1
|
Torres Y, Gluais M, Da Silva N, Rey S, Grémare A, Magnan L, Kawecki F, L’Heureux N. Cell-assembled extracellular matrix (CAM) sheet production: Translation from using human to large animal cells. J Tissue Eng 2021; 12:2041731420978327. [PMID: 33633827 PMCID: PMC7887678 DOI: 10.1177/2041731420978327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
We have created entirely biological tissue-engineered vascular grafts (TEVGs) using sheets of cell-assembled extracellular matrix (CAM) produced by human fibroblasts in vitro. A large animal TEVG would allow long-term pre-clinical studies in a clinically relevant setting (graft size and allogeneic setting). Therefore, canine, porcine, ovine, and human skin fibroblasts were compared for their ability to form CAM sheets. Serum sourcing greatly influenced CAM production in a species-dependent manner. Ovine cells produced the most homogenous and strongest animal CAM sheets but remained ≈3-fold weaker than human sheets despite variations of serum, ascorbate, insulin, or growth factor supplementations. Key differences in cell growth dynamics, tissue development, and tissue architecture and composition were observed between human and ovine. This study demonstrates critical species-to-species differences in fibroblast behavior and how they pose a challenge when attempting to substitute animal cells for human cells during the development of tissue-engineered constructs that require long-term cultures.
Collapse
Affiliation(s)
- Yoann Torres
- University of Bordeaux, INSERM, BIOTIS, Bordeaux, France
| | - Maude Gluais
- University of Bordeaux, INSERM, BIOTIS, Bordeaux, France
| | | | - Sylvie Rey
- University of Bordeaux, INSERM, BIOTIS, Bordeaux, France
| | - Agathe Grémare
- University of Bordeaux, INSERM, BIOTIS, Bordeaux, France
- CHU Bordeaux, Services d’Odontologie et de Santé Buccale, Bordeaux, France
| | - Laure Magnan
- University of Bordeaux, INSERM, BIOTIS, Bordeaux, France
| | - Fabien Kawecki
- University of Bordeaux, INSERM, BIOTIS, Bordeaux, France
| | | |
Collapse
|
2
|
Shi X, He L, Zhang SM, Luo J. Human iPS Cell-derived Tissue Engineered Vascular Graft: Recent Advances and Future Directions. Stem Cell Rev Rep 2020; 17:862-877. [PMID: 33230612 DOI: 10.1007/s12015-020-10091-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 12/19/2022]
Abstract
Tissue engineered vascular grafts (TEVGs) generated from human primary cells represent a promising vascular interventional therapy. However, generation and application of these TEVGs may be significantly hindered by the limited accessibility, finite expandability, donor-donor functional variation and immune-incompatibility of primary seed cells from donors. Alternatively, human induced pluripotent stem cells (hiPSCs) offer an infinite source to obtain functional vascular cells in large quantity and comparable quality for TEVG construction. To date, TEVGs (hiPSC-TEVGs) with significant mechanical strength and implantability have been generated using hiPSC-derived seed cells. Despite being in its incipient stage, this emerging field of hiPSC-TEVG research has achieved significant progress and presented promising future potential. Meanwhile, a series of challenges pertaining hiPSC differentiation, vascular tissue engineering technologies and future production and application await to be addressed. Herein, we have composed this review to introduce progress in TEVG generation using hiPSCs, summarize the current major challenges, and encapsulate the future directions of research on hiPSC-based TEVGs. Graphical abstract.
Collapse
Affiliation(s)
- Xiangyu Shi
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine , Yale School of Medicine, 300 George Street, Room 752, New Haven, CT, 06511, USA
| | - Lile He
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shang-Min Zhang
- Department of Pathology, Yale School of Medicine, 06520, New Haven, CT, USA
| | - Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine , Yale School of Medicine, 300 George Street, Room 752, New Haven, CT, 06511, USA. .,Yale Stem Cell Center, 06520, New Haven, CT, USA.
| |
Collapse
|
3
|
Cong X, Zhang SM, Batty L, Luo J. Application of Human Induced Pluripotent Stem Cells in Generating Tissue-Engineered Blood Vessels as Vascular Grafts. Stem Cells Dev 2019; 28:1581-1594. [PMID: 31663439 DOI: 10.1089/scd.2019.0234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In pace with the advancement of tissue engineering during recent decades, tissue-engineered blood vessels (TEBVs) have been generated using primary seed cells, and their impressive success in clinical trials have demonstrated the great potential of these TEBVs as implantable vascular grafts in human regenerative medicine. However, the production, therapeutic efficacy, and readiness in emergencies of current TEBVs could be hindered by the accessibility, expandability, and donor-donor variation of patient-specific primary seed cells. Alternatively, using human induced pluripotent stem cells (hiPSCs) to derive seed vascular cells for vascular tissue engineering could fundamentally address this current dilemma in TEBV production. As an emerging research field with a promising future, the generation of hiPSC-based TEBVs has been reported recently with significant progress. Simultaneously, to further promote hiPSC-based TEBVs into vascular grafts for clinical use, several challenges related to the safety, readiness, and structural integrity of vascular tissue need to be addressed. Herein, this review will focus on the evolution and role of hiPSCs in vascular tissue engineering technology and summarize the current progress, challenges, and future directions of research on hiPSC-based TEBVs.
Collapse
Affiliation(s)
- Xiaoqiang Cong
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.,Department of Cardiology, Bethune First Hospital of Jilin University, ChangChun, China
| | - Shang-Min Zhang
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Luke Batty
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.,Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.,Yale Stem Cell Center, School of Medicine, Yale University, New Haven, Connecticut
| |
Collapse
|
4
|
Hui X, Geng X, Jia L, Xu Z, Ye L, Gu Y, Zhang AY, Feng ZG. Preparation and in vivo evaluation of surface heparinized small diameter tissue engineered vascular scaffolds of poly(ε-caprolactone) embedded with collagen suture. J Biomater Appl 2019; 34:812-826. [PMID: 31475873 DOI: 10.1177/0885328219873174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Xin Hui
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Xue Geng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Liujun Jia
- Beijing Key Laboratory of Pre-clinic Research and Evaluation for Cardiovascular Implant Materials, Fuwai Hospital National Cardiovascular Center, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zeqin Xu
- Department of Vascular Surgery, Xuanwu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Ai-Ying Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Zeng-Guo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
5
|
Sarker MD, Naghieh S, Sharma NK, Ning L, Chen X. Bioprinting of Vascularized Tissue Scaffolds: Influence of Biopolymer, Cells, Growth Factors, and Gene Delivery. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:9156921. [PMID: 31065331 PMCID: PMC6466897 DOI: 10.1155/2019/9156921] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/03/2019] [Indexed: 01/16/2023]
Abstract
Over the past decades, tissue regeneration with scaffolds has achieved significant progress that would eventually be able to solve the worldwide crisis of tissue and organ regeneration. While the recent advancement in additive manufacturing technique has facilitated the biofabrication of scaffolds mimicking the host tissue, thick tissue regeneration remains challenging to date due to the growing complexity of interconnected, stable, and functional vascular network within the scaffold. Since the biological performance of scaffolds affects the blood vessel regeneration process, perfect selection and manipulation of biological factors (i.e., biopolymers, cells, growth factors, and gene delivery) are required to grow capillary and macro blood vessels. Therefore, in this study, a brief review has been presented regarding the recent progress in vasculature formation using single, dual, or multiple biological factors. Besides, a number of ways have been presented to incorporate these factors into scaffolds. The merits and shortcomings associated with the application of each factor have been highlighted, and future research direction has been suggested.
Collapse
Affiliation(s)
- M. D. Sarker
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Saman Naghieh
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - N. K. Sharma
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Liqun Ning
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
6
|
Smith RJ, Koobatian MT, Shahini A, Swartz DD, Andreadis ST. Capture of endothelial cells under flow using immobilized vascular endothelial growth factor. Biomaterials 2015; 51:303-312. [PMID: 25771020 PMCID: PMC4361797 DOI: 10.1016/j.biomaterials.2015.02.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/27/2015] [Accepted: 02/01/2015] [Indexed: 02/09/2023]
Abstract
We demonstrate the ability of immobilized vascular endothelial growth factor (VEGF) to capture endothelial cells (EC) with high specificity under fluid flow. To this end, we engineered a surface consisting of heparin bound to poly-L-lysine to permit immobilization of VEGF through the C-terminal heparin-binding domain. The immobilized growth factor retained its biological activity as shown by proliferation of EC and prolonged activation of KDR signaling. Using a microfluidic device we assessed the ability to capture EC under a range of shear stresses from low (0.5 dyne/cm2) to physiological (15 dyne/cm2). Capture was significant for all shear stresses tested. Immobilized VEGF was highly selective for EC as evidenced by significant capture of human umbilical vein and ovine pulmonary artery EC but no capture of human dermal fibroblasts, human hair follicle derived mesenchymal stem cells, or mouse fibroblasts. Further, VEGF could capture EC from mixtures with non-EC under low and high shear conditions as well as from complex fluids like whole human blood under high shear. Our findings may have far reaching implications, as they suggest that VEGF could be used to promote endothelialization of vascular grafts or neovascularization of implanted tissues by rare but continuously circulating EC.
Collapse
Affiliation(s)
- Randall J Smith
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA
| | - Maxwell T Koobatian
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA
| | - Aref Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA
| | - Daniel D Swartz
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA; Department of Pediatrics, Women and Children's Hospital of Buffalo, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA; Department of Biomedical Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA.
| |
Collapse
|
7
|
Baudis S, Ligon SC, Seidler K, Weigel G, Grasl C, Bergmeister H, Schima H, Liska R. Hard-block degradable thermoplastic urethane-elastomers for electrospun vascular prostheses. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/pola.25887] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Huang AH, Niklason LE. Engineering biological-based vascular grafts using a pulsatile bioreactor. J Vis Exp 2011:2646. [PMID: 21694696 DOI: 10.3791/2646] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Much effort has been devoted to develop and advance the methodology to regenerate functional small-diameter arterial bypasses. In the physiological environment, both mechanical and chemical stimulation are required to maintain the proper development and functionality of arterial vessels. Bioreactor culture systems developed by our group are designed to support vessel regeneration within a precisely controlled chemo-mechanical environment mimicking that of native vessels. Our bioreactor assembly and maintenance procedures are fairly simple and highly repeatable. Smooth muscle cells (SMCs) are seeded onto a tubular polyglycolic acid (PGA) mesh that is threaded over compliant silicone tubing and cultured in the bioreactor with or without pulsatile stimulation for up to 12 weeks. There are four main attributes that distinguish our bioreactor from some predecessors. 1) Unlike other culture systems that simulate only the biochemical surrounding of native blood vessels, our bioreactor also creates a physiological pulsatile environment by applying cyclic radial strain to the vessels in culture. 2) Multiple engineered vessels can be cultured simultaneously under different mechanical conditions within a controlled chemical environment. 3) The bioreactor allows a mono layer of endothelial cells (EC) to be easily coated onto the luminal side of engineered vessels for animal implantation models. 4) Our bioreactor can also culture engineered vessels with different diameter size ranged from 1 mm to 3 mm, saving the effort to tailor each individual bioreactor to fit a specific diameter size. The engineered vessels cultured in our bioreactor resemble native blood vessels histologically to some degree. Cells in the vessel walls express mature SMC contractile markers such as smooth muscle myosin heavy chain (SMMHC). A substantial amount of collagen is deposited within the extracellular matrix, which is responsible for ultimate mechanical strength of the engineered vessels. Biochemical analysis also indicates that collagen content of engineered vessels is comparable to that of native arteries. Importantly, the pulsatile bioreactor has consistently regenerated vessels that exhibit mechanical properties that permit successful implantation experiments in animal models. Additionally, this bioreactor can be further modified to allow real-time assessment and tracking of collagen remodeling over time, non-invasively, using a non-linear optical microscopy (NLOM). To conclude, this bioreactor should serve as an excellent platform to study the fundamental mechanisms that regulate the regeneration of functional small-diameter vascular grafts.
Collapse
Affiliation(s)
- Angela H Huang
- Department of Biomedical Engineering, Yale University, USA
| | | |
Collapse
|
9
|
Gui L, Zhao L, Spencer RW, Burghouwt A, Taylor MS, Shalaby SW, Niklason LE. Development of novel biodegradable polymer scaffolds for vascular tissue engineering. Tissue Eng Part A 2011; 17:1191-200. [PMID: 21143045 DOI: 10.1089/ten.tea.2010.0508] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Functional connective tissues have been developed using tissue engineering approach by seeding cells on biodegradable scaffolds such as polyglycolic acid (PGA). However, a major drawback of tissue engineering approaches that utilize synthetic polymers is the persistence of polymer remnants in engineered tissues at the end of culture. Such polymer fragments may significantly degrade tissue mechanics and stimulate local inflammatory responses in vivo. In this study, several polymeric materials with a range of degradation profiles were developed and evaluated for their potential applications in construction of collagen matrix-rich tissues, particularly tissue-engineered blood vessels. The degradation characteristics of these polymers were compared as were their characteristics vis-à-vis cell adhesion and proliferation, collagen synthesis, and ability to support growth of engineered vessels. Under aqueous conditions at 37°C, Polymer I (comprising 84% glycolide and 16% trimethylene carbonate [TMC]) had a similar degradation profile to PGA, Polymer II (comprising 84% glycolide, 14% TMC, and 2% polyethylene succinate) degradedly more slowly, but Polymer III (comprising 87% glycolide, 7% TMC, and 6% polyethylene glycol) had a more extensive degradation as compared to PGA. All polymers supported cell proliferation, but Polymer III improved collagen production and engineered vessel mechanics as compared with PGA. In addition, more slowly degrading polymers were associated with poorer final vessel mechanics. These results suggest that polymers that degrade more quickly during tissue culture actually result in improved engineered tissue mechanics, by virtue of decreased disruption of collagenous extracellular matrix.
Collapse
Affiliation(s)
- Liqiong Gui
- Department of Anesthesiology and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
McClure M, Wolfe P, Rodriguez I, Bowlin G. Bioengineered vascular grafts: improving vascular tissue engineering through scaffold design. J Drug Deliv Sci Technol 2011. [DOI: 10.1016/s1773-2247(11)50030-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Enabling tools for engineering collagenous tissues integrating bioreactors, intravital imaging, and biomechanical modeling. Proc Natl Acad Sci U S A 2009; 107:3335-9. [PMID: 19955446 DOI: 10.1073/pnas.0907813106] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many investigators have engineered diverse connective tissues having good mechanical properties, yet few tools enable a global understanding of the associated formation of collagen fibers, the primary determinant of connective tissue stiffness. Toward this end, we developed a biomechanical model for collagenous tissues grown on polymer scaffolds that accounts for the kinetics of polymer degradation as well as the synthesis and degradation of multiple families of collagen fibers in response to cyclic strains imparted in a bioreactor. The model predicted well both overall thickness and stress-stretch relationships for tubular engineered vessels cultured for 8 weeks, and suggested that a steady state had not yet been reached. To facilitate future refinements of the model, we also developed bioreactors that enable intravital nonlinear optical microscopic imaging. Using these tools, we found that collagen fiber alignment was driven strongly by nondegraded polymer fibers at early times during culture, with subsequent mechano-stimulated dispersal of fiber orientations as polymer fibers degraded. In summary, mathematical models of growth and remodeling of engineered tissues cultured on polymeric scaffolds can predict evolving tissue morphology and mechanics after long periods of culture, and related empirical observations promise to further our understanding of collagen matrix development in vitro.
Collapse
|
12
|
Dahl SLM, Rhim C, Song YC, Niklason LE. Mechanical properties and compositions of tissue engineered and native arteries. Ann Biomed Eng 2007; 35:348-55. [PMID: 17206488 PMCID: PMC2605789 DOI: 10.1007/s10439-006-9226-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Accepted: 10/23/2006] [Indexed: 11/29/2022]
Abstract
With the goal of mimicking the mechanical properties of a given native tissue, tissue engineers seek to culture replacement tissues with compositions similar to those of native tissues. In this report, differences between the mechanical properties of engineered arteries and native arteries were correlated with differences in tissue composition. Engineered arteries failed to match the strengths or compliances of native tissues. Lower strengths of engineered arteries resulted partially from inferior organization of collagen, but not from differences in collagen density. Furthermore, ultimate strengths of engineered vessels were significantly reduced by the presence of residual polyglycolic acid polymer fragments, which caused stress concentrations in the vessel wall. Lower compliances of engineered vessels resulted from minimal smooth muscle cell contractility and a lack of organized extracellular elastin. Organization of elastin and collagen in engineered arteries may have been partially hindered by high concentrations of sulfated glycosaminoglycans. Tissue engineers should continue to regulate cell phenotype and promote synthesis of proteins that are known to dominate the mechanical properties of the associated native tissue. However, we should also be aware of the potential negative impacts of polymer fragments and glycosaminoglycans on the mechanical properties of engineered tissues.
Collapse
Affiliation(s)
- Shannon L M Dahl
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | | | | | | |
Collapse
|
13
|
Dahl SLM, Chen Z, Solan AK, Brockbank KGM, Niklason LE, Song YC. Feasibility of vitrification as a storage method for tissue-engineered blood vessels. ACTA ACUST UNITED AC 2006; 12:291-300. [PMID: 16548687 DOI: 10.1089/ten.2006.12.291] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
It is well established that, in multicellular systems, conventional cryopreservation results in damaging ice formation, both in the cells and in the surrounding extracellular matrix. As an alternative to conventional cryopreservation, we performed a feasibility study using vitrification (ice-free cryopreservation) to cryopreserve tissue-engineered blood vessels. Fresh, frozen, and vitrified tissue-engineered blood vessels were compared using histological methods, cellular viability, and mechanical properties. Cryosubstitution methods were used to determine the location of ice in conventionally cryopreserved engineered vessels. Ice formation was negligible (0.0 +/- 0.0% of vessel area) in the vitrified specimens, and extensive (68.3 +/- 4.5% of vessel area) in the extracellular matrix of frozen specimens. The metabolic assay and TUNEL staining results indicated that vitrified tissue had similar viability to fresh controls. The contractility results for vitrified samples were >82.7% of fresh controls and, in marked contrast, the results for frozen samples were only 10.7% of fresh controls (p < 0.001). Passive mechanical testing revealed enhanced tissue strength after both freezing and vitrification. Vitrification is a feasible storage method for tissue-engineered blood vessel constructs, and their successful storage brings these constructs one step closer to clinical utility.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biocompatible Materials/chemistry
- Biomechanical Phenomena
- Carotid Arteries/cytology
- Carotid Arteries/physiology
- Carotid Arteries/ultrastructure
- Cell Adhesion
- Cell Culture Techniques
- Cell Survival
- Cells, Cultured
- Cryopreservation/methods
- Culture Media/chemistry
- Endothelin-1/pharmacology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/physiology
- Endothelium, Vascular/ultrastructure
- Feasibility Studies
- Freezing
- Glucose/metabolism
- Muscle Contraction/drug effects
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/physiology
- Muscle, Smooth, Vascular/ultrastructure
- Organ Preservation Solutions
- Papaverine/pharmacology
- Permeability
- Polyglycolic Acid/chemistry
- Swine
- Time Factors
- Tissue Engineering/methods
Collapse
Affiliation(s)
- Shannon L M Dahl
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
14
|
Engelmayr GC, Sacks MS. A Structural Model for the Flexural Mechanics of Nonwoven Tissue Engineering Scaffolds. J Biomech Eng 2006; 128:610-22. [PMID: 16813453 DOI: 10.1115/1.2205371] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of methods to predict the strength and stiffness of biomaterials used in tissue engineering is critical for load-bearing applications in which the essential functional requirements are primarily mechanical. We previously quantified changes in the effective stiffness (E) of needled nonwoven polyglycolic acid (PGA) and poly-L-lactic acid (PLLA) scaffolds due to tissue formation and scaffold degradation under three-point bending. Toward predicting these changes, we present a structural model for E of a needled nonwoven scaffold in flexure. The model accounted for the number and orientation of fibers within a representative volume element of the scaffold demarcated by the needling process. The spring-like effective stiffness of the curved fibers was calculated using the sinusoidal fiber shapes. Structural and mechanical properties of PGA and PLLA fibers and PGA, PLLA, and 50:50 PGA/PLLA scaffolds were measured and compared with model predictions. To verify the general predictive capability, the predicted dependence of E on fiber diameter was compared with experimental measurements. Needled nonwoven scaffolds were found to exhibit distinct preferred (PD) and cross-preferred (XD) fiber directions, with an E ratio (PD/XD) of ∼3:1. The good agreement between the predicted and experimental dependence of E on fiber diameter (R2=0.987) suggests that the structural model can be used to design scaffolds with E values more similar to native soft tissues. A comparison with previous results for cell-seeded scaffolds (Engelmayr, G. C., Jr., et al., 2005, Biomaterials, 26(2), pp. 175–187) suggests, for the first time, that the primary mechanical effect of collagen deposition is an increase in the number of fiber-fiber bond points yielding effectively stiffer scaffold fibers. This finding indicated that the effects of tissue deposition on needled nonwoven scaffold mechanics do not follow a rule-of-mixtures behavior. These important results underscore the need for structural approaches in modeling the effects of engineered tissue formation on nonwoven scaffolds, and their potential utility in scaffold design.
Collapse
Affiliation(s)
- George C Engelmayr
- Engineered Tissue Mechanics Laboratory, Department of Bioengineering and McGowan Institute for Regenerative Medicine, University of Pittsburgh, 100 Technology Drive, Suite 200, Pittsburgh, PA 15219, USA.
| | | |
Collapse
|
15
|
Abstract
Bioscaffolds derived from xenogeneic extracellular matrix (ECM) have been used in numerous tissue engineering applications. The safety and efficacy of such scaffolds when used for the repair and reconstruction of numerous body tissues including musculoskeletal, cardiovascular, urogenital and integumentary structures has been shown in both preclinical animal studies and in human clinical studies. More than 200,000 human patients have been implanted with xenogeneic ECM scaffolds. These ECM scaffolds are typically prepared from porcine organs such as small intestine or urinary bladder, which are subjected to decellularization and terminal sterilization without significant loss of the biologic effects of the ECM. The composition of these bioscaffolds includes the structural and functional proteins that are part of native mammalian extracellular matrix. The three-dimensional organization of these molecules distinguishes ECM scaffolds from synthetic scaffold materials and is associated with constructive tissue remodeling instead of scar tissue. The biologic response to these xenogeneic bioscaffolds, including the immune response, is discussed herein.
Collapse
Affiliation(s)
- Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 100 Technology Drive, Suite 200, Pittsburgh, PA 15219, USA.
| |
Collapse
|
16
|
Sung HJ, Su J, Berglund JD, Russ BV, Meredith JC, Galis ZS. The use of temperature-composition combinatorial libraries to study the effects of biodegradable polymer blend surfaces on vascular cells. Biomaterials 2004; 26:4557-67. [PMID: 15722125 DOI: 10.1016/j.biomaterials.2004.11.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Accepted: 11/16/2004] [Indexed: 11/28/2022]
Abstract
Controlling cellular and physiological responses such as adhesion, proliferation and migration is a highly desirable feature of engineered scaffolds. One important application would be the design of tissue engineered vascular grafts that regulate cell adhesion and growth. We utilized temperature-composition combinatorial polymer libraries to investigate the effects of surfaces of blended poly(D,L-lactic-co-glycolic acid) (PLGA) and poly(epsilon-caprolactone) (PCL) on murine vascular smooth muscle cells (SMC). In this manner, SMCs were exposed to approximately 1000 distinguishable surfaces in a single experiment, allowing the discovery of optimal polymer compositions and processing conditions. SMC adhesion, aggregation, proliferation, and protein production were highest in regions with mid- to high-PCL concentrations and high annealing temperatures. These regions exhibited increased surface roughness, increased microscale PLGA-rich matrix stiffness, and significant change of bulk PCL-rich crystallinity relative to other library regions. This study revealed a previously unknown processing temperature and blending composition for two well-known polymers that optimized SMC interactions.
Collapse
Affiliation(s)
- Hak-Joon Sung
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Technology and Emory University, 313 Ferst Drive, Suite 1209, Atlanta, GA 30332-0535, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Driessen NJB, Bouten CVC, Baaijens FPT. Improved Prediction of the Collagen Fiber Architecture in the Aortic Heart Valve. J Biomech Eng 2004; 127:329-36. [PMID: 15971711 DOI: 10.1115/1.1865187] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Living tissues show an adaptive response to mechanical loading by changing their internal structure and morphology. Understanding this response is essential for successful tissue engineering of load-bearing structures, such as the aortic valve. In this study, mechanically induced remodeling of the collagen architecture in the aortic valve was investigated. It was hypothesized that, in uniaxially loaded regions, the fibers aligned with the tensile principal stretch direction. For biaxial loading conditions, on the other hand, it was assumed that the collagen fibers aligned with directions situated between the principal stretch directions. This hypothesis has already been applied successfully to study collagen remodeling in arteries. The predicted fiber architecture represented a branching network and resembled the macroscopically visible collagen bundles in the native leaflet. In addition, the complex biaxial mechanical behavior of the native valve could be simulated qualitatively with the predicted fiber directions. The results of the present model might be used to gain further insight into the response of tissue engineered constructs during mechanical conditioning.
Collapse
Affiliation(s)
- Niels J B Driessen
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | | | | |
Collapse
|