1
|
Cai Z, Liu B, Cai Q, Gou J, Tang X. Advances in microsphere-based therapies for peritoneal carcinomatosis: challenges, innovations, and future prospects. Expert Opin Drug Deliv 2025; 22:31-46. [PMID: 39641971 DOI: 10.1080/17425247.2024.2439462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/09/2024] [Accepted: 12/04/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Clinical outcomes for the treatment of peritoneal carcinomatosis (PC) have remained suboptimal. Microsphere-based intraperitoneal chemotherapy has shown considerable potential in preclinical studies. However, due to the complications associated with peritoneal adhesions, there has been a lack of comprehensive reviews focusing on the progress of microsphere applications in the treatment of PC. AREAS COVERED We provide an overview of the current clinical treatment strategies for PC and analyze the potential advantages of microspheres in this context. Regarding the issue of peritoneal adhesions induced by microspheres, we investigate the underlying mechanisms and propose possible solutions. Furthermore, we outline the future directions for the development of microsphere-based therapies in the treatment of PC. EXPERT OPINION Microspheres formulated with highly biocompatible materials to the peritoneum, such as sodium alginate, gelatin, or genipin, or with an optimal particle size (4 ~ 30 μm) and lower molecular weights (10 ~ 57 kDa), can prevent peritoneal adhesions and improve drug distribution. To further enhance the antitumor efficacy, enhancing the tumor penetration capability and specificity of microspheres, optimizing intraperitoneal distribution, and addressing tumor resistance have demonstrated significant potential in preclinical studies, offering new therapeutic prospects for the treatment of PC.
Collapse
Affiliation(s)
- Zhitao Cai
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Boyuan Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qing Cai
- Department of Formulation, Zhuhai Livzon Microsphere Technology Co. Ltd, Zhuhai, China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
2
|
Jadhav SA, Raval AJ, Jariwala AB, Engineer CB, Tailor J, Patravale VB. In vitro drug release profiling of Sirolimus polymeric microparticles coated long-acting stents. Int J Pharm 2024; 664:124572. [PMID: 39159857 DOI: 10.1016/j.ijpharm.2024.124572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024]
Abstract
In the realm of arterial disease interventions, drug-eluting stents (DES) have become a vital therapeutic choice in preventing atherosclerotic plaque formation and restenosis and facilitating vessel healing. Sirolimus-encapsulated poly Lactic-co-Glycolic acid (PLGA) Microparticles (MPs) were developed using solvent evaporation. MPs were freeze-dried with a cryoprotectant and coated on the stent surface using an efficient and reproducible nitrogen-assisted spray coating technique. The MPs displayed a uniform distribution particle size of 4.38 ± 1.1 μm, span value of 0.88 ± 0.02, coating mass transfer efficiency of 13.45 ± 1.1 % on the stent, and a coating time of ≤ 2 min per stent. Post sterilization, the particle size and morphology of the coated stents remained unchanged. Accelerated in vitro drug release profiles were evaluated under different conditions, indicating significant influences based on dissolution methods ranging from 28.2 %±4.3 %, 42.5 %±5.3 %, 76.6 %±4.7 %, and 84.25 %±3.1 % for dialysis bag (DB), vessel simulating flow-through cell (vFTC), flow-through cell (FTC), and sample and separate (SS) technique respectively for 48 h. The drug release mechanism from the coated stents is governed by the combination of the Korsmeyer Peppas and Higuchi models. The developed dissolution method exhibited discriminative effectiveness when evaluated with critical formulation attributes and process parameter variations. The 48 h accelerated drug release studies correlated well with the 6-month real-time release rate with an R2 value of 0.9142 and Pearson's R2 of 0.9561. Ex-vivo studies demonstrated the permeation of MPs into artery tissues. Stability studies confirmed that MPs coated stents maintained desired properties at 4 °C and 30 °C/65 % RH for 6 months. Overall, these findings contribute to advancing stent technology, suggesting the potential for improvement of arterial interventions and enhanced patient outcomes.
Collapse
Affiliation(s)
- Sarika A Jadhav
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga (E), Mumbai 400 019, Maharashtra, India
| | - Ankur J Raval
- Sahajanand Medical Technologies Limited, Gujarat 395004, India
| | | | | | - Jaynish Tailor
- Sahajanand Medical Technologies Limited, Gujarat 395004, India
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga (E), Mumbai 400 019, Maharashtra, India.
| |
Collapse
|
3
|
Choi W, Aizik G, Ostertag-Hill CA, Kohane DS. A hybrid nanoparticle-protein hydrogel system for prolonged local anesthesia. Biomaterials 2024; 306:122494. [PMID: 38316090 PMCID: PMC11337094 DOI: 10.1016/j.biomaterials.2024.122494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/07/2024]
Abstract
Local anesthetics are effective in relieving pain, but their duration of action is short. Therefore, the development of injectable sustained release systems to prolong the effect of local anesthetics has been of interest. In such systems delivering conventional local anesthetics, it has been challenging to achieve long durations of effect, particularly without incurring tissue toxicity. To overcome these challenges, we created a platform comprising a protein hydrogel incorporating hydrophobic local anesthetic (bupivacaine) nanoparticles. The nanoparticles were prepared by anti-solvent precipitation stabilized with bovine serum albumin (BSA), followed by crosslinking with glutaraldehyde (GA). The resulting BSA hydrogels prolonged release of bupivacaine in vitro. When bupivacaine nanoparticles within crosslinked BSA were injected at the sciatic nerve in rats, a duration of nerve block of 39.9 h was obtained, compared to 5.5 h for the commercial bupivacaine liposome suspension EXPAREL®. Tissue reaction was benign. We further demonstrated that this system could control the release of the amphiphilic drug diphenhydramine and the hydrophobic paclitaxel.
Collapse
Affiliation(s)
- Wonmin Choi
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Gil Aizik
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Claire A Ostertag-Hill
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States.
| |
Collapse
|
4
|
Zhang W, Wang D, Ostertag-Hill CA, Han Y, Li X, Zheng Y, Lu B, Kohane DS. On-Demand Opioid Effect Reversal with an Injectable Light-Triggered Polymer-Naloxone Conjugate. NANO LETTERS 2023; 23:10545-10553. [PMID: 37937844 PMCID: PMC10949359 DOI: 10.1021/acs.nanolett.3c03426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Misuse of opioids can lead to a potential lethal overdose. Timely administration of naloxone is critical for survival. Here, we designed a polymer-naloxone conjugate that can provide on-demand phototriggered opioid reversal. Naloxone was attached to the polymer poly(lactic-co-glycolic acid) via a photocleavable coumarin linkage and formulated as injectable nanoparticles. In the absence of irradiation, the formulation did not release naloxone. Upon irradiation with blue (400 nm) light, the nanoparticles released free naloxone, reversing the effect of morphine in mice. Such triggered events could be performed days and weeks after the initial administration of the nanoparticles and could be performed repeatedly.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Dali Wang
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Claire A. Ostertag-Hill
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yiyuan Han
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xiyu Li
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yueqin Zheng
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Berwyn Lu
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Daniel S. Kohane
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Arriaga MA, Amieva JA, Quintanilla J, Jimenez A, Ledezma J, Lopez S, Martirosyan KS, Chew SA. The application of electrosprayed minocycline-loaded PLGA microparticles for the treatment of glioblastoma. Biotechnol Bioeng 2023; 120:3409-3422. [PMID: 37605630 PMCID: PMC10592149 DOI: 10.1002/bit.28527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/09/2023] [Accepted: 07/17/2023] [Indexed: 08/23/2023]
Abstract
The survival of patients with glioblastoma multiforme (GBM), the most common and invasive form of malignant brain tumors, remains poor despite advances in current treatment methods including surgery, radiotherapy, and chemotherapy. Minocycline is a semi-synthetic tetracycline derivative that has been widely used as an antibiotic and more recently, it has been utilized as an antiangiogenic factor to inhibit tumorigenesis. The objective of this study was to investigate the utilization of electrospraying process to fabricate minocycline-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles with high drug loading and loading efficiency and to evaluate their ability to induce cell toxicity in human glioblastoma (i.e., U87-MG) cells. The results from this study demonstrated that solvent mixture of dicholoromethane (DCM) and methanol is the optimal solvent combination for minocycline and larger amount of methanol (i.e., 70:30) resulted in a higher drug loading. All three solvent ratios of DCM:methanol tested produced microparticles that were both spherical and smooth, all in the micron size range. The electrosprayed microparticles were able to elicit a cytotoxic response in U87-MG glioblastoma cells at a lower concentration of drug compared to the free drug. This work provides proof of concept to the hypothesis that electrosprayed minocycline-loaded PLGA microparticles can be a promising agent for the treatment of GBM and could have potential application for cancer therapies.
Collapse
Affiliation(s)
- Marco A. Arriaga
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Juan A. Amieva
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Jaqueline Quintanilla
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Angela Jimenez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Julio Ledezma
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Silverio Lopez
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Karen S. Martirosyan
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Sue Anne Chew
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| |
Collapse
|
6
|
Li Y, Owens GE, Kohane DS. Materials for Controlled Release of Local Anesthetics. ChemMedChem 2023; 18:e202300009. [PMID: 37070644 PMCID: PMC11372721 DOI: 10.1002/cmdc.202300009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/06/2023] [Indexed: 04/19/2023]
Abstract
Controlled release systems for prolonged duration local anesthesia have long been an area of research interest, and now are entering clinical practice, in part driven by the opioid epidemic. We discuss the design considerations and material properties of systems for controlled release of local anesthetics, from relatively simple systems to covalent binding of drugs to materials and delivery triggered by external stimuli.
Collapse
Affiliation(s)
- Yang Li
- Department of Anesthesiology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Gwen E Owens
- Department of Anesthesiology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel S Kohane
- Department of Anesthesiology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Physical, Chemical, and Biological Properties of Chitosan-Coated Alginate Microparticles Loaded with Porcine Interleukin-1β: A Potential Protein Adjuvant Delivery System. Int J Mol Sci 2022; 23:ijms23179959. [PMID: 36077367 PMCID: PMC9456129 DOI: 10.3390/ijms23179959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022] Open
Abstract
We previously developed chicken interleukin-1β (IL-1β) mutants as single-dose adjuvants that induce protective immunity when co-administered with an avian vaccine. However, livestock such as pigs may require a vaccine adjuvant delivery system that provides long-lasting protection to reduce the need for successive booster doses. Therefore, we developed chitosan-coated alginate microparticles as a carrier for bovine serum albumin (BSA) or porcine IL-1β (pIL-1β) and assessed their physical, chemical, and biological properties. Electrospraying of the BSA-loaded alginate microparticles (BSA/ALG MPs) resulted in an encapsulation efficiency of 50%, and those MPs were then coated with chitosan (BSA/ALG/CHI MPs). Optical and scanning electron microscopy, zeta potential analysis, and Fourier transform infrared spectroscopy were used to characterize these MPs. The BSA encapsulation parameters were applied to ALG/CHI MPs loaded with pIL-1β, which were not cytotoxic to porcine fibroblasts but had enhanced bio-activity over unencapsulated pIL-1β. The chitosan layer of the BSA/ALG/CHI MPs prevented burst release and facilitated sustained release of pIL-1β for at least 28 days. In conclusion, BSA/ALG/CHI MPs prepared as a carrier for pIL-1β may be used as an adjuvant for the formulation of pig vaccines.
Collapse
|
8
|
Steverink JG, van Tol FR, Oosterman BJ, Vermonden T, Verlaan JJ, Malda J, Piluso S. Robust gelatin hydrogels for local sustained release of bupivacaine following spinal surgery. Acta Biomater 2022; 146:145-158. [PMID: 35562007 DOI: 10.1016/j.actbio.2022.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 11/15/2022]
Abstract
Adequate treatment of pain arising from spinal surgery is a major clinical challenge. Opioids are the mainstay of current treatment methods, but the frequency and severity of their side effects display a clear need for opioid-free analgesia. Local anesthetics have been encapsulated into sustained-release drug delivery systems to provide postoperative pain relief. However, these formulations are limited by rapid diffusion out of the surgical site. To overcome this limitation, we synthesized ring-shaped hydrogels incorporating bupivacaine, designed to be co-implanted with pedicle screws during spinal surgery. Hydrogels were prepared by riboflavin-mediated crosslinking of gelatin functionalized with tyramine moieties. Additionally, oxidized β-cyclodextrin was introduced into the hydrogel formulation to form dynamic bonds with tyramine functionalities, which enables self-healing behavior and resistance to shear. Feasibility of hydrogel implantation combined with pedicle screws was qualitatively assessed in cadaveric sheep as a model for instrumented spinal surgery. The in-situ crystallization of bupivacaine within the hydrogel matrix provided a moderate burst decrease and sustained release that exceeded 72 hours in vitro. The use of bupivacaine crystals decreased drug-induced cytotoxicity in vitro compared to bupivacaine HCl. Thus, the presented robust hydrogel formulation provides promising properties to enable the stationary release of non-opioid analgesics following spinal surgery. STATEMENT OF SIGNIFICANCE: Currently, postoperative pain following spinal surgery is mainly treated with opioids. However, the use of opioids is associated with several side effects including addiction. Here we developed robust and cytocompatible gelatin hydrogels, prepared via riboflavin-mediated photocrosslinking, that can withstand orthopedic implantation. The implantability was confirmed in cadaveric instrumented spinal surgery. Further, hydrogels were loaded with bupivacaine crystals to provide sustained release beyond 72 hours in vitro. The use of crystallized bupivacaine decreased cytotoxicity compared to bupivacaine HCl. The present formulation can aid in enabling opioid-free analgesia following instrumented spinal surgery.
Collapse
Affiliation(s)
- Jasper G Steverink
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Regenerative Medicine Utrecht, Utrecht University, Uppsalalaan 8, 3584CT Utrecht, the Netherlands; SentryX B.V., Woudenbergseweg 41, 3711 AA Austerlitz, the Netherlands
| | - Floris R van Tol
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; SentryX B.V., Woudenbergseweg 41, 3711 AA Austerlitz, the Netherlands
| | - Bas J Oosterman
- SentryX B.V., Woudenbergseweg 41, 3711 AA Austerlitz, the Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Utrecht University, Universiteitsweg 99, 3508 TB, Utrecht, the Netherlands
| | - Jorrit-Jan Verlaan
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; SentryX B.V., Woudenbergseweg 41, 3711 AA Austerlitz, the Netherlands
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Regenerative Medicine Utrecht, Utrecht University, Uppsalalaan 8, 3584CT Utrecht, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, the Netherlands
| | - Susanna Piluso
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Regenerative Medicine Utrecht, Utrecht University, Uppsalalaan 8, 3584CT Utrecht, the Netherlands; SentryX B.V., Woudenbergseweg 41, 3711 AA Austerlitz, the Netherlands.
| |
Collapse
|
9
|
Wu J, Sahoo JK, Li Y, Xu Q, Kaplan DL. Challenges in delivering therapeutic peptides and proteins: A silk-based solution. J Control Release 2022; 345:176-189. [PMID: 35157939 PMCID: PMC9133086 DOI: 10.1016/j.jconrel.2022.02.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
Peptide- and protein-based therapeutics have drawn significant attention over the past few decades for the treatment of infectious diseases, genetic disorders, oncology, and many other clinical needs. Yet, protecting peptide- and protein-based drugs from degradation and denaturation during processing, storage and delivery remain significant challenges. In this review, we introduce the properties of peptide- and protein-based drugs and the challenges associated with their stability and delivery. Then, we discuss delivery strategies using synthetic polymers and their advantages and limitations. This is followed by a focus on silk protein-based materials for peptide/protein drug processing, storage, and delivery, as a path to overcome stability and delivery challenges with current systems.
Collapse
Affiliation(s)
- Junqi Wu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Yamin Li
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
10
|
Freitas de Lima F, da Silva BB, Oliveira JD, de Moura LD, Rodrigues da Silva GH, Fernandes PCL, Souza RIC, Dos Santos AC, de Paula E. Prolonged anesthesia and decreased toxicity of enantiomeric-excess bupivacaine loaded in ionic gradient liposomes. Int J Pharm 2021; 606:120944. [PMID: 34324985 DOI: 10.1016/j.ijpharm.2021.120944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022]
Abstract
Bupivacaine is the most employed local anesthetic in surgical procedures, worldwide. Its systemic toxicity has directed the synthesis of the less toxic, S(-) enantiomer. This work describes a formulation of ionic gradient liposomes (IGL) containing S75BVC, an enantiomeric excess mixture of 75% S(-) and 25% R(+) bupivacaine. IGL prepared with 250 mM (NH4)2SO4 in the inner aqueous core of phosphatidylcholine and cholesterol (3:2 mol%) vesicles plus 0.5% S75BVC showed average sizes of 312.5 ± 4.5 nm, low polydispersity (PDI < 0.18), negative zeta potentials (-14.2 ± 0.2 mV) and were stable for 360 days. The encapsulation efficiency achieved with IGLS75BVC (%EE = 38.6%) was higher than with IGL prepared with racemic bupivacaine (IGLRBVC, %EE = 28.3%). TEM images revealed spherical vesicles and µDSC analysis provided evidence on the interaction of the anesthetic with the lipid bilayer. Then, in vitro - release kinetics and cytotoxicity- and in vivo - toxic effects in Zebrafish and biochemical/histopathological analysis plus analgesia in Wistar rats - tests were performed. IGLS75BVC exhibited negligible toxicity against Schwann cells and Zebrafish larvae, and it did not affect biochemical markers or the morphology of rat tissues (heart, brain, cerebellum, sciatic nerve). The in vitro release of S75BVC from IGL was extended from 4 to 24 h, justifying the prolonged anesthetic effect measured in rats (~9 h). The advantages of IGLS75BVC formulation over IGLRBVC and plain bupivacaine formulations (prolonged anesthesia, preferential sensorial blockade, and no toxicity) confirm its potential for clinical use in surgical anesthesia.
Collapse
Affiliation(s)
- Fernando Freitas de Lima
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil
| | - Bianca Brandão da Silva
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil
| | - Juliana Damasceno Oliveira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil
| | - Ludmilla David de Moura
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil
| | | | | | | | | | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil.
| |
Collapse
|
11
|
Phadke A, Amin P. A Recent Update on Drug Delivery Systems for Pain Management. J Pain Palliat Care Pharmacother 2021; 35:175-214. [PMID: 34157247 DOI: 10.1080/15360288.2021.1925386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pain remains a global health challenge affecting approximately 1.5 billion people worldwide. Pain has been an implicit variable in the equation of human life for many centuries considering different types and the magnitude of pain. Therefore, developing an efficacious drug delivery system for pain management remains an open challenge for researchers in the field of medicine. Lack of therapeutic efficacy still persists, despite high throughput studies in the field of pain management. Research scientists have been exploiting different alternatives to curb the adverse side effects of pain medications or attempting a more substantial approach to minimize the prevalence of pain. Various drug delivery systems have been developed such as nanoparticles, microparticles to curb adverse side effects of pain medications or minimize the prevalence of pain. This literature review firstly provides a brief introduction of pain as a sensation and its pharmacological interventions. Second, it highlights the most recent studies in the pharmaceutical field for pain management and serves as a strong base for future developments. Herein, we have classified drug delivery systems based on their sizes such as nano, micro, and macro systems, and for each of the reviewed systems, design, formulation strategies, and drug release performance has been discussed.
Collapse
|
12
|
Chin AL, Wang X, Tong R. Aliphatic Polyester-Based Materials for Enhanced Cancer Immunotherapy. Macromol Biosci 2021; 21:e2100087. [PMID: 33909344 DOI: 10.1002/mabi.202100087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/07/2021] [Indexed: 12/19/2022]
Abstract
Poly(lactic acid) (PLA) and its copolymer, poly(lactic-co-glycolic acid) (PLGA), based aliphatic polyesters have been extensively used for biomedical applications, such as drug delivery system and tissue engineering, thanks to their biodegradability, benign toxicity, renewability, and adjustable mechanical properties. A rapidly growing field of cancer research, the development of therapeutic cancer vaccines or treatment modalities is aimed to deliver immunomodulatory signals that control the quality of immune responses against tumors. Herein, the progress and applications of PLA and PLGA are reviewed in delivering immunotherapeutics to treat cancers.
Collapse
Affiliation(s)
- Ai Lin Chin
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA
| | - Xiaoqian Wang
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA
| | - Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA
| |
Collapse
|
13
|
Alejo T, Uson L, Landa G, Prieto M, Yus Argón C, Garcia-Salinas S, de Miguel R, Rodríguez-Largo A, Irusta S, Sebastian V, Mendoza G, Arruebo M. Nanogels with High Loading of Anesthetic Nanocrystals for Extended Duration of Sciatic Nerve Block. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17220-17235. [PMID: 33821601 PMCID: PMC8892441 DOI: 10.1021/acsami.1c00894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The development of thermoresponsive nanogels loaded with nanocrystals of the local anesthetic bupivacaine nanocrystals (BNCs) for prolonged peripheral nerve pain relief is reported here. BNCs were prepared using the antisolvent precipitation method from the hydrophobic form of bupivacaine (bupivacaine free base). The as-prepared BNCs were used stand-alone or encapsulated in temperature-responsive poly(ethylene glycol) methyl ether methacrylate (OEGMA)-based nanogels, resulting in bupivacaine NC-loaded nanogels (BNC-nanogels) of monodisperse size. The synthesis protocol has rendered high drug loadings (i.e., 93.8 ± 1.5 and 84.8 ± 1.2 wt % for the NC and BNC-nanogels, respectively) and fast drug dissolution kinetics in the resulting composite material. In vivo tests demonstrated the efficacy of the formulation along with an extended duration of sciatic nerve block in murine models of more than 8 h with a formulation containing only 2 mg of the local anesthetic thanks to the thermoresponsive character of the polymer, which, at body temperature, becomes hydrophobic and acts as a diffusion barrier for the encapsulated drug nanocrystals. The hydrophobicity of the encapsulated bupivacaine free base probably facilitates its pass through cell membranes and also binds strongly to their hydrophobic lipid bilayer, thereby protecting molecules from diffusion to extracellular media and to the bloodstream, reducing their clearance. When using BNC-nanogels, the duration of the anesthetic blockage lasted twice as long as compared to the effect of just BNCs or a conventional bupivacaine hydrochloride solution both containing equivalent amounts of the free drug. Results of the in vivo tests showed enough sensory nerve block to potentially relieve pain, but still having mobility in the limb, which enables motor function when required. The BNC-nanogels presented minimal toxicity in the in vivo study due to their sustained drug release and excellent biocompatibility. The encapsulation of nano-sized crystals of bupivacaine provides a prolonged regional anesthesia with reduced toxicity, which could be advantageous in the management of chronic pain.
Collapse
Affiliation(s)
- Teresa Alejo
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro—Edificio
I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Laura Uson
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro—Edificio
I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Guillermo Landa
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro—Edificio
I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Martin Prieto
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro—Edificio
I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Cristina Yus Argón
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro—Edificio
I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Sara Garcia-Salinas
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro—Edificio
I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Ricardo de Miguel
- Department
of Animal Pathology, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain
| | - Ana Rodríguez-Largo
- Department
of Animal Pathology, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain
| | - Silvia Irusta
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro—Edificio
I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Networking
Research Center on Bioengineering, Biomaterials
and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
- Aragon
Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Victor Sebastian
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro—Edificio
I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Networking
Research Center on Bioengineering, Biomaterials
and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
- Aragon
Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Gracia Mendoza
- Networking
Research Center on Bioengineering, Biomaterials
and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
- Aragon
Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Manuel Arruebo
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro—Edificio
I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Networking
Research Center on Bioengineering, Biomaterials
and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
- Aragon
Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| |
Collapse
|
14
|
Tian X, Zhu H, Du S, Zhang XQ, Lin F, Ji F, Tsou YH, Li Z, Feng Y, Ticehurst K, Hannaford S, Xu X, Tao YX. Injectable PLGA-Coated Ropivacaine Produces A Long-Lasting Analgesic Effect on Incisional Pain and Neuropathic Pain. THE JOURNAL OF PAIN 2020; 22:180-195. [PMID: 32739615 DOI: 10.1016/j.jpain.2020.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/27/2020] [Accepted: 03/22/2020] [Indexed: 02/07/2023]
Abstract
The management of persistent postsurgical pain and neuropathic pain remains a challenge in the clinic. Local anesthetics have been widely used as simple and effective treatment for these 2 disorders, but the duration of their analgesic effect is short. We here reported a new poly lactic-co-glycolic acid (PLGA)-coated ropivacaine that was continuously released in vitro for at least 6 days. Perisciatic nerve injection of the PLGA-coated ropivacaine attenuated paw incision-induced mechanical allodynia and heat hyperalgesia during the incisional pain period, and spared nerve injury-induced mechanical and cold allodynia for at least 7 days postinjection. This effect was dose-dependent. Perisciatic nerve injection of the PLGA-coated ropivacaine did not produce detectable inflammation, tissue irritation, or damage in the sciatic nerve and surrounding muscles at the injected site, dorsal root ganglion, spinal cord, or brain cortex, although the scores for grasping reflex were mildly and transiently reduced in the higher dosage-treated groups. PERSPECTIVE: Given that PLGA is an FDA-approved medical material, and that ropivacaine is used currently in clinical practice, the injectable PLGA-coated ropivacaine represents a new and highly promising avenue in the management of postsurgical pain and neuropathic pain.
Collapse
Affiliation(s)
- Xue Tian
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey; Department of Anesthesiology, Peking University People's Hospital, Beijing, China
| | - He Zhu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey
| | - Shibin Du
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Xue-Qing Zhang
- Engineering Research Center of Cell & Therapeutic Antibody Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Fuqing Lin
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Fengtao Ji
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Yung-Hao Tsou
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey
| | - Zhongyu Li
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey
| | - Yi Feng
- Department of Anesthesiology, Peking University People's Hospital, Beijing, China
| | - Kathryn Ticehurst
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Stephen Hannaford
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Xiaoyang Xu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey; Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey.
| |
Collapse
|
15
|
Rahnfeld L, Luciani P. Injectable Lipid-Based Depot Formulations: Where Do We Stand? Pharmaceutics 2020; 12:E567. [PMID: 32575406 PMCID: PMC7356974 DOI: 10.3390/pharmaceutics12060567] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 01/18/2023] Open
Abstract
The remarkable number of new molecular entities approved per year as parenteral drugs, such as biologics and complex active pharmaceutical ingredients, calls for innovative and tunable drug delivery systems. Besides making these classes of drugs available in the body, injectable depot formulations offer the unique advantage in the parenteral world of reducing the number of required injections, thus increasing effectiveness as well as patient compliance. To date, a plethora of excipients has been proposed to formulate depot systems, and among those, lipids stand out due to their unique biocompatibility properties and safety profile. Looking at the several long-acting drug delivery systems based on lipids designed so far, a legitimate question may arise: How far away are we from an ideal depot formulation? Here, we review sustained release lipid-based platforms developed in the last 5 years, namely oil-based solutions, liposomal systems, in situ forming systems, solid particles, and implants, and we critically discuss the requirements for an ideal depot formulation with respect to the used excipients, biocompatibility, and the challenges presented by the manufacturing process. Finally, we delve into lights and shadows originating from the current setups of in vitro release assays developed with the aim of assessing the translational potential of depot injectables.
Collapse
Affiliation(s)
| | - Paola Luciani
- Pharmaceutical Technology Research Group, Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland;
| |
Collapse
|
16
|
Zhang W, Ji T, Li Y, Zheng Y, Mehta M, Zhao C, Liu A, Kohane DS. Light-triggered release of conventional local anesthetics from a macromolecular prodrug for on-demand local anesthesia. Nat Commun 2020; 11:2323. [PMID: 32385252 PMCID: PMC7210304 DOI: 10.1038/s41467-020-16177-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/18/2020] [Indexed: 11/17/2022] Open
Abstract
An on-demand anesthetic that would only take effect when needed and where the intensity of anesthesia could be easily adjustable according to patients' needs would be highly desirable. Here, we design and synthesize a macromolecular prodrug (P407-CM-T) in which the local anesthetic tetracaine (T) is attached to the polymer poloxamer 407 (P407) via a photo-cleavable coumarin linkage (CM). P407-CM-T solution is an injectable liquid at room temperature and gels near body temperature. The macromolecular prodrug has no anesthetic effect itself unless irradiated with a low-power blue light emitting diode (LED), resulting in local anesthesia. By adjusting the intensity and duration of irradiation, the anesthetic effect can be modulated. Local anesthesia can be repeatedly triggered.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tianjiao Ji
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yang Li
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yueqin Zheng
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Manisha Mehta
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chao Zhao
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andong Liu
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Primavera R, Kevadiya BD, Swaminathan G, Wilson RJ, De Pascale A, Decuzzi P, Thakor AS. Emerging Nano- and Micro-Technologies Used in the Treatment of Type-1 Diabetes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E789. [PMID: 32325974 PMCID: PMC7221526 DOI: 10.3390/nano10040789] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Type-1 diabetes is characterized by high blood glucose levels due to a failure of insulin secretion from beta cells within pancreatic islets. Current treatment strategies consist of multiple, daily injections of insulin or transplantation of either the whole pancreas or isolated pancreatic islets. While there are different forms of insulin with tunable pharmacokinetics (fast, intermediate, and long-acting), improper dosing continues to be a major limitation often leading to complications resulting from hyper- or hypo-glycemia. Glucose-responsive insulin delivery systems, consisting of a glucose sensor connected to an insulin infusion pump, have improved dosing but they still suffer from inaccurate feedback, biofouling and poor patient compliance. Islet transplantation is a promising strategy but requires multiple donors per patient and post-transplantation islet survival is impaired by inflammation and suboptimal revascularization. This review discusses how nano- and micro-technologies, as well as tissue engineering approaches, can overcome many of these challenges and help contribute to an artificial pancreas-like system.
Collapse
Affiliation(s)
- Rosita Primavera
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Bhavesh D Kevadiya
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
| | - Ganesh Swaminathan
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
| | - Rudilyn Joyce Wilson
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
| | - Angelo De Pascale
- Unit of Endocrinology, Department of Internal Medicine & Medical Specialist (DIMI), University of Genoa, 16163 Genoa, Italy;
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
| |
Collapse
|
18
|
Li Y, Kohane DS. Microparticles. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Wei Y, Wu Y, Wen K, Bazybek N, Ma G. Recent research and development of local anesthetic-loaded microspheres. J Mater Chem B 2020; 8:6322-6332. [DOI: 10.1039/d0tb01129k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review introduces the recent research and development in local anesthetic-loaded microsphere, as efficient microspheres formulation, the efficient microspheres: optimum preparation method, high loading efficiency, and ideal release rate.
Collapse
Affiliation(s)
- Yi Wei
- State Key Laboratory of Biochemical Engineering
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| | - Youbin Wu
- Yichang Humanwell Pharmaceutical Co., Ltd
- Yichang 443008
- P. R. China
| | - Kang Wen
- State Key Laboratory of Biochemical Engineering
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| | - Nardana Bazybek
- State Key Laboratory of Biochemical Engineering
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
20
|
Winkler JS, Barai M, Tomassone MS. Dual drug-loaded biodegradable Janus particles for simultaneous co-delivery of hydrophobic and hydrophilic compounds. Exp Biol Med (Maywood) 2019; 244:1162-1177. [PMID: 31617755 PMCID: PMC6802157 DOI: 10.1177/1535370219876554] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 08/25/2019] [Indexed: 01/13/2023] Open
Abstract
Bicompartmental Janus particles have many advantages in drug delivery, including co-delivery of two compounds with varying solubilities, differential release kinetics, and two surfaces available for targeting ligands. We present a novel strategy using the double emulsion method for the coencapsulation and staggered release of a hydrophobic and hydrophilic drug from anisotropic PLGA/PCL Janus particles, as well as a UV detection method to measure the release of two different compounds from Janus particles. Curcumin and quercetin were chosen as the model hydrophobic compounds for drug loading studies, while acetaminophen (APAP) and naproxen were chosen as the model hydrophilic–hydrophobic drug pair for encapsulation methods and drug loading. Also, a similar double emulsion method was also applied for PLGA/Preicrol® Janus particles containing Doxorubicin and Curcumin. Hydrophobic drugs were encapsulated by the single O/W emulsion technique. Hydrophilic compounds required special modifications due to their poor oil solubility and tendency to escape to the outer aqueous phase during the emulsification and solvent evaporation steps. In total, three different strategies for incorporating hydrophilic drugs were employed: (1) O/W emulsion with partially water miscible solvent, (2) O/W emulsion with co-solvent (i.e. acetone, methanol, ethanol), or (3) W/O/W double emulsion. The encapsulation efficiencies and drug loading percentages were measured using UV/Vis spectroscopy and compared for the different synthesis methods. It was found that the double emulsion method resulted in the highest encapsulation efficiency and drug loading of the hydrophilic drug.
Collapse
Affiliation(s)
| | | | - Maria S Tomassone
- Rutgers Chemical and Biochemical Engineering,
Piscataway, NJ 08854, USA
| |
Collapse
|
21
|
Recent advances in polymer-based drug delivery systems for local anesthetics. Acta Biomater 2019; 96:55-67. [PMID: 31152941 DOI: 10.1016/j.actbio.2019.05.044] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 12/19/2022]
Abstract
Local anesthetics, which cause temporary loss of pain by inhibiting the transmission of nerve impulses, have been widely used in clinical practice. However, neurotoxicity and short half-lives have significantly limited their clinical applications. To overcome those barriers, numerous drug delivery systems (DDS) have been designed to encapsulate local anesthetic agents, so that large doses can be released slowly and provide analgesia over a prolonged period. So far, multiple classes of local anesthetic carriers have been investigated, with some of them already on the market. Among those, polymer-based delivery platforms are the most extensively explored, especially in the form of polymeric nanoparticle carriers. This review gives a specific focus on the most commonly used natural and synthetic polymers for local anesthetics delivery, owing to their excellent biocompatibility, biodegradability and versatility. State-of-the-art studies concerning such polymer delivery systems have been discussed in depth. We also highlight the impact of those delivery platforms as well as some key challenges that need to be overcome for their broader clinical applications. STATEMENT OF SIGNIFICANCE: Currently, local anesthetics have been widely used in clinically practices to prevent transmission of nerve impulses. However, the applications of anesthetics are greatly limited due to their neurotoxicity and short half-lives. Moreover, it is difficult to maintain frequent administrations which can cause poor compliance and serious consequences. Numerous drug delivery systems have been developed to solve those issues. In this review, we highlight the recent advances in polymer-based drug delivery systems for local anesthetics. The advantages as well as shortcomings for different types of polymer-based drug delivery systems are summarized in this paper. In the end, we also give prospects for future development of polymer drug delivery systems for anesthetics.
Collapse
|
22
|
Prolonged Duration Local Anesthesia Using Liposomal Bupivacaine Combined With Liposomal Dexamethasone and Dexmedetomidine. Anesth Analg 2019; 126:1170-1175. [PMID: 29239940 DOI: 10.1213/ane.0000000000002719] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The relatively short duration of effect of local anesthetics has been addressed by encapsulation in drug delivery systems. Codelivery with a single compound that produces an adjuvant effect on nerve block but without intrinsic local anesthetic properties can further prolong the nerve block effect. Here, we investigated whether codelivery of more than 1 encapsulated adjuvant compound can further enhance nerve blockade. METHODS Liposomes loaded with bupivacaine (Bup), dexamethasone phosphate (DexP), or dexmedetomidine (DMED) were synthesized and its in vitro drug release profiles were determined. Animals (Sprague-Dawley rats) were injected with liposomal Bup (Lipo-Bup) and adjuvants at the sciatic nerve and underwent a modified hot plate test to assess the degree of nerve block. The duration of block was monitored and the tissue reaction was assessed. RESULTS Coinjection of Lipo-Bup with liposomal DexP (Lipo-DexP) and liposomal DMED (Lipo-DMED) prolonged the duration of sciatic nerve block 2.9-fold compared to Lipo-Bup alone (95% confidence interval, 1.9- to 3.9-fold). The duration of the block using this combination was significantly increased to 16.2 ± 3.5 hours compared to Lipo-Bup with a single liposomal adjuvant (8.7 ± 2.4 hours with Lipo-DMED, P = .006 and 9.9 ± 5.9 hours with Lipo-DexP, P = .008). The coinjection of Lipo-Bup with liposomal adjuvants decreased tissue inflammation (P = .014) but did not have a significant effect on myotoxicity when compared to Lipo-Bup alone. Coinjection of Lipo-Bup with unencapsulated adjuvants prolonged the duration of nerve block as well (25.0 ± 6.3 hours; P < .001) however was accompanied by systemic side effects. CONCLUSIONS Codelivery of Lipo-DexP and Lipo-DMED enhanced the efficacy of Lipo-Bup. This benefit was also seen with codelivery of both adjuvant molecules in the unencapsulated state, but with marked systemic toxicity.
Collapse
|
23
|
Gao X, Zhu P, Yu L, Yang L, Chen Y. Ultrasound/Acidity-Triggered and Nanoparticle-Enabled Analgesia. Adv Healthc Mater 2019; 8:e1801350. [PMID: 30901164 DOI: 10.1002/adhm.201801350] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/25/2019] [Indexed: 11/10/2022]
Abstract
Local anesthetics have been extensively employed to treat postoperative pain, but they generally suffer from short acting duration and potential neurotoxicity under high local concentrations, which require the controlled and sustained releasing patterns of treatment drugs. In this work, it is reported, for the first time, the construction of hollow mesoporous organosilica nanoparticles (HMONs)-based nanoplatforms for localized delivery and controlled/sustained release of loaded ropivacaine for local anesthetics, which can be repeatedly triggered by either external ultrasound irradiation or acidity triggering to release the payload, causing on-demand and long-lasting analgesia. Based on the in vivo mouse model of incision pain, the controlled and sustained release of ropivacaine achieves more than six hours of continuous analgesia, which is almost three times longer as compared to single free ropivacaine injection. The low neurotoxicity and high biocompatibility of HMONs for nanoparticle-enabled analgesia are also demonstrated both in vitro and in vivo. This designed/constructed HMONs-based nanoplatform provides a potential methodology for clinical pain management via on-demand and long-lasting pain relief.
Collapse
Affiliation(s)
- Xiong Gao
- Department of AnesthesiologyRen Ji HospitalSchool of MedicineShanghai Jiao Tong University Shanghai 200127 P. R. China
| | - Piao Zhu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Luodan Yu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
| | - Liqun Yang
- Department of AnesthesiologyRen Ji HospitalSchool of MedicineShanghai Jiao Tong University Shanghai 200127 P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
| |
Collapse
|
24
|
Involvement of superoxide generated by NADPH oxidase in the shedding of procoagulant vesicles from human monocytic cells exposed to bupivacaine. J Thromb Thrombolysis 2018; 44:341-354. [PMID: 28819812 DOI: 10.1007/s11239-017-1531-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
It is known that a variety of sized procoagulant vesicles that express tissue factor are released from several types of cells including monocytes by mechanisms related to the induction of apoptosis, while it has not yet been evaluated whether superoxide is involved in the production of such vesicles. Here, we report that a local anesthetic bupivacaine induces apoptosis in human monocytic cells THP-1 within a short observation period, where the shedding of procoagulant vesicles is associated. The property as procoagulant vesicles was evaluated using flow cytometry by the binding of FITC-conjugated fibrinogen to vesicles in the presence of fresh frozen plasma and the suppression of this binding by heparin. Bupivacaine (1 mg/ml) increased the apoptotic cells and procoagulant vesicles. LY294002 (100 µM), that inhibits the recruiting of intracellular component of NADPH oxidase to construct the activated form of this enzyme complex, or superoxide dismutase (1500 unit/ml) suppressed bupivacaine-provoked induction of apoptosis and the increase of procoagulant vesicles. We suggest that this simple experimental system is useful to explore the molecular mechanisms of action of superoxide in the shedding of procoagulant vesicles from human monocytic cells.
Collapse
|
25
|
Rwei AY, Wang B, Ji T, Zhan C, Kohane DS. Enhanced Triggering of Local Anesthetic Particles by Photosensitization and Photothermal Effect Using a Common Wavelength. NANO LETTERS 2017; 17:7138-7145. [PMID: 29058443 PMCID: PMC7491648 DOI: 10.1021/acs.nanolett.7b04176] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
On-demand pain relief systems would be very helpful additions to the armamentarium of pain management. Near-infrared triggered drug delivery systems have demonstrated the potential to provide such care. However, challenges remain in making such systems as stimulus-sensitive as possible, to enhance depth of tissue penetration, repeatability of triggering, and safety. Here we developed liposomes containing the local anesthetic tetrodotoxin and also containing a photosensitizer and gold nanorods that were excitable at the same near-infrared wavelength. The combination of triggering mechanisms enhanced the photosensitivity and repeatability of the system in vitro when compared with liposomes with a single photoresponsive component. In vivo, on-demand local anesthesia could be induced with a low irradiance and short irradiation duration, and liposomes containing both photosensitizer and gold nanorods were more effective than those containing just one photoresponsive component. Tissue reaction was benign.
Collapse
Affiliation(s)
- Alina Y. Rwei
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bruce Wang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tianjiao Ji
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Changyou Zhan
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel S. Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- To whom correspondence may be addressed. (D.S. Kohane)
| |
Collapse
|
26
|
Rwei AY, Paris JL, Wang B, Wang W, Axon CD, Vallet-Regí M, Langer R, Kohane DS. Ultrasound-triggered local anaesthesia. Nat Biomed Eng 2017; 1:644-653. [PMID: 29152410 PMCID: PMC5687284 DOI: 10.1038/s41551-017-0117-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/27/2017] [Indexed: 01/09/2023]
Abstract
On-demand relief of local pain would allow patients to control the timing, intensity and duration of nerve block in a safe and non-invasive manner. Ultrasound would be a suitable trigger for such a system, as it is in common clinical use and can penetrate deeply into the body. Here, we demonstrate that ultrasound-triggered delivery of an anaesthetic from liposomes allows the timing, intensity and duration of nerve block to be controlled by ultrasound parameters. On insonation, the encapsulated sonosensitizer protoporphyrin IX produces reactive oxygen species that react with the liposomal membrane, leading to the release of the potent local anaesthetic tetrodotoxin. We also show repeatable ultrasound-triggered nerve blocks in vivo, with nerve-block duration depending on the extent and intensity of insonation. We did not detect any systemic toxicity, and tissue reaction was benign in all groups. On-demand, personalized local anaesthesia could be beneficial for the managing of relatively localized pain states, and potentially minimize opioid use.
Collapse
Affiliation(s)
- Alina Y Rwei
- Department of Anaesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Juan L Paris
- Dpto. Química Inorgánica y Bioinorgánica, Facultad de Farmacia, UCM, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - Bruce Wang
- Department of Anaesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Weiping Wang
- Dr Li Dak-Sum Research Centre, The University of Hong Kong-Karolinska Institutet Collaboration in Regenerative Medicine, The University of Hong Kong, Hong Kong, China
| | - Christopher D Axon
- Department of Anaesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - María Vallet-Regí
- Dpto. Química Inorgánica y Bioinorgánica, Facultad de Farmacia, UCM, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - Robert Langer
- David H. Koch Institutes for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel S Kohane
- Department of Anaesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Laboratory for Biomaterials and Drug Delivery, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
27
|
Rwei AY, Zhan C, Wang B, Kohane DS. Multiply repeatable and adjustable on-demand phototriggered local anesthesia. J Control Release 2017; 251:68-74. [PMID: 28153763 PMCID: PMC5394744 DOI: 10.1016/j.jconrel.2017.01.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/29/2016] [Accepted: 01/26/2017] [Indexed: 11/18/2022]
Abstract
A phototriggerable system whereby patients could repeatedly and non-invasively control the timing and dosage of local anesthesia according to their needs would be beneficial for perioperative pain and perhaps obviate the need for oral narcotics. However, clinical application of phototriggerable systems have been limited by concerns over phototoxicity of lasers and limited tissue penetration of light. To address these limitations, we increased the devices' effective sensitivity to light by co-delivering a second compound, dexmedetomidine, that potentiates the effect of delivered local anesthetics. The concurrent release of dexmedetomidine enhanced the efficacy of released local anesthetics, greatly increasing the number of triggerable nerve blocks (up to nine triggerable events upon a single injection) and reducing the irradiance needed to induce nerve block by 94%. The intensity and duration of on-demand analgesia could be adjusted by varying the intensity and duration of irradiance, which could not only be delivered by lasers, but also by light-emitting diodes, which are less expensive, safer, and more portable.
Collapse
Affiliation(s)
- Alina Y Rwei
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Changyou Zhan
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bruce Wang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Yin Q, Li J, Zheng Q, Yang X, Lv R, Ma L, Liu J, Zhu T, Zhang W. The quaternary lidocaine derivative QX-314 in combination with bupivacaine for long-lasting nerve block: Efficacy, toxicity, and the optimal formulation in rats. PLoS One 2017; 12:e0174421. [PMID: 28334014 PMCID: PMC5363931 DOI: 10.1371/journal.pone.0174421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 03/08/2017] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE The quaternary lidocaine derivative (QX-314) in combination with bupivacaine can produce long-lasting nerve blocks in vivo, indicating potential clinical application. The aim of the study was to investigate the efficacy, safety, and the optimal formulation of this combination. METHODS QX-314 and bupivacaine at different concentration ratios were injected in the vicinity of the sciatic nerve in rats; bupivacaine and saline served as controls (n = 6~10). Rats were inspected for durations of effective sensory and motor nerve blocks, systemic adverse effects, and histological changes of local tissues. Mathematical models were established to reveal drug-interaction, concentration-effect relationships, and the optimal ratio of QX-314 to bupivacaine. RESULTS 0.2~1.5% QX-314 with 0.03~0.5% bupivacaine produced 5.8~23.8 h of effective nerve block; while 0.5% bupivacaine alone was effective for 4 h. No systemic side effects were observed; local tissue reactions were similar to those caused by 0.5% bupivacaine if QX-314 were used < 1.2%. The weighted modification model was successfully established, which revealed that QX-314 was the main active ingredient while bupivacaine was the synergist. The formulation, 0.9% QX-314 plus 0.5% bupivacaine, resulted in 10.1 ± 0.8 h of effective sensory and motor nerve blocks. CONCLUSION The combination of QX-314 and bupivacaine facilitated prolonged sciatic nerve block in rats with a satisfactory safety profile, maximizing the duration of nerve block without clinically important systemic and local tissue toxicity. It may emerge as an alternative approach to post-operative pain treatment.
Collapse
Affiliation(s)
- Qinqin Yin
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Jun Li
- North Sichuan Medical College, Nanchong, Sichuan, P. R. China
| | - Qingshan Zheng
- Center for Drug Clinical Research, Shanghai University of Chinese Medicine, Shanghai, P. R. China
| | - Xiaolin Yang
- North Sichuan Medical College, Nanchong, Sichuan, P. R. China
| | - Rong Lv
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Longxiang Ma
- Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Tao Zhu
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Wensheng Zhang
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
29
|
Zhan C, Wang W, Santamaria C, Wang B, Rwei A, Timko BP, Kohane DS. Ultrasensitive Phototriggered Local Anesthesia. NANO LETTERS 2017; 17:660-665. [PMID: 28058845 PMCID: PMC5469101 DOI: 10.1021/acs.nanolett.6b03588] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An injectable local anesthetic producing repeatable on-demand nerve block would be desirable for pain management. Here we present a phototriggerable device to achieve repeatable and adjustable on-demand local anesthesia in superficial or deep tissues, consisting of gold nanorods attached to low temperature sensitive liposomes (LTSL). The particles were loaded with tetrodotoxin and dexmedetomidine. Near-infrared light (NIR, 808 nm, continuous wave) could heat gold nanorods at low fluence (short duration and low irradiance), leading to rapid release of payload. In vivo, 1-2 min of irradiation at ≤272 mW/cm2 produced repeatable and adjustable on-demand infiltration anesthesia or sciatic nerve blockade with minimal toxicity. The nerve block intensity and duration correlated with the irradiance and duration of the applied light.
Collapse
Affiliation(s)
- Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 200032, China
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Weiping Wang
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Claudia Santamaria
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Bruce Wang
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Alina Rwei
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Brian P Timko
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
30
|
Santamaria CM, Woodruff A, Yang R, Kohane DS. Drug delivery systems for prolonged duration local anesthesia. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2017; 20:22-31. [PMID: 28970739 PMCID: PMC5621744 DOI: 10.1016/j.mattod.2016.11.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Numerous drug delivery systems have been applied to the problem of providing prolonged duration local anesthesia (PDLA). Here we review the rationale for PDLA, the desirable features for and important attributes of such systems, and specific examples that have been developed.
Collapse
Affiliation(s)
- Claudia M Santamaria
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Alan Woodruff
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Rong Yang
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, United States
| |
Collapse
|
31
|
Yousefi S, Bayat S, Rahman MBA, Ibrahim Z, Abdulmalek E. Synthesis and in vitro Bioactivity Evaluation of New Galactose and Fructose Ester Derivatives of 5-Aminosalicylic Acid. Chem Biodivers 2016; 14. [PMID: 28036129 DOI: 10.1002/cbdv.201600362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/28/2016] [Indexed: 02/02/2023]
Abstract
Inflammatory bowel disease (IBD) is the main risk factor for developing colorectal cancer which is common in patients of all ages. 5-Aminosalicylic acid (5-ASA), structurally related to the salicylates, is highly active in the treatment of IBD with minor side effects. In this study, the synthesis of galactose and fructose esters of 5-ASA was planned to evaluate the role of glycoconjugation on the bioactivity of the parent drug. The antibacterial activity of the new compounds were evaluated against two Gram-negative and two Gram-positive species of bacteria, with a notable effect observed against Staphylococcus aureus and Escherichia coli in comparisons with the 5-ASA. Cytotoxicity testing over HT-29 and 3T3 cell lines indicated that the toxicity of the new products against normal cells was significantly reduced compared with the original drug, whereas their activity against cancerous cells was slightly decreased. The anti-inflammatory activity test in RAW264.7 macrophage cells indicated that the inhibition of nitric oxide by both of the monosaccharide conjugated derivatives was slightly improved in comparison with the non-conjugated drug.
Collapse
Affiliation(s)
- Samira Yousefi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Saadi Bayat
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.,Enzyme and Microbial Technology Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Structural and Synthetic Biology Research Center, Malaysia Genome Institute, 43600, Bangi, Selangor, Malaysia
| | - Zalikha Ibrahim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Emilia Abdulmalek
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.,Enzyme and Microbial Technology Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
32
|
Ramot Y, Haim-Zada M, Domb AJ, Nyska A. Biocompatibility and safety of PLA and its copolymers. Adv Drug Deliv Rev 2016; 107:153-162. [PMID: 27058154 DOI: 10.1016/j.addr.2016.03.012] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 03/24/2016] [Accepted: 03/26/2016] [Indexed: 12/20/2022]
Abstract
PLA and its copolymers are commonly used for a wide variety of applications. While they are considered to be biocompatible, side effects resulting from their implantation have been reported. The implantation of biomaterials always results in a foreign body reaction. Such a reaction has also been reported following PLA and its copolymers. This article reviews the process of inflammatory reaction that is to be expected following implantation of PLA, and it highlights specific cases in which the inflammatory reaction can result in safety concerns. The authors also review selected cases from different medical fields to demonstrate possible clinical side effects resulting from its use.
Collapse
|
33
|
Liu Q, Zhan C, Barhoumi A, Wang W, Santamaria C, McAlvin JB, Kohane DS. A Supramolecular Shear-Thinning Anti-Inflammatory Steroid Hydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:6680-6686. [PMID: 27214390 DOI: 10.1002/adma.201601147] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/04/2016] [Indexed: 06/05/2023]
Abstract
Shear-thinning and self-healing steroid-drug-based hydrogels are presented, which exhibit rapid and complete recovery of their mechanical properties within seconds following stress-induced flow. The hydrogels release steroid drug in vivo with no visible residue when release is complete.
Collapse
Affiliation(s)
- Qian Liu
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Changyou Zhan
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Aoune Barhoumi
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Weiping Wang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Claudia Santamaria
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - James Brian McAlvin
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
34
|
Zorzetto L, Brambilla P, Marcello E, Bloise N, De Gregori M, Cobianchi L, Peloso A, Allegri M, Visai L, Petrini P. From micro- to nanostructured implantable device for local anesthetic delivery. Int J Nanomedicine 2016; 11:2695-709. [PMID: 27354799 PMCID: PMC4907738 DOI: 10.2147/ijn.s99028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Local anesthetics block the transmission of painful stimuli to the brain by acting on ion channels of nociceptor fibers, and find application in the management of acute and chronic pain. Despite the key role they play in modern medicine, their cardio and neurotoxicity (together with their short half-life) stress the need for developing implantable devices for tailored local drug release, with the aim of counterbalancing their side effects and prolonging their pharmacological activity. This review discusses the evolution of the physical forms of local anesthetic delivery systems during the past decades. Depending on the use of different biocompatible materials (degradable polyesters, thermosensitive hydrogels, and liposomes and hydrogels from natural polymers) and manufacturing processes, these systems can be classified as films or micro- or nanostructured devices. We analyze and summarize the production techniques according to this classification, focusing on their relative advantages and disadvantages. The most relevant trend reported in this work highlights the effort of moving from microstructured to nanostructured systems, with the aim of reaching a scale comparable to the biological environment. Improved intracellular penetration compared to microstructured systems, indeed, provides specific drug absorption into the targeted tissue and can lead to an enhancement of its bioavailability and retention time. Nanostructured systems are realized by the modification of existing manufacturing processes (interfacial deposition and nanoprecipitation for degradable polyester particles and high- or low-temperature homogenization for liposomes) or development of novel strategies (electrospun matrices and nanogels). The high surface-to-volume ratio that characterizes nanostructured devices often leads to a burst drug release. This drawback needs to be addressed to fully exploit the advantage of the interaction between the target tissues and the drug: possible strategies could involve specific binding between the drug and the material chosen for the device, and a multiscale approach to reach a tailored, prolonged drug release.
Collapse
Affiliation(s)
- Laura Zorzetto
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Paola Brambilla
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Elena Marcello
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Nora Bloise
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy
| | - Manuela De Gregori
- Pain Therapy Service, IRCCS Foundation Policlinico San Matteo Pavia, Pavia, Italy
| | - Lorenzo Cobianchi
- General Surgery Department, IRCCS Foundation Policlinico San Matteo, Pavia, Italy; Departments of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Andrea Peloso
- General Surgery Department, IRCCS Foundation Policlinico San Matteo, Pavia, Italy; Departments of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Massimo Allegri
- Department of Surgical Sciences, University of Parma, Parma, Italy
| | - Livia Visai
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy; Department of Occupational Medicine, Toxicology and Environmental Risks, S. Maugeri Foundation, IRCCS, Lab of Nanotechnology, Pavia, Italy
| | - Paola Petrini
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| |
Collapse
|
35
|
Guo S, Nakagawa Y, Barhoumi A, Wang W, Zhan C, Tong R, Santamaria C, Kohane DS. Extended Release of Native Drug Conjugated in Polyketal Microparticles. J Am Chem Soc 2016; 138:6127-30. [PMID: 27148927 DOI: 10.1021/jacs.6b02435] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyketals, which can be biodegradable, have good biocompatibility, and are pH-sensitive, could have broad applicability in drug delivery and other biomedical applications. However, facile synthesis of high molecular weight polyketals is challenging, and short durations of drug release from polyketal particulate formulations limit their application in drug delivery. Here we report the synthesis of a di-isopropenyl ether monomer and its use to synthesize high molecular weight estradiol-polyketal conjugates by addition polymerization. Microparticles were prepared from the estradiol-polyketal conjugate, where estradiol was incorporated into the polymer backbone. The particles had high drug loading and significantly prolonged drug release. Release of estradiol from the drug-polyketal conjugate microparticles was acid-responsive, as evidenced by faster drug release at low pH and with co-incorporation of PLGA. Tissue reaction to the microparticles was benign in vivo. Polyketal drug conjugates are promising candidates for long-acting drug delivery systems to treat chronic diseases.
Collapse
Affiliation(s)
- Shutao Guo
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Yoshiyuki Nakagawa
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Aoune Barhoumi
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Weiping Wang
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Changyou Zhan
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Rong Tong
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Claudia Santamaria
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
36
|
Zhan C, Wang W, McAlvin JB, Guo S, Timko BP, Santamaria C, Kohane DS. Phototriggered Local Anesthesia. NANO LETTERS 2016; 16:177-81. [PMID: 26654461 DOI: 10.1021/acs.nanolett.5b03440] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We report a phototriggerable formulation enabling in vivo repeated and on-demand anesthesia with minimal toxicity. Gold nanorods (GNRs) that can convert near-infrared (NIR) light into heat were attached to liposomes (Lip-GNRs), enabling light-triggered phase transition of their lipid bilayers with a consequent release of payload. Lip-GNRs containing the site 1 sodium channel blocker tetrodotoxin and the α2-adrenergic agonist dexmedetomidine (Lip-GNR-TD) were injected subcutaneously in the rat footpad. Irradiation with an 808 nm continuous wave NIR laser produced on-demand and repeated infiltration anesthesia in the rat footpad in proportion to the irradiance, with minimal toxicity. The ability to achieve on-demand and repeated local anesthesia could be very beneficial in the management of pain.
Collapse
Affiliation(s)
- Changyou Zhan
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Weiping Wang
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - James B McAlvin
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Shutao Guo
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Brian P Timko
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Claudia Santamaria
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
37
|
Han FY, Thurecht KJ, Lam AL, Whittaker AK, Smith MT. Novel polymeric bioerodable microparticles for prolonged-release intrathecal delivery of analgesic agents for relief of intractable cancer-related pain. J Pharm Sci 2015; 104:2334-44. [PMID: 25990226 DOI: 10.1002/jps.24497] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 12/19/2022]
Abstract
Intractable cancer-related pain complicated by a neuropathic component due to nerve impingement is poorly alleviated even by escalating doses of a strong opioid analgesic. To address this unmet medical need, we developed sustained-release, bioerodable, hydromorphone (potent strong opioid)- and ketamine (analgesic adjuvant)-loaded microparticles for intrathecal (i.t.) coadministration. Drug-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles were prepared using a water-in-oil-in-water method with evaporation. Encapsulation efficiency of hydromorphone and ketamine in PLGA (50:50) microparticles was 26% and 56%, respectively. Microparticles had the desired size range (20-60 μm) and in vitro release was prolonged at ≥28 days. Microparticles were stable for ≥6 months when stored refrigerated protected from light in a desiccator. Desirably, i.t. injected fluorescent dye-labeled PLGA microparticles in rats remained in the lumbar region for ≥7 days. In a rat model of neuropathic pain, i.t. coinjection of hydromorphone- and ketamine-loaded microparticles (each 1 mg) produced analgesia for 8 h only. Possible explanations include inadequate release of ketamine and/or hydromorphone into the spinal fluid, and/or insufficient ketamine loading to prevent development of analgesic tolerance to the released hydromorphone. As sub-analgesic doses of i.t. ketamine at 24-48 h intervals restored analgesia on each occasion, insufficient ketamine loading appears problematic. We will investigate these issues in future work.
Collapse
Affiliation(s)
- Felicity Y Han
- Centre for Integrated Preclinical Drug Development, The University of Queensland, Brisbane, QLD, Australia.,School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.,ARC Centre of Excellence in Convergent BioNano Science and Technology, The University of Queensland, Brisbane, QLD, Australia
| | - Ai-Leen Lam
- Centre for Integrated Preclinical Drug Development, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.,ARC Centre of Excellence in Convergent BioNano Science and Technology, The University of Queensland, Brisbane, QLD, Australia
| | - Maree T Smith
- Centre for Integrated Preclinical Drug Development, The University of Queensland, Brisbane, QLD, Australia.,School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
38
|
Kazazi-Hyseni F, Zandstra J, Popa E, Goldschmeding R, Lathuile A, Veldhuis G, Van Nostrum C, Hennink W, Kok R. Biocompatibility of poly(d,l-lactic-co-hydroxymethyl glycolic acid) microspheres after subcutaneous and subcapsular renal injection. Int J Pharm 2015; 482:99-109. [DOI: 10.1016/j.ijpharm.2014.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/01/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
|
39
|
Golovanevski L, Ickowicz D, Sokolsky-Papkov M, Domb A, Weiniger CF. In vivo study of an extended release bupivacaine formulation following site-directed nerve injection. J BIOACT COMPAT POL 2014. [DOI: 10.1177/0883911514560662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Site-directed administration of local anesthetic agents incorporated into a slow controlled-release injectable implant prolongs the analgesic effect. However, there are potential neuro- and myotoxic consequences. We evaluated a local anesthetic agent (bupivacaine) loaded into a slow-release biodegradable polymer based on castor oil and poly(lactic acid). The formulation was applied directly to the sciatic nerve area in female imprinting control region mice along with appropriate controls. Local nerve and muscle and systemic toxicity were evaluated over a 3-month period following injection of 0.05, 0.1, and 0.125 mL of the 15% bupivacaine–polymer formulation. Histological samples were prepared and examined; no signs of severe inflammation were observed. Histological inflammation signs were more prominent in both nerves and muscles following application of the largest volumes of the polymer formulation (0.1 and 0.125 mL). Following application of 0.1 mL, 15% bupivacaine–polymer formulation, maximal changes were seen in nerve samples two days and two weeks after injection, with complete resolution one month following injection. Neither blank polymer nor plain bupivacaine 0.5% caused any histological changes. Local nerve and muscle toxicity were affected by duration the of exposure and dose of the local anesthetic agent. However, there were clear indications of time-related healing process 3 months after injection.
Collapse
Affiliation(s)
- Ludmila Golovanevski
- Department of Anesthesiology and Critical Care Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Diana Ickowicz
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marina Sokolsky-Papkov
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Abraham Domb
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Carolyn F Weiniger
- Department of Anesthesiology and Critical Care Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Department of Anesthesia, Stanford School of Medicine, Stanford, CA, USA
| |
Collapse
|
40
|
Shankarappa SA, Kohane DS. Controlled-release systems in neuropathic pain. Pain Manag 2014; 3:91-3. [PMID: 24645991 DOI: 10.2217/pmt.12.82] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Sahadev A Shankarappa
- Laboratory of Biomaterials & Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
41
|
Multivesicular liposomal bupivacaine at the sciatic nerve. Biomaterials 2014; 35:4557-64. [PMID: 24612918 DOI: 10.1016/j.biomaterials.2014.02.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/09/2014] [Indexed: 11/21/2022]
Abstract
Clinical translation of sustained release formulations for local anesthetics has been limited by adverse tissue reaction. Exparel™ (DepoFoam bupivacaine) is a new liposomal local anesthetic formulation whose biocompatibility near nerve tissue is not well characterized. Exparel™ injection caused sciatic nerve blockade in rats lasting 240 min compared to 120 min for 0.5% (w/v) bupivacaine HCl and 210 min for 1.31% (w/v) bupivacaine HCl (same bupivacaine content as Exparel™). On histologic sections four days after injection, median inflammation scores in the Exparel™ group (2.5 of 4) were slightly higher than in groups treated with bupivacaine solutions (score 2). Myotoxicity scores in the Exparel™ group (2.5 of 6) were similar to in the 0.5% (w/v) bupivacaine HCl group (3), but significantly less than in the 1.31% (w/v) bupivacaine HCl group (5). After two weeks, inflammation from Exparel™ (score 2 of 6) was greater than from 0.5% (w/v) bupivacaine HCl (1) and similar to that from 1.31% (w/v) bupivacaine HCl (1). Myotoxicity in all three groups was not statistically significantly different. No neurotoxicity was detected in any group. Tissue reaction to Exparel™ was similar to that of 0.5% (w/v) bupivacaine HCl. Surveillance for local tissue injury will be important during future clinical evaluation.
Collapse
|
42
|
McAlvin JB, Kohane DS. Prolonged Duration Local Anesthesia. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2014. [DOI: 10.1007/978-1-4614-9434-8_28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Goonoo N, Bhaw-Luximon A, Jhurry D. In vitro and in vivo cytocompatibility of electrospun nanofiber scaffolds for tissue engineering applications. RSC Adv 2014. [DOI: 10.1039/c4ra05218h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An electrospun polymeric-based nanofibrous scaffold mimicking the extracellular matrix and serving as a temporary support for cell growth, adhesion, migration and proliferation.
Collapse
Affiliation(s)
- N. Goonoo
- ANDI Centre of Excellence for Biomedical and Biomaterials Research
- University of Mauritius
- Réduit, Mauritius
| | - A. Bhaw-Luximon
- ANDI Centre of Excellence for Biomedical and Biomaterials Research
- University of Mauritius
- Réduit, Mauritius
| | - D. Jhurry
- ANDI Centre of Excellence for Biomedical and Biomaterials Research
- University of Mauritius
- Réduit, Mauritius
| |
Collapse
|
44
|
|
45
|
El-Ghannam A, Hart A, White D, Cunningham L. Mechanical properties and cytotoxicity of a resorbable bioactive implant prepared by rapid prototyping technique. J Biomed Mater Res A 2013; 101:2851-61. [PMID: 23504981 DOI: 10.1002/jbm.a.34585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/02/2013] [Indexed: 12/30/2022]
Abstract
Bioceramic processing using rapid prototyping technique (RPT) results in a fragile device that requires thermal treatment to improve the mechanical properties. This investigation evaluates the effect of thermal treatment on the mechanical, porosity, and bioactivity properties as well as the cytotoxicity of a porous silica-calcium phosphate nanocomposite (SCPC) implant prepared by RPT. Porous SCPC implant was subject to 3-h treatment at 800°C, 850°C, or 900°C. The compressive strength (s) and modulus of elasticity (E) were doubled when the sintering temperature is raised from 850 to 900°C measuring (s = 15.326 ± 2.95 MPa and E = 1095 ± 164 MPa) after the later treatment. The significant increase in mechanical properties takes place with minimal changes in the surface area and the percentage of pores in the range 1-356 μm. The SCPC implant prepared at 900°C was loaded with rh-BMP-2 and grafted into a segmental defect in the rabbit ulna. Histology analyses showed highly vascularized bone formation inside the defect. Histopathological analyses of the liver, spleen, kidney, heart, and the lung of rabbits grafted with and without SCPC demonstrated healthy tissues with no signs of toxicity or morphology alterations. Results of the study suggest that it is possible to engineering the mechanical properties of the SCPC implant without compromising its bioactivity. The enhanced bone formation inside the porous SCPC facilitated cell-mediated graft resorption and prohibited any accumulation of the material in the body organs.
Collapse
Affiliation(s)
- Ahmed El-Ghannam
- Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223
| | | | | | | |
Collapse
|
46
|
McAlvin JB, Reznor G, Shankarappa SA, Stefanescu CF, Kohane DS. Local toxicity from local anesthetic polymeric microparticles. Anesth Analg 2013; 116:794-803. [PMID: 23460564 DOI: 10.1213/ane.0b013e31828174a7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Local tissue injury from sustained-release formulations for local anesthetics can be severe. There is considerable variability in reporting of that injury. We investigated the influence of the intrinsic myotoxicity of the encapsulated local anesthetic (lidocaine, low; bupivacaine, high) on tissue reaction in rats. METHODS Cytotoxicity from a range of lidocaine and bupivacaine concentrations was measured in C2C12 myotubes over 6 days. Rats were given sciatic nerve blocks with 4 microparticulate formulations of lidocaine and bupivacaine: 10% (w/w) lidocaine poly(lactic-co-glycolic) acid (PLGA), 10% (w/w) bupivacaine PLGA, 50% (w/w) lidocaine PLGA, and 50% (w/w) bupivacaine PLGA. Effectiveness of nerve blockade was assessed by a modified hotplate test and weightbearing measurements. Myotoxicity was scored in histologic sections of injection sites. Bupivacaine and lidocaine release kinetics from the particles were measured. RESULTS Median sensory blockade duration for 50% (w/w) lidocaine was 255 (90-540) minutes versus 840 (277-1215) minutes for 50% (w/w) bupivacaine (P = 0.056). All microparticulate formulations resulted in myotoxicity. The choice of local anesthetic did not influence the severity of myotoxicity. Median myotoxicity scores for 50% (w/w) lidocaine compared with 50% (w/w) bupivacaine at 4 days were 3.4 (2.1-4.2) vs 3.3 (2.9-3.5) (P = 0.44) and at 14 days 1.9 (1.8-2.4) vs 1.7 (1.3-1.9) (P = 0.23), respectively. CONCLUSIONS Lidocaine and bupivacaine PLGA microspheres resulted in similar degrees of myotoxicity, irrespective of drug loading. Intrinsic myotoxicity did not predict tissue injury from sustained release of these anesthetics. Caution is warranted in the use of such devices near muscle and nerve.
Collapse
Affiliation(s)
- J Brian McAlvin
- Department of Medicine, Medicine Critical Care Program, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
Aberrant neuronal activity in injured peripheral nerves is believed to be an important factor in the development of neuropathic pain. Pharmacological blockade of that activity has been shown to mitigate the onset of associated molecular events in the nervous system. However, results in preventing onset of pain behaviors by providing prolonged nerve blockade have been mixed. Furthermore, the experimental techniques used to date to provide that blockade were limited in clinical potential in that they would require surgical implantation. To address these issues, we have used liposomes (SDLs) containing saxitoxin (STX), a site 1 sodium channel blocker, and the glucocorticoid agonist dexamethasone to provide nerve blocks lasting ~1 wk from a single injection. This formulation is easily injected percutaneously. Animals undergoing spared nerve injury (SNI) developed mechanical allodynia in 1 wk; nerve blockade with a single dose of SDLs (duration of block 6.9 ± 1.2 d) delayed the onset of allodynia by 2 d. Treatment with three sequential SDL injections resulting in a nerve block duration of 18.1 ± 3.4 d delayed the onset of allodynia by 1 mo. This very prolonged blockade decreased activation of astrocytes in the lumbar dorsal horn of the spinal cord due to SNI. Changes in expression of injury-related genes due to SNI in the dorsal root ganglia were not affected by SDLs. These findings suggest that formulations of this kind, which could be easy to apply clinically, can mitigate the development of neuropathic pain.
Collapse
|
48
|
Hoare T, Young S, Lawlor MW, Kohane DS. Thermoresponsive nanogels for prolonged duration local anesthesia. Acta Biomater 2012; 8:3596-605. [PMID: 22732383 DOI: 10.1016/j.actbio.2012.06.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/08/2012] [Accepted: 06/08/2012] [Indexed: 11/16/2022]
Abstract
Nanogels based on poly(N-isopropylacrylamide) are attractive vehicles for prolonged duration local anesthesia because of their tunable size, number of functional groups, thermoresponsiveness and anionic charge. Nerve block durations of up to 9h were achieved using acrylic acid-loaded nanogels loaded with bupivacaine. Increasing the anionic charge density of the nanogels or (for more highly acid-functionalized nanogels) decreasing the nanogel size facilitated longer duration of anesthetic release. Small (<300 nm diameter) nanogels formed dense aggregates upon injection in vivo and induced only mild inflammatory responses, while large (>500 nm diameter) nanogels typically remained as liquid-like residues in vivo and induced more severe inflammatory reactions.
Collapse
Affiliation(s)
- Todd Hoare
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
49
|
Weiniger CF, Golovanevski L, Domb AJ, Ickowicz D. Extended release formulations for local anaesthetic agents. Anaesthesia 2012; 67:906-16. [PMID: 22607613 DOI: 10.1111/j.1365-2044.2012.07168.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Systemic toxicity through overdose of local anaesthetic agents is a real concern. By encapsulating local anaesthetics in biodegradable carriers to produce a system for prolonged release, their duration of action can be extended. This encapsulation should also improve the safety profile of the local anaesthetic as it is released at a slower rate. Work with naturally occurring local anaestheticss has also shown promise in the area of reducing systemic and neurotoxicity. Extended duration local anaesthetic formulations in current development or clinical use include liposomes, hydrophobic based polymer particles such as Poly(lactic-co-glycolic acid) microspheres, pasty injectable and solid polymers like Poly(sebacic-co-ricinoleic acid) P(SA:RA) and their combination with synthetic and natural local anaesthetic. Their duration of action, rationale and limitations are reviewed. Direct comparison of the different agents is limited by their chemical properties, the drug doses encapsulated and the details of in vivo models described.
Collapse
Affiliation(s)
- C F Weiniger
- Department of Anesthesiology and Critical Care Medicine, Hadassah Hebrew University Medical Centre, Jerusalem, Israel.
| | | | | | | |
Collapse
|
50
|
Shichor I, Shomron N, Lawlor MW, Bae SA, Zoldan J, Langer R, Kohane DS. Toxicogenomic analysis of a sustained release local anesthetic delivery system. Biomaterials 2012; 33:3586-93. [PMID: 22341215 DOI: 10.1016/j.biomaterials.2012.01.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/23/2012] [Indexed: 01/24/2023]
Abstract
Concerns over neurotoxicity have impeded the development of sustained release formulations providing prolonged duration local anesthesia (PDLA) from a single injection, for which there is an urgent clinical need. Here, we have used toxicogenomics to investigate whether nerve injury occurred during week-long continuous sciatic nerve blockade by microspheres containing bupivacaine, tetrodotoxin, and dexamethasone (TBD). Animals treated with amitriptyline solution (our positive control for local anesthetic-associated nerve injury) developed irreversible nerve blockade, had severely abnormal nerve histology, and the expression of hundreds of genes was altered in the dorsal root ganglia at 4 and 7 days after injection. In marked contrast, TBD-treated nerves reverted to normal function, were normal histologically and there were changes in the expression of a small number of genes. Toxicogenomic studies have great potential in delineating patterns of gene expression associated with specific patterns of tissue injury (e.g. amitriptyline neurotoxicity), and in identifying related changes in gene expression upon exposure to a drug, biomaterial, or drug delivery system.
Collapse
Affiliation(s)
- Iris Shichor
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|