .,Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
| | - Alexandre F Carisey
- William T. Shearer Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, 1102 Bates Street, Houston 77030 TX, USA
| | - Hellyeh Hamidi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Ricardo Henriques
- University College London, London WC1E 6BT, UK .,The Francis Crick Institute, London NW1 1AT, UK
| | | |
Collapse
|
28
|
Klevanski M, Herrmannsdoerfer F, Sass S, Venkataramani V, Heilemann M, Kuner T. Automated highly multiplexed super-resolution imaging of protein nano-architecture in cells and tissues. Nat Commun 2020; 11:1552. [PMID: 32214101 PMCID: PMC7096454 DOI: 10.1038/s41467-020-15362-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/04/2020] [Indexed: 11/23/2022] Open
Abstract
Understanding the nano-architecture of protein machines in diverse subcellular compartments remains a challenge despite rapid progress in super-resolution microscopy. While single-molecule localization microscopy techniques allow the visualization and identification of cellular structures with near-molecular resolution, multiplex-labeling of tens of target proteins within the same sample has not yet been achieved routinely. However, single sample multiplexing is essential to detect patterns that threaten to get lost in multi-sample averaging. Here, we report maS3TORM (multiplexed automated serial staining stochastic optical reconstruction microscopy), a microscopy approach capable of fully automated 3D direct STORM (dSTORM) imaging and solution exchange employing a re-staining protocol to achieve highly multiplexed protein localization within individual biological samples. We demonstrate 3D super-resolution images of 15 targets in single cultured cells and 16 targets in individual neuronal tissue samples with <10 nm localization precision, allowing us to define distinct nano-architectural features of protein distribution within the presynaptic nerve terminal. Super-resolution imaging of multiple target proteins in the same sample can provide important information of cellular nanostructure, but has not been routinely achieved. Here, the authors present a fully automated 3D STORM approach using a re-staining protocol to image 15 targets in single cells and 16 targets in neuronal tissue.
Collapse
Affiliation(s)
- Maja Klevanski
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Frank Herrmannsdoerfer
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Steffen Sass
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Varun Venkataramani
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Mike Heilemann
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany.,Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany.
| |
Collapse
|
29
|
Badawi Y, Nishimune H. Super-resolution microscopy for analyzing neuromuscular junctions and synapses. Neurosci Lett 2020; 715:134644. [PMID: 31765730 PMCID: PMC6937598 DOI: 10.1016/j.neulet.2019.134644] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
Super-resolution microscopy techniques offer subdiffraction limited resolution that is two- to ten-fold improved compared to that offered by conventional confocal microscopy. This breakthrough in resolution for light microscopy has contributed to new findings in neuroscience and synapse biology. This review will focus on the Structured Illumination Microscopy (SIM), Stimulated emission depletion (STED) microscopy, and Stochastic optical reconstruction microscopy (STORM) / Single molecule localization microscopy (SMLM) techniques and compare them for the better understanding of their differences and their suitability for the analysis of synapse biology. In addition, we will discuss a few practical aspects of these microscopic techniques, including resolution, image acquisition speed, multicolor capability, and other advantages and disadvantages. Tips for the improvement of microscopy will be introduced; for example, information resources for recommended dyes, the limitations of multicolor analysis, and capabilities for live imaging. In addition, we will summarize how super-resolution microscopy has been used for analyses of neuromuscular junctions and synapses.
Collapse
Affiliation(s)
- Yomna Badawi
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA.
| |
Collapse
|
30
|
Patel L, Gustafsson N, Lin Y, Ober R, Henriques R, Cohen E. A HIDDEN MARKOV MODEL APPROACH TO CHARACTERIZING THE PHOTO-SWITCHING BEHAVIOR OF FLUOROPHORES. Ann Appl Stat 2019; 13:1397-1429. [PMID: 31933716 PMCID: PMC6957128 DOI: 10.1214/19-aoas1240] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fluorescing molecules (fluorophores) that stochastically switch between photon-emitting and dark states underpin some of the most celebrated advancements in super-resolution microscopy. While this stochastic behavior has been heavily exploited, full characterization of the underlying models can potentially drive forward further imaging methodologies. Under the assumption that fluorophores move between fluorescing and dark states as continuous time Markov processes, the goal is to use a sequence of images to select a model and estimate the transition rates. We use a hidden Markov model to relate the observed discrete time signal to the hidden continuous time process. With imaging involving several repeat exposures of the fluorophore, we show the observed signal depends on both the current and past states of the hidden process, producing emission probabilities that depend on the transition rate parameters to be estimated. To tackle this unusual coupling of the transition and emission probabilities, we conceive transmission (transition-emission) matrices that capture all dependencies of the model. We provide a scheme of computing these matrices and adapt the forward-backward algorithm to compute a likelihood which is readily optimized to provide rate estimates. When confronted with several model proposals, combining this procedure with the Bayesian Information Criterion provides accurate model selection.
Collapse
Affiliation(s)
| | | | - Yu Lin
- European Molecular Biology Laboratory Heidelberg
| | | | | | | |
Collapse
|
31
|
Jimenez A, Friedl K, Leterrier C. About samples, giving examples: Optimized Single Molecule Localization Microscopy. Methods 2019; 174:100-114. [PMID: 31078795 DOI: 10.1016/j.ymeth.2019.05.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/28/2022] Open
Abstract
Super-resolution microscopy has profoundly transformed how we study the architecture of cells, revealing unknown structures and refining our view of cellular assemblies. Among the various techniques, the resolution of Single Molecule Localization Microscopy (SMLM) can reach the size of macromolecular complexes and offer key insights on their nanoscale arrangement in situ. SMLM is thus a demanding technique and taking advantage of its full potential requires specifically optimized procedures. Here we describe how we perform the successive steps of an SMLM workflow, focusing on single-color Stochastic Optical Reconstruction Microscopy (STORM) as well as multicolor DNA Points Accumulation for imaging in Nanoscale Topography (DNA-PAINT) of fixed samples. We provide detailed procedures for careful sample fixation and immunostaining of typical cellular structures: cytoskeleton, clathrin-coated pits, and organelles. We then offer guidelines for optimal imaging and processing of SMLM data in order to optimize reconstruction quality and avoid the generation of artifacts. We hope that the tips and tricks we discovered over the years and detail here will be useful for researchers looking to make the best possible SMLM images, a pre-requisite for meaningful biological discovery.
Collapse
Affiliation(s)
- Angélique Jimenez
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, Marseille, France
| | - Karoline Friedl
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, Marseille, France; Abbelight, Paris, France
| | | |
Collapse
|
32
|
Gomes de Castro MA, Wildhagen H, Sograte-Idrissi S, Hitzing C, Binder M, Trepel M, Engels N, Opazo F. Differential organization of tonic and chronic B cell antigen receptors in the plasma membrane. Nat Commun 2019; 10:820. [PMID: 30778055 PMCID: PMC6379438 DOI: 10.1038/s41467-019-08677-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/24/2019] [Indexed: 11/09/2022] Open
Abstract
Stimulation of the B cell antigen receptor (BCR) triggers signaling pathways that promote the differentiation of B cells into plasma cells. Despite the pivotal function of BCR in B cell activation, the organization of the BCR on the surface of resting and antigen-activated B cells remains unclear. Here we show, using STED super-resolution microscopy, that IgM-containing BCRs exist predominantly as monomers and dimers in the plasma membrane of resting B cells, but form higher oligomeric clusters upon stimulation. By contrast, a chronic lymphocytic leukemia-derived BCR forms dimers and oligomers in the absence of a stimulus, but a single amino acid exchange reverts its organization to monomers in unstimulated B cells. Our super-resolution microscopy approach for quantitatively analyzing cell surface proteins may thus help reveal the nanoscale organization of immunoreceptors in various cell types.
Collapse
MESH Headings
- B-Lymphocytes/metabolism
- Burkitt Lymphoma/pathology
- Cell Line, Tumor
- Cell Membrane/metabolism
- Humans
- Immunoglobulin Fab Fragments/genetics
- Immunoglobulin Fab Fragments/metabolism
- Immunoglobulin M/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Microscopy, Fluorescence/methods
- Protein Multimerization
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
Collapse
Affiliation(s)
- Maria Angela Gomes de Castro
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Hanna Wildhagen
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Shama Sograte-Idrissi
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, von-Siebold-Straße 3a, 37075, Göttingen, Germany
| | - Christoffer Hitzing
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Humboldtallee 34, 37073, Göttingen, Germany
| | - Mascha Binder
- Department of Oncology and Hematology, BMT with section Pneumology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Martin Trepel
- Department of Oncology and Hematology, BMT with section Pneumology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Department of Hematology and Oncology, Augsburg Medical Center, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Niklas Engels
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Humboldtallee 34, 37073, Göttingen, Germany.
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, von-Siebold-Straße 3a, 37075, Göttingen, Germany.
| |
Collapse
|
33
|
Samanta S, Gong W, Li W, Sharma A, Shim I, Zhang W, Das P, Pan W, Liu L, Yang Z, Qu J, Kim JS. Organic fluorescent probes for stochastic optical reconstruction microscopy (STORM): Recent highlights and future possibilities. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.08.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Insinna C, Lu Q, Teixeira I, Harned A, Semler EM, Stauffer J, Magidson V, Tiwari A, Kenworthy AK, Narayan K, Westlake CJ. Investigation of F-BAR domain PACSIN proteins uncovers membrane tubulation function in cilia assembly and transport. Nat Commun 2019; 10:428. [PMID: 30683896 PMCID: PMC6347608 DOI: 10.1038/s41467-018-08192-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/20/2018] [Indexed: 12/03/2022] Open
Abstract
The intracellular ciliogenesis pathway requires membrane trafficking, fusion, and reorganization. Here, we demonstrate in human cells and zebrafish that the F-BAR domain containing proteins PACSIN1 and -2 play an essential role in ciliogenesis, similar to their binding partner and membrane reorganizer EHD1. In mature cilia, PACSINs and EHDs are dynamically localized to the ciliary pocket membrane (CPM) and transported away from this structure on membrane tubules along with proteins that exit the cilium. PACSINs function early in ciliogenesis at the ciliary vesicle (CV) stage to promote mother centriole to basal body transition. Remarkably, we show that PACSIN1 and EHD1 assemble membrane t7ubules from the developing intracellular cilium that attach to the plasma membrane, creating an extracellular membrane channel (EMC) to the outside of the cell. Together, our work uncovers a function for F-BAR proteins and membrane tubulation in ciliogenesis and explains how the intracellular cilium emerges from the cell.
Collapse
Affiliation(s)
- Christine Insinna
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Quanlong Lu
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Isabella Teixeira
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Adam Harned
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21701, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Elizabeth M Semler
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Jim Stauffer
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Valentin Magidson
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Ajit Tiwari
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Anne K Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21701, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Christopher J Westlake
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| |
Collapse
|
35
|
Affiliation(s)
- Pieter E. Oomen
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg 41296, Sweden
| | - Mohaddeseh A. Aref
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg 41296, Sweden
| | - Ibrahim Kaya
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg 41296, Sweden
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V3, 43180 Mölndal, Sweden
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Laboratory, University of Gothenburg and Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Nhu T. N. Phan
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg 41296, Sweden
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Laboratory, University of Gothenburg and Chalmers University of Technology, Gothenburg 41296, Sweden
- University of Göttingen Medical Center, Institute of Neuro- and Sensory Physiology, Göttingen 37073, Germany
| | - Andrew G. Ewing
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg 41296, Sweden
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Laboratory, University of Gothenburg and Chalmers University of Technology, Gothenburg 41296, Sweden
| |
Collapse
|
36
|
Bittel AM, Saldivar IS, Dolman NJ, Nan X, Gibbs SL. Superresolution microscopy with novel BODIPY-based fluorophores. PLoS One 2018; 13:e0206104. [PMID: 30366346 PMCID: PMC6203453 DOI: 10.1371/journal.pone.0206104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/05/2018] [Indexed: 01/19/2023] Open
Abstract
Multicolor single-molecule localization microscopy (SMLM) expands our understanding of subcellular details and enables the study of biomolecular interactions through precise visualization of multiple molecules in a single sample with resolution of ~10–20 nm. Probe selection is vital to multicolor SMLM, as the fluorophores must not only exhibit minimal spectral crosstalk, but also be compatible with the same photochemical conditions that promote fluorophore photoswitching. While there are numerous commercially available photoswitchable fluorophores that are optimally excited in the standard Cy3 channel, they are restricted to short Stokes shifts (<30 nm), limiting the number of colors that can be resolved in a single sample. Furthermore, while imaging buffers have been thoroughly examined for commonly used fluorophore scaffolds including cyanine, rhodamine, and oxazine, optimal conditions have not been found for the BODIPY scaffold, precluding its routine use for multicolor SMLM. Herein, we screened common imaging buffer conditions including seven redox reagents with five additives, resulting in 35 overall imaging buffer conditions to identify compatible combinations for BODIPY-based fluorophores. We then demonstrated that novel, photoswitchable BODIPY-based fluorophores with varied length Stokes shifts provide additional color options for SMLM using a combination of BODIPY-based and commercially available photoswitchable fluorophores.
Collapse
Affiliation(s)
- Amy M. Bittel
- Biomedical Engineering Department, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Isaac S. Saldivar
- Biomedical Engineering Department, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Nick J. Dolman
- Thermo Fisher Scientific, Pittsburg, Pennsylvania, United States of America
| | - Xiaolin Nan
- Biomedical Engineering Department, Oregon Health & Science University, Portland, Oregon, United States of America
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Summer L. Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, Oregon, United States of America
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
37
|
Nesprin-1α-Dependent Microtubule Nucleation from the Nuclear Envelope via Akap450 Is Necessary for Nuclear Positioning in Muscle Cells. Curr Biol 2017; 27:2999-3009.e9. [PMID: 28966089 PMCID: PMC5640514 DOI: 10.1016/j.cub.2017.08.031] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/08/2017] [Accepted: 08/15/2017] [Indexed: 11/20/2022]
Abstract
The nucleus is the main microtubule-organizing center (MTOC) in muscle cells due to the accumulation of centrosomal proteins and microtubule (MT) nucleation activity at the nuclear envelope (NE) [1, 2, 3, 4]. The relocalization of centrosomal proteins, including Pericentrin, Pcm1, and γ-tubulin, depends on Nesprin-1, an outer nuclear membrane (ONM) protein that connects the nucleus to the cytoskeleton via its N-terminal region [5, 6, 7]. Nesprins are also involved in the recruitment of kinesin to the NE and play a role in nuclear positioning in skeletal muscle cells [8, 9, 10, 11, 12]. However, a function for MT nucleation from the NE in nuclear positioning has not been established. Using the proximity-dependent biotin identification (BioID) method [13, 14], we found several centrosomal proteins, including Akap450, Pcm1, and Pericentrin, whose association with Nesprin-1α is increased in differentiated myotubes. We show that Nesprin-1α recruits Akap450 to the NE independently of kinesin and that Akap450, but not other centrosomal proteins, is required for MT nucleation from the NE. Furthermore, we demonstrate that this mechanism is disrupted in congenital muscular dystrophy patient myotubes carrying a nonsense mutation within the SYNE1 gene (23560 G>T) encoding Nesprin-1 [15, 16]. Finally, using computer simulation and cell culture systems, we provide evidence for a role of MT nucleation from the NE on nuclear spreading in myotubes. Our data thus reveal a novel function for Nesprin-1α/Nesprin-1 in nuclear positioning through recruitment of Akap450-mediated MT nucleation activity to the NE. BioID of Nesprin-1α identifies centrosomal proteins at myotube nuclear envelope Nesprin-1α-containing LINC complexes recruit Akap450 to myotube nuclear envelope Akap450 is required for microtubule nucleation at the nuclear envelope Microtubule nucleation at the nuclear envelope is involved in nuclear positioning
Collapse
|
38
|
Schöneberg J, Lehmann M, Ullrich A, Posor Y, Lo WT, Lichtner G, Schmoranzer J, Haucke V, Noé F. Lipid-mediated PX-BAR domain recruitment couples local membrane constriction to endocytic vesicle fission. Nat Commun 2017. [PMID: 28627515 PMCID: PMC5481832 DOI: 10.1038/ncomms15873] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) involves membrane-associated scaffolds of the bin-amphiphysin-rvs (BAR) domain protein family as well as the GTPase dynamin, and is accompanied and perhaps triggered by changes in local lipid composition. How protein recruitment, scaffold assembly and membrane deformation is spatiotemporally controlled and coupled to fission is poorly understood. We show by computational modelling and super-resolution imaging that phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] synthesis within the clathrin-coated area of endocytic intermediates triggers selective recruitment of the PX-BAR domain protein SNX9, as a result of complex interactions of endocytic proteins competing for phospholipids. The specific architecture induces positioning of SNX9 at the invagination neck where its self-assembly regulates membrane constriction, thereby providing a template for dynamin fission. These data explain how lipid conversion at endocytic pits couples local membrane constriction to fission. Our work demonstrates how computational modelling and super-resolution imaging can be combined to unravel function and mechanisms of complex cellular processes. The spatiotemporal regulation of membrane scaffolds recruitment and coupling between membrane deformation and fission in endocytosis are unclear. Here the authors show that lipid conversion at endocytic pits recruits SNX9, which couples local membrane constriction to fission in endocytosis.
Collapse
Affiliation(s)
- Johannes Schöneberg
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin 14195, Germany
| | - Martin Lehmann
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany.,Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Alexander Ullrich
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin 14195, Germany
| | - York Posor
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany.,Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Wen-Ting Lo
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany
| | - Gregor Lichtner
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin 14195, Germany.,Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany
| | - Jan Schmoranzer
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany.,Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Volker Haucke
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany.,Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin 14195, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Virchowweg 6, Berlin 10117, Germany
| | - Frank Noé
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin 14195, Germany
| |
Collapse
|
39
|
Roubinet B, Weber M, Shojaei H, Bates M, Bossi ML, Belov VN, Irie M, Hell SW. Fluorescent Photoswitchable Diarylethenes for Biolabeling and Single-Molecule Localization Microscopies with Optical Superresolution. J Am Chem Soc 2017; 139:6611-6620. [PMID: 28437075 DOI: 10.1021/jacs.7b00274] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A modular assembly of water-soluble diarylethenes (DAEs), applicable as biomarkers for optical nanoscopy, is reported. Reversibly photoswitchable 1,2-bis(2-alkyl-6-phenyl-1-benzothiophene-1,1-dioxide-3-yl)perfluorocyclopentenes possessing a fluorescent "closed" form were decorated with one or two methoxy group(s) attached to the para-position(s) of phenyl ring(s) and two, four, or eight carboxylic acid groups. Antibody conjugates of these DAEs feature low aggregation, efficient photoswitching in aqueous buffers, specific staining of cellular structures, and photophysical properties (high emission efficiencies and low cycloreversion quantum yields) enabling their application in superresolution microscopy. Images of tubulin, vimentin, and nuclear pore complexes are presented. The superresolution images can also be acquired by using solely 488 nm light without additional photoactivation with UV light. These DAEs exhibit reversible photoswitching without requiring any additives to the imaging media and open new paths toward the modular design of fluorescent dyes for bioimaging with optical superresolution.
Collapse
Affiliation(s)
- Benoît Roubinet
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| | - Michael Weber
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| | - Heydar Shojaei
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| | - Mark Bates
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| | - Mariano L Bossi
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| | - Vladimir N Belov
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| | - Masahiro Irie
- Research Center for Smart Molecules, Department of Chemistry, Rikkyo University , Nishi-Ikebukuro 3-34-1, Toshimaku, Tokyo 171-8501, Japan
| | - Stefan W Hell
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
40
|
Moysi E, Estes JD, Petrovas C. Novel Imaging Methods for Analysis of Tissue Resident Cells in HIV/SIV. Curr HIV/AIDS Rep 2016; 13:38-43. [PMID: 26830285 DOI: 10.1007/s11904-016-0300-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of advanced tissue-imaging methodologies has greatly facilitated the study of molecular mechanisms and cellular interactions in humans and animal models of disease. Particularly, in HIV research, there is an ever-increasing demand for a comprehensive analysis of immune cell dynamics at tissue level stemming from the need to advance our understanding of those interactions that regulate the generation of adaptive antigen-specific immune responses. The latter is critical for the development of vaccines to elicit broadly neutralizing antibodies as well as for the discovery of novel targets for immuno-therapies to strengthen the cytolytic arm of the immune system at local level. In this review, we focus on current and emerging imaging technologies, discuss their strengths and limitations, and examine how such technologies can inform the development of new treatments and vaccination strategies. We also present some perspective on the future of the technology development.
Collapse
Affiliation(s)
- Eirini Moysi
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136-1013, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Constantinos Petrovas
- Immunology Laboratory, Vaccine Research Center, NIAID, National Institutes of Health, Building 40, 40 Convent Drive, Bethesda, MD, 20892-3005, USA.
| |
Collapse
|
41
|
From single molecules to life: microscopy at the nanoscale. Anal Bioanal Chem 2016; 408:6885-911. [PMID: 27613013 PMCID: PMC5566169 DOI: 10.1007/s00216-016-9781-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 01/08/2023]
Abstract
Super-resolution microscopy is the term commonly given to fluorescence microscopy techniques with resolutions that are not limited by the diffraction of light. Since their conception a little over a decade ago, these techniques have quickly become the method of choice for many biologists studying structures and processes of single cells at the nanoscale. In this review, we present the three main approaches used to tackle the diffraction barrier of ∼200 nm: stimulated-emission depletion (STED) microscopy, structured illumination microscopy (SIM), and single-molecule localization microscopy (SMLM). We first present a theoretical overview of the techniques and underlying physics, followed by a practical guide to all of the facets involved in designing a super-resolution experiment, including an approachable explanation of the photochemistry involved, labeling methods available, and sample preparation procedures. Finally, we highlight some of the most exciting recent applications of and developments in these techniques, and discuss the outlook for this field. Super-resolution microscopy techniques. Working principles of the common approaches stimulated-emission depletion (STED) microscopy, structured illumination microscopy (SIM), and single-molecule localization microscopy (SMLM). ![]()
Collapse
|
42
|
Karanasios E, Walker SA, Okkenhaug H, Manifava M, Hummel E, Zimmermann H, Ahmed Q, Domart MC, Collinson L, Ktistakis NT. Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles. Nat Commun 2016; 7:12420. [PMID: 27510922 PMCID: PMC4987534 DOI: 10.1038/ncomms12420] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/30/2016] [Indexed: 12/11/2022] Open
Abstract
Autophagosome formation requires sequential translocation of autophagy-specific proteins to membranes enriched in PI3P and connected to the ER. Preceding this, the earliest autophagy-specific structure forming de novo is a small punctum of the ULK1 complex. The provenance of this structure and its mode of formation are unknown. We show that the ULK1 structure emerges from regions, where ATG9 vesicles align with the ER and its formation requires ER exit and coatomer function. Super-resolution microscopy reveals that the ULK1 compartment consists of regularly assembled punctate elements that cluster in progressively larger spherical structures and associates uniquely with the early autophagy machinery. Correlative electron microscopy after live imaging shows tubulovesicular membranes present at the locus of this structure. We propose that the nucleation of autophagosomes occurs in regions, where the ULK1 complex coalesces with ER and the ATG9 compartment.
Collapse
Affiliation(s)
| | - Simon A. Walker
- Signalling Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Hanneke Okkenhaug
- Signalling Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Maria Manifava
- Signalling Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Eric Hummel
- Carl Zeiss Microscopy GmbH, Munich 81379, Germany
| | | | - Qashif Ahmed
- Signalling Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | | | | | | |
Collapse
|
43
|
Bittel AM, Nickerson A, Saldivar IS, Dolman NJ, Nan X, Gibbs SL. Methodology for Quantitative Characterization of Fluorophore Photoswitching to Predict Superresolution Microscopy Image Quality. Sci Rep 2016; 6:29687. [PMID: 27412307 PMCID: PMC4944197 DOI: 10.1038/srep29687] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/23/2016] [Indexed: 01/05/2023] Open
Abstract
Single-molecule localization microscopy (SMLM) image quality and resolution strongly depend on the photoswitching properties of fluorophores used for sample labeling. Development of fluorophores with optimized photoswitching will considerably improve SMLM spatial and spectral resolution. Currently, evaluating fluorophore photoswitching requires protein-conjugation before assessment mandating specific fluorophore functionality, which is a major hurdle for systematic characterization. Herein, we validated polyvinyl alcohol (PVA) as a single-molecule environment to efficiently quantify the photoswitching properties of fluorophores and identified photoswitching properties predictive of quality SMLM images. We demonstrated that the same fluorophore photoswitching properties measured in PVA films and using antibody adsorption, a protein-conjugation environment analogous to labeled cells, were significantly correlated to microtubule width and continuity, surrogate measures of SMLM image quality. Defining PVA as a fluorophore photoswitching screening platform will facilitate SMLM fluorophore development and optimal image buffer assessment through facile and accurate photoswitching property characterization, which translates to SMLM fluorophore imaging performance.
Collapse
Affiliation(s)
- Amy M Bittel
- Biomedical Engineering Department, Oregon Health &Science University, Portland, OR 97201, USA
| | - Andrew Nickerson
- Biomedical Engineering Department, Oregon Health &Science University, Portland, OR 97201, USA
| | - Isaac S Saldivar
- Biomedical Engineering Department, Oregon Health &Science University, Portland, OR 97201, USA
| | | | - Xiaolin Nan
- Biomedical Engineering Department, Oregon Health &Science University, Portland, OR 97201, USA.,Knight Cancer Institute, Oregon Health &Science University, Portland, OR 97201, USA.,OHSU Center for Spatial Systems Biomedicine, Oregon Health &Science University, Portland, OR 97201, USA
| | - Summer L Gibbs
- Biomedical Engineering Department, Oregon Health &Science University, Portland, OR 97201, USA.,Knight Cancer Institute, Oregon Health &Science University, Portland, OR 97201, USA.,OHSU Center for Spatial Systems Biomedicine, Oregon Health &Science University, Portland, OR 97201, USA
| |
Collapse
|
44
|
Abstract
Single-molecule localization microscopy (SMLM) is rapidly gaining popularity in the life sciences as an efficient approach to visualize molecular distribution with nanoscale precision. However, it has been challenging to obtain and analyze such data within a cellular context in tissue preparations. Here we describe a 5-d tissue processing and immunostaining procedure that is optimized for SMLM, and we provide example applications to fixed mouse brain, heart and kidney tissues. We then describe how to perform correlated confocal and 3D-superresolution imaging on these sections, which allows the visualization of nanoscale protein localization within labeled subcellular compartments of identified target cells in a few minutes. Finally, we describe the use of VividSTORM (http://katonalab.hu/index.php/vividstorm), an open-source software for correlated confocal and SMLM image analysis, which facilitates the measurement of molecular abundance, clustering, internalization, surface density and intermolecular distances in a cell-specific and subcellular compartment-restricted manner. The protocol requires only basic skills in tissue staining and microscopy.
Collapse
|
45
|
Diffusional spread and confinement of newly exocytosed synaptic vesicle proteins. Nat Commun 2015; 6:8392. [PMID: 26399746 PMCID: PMC4598626 DOI: 10.1038/ncomms9392] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 08/18/2015] [Indexed: 01/01/2023] Open
Abstract
Neurotransmission relies on the calcium-triggered exocytic fusion of non-peptide neurotransmitter-containing small synaptic vesicles (SVs) with the presynaptic membrane at active zones (AZs) followed by compensatory endocytic retrieval of SV membranes. Here, we study the diffusional fate of newly exocytosed SV proteins in hippocampal neurons by high-resolution time-lapse imaging. Newly exocytosed SV proteins rapidly disperse within the first seconds post fusion until confined within the presynaptic bouton. Rapid diffusional spread and confinement is followed by slow reclustering of SV proteins at the periactive endocytic zone. Confinement within the presynaptic bouton is mediated in part by SV protein association with the clathrin-based endocytic machinery to limit diffusional spread of newly exocytosed SV proteins. These data suggest that diffusion, and axonal escape of newly exocytosed vesicle proteins, are counteracted by the clathrin-based endocytic machinery together with a presynaptic diffusion barrier. Neurotransmission is mediated by synaptic vesicles (SVs) fusion with the plasma membrane near active zones. Here, Gimber et al. observe that rapid diffusional spread and confinement is followed by slow reclustering of SV proteins at the periactive endocytic zone through SV protein association with the clathrin-based machinery.
Collapse
|
46
|
Lampe A, Tadeus G, Schmoranzer J. Spectral demixing avoids registration errors and reduces noise in multicolor localization-based super-resolution microscopy. Methods Appl Fluoresc 2015; 3:034006. [DOI: 10.1088/2050-6120/3/3/034006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
47
|
Tadeus G, Lampe A, Schmoranzer J. SDmixer—a versatile software tool for spectral demixing of multicolor single molecule localization data. Methods Appl Fluoresc 2015; 3:037001. [DOI: 10.1088/2050-6120/3/3/037001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|