1
|
Ajiteru O, Choi KY, Depboylu FN, Lee JS, Lee OJ, Oh MS, Kim SH, Korkusuz F, Park CH. A Novel Porous Coating Method of Commercially Pure Titanium Using Silk Fibroin and UV Light for Biomedical Implant Applications. J Biomed Mater Res A 2025; 113:e37887. [PMID: 40156171 DOI: 10.1002/jbm.a.37887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/28/2025] [Accepted: 02/19/2025] [Indexed: 04/01/2025]
Abstract
Surface coatings for titanium implants have been actively investigated using numerous materials to improve biocompatibility and osteointegration. This study developed a novel porous coating method for titanium implants; we coated commercially pure titanium (Cp-Ti) using the photocurable properties of methacrylated silk fibroin (SilMA). Surface morphologies and alloying chemistry after coating were investigated by scanning electron microscopy (SEM) and EDS, while the biocompatibility of the SilMA-coated Cp-Ti was evaluated by the CCK-8 and live/dead assays. With various SilMA concentrations, uniform and strong SilMA coatings were obtained by UV light for both thin and thick coating methods. A universal mechanical testing machine evaluated the mechanical properties of SilMA coating. The interface adhesive strength of the coating taken by advanced centrifugal measurement was enhanced as the SilMA concentration increased. Cell cytotoxicity test results for 1, 3, 5, and 7 days revealed no toxic behavior in human dermal fibroblast cells. Cells on the SilMA-coated Cp-Ti revealed a higher proliferation and survival rate than those on the titanium without coating. These results show that this versatile coating method offers a tightly adhered bioactive coating of silk fibroin on titanium implants, demonstrating the potential for a universal coating method for use in a wide range of biomedical applications.
Collapse
Affiliation(s)
- Olatunji Ajiteru
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Cardiac Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - Kyu Young Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Fatma Nur Depboylu
- Department of Bioengineering, Institute of Science and Technology, Ankara, Türkiye
- Centre for Industrial Mechanics, Institute of Mechanical and Electrical Engineering (IME), University of Southern Denmark, Sønderborg, Denmark
| | - Ji Seung Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Ok Joo Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Moon Sik Oh
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Soon Hee Kim
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Feza Korkusuz
- Department of Bioengineering, Institute of Science and Technology, Ankara, Türkiye
- Faculty of Medicine, Department of Sports Medicine, Hacettepe University, Altindag, Türkiye
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, School of Medicine, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
2
|
Kumar S, Arora A, Mathur D, Chaudhary A, Pant V, Guchhait S, Singh BK. A review on chitosan and chitosan-based bionanocomposites: Promising biological macromolecules for sustainable corrosion inhibition. Int J Biol Macromol 2025; 301:140392. [PMID: 39880227 DOI: 10.1016/j.ijbiomac.2025.140392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/15/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Corrosion is a significant issue affecting industrial metal surfaces, resulting in material degradation, economic losses, and safety concerns. This review comprehensively examines chitosan and its nano and bionanocomposite forms as sustainable, eco-friendly corrosion inhibitors, emphasizing key innovations in their development and application. The article highlights chitosan's ability to form protective films, which inhibit corrosion by creating a barrier on metal surfaces. A key advancement explored is the incorporation of chitosan nanoparticles, which significantly improve corrosion resistance due to their enhanced surface area, increased adhesion properties, and improved mechanical strength. Another innovative aspect is the synergistic effect of combining chitosan with other nanoparticles or inhibitors, resulting in superior corrosion protection and enhanced barrier properties. The review also addresses the chemical modifications of chitosan to overcome challenges such as poor solubility, mechanical weakness, and chemical instability in harsh environments. A novel contribution of this article is the focus on scalable, cost-effective production methods for chitosan-based bionanocomposites, facilitating their industrial application. This review provides a comprehensive summary of literature reports, offering valuable insights into the latest research advancements and highlights future prospects for chitosan-based materials as eco-friendly, high-performance corrosion inhibitors in diverse industrial settings.
Collapse
Affiliation(s)
- Sumit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India.
| | - Aditi Arora
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India.
| | - Divya Mathur
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India; Department of Chemistry, Daulat Ram College, University of Delhi, Delhi, India.
| | - Ankita Chaudhary
- Department of Chemistry, Maitreyi College, University of Delhi, Delhi, India
| | - Vaishali Pant
- Department of Chemistry, Daulat Ram College, University of Delhi, Delhi, India
| | - Shramana Guchhait
- Department of Chemistry, Daulat Ram College, University of Delhi, Delhi, India
| | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India.
| |
Collapse
|
3
|
Le Grill S, Brouillet F, Drouet C. Bone Regeneration: Mini-Review and Appealing Perspectives. Bioengineering (Basel) 2025; 12:38. [PMID: 39851312 PMCID: PMC11763268 DOI: 10.3390/bioengineering12010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
Bone is a natural mineral-organic nanocomposite protecting internal organs and allowing mobility. Through the ages, numerous strategies have been developed for repairing bone defects and fixing fractures. Several generations of bone repair biomaterials have been proposed, either based on metals, ceramics, glasses, or polymers, depending on the clinical need, the maturity of technologies, and knowledge of the natural constitution of the bone tissue to be repaired. The global trend in bone implant research is shifting toward osteointegrative, bioactive and possibly stimuli-responsive biomaterials and, where possible, resorbable implants that actively promote the regeneration of natural bone tissue. In this mini-review, the fundamentals of bone healing materials and clinical challenges are summarized and commented on with regard to progressing scientific discoveries. The main types of bone-healing materials are then reviewed, and their specific relevance to the field is reminded, with the citation of reference works. In the final part, we highlight the promise of hybrid organic-inorganic bioactive materials and the ongoing research activities toward the development of multifunctional or stimuli-responsive implants. This contribution is expected to serve as a commented introduction to the ever-progressing field of bone regeneration and highlight trends of future-oriented research.
Collapse
Affiliation(s)
- Sylvain Le Grill
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 4 Allée Emile Monso, BP44362, CEDEX 4, 31030 Toulouse, France; (F.B.); (C.D.)
- Regenerative Nanomedicine Unit, Center of Research on Biomedicines of Strasbourg (CRBS), French National Institute of Health and Medical Research (INSERM), University of Strasbourg, UMR 1260, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
| | - Fabien Brouillet
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 4 Allée Emile Monso, BP44362, CEDEX 4, 31030 Toulouse, France; (F.B.); (C.D.)
| | - Christophe Drouet
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 4 Allée Emile Monso, BP44362, CEDEX 4, 31030 Toulouse, France; (F.B.); (C.D.)
| |
Collapse
|
4
|
Ko YC, Lee D, Koo KT, Seol YJ, Lee YM, Lee J. A randomized controlled trial of immediate implant placement comparing hydroxyapatite nano-coated and uncoated sandblasted/acid-etched implants using a digital surgical guide. Int J Implant Dent 2024; 10:29. [PMID: 38839621 PMCID: PMC11153479 DOI: 10.1186/s40729-024-00549-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
PURPOSE This study evaluated the implant stability, volumetric changes, and patient-reported outcome measures (PROMs) of hydroxyapatite (HA) nano-coated sandblasted/acid-etched (SLA) implants compared to uncoated SLA implants. METHODS Forty patients were recruited and randomly allocated to HA nano-coated SLA group (test, n = 20) and uncoated SLA group (control, n = 20) using single-blinded/block randomization. Implants were immediately placed in maxillary posterior region using a digital surgical guide. Insertion torque and implant stability quotient (ISQ) were measured at implant surgery and 1, 2, 3, and 4 months postoperatively. Intraoral scans, PROMs and soft tissue inflammation data were collected, and multivariable linear regression analysis of ISQ was performed. RESULTS In total, 48 implants (test; n = 24, control; n = 24) in 37 patients (test; n = 19, control; n = 18) were analyzed. Despite no significant between-group difference at surgery, the test group showed higher ISQ values than the control group at 2 (76.53 ± 4.17 vs. 71.32 ± 4.79, p < 0.01), 3 (77.45 ± 4.41 vs. 73.85 ± 4.69, p < 0.05), and 4 months (79.08 ± 2.96 vs. 73.43 ± 3.52, p < 0.0001) postoperatively. There were no significant differences in linear and volumetric changes, PROMs, and soft tissue inflammation analysis between two groups. The ISQ at implant surgery was influenced by age and diabetes mellitus (DM) at the implant level and DM and predicted total bone-to-implant contact area at the patient level. CONCLUSION HA nano-coated SLA implants promoted favorable immediate implants stability during early osseointegration phase compared to uncoated SLA implants, but displayed similar dimensional changes, PROMs, and soft tissue inflammation outcomes. TRIAL REGISTRATION Clinical Research Information Service (CRIS), KCT0006364. Registered 21 July 2021, https://cris.nih.go.kr/cris/search/detailSearch.do?seq=24221&search_page=L .
Collapse
Affiliation(s)
- Young-Chang Ko
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dongseob Lee
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- National Dental Care Center for Persons with Special Needs, Seoul National University Dental Hospital, Seoul, Republic of Korea
| | - Ki-Tae Koo
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yang-Jo Seol
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yong-Moo Lee
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Jungwon Lee
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- One-Stop Specialty Center, Seoul National University Dental Hospital, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Lakshmi Mounika K, Lanke RB, Mudaliyar MC, Khandelwal S, Gaddam B, Boyapati R. Comprehensive Evaluation of Novel Biomaterials for Dental Implant Surfaces: An In Vitro Comparative Study. Cureus 2024; 16:e61175. [PMID: 38933613 PMCID: PMC11200310 DOI: 10.7759/cureus.61175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Dental implantology is continually evolving in its quest to discover new biomaterials to improve dental implant success rates. The study explored the potential of innovative biomaterials for dental implant surfaces, including titanium-zirconium (Ti-Zr) alloy, hydroxyapatite-coated titanium (HA-Ti), and porous polyetheretherketone (PEEK), in comparison to conventional commercially pure titanium (CP Ti). MATERIALS AND METHODS A total of 186 samples were harvested for the analysis. Biomaterials were thoroughly evaluated in terms of surface topography, chemical composition, biocompatibility, mechanical properties, osseointegration performance, and bacterial adhesion. Study methods and techniques included scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), cell culture variants, tensile tests, hardness measurements, histological analysis, and microbiological testing. RESULTS Surface topography examination showed significant disparities between the biomaterials: Ti-Zr had a better roughness of 1.23 μm, while HA-Ti demonstrated a smoother surface at 0.98 μm. Chemical composition evaluation indicated the presence of a Ti-Zr alloy in Ti-Zr, calcium-phosphorus richness in HA-Ti, and high titanium amounts in CP Ti. The mechanical properties assessment showed that Ti-Zr and CP Ti had good tensile strengths of 750 MPa and 320 HV. In addition, bacterial adhesion tests showed low propensities for Ti-Zr and HA-Ti at 1200 and 800 cfu/cm2, respectively. CONCLUSION Ti-Zr and HA-Ti performed better than the other biomaterials in surface topography and mechanical properties and against bacterial adhesion. This study emphasizes that multi-parameter analysis is critical for clinical decision-making, allowing for the selection of the currently available biomaterial, which could be conducive to the long-term success of the implant.
Collapse
Affiliation(s)
- Kalluri Lakshmi Mounika
- Department of Prosthodontics and Crown and Bridge, Sibar Institute of Dental Sciences, Guntur, IND
| | | | | | - Sourabh Khandelwal
- Department of Prosthodontics and Crown and Bridge, Index Institute of Dental Sciences, Indore, IND
| | - Bhavyasri Gaddam
- Department of Periodontology, Mamata Dental College, Khammam, IND
| | | |
Collapse
|
6
|
Alamoudi A. Nanoengineering and Surface Modifications of Dental Implants. Cureus 2024; 16:e51526. [PMID: 38304686 PMCID: PMC10833059 DOI: 10.7759/cureus.51526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 02/03/2024] Open
Abstract
Dental implants are one of the most important and successful advancements in modern dentistry. One aspect of dental implant design that influences the rate and degree of osseointegration is implant surface features. Nano-engineering techniques are anticipated to improve titanium dentistry implants' surface characteristics, which in turn promote peri-implant osteogenesis. In this paper, we review the recent advances in nanosurface engineering techniques for enhancing the bioactivity of dental implants.
Collapse
|
7
|
Pius AK, Toya M, Gao Q, Lee ML, Ergul YS, Chow SKH, Goodman SB. Effects of Aging on Osteosynthesis at Bone-Implant Interfaces. Biomolecules 2023; 14:52. [PMID: 38254652 PMCID: PMC10813487 DOI: 10.3390/biom14010052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Joint replacement is a common surgery and is predominantly utilized for treatment of osteoarthritis in the aging population. The longevity of many of these implants depends on bony ingrowth. Here, we provide an overview of current techniques in osteogenesis (inducing bone growth onto an implant), which is affected by aging and inflammation. In this review we cover the biologic underpinnings of these processes as well as the clinical applications. Overall, aging has a significant effect at the cellular and macroscopic level that impacts osteosynthesis at bone-metal interfaces after joint arthroplasty; potential solutions include targeting prolonged inflammation, preventing microbial adhesion, and enhancing osteoinductive and osteoconductive properties.
Collapse
Affiliation(s)
- Alexa K. Pius
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Masakazu Toya
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Qi Gao
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Max L. Lee
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Yasemin Sude Ergul
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Stuart Barry Goodman
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Dorozhkin SV. There Are over 60 Ways to Produce Biocompatible Calcium Orthophosphate (CaPO4) Deposits on Various Substrates. JOURNAL OF COMPOSITES SCIENCE 2023; 7:273. [DOI: 10.3390/jcs7070273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A The present overview describes various production techniques for biocompatible calcium orthophosphate (abbreviated as CaPO4) deposits (coatings, films and layers) on the surfaces of various types of substrates to impart the biocompatible properties for artificial bone grafts. Since, after being implanted, the grafts always interact with the surrounding biological tissues at the interfaces, their surface properties are considered critical to clinical success. Due to the limited number of materials that can be tolerated in vivo, a new specialty of surface engineering has been developed to desirably modify any unacceptable material surface characteristics while maintaining the useful bulk performance. In 1975, the development of this approach led to the emergence of a special class of artificial bone grafts, in which various mechanically stable (and thus suitable for load-bearing applications) implantable biomaterials and artificial devices were coated with CaPO4. Since then, more than 7500 papers have been published on this subject and more than 500 new publications are added annually. In this review, a comprehensive analysis of the available literature has been performed with the main goal of finding as many deposition techniques as possible and more than 60 methods (double that if all known modifications are counted) for producing CaPO4 deposits on various substrates have been systematically described. Thus, besides the introduction, general knowledge and terminology, this review consists of two unequal parts. The first (bigger) part is a comprehensive summary of the known CaPO4 deposition techniques both currently used and discontinued/underdeveloped ones with brief descriptions of their major physical and chemical principles coupled with the key process parameters (when possible) to inform readers of their existence and remind them of the unused ones. The second (smaller) part includes fleeting essays on the most important properties and current biomedical applications of the CaPO4 deposits with an indication of possible future developments.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
9
|
Patel NA, O’Bryant S, Rogers CD, Boyett CK, Chakravarti S, Gendreau J, Brown NJ, Pennington ZA, Hatcher NB, Kuo C, Diaz-Aguilar LD, Pham MH. Three-Dimensional-Printed Titanium Versus Polyetheretherketone Cages for Lumbar Interbody Fusion: A Systematic Review of Comparative In Vitro, Animal, and Human Studies. Neurospine 2023; 20:451-463. [PMID: 37401063 PMCID: PMC10323354 DOI: 10.14245/ns.2346244.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 07/05/2023] Open
Abstract
Interbody fusion is a workhorse technique in lumbar spine surgery that facilities indirect decompression, sagittal plane realignment, and successful bony fusion. The 2 most commonly employed cage materials are titanium (Ti) alloy and polyetheretherketone (PEEK). While Ti alloy implants have superior osteoinductive properties they more poorly match the biomechanical properties of cancellous bones. Newly developed 3-dimensional (3D)-printed porous titanium (3D-pTi) address this disadvantage and are proposed as a new standard for lumbar interbody fusion (LIF) devices. In the present study, the literature directly comparing 3D-pTi and PEEK interbody devices is systematically reviewed with a focus on fusion outcomes and subsidence rates reported in the in vitro, animal, and human literature. A systematic review directly comparing outcomes of PEEK and 3D-pTi interbody spinal cages was performed. PubMed, Embase, and Cochrane Library databases were searched according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines. Mean Newcastle-Ottawa Scale score for cohort studies was 6.4. A total of 7 eligible studies were included, comprising a combination of clinical series, ovine animal data, and in vitro biomechanical studies. There was a total population of 299 human and 59 ovine subjects, with 134 human (44.8%) and 38 (64.4%) ovine models implanted with 3D-pTi cages. Of the 7 studies, 6 reported overall outcomes in favor of 3D-pTi compared to PEEK, including subsidence and osseointegration, while 1 study reported neutral outcomes for device related revision and reoperation rate. Though limited data are available, the current literature supports 3D-pTi interbodies as offering superior fusion outcomes relative to PEEK interbodies for LIF without increasing subsidence or reoperation risk. Histologic evidence suggests 3D-Ti to have superior osteoinductive properties that may underlie these superior outcomes, but additional clinical investigation is merited.
Collapse
Affiliation(s)
- Neal A. Patel
- School of Medicine, Mercer University, Columbus, GA, USA
| | | | | | | | - Sachiv Chakravarti
- Department of Biomedical Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
| | - Julian Gendreau
- Department of Biomedical Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
| | - Nolan J. Brown
- Department of Neurosurgery, University of California Irvine, Orange, CA, USA
| | | | | | - Cathleen Kuo
- Department of Neurosurgery, University of Buffalo, Buffalo, NY, USA
| | | | - Martin H. Pham
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Han X, Ma J, Tian A, Wang Y, Li Y, Dong B, Tong X, Ma X. Surface modification techniques of titanium and titanium alloys for biomedical orthopaedics applications: A review. Colloids Surf B Biointerfaces 2023; 227:113339. [PMID: 37182380 DOI: 10.1016/j.colsurfb.2023.113339] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Biomedical alloys have an important share in orthopedic applications. Among them, titanium and its titanium alloys are widely used as implant materials because of their excellent mechanical properties and non-cytotoxicity. However, its disadvantages such as its biological inertness and poor antibacterial properties inhibit its further development. Therefore, the surface properties of titanium are crucial in the implantation process and determine the success of the implant. The main purpose of this review is to provide a comprehensive and detailed description of the modification techniques used for the surface modification of titanium implants. In this paper, the corresponding technical methods are introduced systematically from four aspects: mechanical method, physical surface modification, chemical surface modification and electrochemical technique to understand the experimental mechanism of each modification technique, and the above methods can indeed improve the various properties of titanium and its alloys. With the increasing demand for implants in the future, the requirements for surface properties will also increase. Therefore, the development of new coating materials with higher performance by combining various advantages of existing modification technologies is the main trend of future research on surface modification of titanium alloys.
Collapse
Affiliation(s)
- Xiao Han
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Jianxiong Ma
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Aixian Tian
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Yan Wang
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Yan Li
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Benchao Dong
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Xue Tong
- Tianjin Hospital, Tianjin University, Tianjin 300211, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinlong Ma
- Tianjin Hospital, Tianjin University, Tianjin 300211, China.
| |
Collapse
|
11
|
Gildersleeve EJ, Vaßen R. Thermally Sprayed Functional Coatings and Multilayers: A Selection of Historical Applications and Potential Pathways for Future Innovation. JOURNAL OF THERMAL SPRAY TECHNOLOGY 2023; 32:778-817. [PMID: 37521528 PMCID: PMC10136405 DOI: 10.1007/s11666-023-01587-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 08/01/2023]
Abstract
Thermal spray coatings are material systems with unique structures and properties that have enabled the growth and evolution of key modern technologies (i.e., gas turbines, structurally integrated components, etc.). The inherent nature of these sprayed coatings, such as their distinctive thermal and mechanical properties, has been a driving force for maintaining industrial interest. Despite these benefits and proven success in several fields, the adoption of thermal spray technology in new applications (i.e., clean energy conversion, semiconductor thermally sprayed materials, biomedical applications, etc.) at times, however, has been hindered. One possible cause could be the difficulty in concurrently maintaining coating design considerations while overcoming the complexities of the coatings and their fabrication. For instance, a coating designer must consider inherent property anisotropy, in-flight decomposition of molten material (i.e., loss of stoichiometry), and occasionally the formation of amorphous materials during deposition. It is surmisable for these challenges to increase the risk of adoption of thermal spray technology in new fields. Nevertheless, industries other than those already mentioned have benefited from taking on the risk of implementing thermal spray coatings in their infrastructure. Benefits can be quantified, for example, based on reduced manufacturing cost or enhanced component performance. In this overview paper, a historical presentation of the technological development of thermal spray coatings in several of these industries is presented. Additionally, emerging industries that have not yet attained this level of thermal spray maturation will also be discussed. Finally, where applicable, the utility and benefits of multilayer functional thermal spray coating designs will be demonstrated.
Collapse
Affiliation(s)
- Edward J. Gildersleeve
- Institute of Energy and Climate Research, Materials Synthesis and Processing (IEK-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Robert Vaßen
- Institute of Energy and Climate Research, Materials Synthesis and Processing (IEK-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
12
|
Baheti W, Lv S, Mila, Ma L, Amantai D, Sun H, He H. Graphene/hydroxyapatite coating deposit on titanium alloys for implant application. J Appl Biomater Funct Mater 2023; 21:22808000221148104. [PMID: 36633270 DOI: 10.1177/22808000221148104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Titanium (Ti) implants are widely used in medicine. Meanwhile, surface modification of Ti can strengthen the osseointegration of implants. In this study, we modified Ti implant surfaces, which was coated with GO, HA, HA-2wt%GO and HA-5wt%GO via electrophoresis deposition, to investigate their mechanisms and biological activity. Uncoated Ti was used as the control. Further, we examined the biological behavior and osteogenic performance of mouse bone marrow mesenchymal stem cells (BMSCs) cultured on coatings in vitro. We found that the HA-GO nanocomposite coating improved the roughness and hydrophilicity of the Ti surface. Compared with the uncoated Ti or Ti modified by HA or GO alone, cell adhesion and diffusion were enhanced on HA-GO-modified Ti surfaces. In addition, the proliferation and osteogenic differentiation of BMSCs in vitro were significantly improved on HA-GO-modified surfaces, whereas osteogenesis-related gene expression and alkaline phosphatase activity were slightly enhanced. Furthermore, we noted that bone regeneration was improved in the HA-2wt%GO group in vivo. Thus, the HA-2wt%GO nanocomposite coating might have potential applications in the field of dental implants.
Collapse
Affiliation(s)
- Wufanbieke Baheti
- Department of Prosthodontics, The Affiliated Stomatology Hospital of The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi, P.R. China.,People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, P.R. China.,Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
| | - ShangYi Lv
- Department of Prosthodontics, The Affiliated Stomatology Hospital of The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi, P.R. China.,Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
| | - Mila
- Department of Prosthodontics, The Affiliated Stomatology Hospital of The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi, P.R. China.,Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
| | - Lisha Ma
- Department of Prosthodontics, The Affiliated Stomatology Hospital of The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi, P.R. China.,Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
| | - Dumanbieke Amantai
- Department of Prosthodontics, The Affiliated Stomatology Hospital of The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi, P.R. China.,Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
| | - Hao Sun
- Department of Prosthodontics, The Affiliated Stomatology Hospital of The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi, P.R. China.,Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
| | - HuiYu He
- Department of Prosthodontics, The Affiliated Stomatology Hospital of The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi, P.R. China.,Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
| |
Collapse
|
13
|
Hoornenborg D, Schweden AMC, Sierevelt IN, van der Vis HM, Kerkhoffs G, Haverkamp D. The influence of hydroxyapatite coating on continuous migration of a Zweymuller-type hip stem: a double-blinded randomised RSA trial with 5-year follow-up. Hip Int 2023; 33:73-80. [PMID: 33845623 DOI: 10.1177/11207000211006782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND PURPOSE Adding hydroxyapatite to a stem to enhance ingrowth is a matter of debate, even less is known about the long-term effect on stability by adding hydroxyapatite (HA). Continuous migration in the first 2-5 years is an indicator of failed osteointegration or pending failure, enhancing the risk of loosening within 10 years after initial surgery. We performed a double-blinded randomised RSA trial with 5-year follow-up, to compare and analyse migration characteristics of the hydroxyapatite uncoated (HA-) and hydroxyapatite coated (HA+) Zweymuller-type hip stem. PATIENTS AND METHODS In this single-centre prospective randomised controlled trial 51 patients were randomised to receive either a HA- or a HA+ Zweymuller-type hip stem during total hip replacement. After 5 years, 35 patients were still eligible for follow-up evaluation. The migration pattern was measured by use of radio stereometric analysis (RSA) images up to 2 years to evaluate short-term migration, additionally RSA images were obtained 5 years postoperatively to assess late-term and continuous migration. Furthermore, the improvement of clinical outcome was analysed by HSS and HOOS ADL and pain subscales preoperative and after 5 years. RESULTS After initial settling of the implant, no significant migration occurred up to 5 years post-surgery for HA+ as well as HA- prostheses. Continuous migration within the 2-5 years' time interval was not observed for both HA+ nor the HA- group in all directions (p < 0.05). No significant difference between both groups was observed (p < 0.10). In both groups the HHS and HOOS improved significantly at 5 years compared to baseline for both groups. Improvement was not altered by the hydroxyapatite coating. No significant difference between both groups was observed (p > 0.58). CONCLUSIONS Addition of a hydroxyapatite coating did not influence the migration 5 years postoperatively for the Zweymuller-type hip stem.Clinical Trial Protocol number: NL 23524.048.08.
Collapse
Affiliation(s)
| | | | - Inger N Sierevelt
- Xpert Clinics, Orthopaedic Surgery, Amsterdam, The Netherlands.,Spaarne Gasthuis Academy, Haarlem, The Netherlands
| | | | | | | |
Collapse
|
14
|
Yao Y, Liu S, Planche MP, Deng S, Liao H. Application of Image Segmentation to Identify In-flight Particles in Thermal Spraying. JOURNAL OF THERMAL SPRAY TECHNOLOGY 2022; 31:46-58. [PMID: 37520911 PMCID: PMC8806362 DOI: 10.1007/s11666-021-01285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 08/01/2023]
Abstract
In thermal spray process, the characteristics of in-flight particles (velocity and temperature) play an important role regarding the microstructure of the deposit and thus the coating performances. The implementation of diagnostic devices is necessary to measure such characteristics. Many imaging systems and algorithms have been developed for identifying and tracking in-flight particles. However, these current image systems have significant limitations in terms of accuracy for example. One key to solving the tracking problem is to get an algorithm that can effectively distinguish different particles in the same image frame at the same time. This study aims to develop an algorithm capable of identifying a large number of in-flight particles sprayed by thermal process. The results show that the noise and vignettes could be successfully treated, particles are clearly recognized in the background, leading to properly measuring the sizes and positions of the particle versus time. The proposed algorithm has a higher recognition rate and recognition range than other algorithms, which will provide a reasonable basis for subsequent calculation and processing.
Collapse
Affiliation(s)
- Yijun Yao
- ICB PMDM LERMPS UMR 6303, CNRS, Université de Bourgogne Franche-Comté, UTBM, Belfort, France
| | - Shaowu Liu
- ICB PMDM LERMPS UMR 6303, CNRS, Université de Bourgogne Franche-Comté, UTBM, Belfort, France
| | - Marie Pierre Planche
- ICB PMDM LERMPS UMR 6303, CNRS, Université de Bourgogne Franche-Comté, UTBM, Belfort, France
| | - Sihao Deng
- ICB PMDM LERMPS UMR 6303, CNRS, Université de Bourgogne Franche-Comté, UTBM, Belfort, France
| | - Hanlin Liao
- ICB PMDM LERMPS UMR 6303, CNRS, Université de Bourgogne Franche-Comté, UTBM, Belfort, France
| |
Collapse
|
15
|
Suntharavel
Muthaiah VM, Rajput M, Tripathi A, Suwas S, Chatterjee K. Electrophoretic Deposition of Nanocrystalline Calcium Phosphate Coating for Augmenting Bioactivity of Additively Manufactured Ti-6Al-4V. ACS MATERIALS AU 2021; 2:132-142. [PMID: 36855763 PMCID: PMC9888615 DOI: 10.1021/acsmaterialsau.1c00043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Additive manufacturing (AM) is being widely explored for engineering biomedical implants. The microstructure and surface finish of additively manufactured parts are typically different from wrought parts and exhibit limited bioactivity despite the other advantages of using AM for fabrication. The aim of this study was to enhance the bioactivity of selective laser melted Ti-6Al-4V alloy by electrophoretic deposition of nanohydroxyapatite (nanoHAp) coatings. The deposition parameters were systematically investigated after the coatings were deposited on the as-manufactured surface or after polishing the surface of the additively-manufactured sample. The surfaces were coated with nanoHAp suspended in either ethanol or butanol using different voltages (10, 30, or 50 V) for varied deposition times. The formation of the nanoHAp coating was confirmed by Fourier-transform infrared spectroscopy and X-ray diffraction. Microstructural analysis revealed that several conditions of the coating led to crack formation. The coated samples were subsequently heat-treated to improve the integrity of the coating. Heat treatment led to crack formation in several conditions due to thermal shrinkages. Coatings prepared using butanol were more uniform and had minimal cracks compared with the use of ethanol. Nanoindentation confirmed good stability and integrity of the nanoHAP coatings on the as-manufactured and polished surfaces. The coating on the as-manufactured sample exhibited higher hardness and lower elastic modulus as compared with the coating on the polished sample. In vitro study revealed that the nanoHAp coating markedly enhanced the attachment, proliferation, and differentiation of preosteoblasts on the alloy. These results provide a viable route to enhancing the bioactivity through deposition of nanoHAp with important implications for engineering additively manufactured orthopedic and dental implants suitable for better clinical performance.
Collapse
Affiliation(s)
- V. M. Suntharavel
Muthaiah
- Department
of Materials Engineering, Indian Institute
of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Monika Rajput
- Department
of Materials Engineering, Indian Institute
of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Ananya Tripathi
- Department
of Materials Engineering, Indian Institute
of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Satyam Suwas
- Department
of Materials Engineering, Indian Institute
of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Kaushik Chatterjee
- Department
of Materials Engineering, Indian Institute
of Science, C.V. Raman Avenue, Bangalore 560012, India,; Tel.: +91-80-22933408
| |
Collapse
|
16
|
Ohtsu N, Kakuchi Y, Takahara T, Yoshida Y. A facile chemical process to form an ultrathin hydroxyapatite layer with a customizable silver-releasing function on a titanium implant. J Biomed Mater Res B Appl Biomater 2021; 110:587-596. [PMID: 34545691 DOI: 10.1002/jbm.b.34937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/13/2021] [Accepted: 08/28/2021] [Indexed: 11/07/2022]
Abstract
Silver-containing hydroxyapatite (Ag/HAp) layer on a bioinert material provides both bioactive and antibacterial properties; however, the Ag release duration needs to be customized to a patient's age and metabolism for minimizing the toxic effects. Herein, we present a facile chemical process to produce an ultrathin Ag/HAp layer on a Ti implant with a customized Ag-releasing profile. The process involves the following steps: preparation of a slurry-type reagent by mixing calcium phosphate powder with an aqueous AgNO3 solution, burying a Ti substrate in the slurry, and heating the slurry in air. An HAp layer, approximately 50 nm thick, with Ag particle deposits was obtained using this process. The Ag-particle content can be varied by adjusting the concentration of AgNO3 solution used for slurry preparation, resulting in different Ag-release profiles in a physiological solution. For instance, Ag release was retained for up to 30 days when 100 mM AgNO3 was used, whereas the release lasted 15 days when 10 mM AgNO3 was used. The duration of the antibacterial activity varied accordingly, but Ag-release-derived cytotoxicity was not observed irrespective of the AgNO3 concentration. In addition, differentiation of osteoblast-like cells was facilitated owing to the formation of the HAp layer. Thus, the chemical process presented in this study allows the production-at a clinical site-of an Ag/HAp layer customized to the patient's needs.
Collapse
Affiliation(s)
- Naofumi Ohtsu
- School of Earth, Energy, and Environmental Engineering, Kitami Institute of Technology, Kitami, Hokkaido, Japan
| | - Yuko Kakuchi
- School of Earth, Energy, and Environmental Engineering, Kitami Institute of Technology, Kitami, Hokkaido, Japan
| | - Toyofumi Takahara
- School of Earth, Energy, and Environmental Engineering, Kitami Institute of Technology, Kitami, Hokkaido, Japan
| | - Yutaka Yoshida
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami, Hokkaido, Japan
| |
Collapse
|
17
|
Investigation of Coatings, Corrosion and Wear Characteristics of Machined Biomaterials through Hydroxyapatite Mixed-EDM Process: A Review. MATERIALS 2021; 14:ma14133597. [PMID: 34203154 PMCID: PMC8269714 DOI: 10.3390/ma14133597] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/06/2021] [Accepted: 06/14/2021] [Indexed: 01/04/2023]
Abstract
Together, 316L steel, magnesium-alloy, Ni-Ti, titanium-alloy, and cobalt-alloy are commonly employed biomaterials for biomedical applications due to their excellent mechanical characteristics and resistance to corrosion, even though at times they can be incompatible with the body. This is attributed to their poor biofunction, whereby they tend to release contaminants from their attenuated surfaces. Coating of the surface is therefore required to mitigate the release of contaminants. The coating of biomaterials can be achieved through either physical or chemical deposition techniques. However, a newly developed manufacturing process, known as powder mixed-electro discharge machining (PM-EDM), is enabling these biomaterials to be concurrently machined and coated. Thermoelectrical processes allow the migration and removal of the materials from the machined surface caused by melting and chemical reactions during the machining. Hydroxyapatite powder (HAp), yielding Ca, P, and O, is widely used to form biocompatible coatings. The HAp added-EDM process has been reported to significantly improve the coating properties, corrosion, and wear resistance, and biofunctions of biomaterials. This article extensively explores the current development of bio-coatings and the wear and corrosion characteristics of biomaterials through the HAp mixed-EDM process, including the importance of these for biomaterial performance. This review presents a comparative analysis of machined surface properties using the existing deposition methods and the EDM technique employing HAp. The dominance of the process factors over the performance is discussed thoroughly. This study also discusses challenges and areas for future research.
Collapse
|
18
|
Understanding and optimizing the antibacterial functions of anodized nano-engineered titanium implants. Acta Biomater 2021; 127:80-101. [PMID: 33744499 DOI: 10.1016/j.actbio.2021.03.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
Nanoscale surface modification of titanium-based orthopaedic and dental implants is routinely applied to augment bioactivity, however, as is the case with other cells, bacterial adhesion is increased on nano-rough surfaces. Electrochemically anodized Ti implants with titania nanotubes (TNTs) have been proposed as an ideal implant surface with desirable bioactivity and local drug release functions to target various conditions. However, a comprehensive state of the art overview of why and how such TNTs-Ti implants acquire antibacterial functions, and an in-depth knowledge of how topography, chemistry and local elution of potent antibiotic agents influence such functions has not been reported. This review discusses and details the application of nano-engineered Ti implants modified with TNTs for maximum local antibacterial functions, deciphering the interdependence of various characteristics and the fine-tuning of different parameters to minimize cytotoxicity. An ideal implant surface should cater simultaneously to ossoeintegration (and soft-tissue integration for dental implants), immunomodulation and antibacterial functions. We also evaluate the effectiveness and challenges associated with such synergistic functions from modified TNTs-implants. Particular focus is placed on the metallic and semi-metallic modification of TNTs towards enabling bactericidal properties, which is often dose dependent. Additionally, there are concerns over the cytotoxicity of these therapies. In that light, research challenges in this domain and expectations from the next generation of customizable antibacterial TNTs implants towards clinical translation are critically evaluated. STATEMENT OF SIGNIFICANCE: One of the major causes of titanium orthopaedic/dental implant failure is bacterial colonization and infection, which results in complete implant failure and the need for revision surgery and re-implantation. Using advanced nanotechnology, controlled nanotopographies have been fabricated on Ti implants, for instance anodized nanotubes, which can accommodate and locally elute potent antibiotic agents. In this pioneering review, we shine light on the topographical, chemical and therapeutic aspects of antibacterial nanotubes towards achieving desirable tailored antibacterial efficacy without cytotoxicity concerns. This interdisciplinary review will appeal to researchers from the wider scientific community interested in biomaterials science, structure and function, and will provide an improved understanding of controlling bacterial infection around nano-engineered implants, aimed at bridging the gap between research and clinics.
Collapse
|
19
|
Gong M, Liu C, Liu C, Wang L, Shafiq F, Liu X, Sun G, Song Q, Qiao W. Biomimetic hydroxyapate/polydopamine composites with good biocompatibility and efficiency for uncontrolled bleeding. J Biomed Mater Res B Appl Biomater 2021; 109:1876-1892. [PMID: 33847453 DOI: 10.1002/jbm.b.34849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/08/2021] [Accepted: 03/28/2021] [Indexed: 11/11/2022]
Abstract
Uncontrolled bleeding is thought to be the most deadly cause of pre-hospital, traffic, and military accidents death. However, the popular commercial hemostats can only realize the hemostasis of mild bleeding. Therefore, we developed polydopamine (PDA) composite materials (PMs), which applied hydroxyapatite as the parent body. The PMs were produced via lyophilization and functionalized with amino, phenol hydroxyls groups, which endowed hydrophobicity to materials. This ensured a high aggregation ability of blood cells to the PMs and they were tested to be as high as 300% compared with the negative control group. The clotting time was shortened to 79.7% compared with the usually used commercial hemostat (Celox) in the test of in vitro hemostasis. Through the results of PT and APTT tests, blood coagulation index test, and the analysis of intracellular Ca2+ activation, we further understood the mechanism of the hemostasis of the materials, which explained the low blood loss and quick coagulation time of the PM hemostats in detail. Besides, the low hemolysis and cytotoxicity of the PMs suggested the good biocompatibility of the hemostats, which was further proved by the regular morphology maintained by erythrocytes in the hemolysis tests. The study of nanoscale composites led the research for the methods of hemostasis.
Collapse
Affiliation(s)
- Mengxiang Gong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, P.R. China
| | - Chenyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, P.R. China
| | - Chunyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, P.R. China
| | - Lingyi Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, P.R. China
| | - Farishta Shafiq
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, P.R. China
| | - Xia Liu
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, P.R. China
| | - Guozhen Sun
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, P.R. China
| | - Qiling Song
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, P.R. China
| | - Weihong Qiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, P.R. China
| |
Collapse
|
20
|
Koski C, Sarkar N, Bose S. Cytotoxic and osteogenic effects of crocin and bicarbonate from calcium phosphates for potential chemopreventative and anti-inflammatory applications in vitro and in vivo. J Mater Chem B 2021; 8:2048-2062. [PMID: 32064472 DOI: 10.1039/c9tb01462d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Delayed healing and nonhealing of bone defects or resected bone sites remains an important clinical concern in the biomedical field. Osteosarcoma is one of the most common types of primary bone cancers. Among calcium phosphates, hydroxyapatite (HA) and tricalcium phosphate (TCP) are the most widely used in various biomedical applications for bone reconstruction and replacement. In this study, crocin, saffron's natural bioactive and anti-inflammatory molecule, and bicarbonate, a neutralizing agent, were directly loaded onto HA disks to evaluate their in vitro release and effect on human osteoblast and osteosarcoma cell lines. This was assessed through release, initial toxicity, drug optimization, final toxicity studies and in vivo anti-inflammatory assessment through H&E indexing. It is hypothesized that the release of crocin, bicarbonate, and the dual release of both agents will decrease osteosarcoma cellular viability with no effect on osteoblast cells. A plateaued release of crocin and bicarbonate was achieved over seven weeks in physiological and acidic environments, where bicarbonate was shown to modulate the release of crocin. Through morphological characterization and MTT assay analysis, bicarbonate showed no toxicity to human fetal osteoblast (hFOB) cells and crocin significantly enhanced osteoblast proliferation. Through drug concentration optimization, all drug loaded samples decreased human osteosarcoma (MG-63) viability by 50% compared to control samples by Day 11, with clear changes in cell spreading and morphology. Moreover, 3D printed TCP scaffolds loaded with crocin and bicarbonate were tested in vivo in order to assess their preliminary effects on inflammation in a rat distal femur model at 4 days. Lower inflammatory cellular recruitment was achieved in the presence of crocin and bicarbonate, compared to the control. These results suggest a pro-apoptotic mechanism against osteosarcoma as well as anti-inflammatory properties of crocin and bicarbonate, elucidating a potential application for osteosarcoma regulation and wound healing for bone tissue regeneration applications.
Collapse
Affiliation(s)
- Caitlin Koski
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA.
| | - Naboneeta Sarkar
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA.
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA.
| |
Collapse
|
21
|
Surface modification techniques of titanium and titanium alloys for biomedical dental applications: A review. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.matpr.2020.06.163] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Silver ion doped hydroxyapatite-coated titanium pins prevent bacterial colonization. Jt Dis Relat Surg 2020; 32:35-41. [PMID: 33463416 PMCID: PMC8073436 DOI: 10.5606/ehc.2021.79357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/08/2020] [Indexed: 01/05/2023] Open
Abstract
Objectives
This study aims to evaluate the effectiveness of silver ion doped calcium phosphate-based ceramic nano powder-coated titanium pins in preventing bacterial colonization. Materials and methods
A total of 66 titanium pins were divided into three groups of 22 implants. The first group was coated with silver ion doped calcium phosphate-based ceramic powder by using electrospray method. The second group was coated with pure hydroxyapatite (HA), and the remaining pins were used without any coating. The remaining 22 pins were used without any coating. Staphylococcus epidermidis clinical isolate was used for the study. Each pin was placed in 1¥104 CFU/mL bacterial suspension containing tube and at 24 h quantitative culture of bacteria on the broth and on the pins were performed. Free silver ions were determined by atomic absorption method. The antibacterial culture tests were repeated on Day 2 and Weeks 2, 4, 6, and 8. Results
Bacterial growth was statistically higher in broth containing uncoated pins, compared to broth media containing silver ion doped HA-coated, and pure HA-coated pins at 24 h (p=0.036 and p=0.009, respectively). The release of bacteria from silver doped HA-coated pins was statistically less, compared to pure HA-coated pins and uncoated pins (p=0.039 and p=0.002, respectively). No significant differences were observed between the HA-coated and uncoated pin groups. Minimum inhibitory concentration levels for silver ion doped powder was 8 μg/mL for coagulase-negative Staphylococcus. No free silver ions were detected in the broth media. Conclusion
Silver ion doped nano size calcium phosphate-based powder-coated titanium pins reduced the bacterial colonization significantly. Using silver ion doped materials in the body can be a good option to prevent from implant related infections.
Collapse
|
23
|
Li B, Yang T, Sun R, Ma P. Biological and antibacterial properties of composite coatings on titanium surfaces modified by microarc oxidation and sol-gel processing. Dent Mater J 2020; 40:455-463. [PMID: 33177311 DOI: 10.4012/dmj.2020-034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this study was to assess the biological and antibacterial properties of composite coatings on titanium surfaces modified by microarc oxidation and sol-gel processing. A layer of hydroxyapatite (HA) with different concentrations of zinc (Zn) ions, prepared by the sol-gel method, was coated on microarc oxidized Ti (MAO-Ti) substrates. Five groups of specimens were tested. The microstructures, elemental compositions, and chemical phases of the composite coatings were investigated, and the biological and antibacterial properties of specimens were evaluated in vitro. The EDS and XRD results confirmed the composite coatings contained HA and Zn ions which was formed on titanium surfaces. The proliferation and ALP activity of BMSCs was significantly higher in group MAO-Ti+HA and MAO-Ti+HA+Zn(High), but MAO-Ti+HA+Zn(High) showed better antibacterial performance. The MAO-Ti substrate coated with the higher Zn concentration in the HA coating exhibited not only favorable biocompatibility, but also antibacterial action against Gram-negative anaerobic bacteria.
Collapse
Affiliation(s)
- Beibei Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University
| | - Tao Yang
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University
| | - Rongxin Sun
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University
| | - Pan Ma
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University
| |
Collapse
|
24
|
Yabutsuka T, Kidokoro Y, Takai S. Improvement of hydroxyapatite formation ability of titanium-based alloys by combination of acid etching and apatite nuclei precipitation. IET Nanobiotechnol 2020; 14:688-694. [PMID: 33108325 DOI: 10.1049/iet-nbt.2020.0053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The authors aimed to improve hydroxyapatite formation ability of Ti6Al4V, Ti-15Mo-5Zr-3Al alloy, Ti-12Ta-9Nb-6Zr-3V-O alloy (Gummetal®) and commercially pure Ti (cpTi) mesh by a combination of acid etching and apatite nuclei precipitation. Surfaces of specimens were etched with H2SO4 for pores formation on the specimens. Thus-etched specimens were soaked in an alkalinised simulated body fluid (SBF), which was adjusted at higher pH than that of conventional SBF and this solution was subsequently heated. By this treatment, apatite nuclei were precipitated in the pores of the specimens. By a soak in the conventional SBF to check hydroxyapatite formation ability, hydroxyapatite was covered the entire surfaces of the specimens within 1 day and high hydroxyapatite formation ability was successfully shown. The adhesion strength of the hydroxyapatite film formed in the above SBF test showed larger value as increasing the surface roughness of the specimens by adjusting the above acid etching condition depending on the kinds of Ti-based alloys. This is because the adhesion of the hydroxyapatite film occurred by the mechanical interlocking effect. In addition, this method showed shape selectivity of the materials because similar hydroxyapatite formation ability could be introduced to the cpTi mesh.
Collapse
Affiliation(s)
- Takeshi Yabutsuka
- Department of Fundamental Energy Science, Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Yasutaka Kidokoro
- Department of Fundamental Energy Science, Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shigeomi Takai
- Department of Fundamental Energy Science, Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
25
|
Goto M, Matsumine A, Yamaguchi S, Takahashi H, Akeda K, Nakamura T, Asanuma K, Matsushita T, Kokubo T, Sudo A. Osteoconductivity of bioactive Ti-6Al-4V implants with lattice-shaped interconnected large pores fabricated by electron beam melting. J Biomater Appl 2020; 35:1153-1167. [PMID: 33106079 DOI: 10.1177/0885328220968218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Additive manufacturing has facilitated the fabrication of orthopedic metal implants with interconnected pores. Recent reports have indicated that a pore size of 600 μm is beneficial for material-induced osteogenesis. However, the complete removal of the metal powder from such small pores of implants is extremely difficult especially in electron beam melting (EBM). We therefore developed a new type of Ti-6Al-4V implant with lattice-shaped interconnected pores measuring 880-1400 μm, which allowed for the easy removal of metal powder. This implant was fabricated by EBM and treated with NaOH, CaCl2, heat, and water (ACaHW treatment) to render the metal surface bioactivity. In the present study, the mechanical and chemical property of the implants and the biocompatibility were evaluated. The SEM and micro-CT images demonstrated the 3D interconnectivity of the porous structures. The average porosity of the porous titanium implant was 57.5%. The implant showed maximum compressive load of 78.9 MPa and Young's modulus of 3.57 GPa which matches that of human cortical bone. ACaHW treatment of the porous Ti-6Al-4V implants induced apatite formation in simulated body fluid in vitro. The ACaHW-treated porous implants harvested from rabbit femoral bone showed direct bonding of bone to the metal surface without interposition of fibrous tissue. The porous ACaHW-treated implant had a higher affinity to the bone than the untreated one. The mechanical strength of implant fixation assessed using the push-out test was significantly higher in the ACaHW-treated implant than in untreated one. FE-SEM analysis and EDX mapping after push-out test of solid implants showed a lot of bone tissue patches on the surface of the ACaHW-treated implant. These results suggest that the new ACaHW-treated Ti-6Al-4V implant with lattice-shaped interconnected pores is a superior alternative to conventional materials for medical application.
Collapse
Affiliation(s)
- Mikinobu Goto
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akihiko Matsumine
- Department of Orthopedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Seiji Yamaguchi
- Department of Biomedical Sciences, Graduate School of Life and Health Sciences, Chubu University College of Life and Health Sciences, Aichi Japan
| | | | - Koji Akeda
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Tomoki Nakamura
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kunihiro Asanuma
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Tomiharu Matsushita
- Department of Biomedical Sciences, Graduate School of Life and Health Sciences, Chubu University College of Life and Health Sciences, Aichi Japan
| | - Tadashi Kokubo
- Department of Biomedical Sciences, Graduate School of Life and Health Sciences, Chubu University College of Life and Health Sciences, Aichi Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
26
|
Shiel AI, Ayre WN, Blom AW, Hallam KR, Heard PJ, Payton O, Picco L, Mansell JP. Development of a facile fluorophosphonate-functionalised titanium surface for potential orthopaedic applications. J Orthop Translat 2020; 23:140-151. [PMID: 32818135 PMCID: PMC7427324 DOI: 10.1016/j.jot.2020.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Background Aseptic loosening of total joint replacements (TJRs) continues to be the main cause of implant failures. The socioeconomic impact of surgical revisions is hugely significant; in the United Kingdom alone, it is estimated that £137 m is spent annually on revision arthroplasties. Enhancing the longevity of titanium implants will help reduce the incidence and overall cost of failed devices. Methods In realising the development of a superior titanium technology, we exploited the natural affinity of titanium for phosphonic acids and developed a facile means of coating the metal with (3S)1-fluoro-3-hydroxy-4-(oleoyloxy)butyl-1-phosphonate (FHBP), a phosphatase-resistant analogue of lysophosphatidic acid (LPA). Importantly LPA and selected LPA analogues like FHBP synergistically cooperate with calcitriol to promote human osteoblast formation and maturation. Results Herein, we provide evidence that simply immersing titanium in aqueous solutions of FHBP afforded a surface that was superior to unmodified metal at enhancing osteoblast maturation. Importantly, FHBP-functionalised titanium remained stable to 2 years of ambient storage, resisted ∼35 kGy of gamma irradiation and survived implantation into a bone substitute (Sawbone™) and irrigation. Conclusion The facile step we have taken to modify titanium and the robustness of the final surface finish are appealing properties that are likely to attract the attention of implant manufacturers in the future. The translational potential of this article We have generated a functionalised titanium (Ti) surface by simply immersing Ti in aqueous solutions of a bioactive lipid. As a facile procedure it will have greater appeal to implant manufacturers compared to onerous and costly developmental processes.
Collapse
Affiliation(s)
- Anna I Shiel
- Department of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Wayne N Ayre
- School of Dentistry, Cardiff University, Cardiff, CF14 4XY, UK
| | - Ashley W Blom
- Musculoskeletal Research Unit, University of Bristol, Southmead, Bristol, BS10 5NB, UK
| | - Keith R Hallam
- University of Bristol, Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK
| | - Peter J Heard
- University of Bristol, Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK
| | - Oliver Payton
- University of Bristol, Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK
| | - Loren Picco
- University of Bristol, Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK.,Department of Physics, Virginia Commonwealth University, Richmond, 23284, VA, USA
| | - Jason P Mansell
- Department of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| |
Collapse
|
27
|
Park PJ, Lehman RA. Optimizing the Spinal Interbody Implant: Current Advances in Material Modification and Surface Treatment Technologies. Curr Rev Musculoskelet Med 2020; 13:688-695. [PMID: 32816234 DOI: 10.1007/s12178-020-09673-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Interbody implants allow for fusion of the anterior column of the spine between vertebral body endplates. As rates of spinal fusion surgery have increased over the past several years, significant research has been devoted to optimizing both the mechanical and biologic properties of the interbody implant in order to promote bony fusion. The first interbody implants used decades ago were fashioned from cortical autograft. Currently, titanium alloy and polyetheretherketone (PEEK) are the most widely used and studied materials for this purpose. This review focuses on recent innovations in material modification and surface treatment techniques for both titanium and PEEK implants to maximize fusion rates in spinal surgery. RECENT FINDINGS Titanium has an elastic modulus much higher than native bone and however has better osseointegrative properties than PEEK. PEEK, however, has an elastic modulus closer to that of bone without any of the advantageous biologic properties that titanium has. Increasing porosity and surface roughness of titanium implants have been shown to improve the mechanical properties of titanium implants, while the biologic properties of PEEK have been enhanced using surface coating technology, either with titanium or with hydroxyapatite (HA). Techniques such as increasing porosity, surface roughening, and surface coating are just some of the recent innovations aimed at optimizing both mechanical and biologic properties of interbody implants to promote spinal fusion. The future of interbody implant design will rely on continued improvements of PEEK and titanium implants as well as exploring new implant materials altogether.
Collapse
Affiliation(s)
- Paul J Park
- The Spine Hospital, NewYork-Presbyterian/Columbia University Irving Medical Center, 5141 Broadway, 3 Field West-022, New York, NY, 10034, USA.
| | - Ronald A Lehman
- The Spine Hospital, NewYork-Presbyterian/Columbia University Irving Medical Center, 5141 Broadway, 3 Field West-022, New York, NY, 10034, USA
| |
Collapse
|
28
|
de Oliveira PGFP, de Melo Soares MS, Silveira E Souza AMM, Taba M, Palioto DB, Messora MR, Ghiraldini B, Nunes FADS, de Souza SLS. Influence of nano-hydroxyapatite coating implants on gene expression of osteogenic markers and micro-CT parameters. An in vivo study in diabetic rats. J Biomed Mater Res A 2020; 109:682-694. [PMID: 32608088 DOI: 10.1002/jbm.a.37052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
This study evaluated the response of a nano-hydroxyapatite coating implant through gene expression analysis (runt-related transcription factor 2 (Runx2), alkaline phosphatase (Alp), osteopontin (Opn), osteocalcin (Oc), receptor activator of nuclear factor-kappa B (Rank), receptor activator of nuclear factor-kappa B ligand (Rank-L), and osteoprotegerin (Opg)). Three-dimensional evaluation (percent bone volume (BV/TV); percent intersection surface (BIC); bone surface/volume ratio (BS/BV); and total porosity (To.Po)) were also analyzed. Mini implants were surgically placed in tibias of both healthy and diabetic rats. The animals were euthanized at 7 and 30 days. Evaluating all factors the relative expression of Rank showed that NANO surface presented the best results at 7 days (diabetic rats). Furthermore the levels of Runx2, Alp, Oc, and Opn suggest an increase in osteoblasts proliferation, especially in early stages of osseointegration. %BIC in healthy and diabetic (7 days) depicted statistically significant differences for NANO group. BV/TV, BS/BV and To.Po demonstrated higher values for NANO group in all evaluated time point and irrespective of systemic condition, but BS/BV 30 days (healthy rat) and 7 and 30 days (diabetic rat). Microtomographic and gene expression analyses have shown the benefits of nano-hydroxyapatite coated implants in promoting new bone formation in diabetic rats.
Collapse
Affiliation(s)
| | - Mariana Sales de Melo Soares
- Department of Oral and Maxillofacial Surgery and Periodontology, FORP/USP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Mário Taba
- Department of Oral and Maxillofacial Surgery and Periodontology, FORP/USP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniela Bazan Palioto
- Department of Oral and Maxillofacial Surgery and Periodontology, FORP/USP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Michel Reis Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, FORP/USP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bruna Ghiraldini
- Paulista University, School of Dentistry, São Paulo, São Paulo, Brazil
| | - Felipe Anderson de Sousa Nunes
- Department of Oral and Maxillofacial Surgery and Periodontology, FORP/USP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sérgio Luís Scombatti de Souza
- Department of Oral and Maxillofacial Surgery and Periodontology, FORP/USP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
29
|
Abstract
In this study, we demonstrate that a uniform coating of hydroxyapatite (HAp, Ca10(PO4)6(OH)2) can be electrochemically deposited onto metallic 3D-woven bone scaffolds to enhance their bioactivity. The HAp coatings were deposited onto metallic scaffolds using an electrolyte containing Ca(NO3)2·4H2O, NH4H2PO4, and NaNO3. The deposition potential was varied to maximize the uniformity and adhesion of the coating. Using X-ray diffraction (XRD), Raman spectroscopy, and energy-dispersive spectroscopy (EDS), we found crystallized HAp on the 3D-woven lattice under all deposition potentials, while the −1.5 V mercury sulfate reference electrode potential provided the best local uniformity with a satisfactory deposition rate. The coatings generated under this optimized condition were approximately 5 µm thick and uniform throughout the internal and external sections of the woven lattice. We seeded and cultured both coated and uncoated scaffolds with human adipose-derived stromal/stem cells (ASCs) for 12 h and 4 days. We observed that the HAp coating increased the initial cell seeding efficiency by approximately 20%. Furthermore, after 4 days of culture, ASCs cultured on HAp-coated stainless-steel scaffolds increased by 32% compared to only 17% on the uncoated scaffold. Together, these results suggest that the HAp coating improves cellular adhesion.
Collapse
|
30
|
Surface Modifications for Implants Lifetime extension: An Overview of Sol-Gel Coatings. COATINGS 2020. [DOI: 10.3390/coatings10060589] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The limited lifetime of implants entails having patients undergo replacement surgeries, several times throughout life in young patients, with significant risks for them and extensive cost for healthcare service. The overcoming of such inconvenience is still today a hard challenge for the scholars of the biomedical and biomaterial fields. The improvement of the currently employed implants through surface modification by coatings application is the main strategy proposed to avoid implants failure, and the sol-gel coating is an ideal technology to achieve this goal. Therefore, the present review aims to provide an overview of the most important problems leading to implant failure, the sol-gel coating technology, and its use as a strategy to overcome such issues.
Collapse
|
31
|
Abstract
The topic of titanium alloys for dental implants has been reviewed. The basis of the review was a search using PubMed, with the large number of references identified being reduced to a manageable number by concentrating on more recent articles and reports of biocompatibility and of implant durability. Implants made mainly from titanium have been used for the fabrication of dental implants since around 1981. The main alloys are so-called commercially pure titanium (cpTi) and Ti-6Al-4V, both of which give clinical success rates of up to 99% at 10 years. Both alloys are biocompatible in contact with bone and the gingival tissues, and are capable of undergoing osseointegration. Investigations of novel titanium alloys developed for orthopaedics show that they offer few advantages as dental implants. The main findings of this review are that the alloys cpTi and Ti-6Al-4V are highly satisfactory materials, and that there is little scope for improvement as far as dentistry is concerned. The conclusion is that these materials will continue to be used for dental implants well into the foreseeable future.
Collapse
|
32
|
Xu J, Aoki H, Kasugai S, Otsuka M. Enhancement of mineralization on porous titanium surface by filling with nano-hydroxyapatite particles fabricated with a vacuum spray method. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110772. [DOI: 10.1016/j.msec.2020.110772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/20/2020] [Accepted: 02/22/2020] [Indexed: 02/02/2023]
|
33
|
The effect of strontium and silicon substituted hydroxyapatite electrochemical coatings on bone ingrowth and osseointegration of selective laser sintered porous metal implants. PLoS One 2020; 15:e0227232. [PMID: 31923253 PMCID: PMC6953817 DOI: 10.1371/journal.pone.0227232] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/13/2019] [Indexed: 11/20/2022] Open
Abstract
Additive manufactured, porous bone implants have the potential to improve osseointegration and reduce failure rates of orthopaedic devices. Substantially porous implants are increasingly used in a number of orthopaedic applications. HA plasma spraying-a line of sight process-cannot coat the inner surfaces of substantially porous structures, whereas electrochemical deposition of calcium phosphate can fully coat the inner surfaces of porous implants for improved bioactivity, but the osseous response of different types of hydroxyapatite (HA) coatings with ionic substitutions has not been evaluated for implants in the same in vivo model. In this study, laser sintered Ti6Al4V implants with pore sizes of Ø 700 μm and Ø 1500 μm were electrochemically coated with HA, silicon-substituted HA (SiHA), and strontium-substituted HA (SrHA), and implanted in ovine femoral condylar defects. Implants were retrieved after 6 weeks and histological and histomorphometric evaluation were compared to electrochemically coated implants with uncoated and HA plasma sprayed controls. The HA, SiHA and SrHA coatings had Ca:P, Ca:(P+Si) and (Ca+Sr):P ratios of 1.53, 1.14 and 1.32 respectively. Electrochemically coated implants significantly promoted bone attachment to the implant surfaces of the inner pores and displayed improved osseointegration compared to uncoated scaffolds for both pore sizes (p<0.001), whereas bone ingrowth was restricted to the surface for HA plasma coated or uncoated implants. Electrochemically coated HA implants achieved the highest osseointegration, followed by SrHA coated implants, and both coatings exhibited significantly more bone growth than plasma sprayed groups (p≤0.01 for all 4 cases). SiHA had significantly more osseointegration when compared against the uncoated control, but no significant difference compared with other coatings. There was no significant difference in ingrowth or osseointegration between pore sizes, and the bone-implant-contact was significantly higher in the electrochemical HA than in SiHA or SrHA. These results suggest that osseointegration is insensitive to pore size, whereas surface modification through the presence of an osteoconductive coating plays an important role in improving osseointegration, which may be critically important for extensively porous implants.
Collapse
|
34
|
Stepanovska J, Matejka R, Rosina J, Bacakova L, Kolarova H. Treatments for enhancing the biocompatibility of titanium implants. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 164:23-33. [PMID: 31907491 DOI: 10.5507/bp.2019.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/17/2019] [Indexed: 12/31/2022] Open
Abstract
Titanium surface treatment is a crucial process for achieving sufficient osseointegration of an implant into the bone. If the implant does not heal sufficiently, serious complications may occur, e.g. infection, inflammation, aseptic loosening of the implant, or the stress-shielding effect, as a result of which the implant may need to be reoperated. After a titanium graft has been implanted, several interactions are crucial in order to create a strong bone-implant connection. It is essential that cells adhere to the surface of the implant. Surface roughness has a significant influence on cell adhesion, and also on improving and accelerating osseointegration. Other highly important factors are biocompatibility and resistance to bacterial contamination. Bio-inertness of titanium is ensured by the protective film of titanium oxides that forms spontaneously on its surface. This film prevents the penetration of metal compounds, and it is well-adhesive for calcium and phosphate ions, which are necessary for the formation of the mineralized bone structure. Since the presence of the film alone is not sufficient for the biocompatibility of titanium, a suitable surface finish is required to create a firm bone-implant connection. In this review, we explain and compare the most widely-used methods for modulating the surface roughness of titanium implants in order to enhance cell adhesion on the surface of the implant, e.g. plasma spraying, sandblasting, acid etching, laser treatment, sol-gel etc., The methods are divided into three overlapping groups, according to the type of modification.
Collapse
Affiliation(s)
- Jana Stepanovska
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic.,Department of Biomaterials and Tissue Engineering, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Roman Matejka
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic.,Department of Biomaterials and Tissue Engineering, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jozef Rosina
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Kolarova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
35
|
|
36
|
Liu C, Wu J, Gan D, Li Z, Shen J, Tang P, Luo S, Li P, Lu X, Zheng W. The characteristics of mussel‐inspired nHA/OSA injectable hydrogel and repaired bone defect in rabbit. J Biomed Mater Res B Appl Biomater 2019; 108:1814-1825. [PMID: 31774242 DOI: 10.1002/jbm.b.34524] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/07/2019] [Accepted: 11/09/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Chen Liu
- Department of OrthopedicsThe General Hospital of Western Theater Command Chengdu China
| | - Juan Wu
- Department of PharmacyThe General Hospital of Western Theater Command Chengdu China
| | - Donglin Gan
- Key Lab of Advanced Technologies of Materials, Ministry of EducationSchool of Materials Science and Engineering, Southwest Jiaotong University Chengdu China
| | - Zhiqiang Li
- Department of OrthopedicsThe General Hospital of Western Theater Command Chengdu China
| | - Jun Shen
- Department of OrthopedicsThe General Hospital of Western Theater Command Chengdu China
| | - Pengfei Tang
- Key Lab of Advanced Technologies of Materials, Ministry of EducationSchool of Materials Science and Engineering, Southwest Jiaotong University Chengdu China
| | - Shiyu Luo
- Department of OrthopedicsThe General Hospital of Western Theater Command Chengdu China
| | - Pengfei Li
- Key Lab of Advanced Technologies of Materials, Ministry of EducationSchool of Materials Science and Engineering, Southwest Jiaotong University Chengdu China
| | - Xiong Lu
- Key Lab of Advanced Technologies of Materials, Ministry of EducationSchool of Materials Science and Engineering, Southwest Jiaotong University Chengdu China
| | - Wei Zheng
- Department of OrthopedicsThe General Hospital of Western Theater Command Chengdu China
| |
Collapse
|
37
|
Shi R, Hayashi K, Bang LT, Ishikawa K. Effects of surface roughening and calcite coating of titanium on cell growth and differentiation. J Biomater Appl 2019; 34:917-927. [PMID: 31653183 DOI: 10.1177/0885328219883765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Rui Shi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - L T Bang
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
38
|
Improved Osseointegration of a TiNbSn Alloy with a Low Young's Modulus Treated with Anodic Oxidation. Sci Rep 2019; 9:13985. [PMID: 31562376 PMCID: PMC6764973 DOI: 10.1038/s41598-019-50581-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/16/2019] [Indexed: 12/02/2022] Open
Abstract
Ti6Al4V alloy orthopedic implants are widely used as Ti6Al4V alloy is a biocompatible material and resistant to corrosion. However, Ti6Al4V alloy has higher Young’s modulus compared with human bone. The difference of elastic modulus between bone and titanium alloy may evoke clinical problems because of stress shielding. To resolve this, we previously developed a TiNbSn alloy offering low Young’s modulus and improved biocompatibility. In the present study, the effects of sulfuric acid anodic oxidation on the osseointegration of TiNbSn alloy were assessed. The apatite formation was evaluated with Scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy analyses. The biocompatibility of TiNbSN alloy was evaluated in experimental animal models using pull-out tests and quantitative histological analyses. The results of the surface analyses indicated that sulfuric anodic oxidation induced abundant superficial apatite formation of the TiNbSn alloy disks and rods, with a 5.1-µm-thick oxide layer and submicron-sized pores. In vivo, treated rods showed increased mature lamellar bone formation and higher failure loads compared with untreated rods. Overall, our findings indicate that anodic oxidation with sulfuric acid may help to improve the biocompatibility of TiNbSn alloys for osseointegration.
Collapse
|
39
|
Kaur M, Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:844-862. [PMID: 31147056 DOI: 10.1016/j.msec.2019.04.064] [Citation(s) in RCA: 442] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/20/2019] [Accepted: 04/20/2019] [Indexed: 02/07/2023]
Abstract
Variety of implant materials have been employed in various disciplines of medical science depending on the requirement of a particular application. Metals, alloys, ceramics, and polymers are the commonly used biomaterials. The main focus of this study is to review the various structural and microstructural properties of titanium and titanium based alloys used as orthopaedic implants. Orthopaedic implants need to possess certain important qualities to ensure their safe and effective use. These properties like the biocompatibility, relevant mechanical properties, high corrosion and wear resistance and osseointegration are summarized in this review. Various attempts to improve upon these properties like different processing routes, surface modifications have also been inculcated in the paper to provide an insight into the extent of research and effort that has been put into developing a highly superior titanium orthopaedic implant.
Collapse
Affiliation(s)
- Manmeet Kaur
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| | - K Singh
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India.
| |
Collapse
|
40
|
Buga C, Hunyadi M, Gácsi Z, Hegedűs C, Hakl J, Schmidt U, Ding SJ, Csík A. Calcium silicate layer on titanium fabricated by electrospray deposition. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:401-408. [PMID: 30813041 DOI: 10.1016/j.msec.2019.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 01/08/2023]
Abstract
Titanium and its alloys have been used as implant materials. Non-ideal osseointegration of the implant materials has facilitated the development of the bioactive coatings on the implant surfaces. In this work, the bioactive calcium silicate (CaSi) powder prepared in a green synthesis route was used to cover the surface of Ti implants by a facile electrospray deposition method. Post annealing in air was also applied to form the oxidation layer on the Ti surface with the aim of increasing the bond strength between the CaSi coating layer and Ti substrate. For the characterization of the coatings several analytical methods such as X-ray diffraction, scanning electron microscopy, secondary neutral mass spectrometry, and Raman-spectroscopy were used, in addition to the measurement of bond strength and corrosion resistance. The results indicated a uniform CaSi layer with a thickness of about 1 μm deposited on the Ti substrate. Annealing in the range of 700-900 °C in air resulted in the formation of rutile phase of TiO2; more importantly, annealing at 800 °C did not significantly affect the composition of the CaSi layer consisting of β-Ca2SiO4. The bond strength between the coating layer and Ti substrate can be remarkably enhanced at an annealing temperature of 700 or 800 °C compared with the as-prepared coating without annealing. The annealed coatings had a better corrosion resistance than the as-prepared coating. It is concluded that the electrospray method associated with the post-annealing can be successfully used for the deposition of a CaSi layer with a defined structure and composition on titanium implants.
Collapse
Affiliation(s)
- Csaba Buga
- Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), H-4026 Debrecen, Bem tér 18/C, Hungary
| | - Mátyás Hunyadi
- Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), H-4026 Debrecen, Bem tér 18/C, Hungary
| | - Zoltán Gácsi
- Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), H-4026 Debrecen, Bem tér 18/C, Hungary
| | - Csaba Hegedűs
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - József Hakl
- Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), H-4026 Debrecen, Bem tér 18/C, Hungary
| | - Ute Schmidt
- WITec GmbH, Lise-Meitner-Str. 6, D-89081 Ulm, Germany
| | - Shinn-Jyh Ding
- Institute of Oral Science, Chung Shan Medical University, Taichung City 402, Taiwan; Department of Stomatology, Chung Shan Medical University Hospital, Taichung City 402, Taiwan.
| | - Attila Csík
- Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), H-4026 Debrecen, Bem tér 18/C, Hungary.
| |
Collapse
|
41
|
|
42
|
Mas-Moruno C, Su B, Dalby MJ. Multifunctional Coatings and Nanotopographies: Toward Cell Instructive and Antibacterial Implants. Adv Healthc Mater 2019; 8:e1801103. [PMID: 30468010 DOI: 10.1002/adhm.201801103] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/15/2018] [Indexed: 01/02/2023]
Abstract
In biomaterials science, it is nowadays well accepted that improving the biointegration of dental and orthopedic implants with surrounding tissues is a major goal. However, implant surfaces that support osteointegration may also favor colonization of bacterial cells. Infection of biomaterials and subsequent biofilm formation can have devastating effects and reduce patient quality of life, representing an emerging concern in healthcare. Conversely, efforts toward inhibiting bacterial colonization may impair biomaterial-tissue integration. Therefore, to improve the long-term success of medical implants, biomaterial surfaces should ideally discourage the attachment of bacteria without affecting eukaryotic cell functions. However, most current strategies seldom investigate a combined goal. This work reviews recent strategies of surface modification to simultaneously address implant biointegration while mitigating bacterial infections. To this end, two emerging solutions are considered, multifunctional chemical coatings and nanotopographical features.
Collapse
Affiliation(s)
- Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group; Department of Materials Science and Engineering & Center in Multiscale Science and Engineering; Universitat Politècnica de Catalunya (UPC); Barcelona 08019 Spain
| | - Bo Su
- Bristol Dental School; University of Bristol; Bristol BS1 2LY UK
| | - Matthew J. Dalby
- Centre for Cell Engineering; University of Glasgow; Glasgow G12 UK
| |
Collapse
|
43
|
Karimi N, Kharaziha M, Raeissi K. Electrophoretic deposition of chitosan reinforced graphene oxide-hydroxyapatite on the anodized titanium to improve biological and electrochemical characteristics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 98:140-152. [PMID: 30813014 DOI: 10.1016/j.msec.2018.12.136] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 12/07/2018] [Accepted: 12/29/2018] [Indexed: 01/06/2023]
Abstract
Chitosan reinforced hydroxyapatite-graphene oxide (CS-GO-HA) nanocomposite coatings were developed using electrophoretic deposition process in order to improve the biological and electrochemical properties of Ti surface. Moreover, the role of anodized layer on the physical and electrochemical properties of the CS-GO-HA nanocomposite coating was evaluated. After synthesize of HA-GO nanopowder using a sol-gel process, nanocomposite coatings with various concentrations of chitosan (0.5, 1 and 1.5 mg/ml) were produced. Increasing the chitosan content lowered the deposition rate of HA-GO nanoparticles, reduced the coating thickness and diminished apatite-formation ability and biocompatibility. Noticeably, MG63 cell viability significantly reduced form 119.3 ± 5.1 (% control) to 51.9 ± 14.8 (% control), when the chitosan concentration increased from 0.5 to 1.5 mg/ml. In addition, the CS-GO-HA coating containing 0.5 mg/ml chitosan revealed the best barrier property owing to the less crack formation. Furthermore, anodizing of titanium substrate and formation of TiO2 nanotube (TiNT) resulted in the formation of crack-free and homogeneous CS-GO-HA coatings without any observable defect. Moreover, the TiNT formation noticeably improved barrier resistance of the coating (6.7 times) due to better adhesion governed between coating and substrate. Our results confirmed that the surface modification using both anodizing of Ti substrate and electrophoretic deposition of ternary CS-GO-HA nanocomposite coating with 0.5 mg/ml chitosan successfully improves electrochemical properties, bioactivity and cell function, which makes it promising for bone implant applications.
Collapse
Affiliation(s)
- N Karimi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - M Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - K Raeissi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
44
|
Li L, Jiang H, Wang LQ, Huang YF. Experimental study on the biocompatibility of keratoprosthesis with improved titanium implant. Int J Ophthalmol 2018; 11:1741-1745. [PMID: 30450302 DOI: 10.18240/ijo.2018.11.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 09/27/2018] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate whether hydroxyapatite (HAp) coating can improve keratoprosthesis (KPro) implant biointegration, ultimately to decrease the risk of implant-associated complications. METHODS The modified titanium implant was designed and prepared for artificial cornea. The titanium implant was treated with sandblasting and hydroxyapatite coating by acid-base two-step method. Surface was analyzed by scanning electron microscopy (SEM), KPro implants coated with HAp and KPro implant sandblasted were implanted in rabbits. Tissue adhesion to the implant was assessed and compared to an unmodified implant by histopathology (HE), transmission electron microscopy (TEM) and SEM. RESULTS SEM demonstrated successful deposition of HAp on titanium implant sandblasted (HA/SB-Ti). The hydroxyapatite coatings caused enhancement of keratocyte proliferation compared with unmodified implant surfaces. HAp coating significantly increased adhesion forces. HAp coating of implants reduced the inflammatory response around the KPro implants in vivo. CONCLUSION HAp-coated surfaces for use in titanium KPro implant greatly enhanced adherence of the titanium KPro implant in the rabbit cornea.
Collapse
Affiliation(s)
- Li Li
- Department of Ophthalmology, the 88th Hospital of Chinese People's Liberation Army, Taian 271000, Shandong Province, China
| | - Hua Jiang
- Department of Ophthalmology, Jinan Military General Hospital, Jinan 250031, Shandong Province, China
| | - Li-Qiang Wang
- Department of Ophthalmology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Yi-Fei Huang
- Department of Ophthalmology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
45
|
Effect of Doubled Sandblasting Process and Basic Simulated Body Fluid Treatment on Fabrication of Bioactive Stainless Steels. MATERIALS 2018; 11:ma11081334. [PMID: 30071677 PMCID: PMC6120045 DOI: 10.3390/ma11081334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 11/17/2022]
Abstract
In our recent study, we aimed to impart hydroxyapatite (HA)-forming to bioinert stainless steels (SUS316L). The surfaces of SUS316L specimen were treated by a sandblasting process using alumina grinding particles with 14.0 or 3.0 μm for average particle size, respectively. In addition, a doubled sandblasting process (DSP) using the 14.0 μm particles and subsequently 3.0 μm ones were also conducted. Compared with the case of the 14.0 μm particles, the 3.0 μm particles were available to increase the surface roughness and the surface area of the specimen. Moreover, these values were further increased in the case of the DSP. These specimens were soaked in simulated body fluid (SBF) at pH = 8.4, 25 °C and were directly heated in the solution by electromagnetic induction. By this treatment, formation of CaP was induced on each specimen. These materials performed high HA-forming ability in SBF. Average bonding strength of the HA film formed on them in SBF was increased depending on the increase of surface roughness and surface area. These results indicated that sandblasting condition was an important factor to improve interlocking effect related to the increase of the surface roughness and the surface area.
Collapse
|
46
|
Akeda K, Yamaguchi S, Matsushita T, Kokubo T, Murata K, Takegami N, Matsumine A, Sudo A. Bioactive pedicle screws prepared by chemical and heat treatments improved biocompatibility and bone-bonding ability in canine lumbar spines. PLoS One 2018; 13:e0196766. [PMID: 29734349 PMCID: PMC5937757 DOI: 10.1371/journal.pone.0196766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/19/2018] [Indexed: 11/18/2022] Open
Abstract
Background Titanium (Ti)-6Al-4V alloy, which is widely used in spinal instrumentation with a pedicle screw (PS) system. However, significant clinical problems, including loosening and back-out of PSs, persist. During the last decade, a novel technology that produces bioactive Ti from chemical and heat treatments has been reported that induces the spontaneous formation of a hydroxyapatite (HA) layer on the surface of Ti materials. The purpose of this study was to study the effect of bioactivation of Ti-6Al-4V PSs on the ability of HA formation in vitro and its biocompatibility and bone-bonding ability in vivo. Methods Ti-6V-4Al alloy PSs were prepared and bioactivated by NaOH-CaCl2-heat-water treatments. The HA-forming ability of bioactive PSs in simulated body fluid (SBF) was evaluated by field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis (EDX). Six 11-month-old female beagle dogs were used for the in vivo study. Bioactive and control (without bioactivation) PSs were left and right randomly placed from L1 to L6. One and three months after surgery, lumbar spines were removed for biomechanical and histological analyses. Results In vitro: The surface analysis of bioactive PSs by FE-SEM and EDX showed substantial HA deposits over the entire surface. In vivo: The mean extraction torque was significantly higher for bioactive PSs compared to controls PSs (P<0.01); there was no significant difference in pull-out strength between control and bioactive PSs. Histologically, the contact area between bone tissue and screw surface showed no significant trend to be greater in bioactive PSs compared to control PSs (P = 0.06). Conclusions Bioactive PSs prepared by chemical and heat treatments formed layers of HA on the surface of screws in vitro that improved biocompatibility and bonding ability with bone in vivo. Bioactive PSs may reduce screw loosening to overcome the obstacles confronted in spinal instrumentation surgery.
Collapse
Affiliation(s)
- Koji Akeda
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
- * E-mail:
| | - Seiji Yamaguchi
- Department of Biomedical Science, College of Life and Health Science, Chubu University, Kasugai, Japan
| | - Tomiharu Matsushita
- Department of Biomedical Science, College of Life and Health Science, Chubu University, Kasugai, Japan
| | - Tadashi Kokubo
- Department of Biomedical Science, College of Life and Health Science, Chubu University, Kasugai, Japan
| | - Koichiro Murata
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Norihiko Takegami
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akihiko Matsumine
- Department of Orthopedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
47
|
Jung JH, Kim SY, Yi YJ, Lee BK, Kim YK. Hydroxyapatite-coated implant: Clinical prognosis assessment via a retrospective follow-up study for the average of 3 years. J Adv Prosthodont 2018; 10:85-92. [PMID: 29713428 PMCID: PMC5917111 DOI: 10.4047/jap.2018.10.2.85] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/20/2017] [Accepted: 12/05/2017] [Indexed: 11/24/2022] Open
Abstract
PURPOSE This research evaluated clinical outcomes of two types of hydroxyapatite (HA)-coated implants: OT (Osstem TS III-HA, Osstem implant Co., Busan, Korea) and ZM (Zimmer TSV-HA, Zimmer dental, Carlsbad, USA). MATERIALS AND METHODS The research was conducted on 303 implants (89 of OT, 214 of ZM), which were placed from January 16, 2010 to December 20, 2012. The prognosis was evaluated in terms of success rates, survival rates, annual marginal bone loss, and implant stability quotients (ISQ). The samples were classified into immediate, early, conventional, and delayed groups according to the loading time. RESULTS Overall, there were no significant differences between OT and ZM in success rates, survival rates, and annual marginal bone loss, except for the result of secondary stability. OT showed 77.83 ± 8.23 ISQ, which was marginally higher than 76.09 ± 6.90 ISQ of ZM (P<.05). In terms of healing periods, only immediate loading showed statistically significant differences (P<.05). Differences between OT and ZM were observed in terms of two indices, the annual marginal bone loss (0.17 ± 0.58 mm/year < 0.45 ± 0.80 mm/year) and secondary stability (84.36 ± 3.80 ISQ > 82.48 ± 3.69 ISQ) (P<.05). OT and ZM did not have any statistically significant differences in early, conventional, and delayed loading (P>.05). CONCLUSION OT (97.75%) and ZM (98.50%) showed relatively good outcomes in terms of survival rates. In general, OT and ZM did not show statistically significant differences in most indices (P>.05), although OT performed marginally better than ZM in the immediate loading and 1-stage surgery (P<.05).
Collapse
Affiliation(s)
- Jun-Hong Jung
- School of Dentistry, The Graduate School, Seoul National University, Seoul, Republic of Korea
| | - Sang-Yun Kim
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Yang-Jin Yi
- Department of Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Department of Prosthodontics, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Bu-Kyu Lee
- Department of Oral and Maxillofacial Surgery, Asan Medical Center, College of Medicine, Ulsan University, Seoul, Republic of Korea
| | - Young-Kyun Kim
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
48
|
Does hydroxyapatite coating enhance ingrowth and improve longevity of a Zweymuller type stem? A double-blinded randomised RSA trial. Hip Int 2018; 28:115-121. [PMID: 28967054 DOI: 10.5301/hipint.5000549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION An ongoing discussion is whether using a hydroxyapatite coating enhances the ingrowth and longevity of a femoral stem in total hip arthroplasty. The best way to predict speed of ingrowth and long-term outcome is by evaluating micromotion by radiostereometric analysis. To study the effect of hydroxyapatite (HA) coating on the migration of the SL-PLUS hip stem, we performed a prospective double blind randomised controlled trial comparing the early migration of the hydroxyapatite (HA)-coated SL-PLUS stem compared to the Standard (non-coated) SL-PLUS stem. PATIENTS AND METHODS 51 patients were randomly assigned to receive either an uncoated or a HA-coated femoral component during total hip replacement. RSA images were obtained direct postoperatively and at 6 weeks, 12 weeks, 6 months, 12 months and 24 months. HOOS scores were obtained preoperative and at final follow-up. RESULTS RSA evaluation demonstrated significant migration up to 3 months postoperatively in both groups. After initial setting no significant migration was observed. There was no significant difference in migration between the HA-coated group and the uncoated group. Both Harris Hip Score (HHS) and HOOS domain scores (pain and ADL) significantly improved compared to baseline at 24 months after surgery in both treatment groups (p<0.001 for all comparisons). Improvement did not differ significantly between the 2 groups. CONCLUSIONS At 2 years follow-up, the HA-coated and uncoated Zweymuller type, distal fitting stem do not show different migration patterns.
Collapse
|
49
|
Bai L, Du Z, Du J, Yao W, Zhang J, Weng Z, Liu S, Zhao Y, Liu Y, Zhang X, Huang X, Yao X, Crawford R, Hang R, Huang D, Tang B, Xiao Y. A multifaceted coating on titanium dictates osteoimmunomodulation and osteo/angio-genesis towards ameliorative osseointegration. Biomaterials 2018; 162:154-169. [PMID: 29454274 DOI: 10.1016/j.biomaterials.2018.02.010] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/15/2018] [Accepted: 02/02/2018] [Indexed: 12/15/2022]
Abstract
A multifaceted coating for hard tissue implants, with favorable osteogenesis, angiogenesis, and osteoimmunomodulation abilities, would be of great value since it could improve osseointegration and alleviate prosthesis loosening. However, to date there are few coatings that fully satisfy these criteria. Herein we describe a microporous TiO2 coating decorated with hydroxyapatite (HA) nanoparticles that is generated by micro-arc oxidation of pure titanium (Ti) and followed annealing. By altering the annealing temperature, it is possible to simultaneously tune the coating's physical (morphology and wettability) and chemical (composites and crystallinity) properties. A coating produced with micro-arc oxidization (MAO) with an annealing temperature of 650 °C (MAO-650) exhibits numerous favorable physicochemical properties, such as hybrid micro-nano morphology, superhydrophilicity, and highly crystalline HA nanoparticles. In vitro experiments reveal that the MAO-650 coating not only supports proliferation and differentiation of both osteoblasts and endothelial cells, but also inhibits the inflammatory response of macrophages and enables a favorable osteoimmunomodulation to facilitate osteo/angio-genesis. In vivo evaluation mirrors these results, and shows that the MAO-650 coating results in ameliorative osseointegration when compared with the pristine MAO coating. These data highlight the profound effect of surface physicochemical properties on the regulation of osteo/angio-genesis and osteoimmunomodulation in the enhancement of osseointegration.
Collapse
Affiliation(s)
- Long Bai
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, China; Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059, Australia; Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059, Australia
| | - Zhibin Du
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059, Australia; Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059, Australia
| | - Jingjing Du
- Department of Biomedical Engineering, Research Center for Nano-biomaterials and Regenerative Medicine, College of Mechanics, Taiyuan University of Technology, Taiyuan, China
| | - Wei Yao
- College and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
| | - Jiaming Zhang
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Zeming Weng
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Si Liu
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Ya Zhao
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Yanlian Liu
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Xiangyu Zhang
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Xiaobo Huang
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Xiaohong Yao
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059, Australia; Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059, Australia
| | - Ruiqiang Hang
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, China.
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials and Regenerative Medicine, College of Mechanics, Taiyuan University of Technology, Taiyuan, China.
| | - Bin Tang
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059, Australia; Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059, Australia.
| |
Collapse
|
50
|
de Faria AN, Cruz MAE, Ruiz GCM, Zancanela DC, Ciancaglini P, Ramos AP. Different compact hybrid Langmuir-Blodgett-film coatings modify biomineralization and the ability of osteoblasts to grow. J Biomed Mater Res B Appl Biomater 2018; 106:2524-2534. [PMID: 29314671 DOI: 10.1002/jbm.b.34069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/28/2017] [Accepted: 12/10/2017] [Indexed: 01/03/2023]
Abstract
Calcium phosphates (CaPs) are biomaterials widely used in tissue regeneration with outstanding biological performance. Although the tremendous improvements achieved in CaP's materials research over the years, their interaction with physiological environments still need to be fully understood. The aim of this study is to explore a biomimetic Langmuir-Blodgett (LB) membrane to template the growth of hydroxyapatite (HAp) coatings on Ti surfaces and the ability of these coatings in inducing biomineralization by osteoblasts cultured in vitro. Changing the phospholipids (i.e., dihexadecyl phosphate (DHP) or octadecylphosphonic acid (OPA)), we also tuned the surface Ca2+ concentration. This structural feature gave rise to different LB-hybrid surfaces where the concentration of Ca2+ in the OPA/HAp was higher than the concentration of Ca2+ in DHP/HAp coating. The higher Ca2+ amount on OPA/HAp coatings, allied to the physical-chemical features, lead to different responses on osteoblasts, stimulating or inhibiting the natural biomineralization. The OPA/HAp coating caused a delay in the osteoblast proliferation as indicated by the decrease in the cell viability at the 7th culture day. Improved cell differentiation triggered by the DHP/HAp coating resulted in higher osteoblast biomineralization. The present data underscore that besides both coatings being composed by HAp, the final interfacial composition and physical-chemical properties influence differently the osteoblast behavior. Although the best osteoblast's viability was found to OPA/HAp, our dataset attested that DHP/HAp induced mineralization more effectively than that. This unexpected finding highlight the importance of deeply understanding the biomaterial interface and suggest a promising approach to the design of biofunctional LB-based coatings with tunable properties. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2524-2534, 2018.
Collapse
Affiliation(s)
- Amanda N de Faria
- Departamento de Química, , Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 3900, Brasil.,Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 3900, Brasil
| | - Marcos A E Cruz
- Departamento de Química, , Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 3900, Brasil
| | - Gília C M Ruiz
- Departamento de Química, , Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 3900, Brasil
| | - Daniela C Zancanela
- Departamento de Química, , Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 3900, Brasil
| | - Pietro Ciancaglini
- Departamento de Química, , Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 3900, Brasil
| | - Ana P Ramos
- Departamento de Química, , Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 3900, Brasil
| |
Collapse
|