1
|
Cai F, Jiang B, He F. Formation and biological activities of foreign body giant cells in response to biomaterials. Acta Biomater 2024; 188:1-26. [PMID: 39245307 DOI: 10.1016/j.actbio.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
The integration of biomaterials in medical applications triggers the foreign body response (FBR), a multi-stage immune reaction characterized by the formation of foreign body giant cells (FBGCs). Originating from the fusion of monocyte/macrophage lineage cells, FBGCs are pivotal participants during tissue-material interactions. This review provides an in-depth examination of the molecular processes during FBGC formation, highlighting signaling pathways and fusion mediators in response to both exogenous and endogenous stimuli. Moreover, a wide range of material-specific characteristics, such as surface chemical and physical properties, has been proven to influence the fusion of macrophages into FBGCs. Multifaceted biological activities of FBGCs are also explored, with emphasis on their phagocytic capabilities and extracellular secretory functions, which profoundly affect the vascularization, degradation, and encapsulation of the biomaterials. This review further elucidates the heterogeneity of FBGCs and their diverse roles during FBR, as demonstrated by their distinct behaviors in response to different materials. By presenting a comprehensive understanding of FBGCs, this review intends to provide strategies and insights into optimizing biocompatibility and the therapeutic potential of biomaterials for enhanced stability and efficacy in clinical applications. STATEMENT OF SIGNIFICANCE: As a hallmark of the foreign body response (FBR), foreign body giant cells (FBGCs) significantly impact the success of implantable biomaterials, potentially leading to complications such as chronic inflammation, fibrosis, and device failure. Understanding the role of FBGCs and modulating their responses are vital for successful material applications. This review provides a comprehensive overview of the molecules and signaling pathways guiding macrophage fusion into FBGCs. By elucidating the physical and chemical properties of materials inducing distinct levels of FBGCs, potential strategies of materials in modulating FBGC formation are investigated. Additionally, the biological activities of FBGCs and their heterogeneity in responses to different material categories in vivo are highlighted in this review, offering crucial insights for improving the biocompatibility and efficacy of biomaterials.
Collapse
Affiliation(s)
- Fangyuan Cai
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Bulin Jiang
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Fuming He
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Zidi M, Khoffi F, Girault E, Eidenschenk A, Barbet R, Tazibt A, Heim F, Msahli S. Medical textile implants: hybrid fibrous constructions towards improved performances. BIOMED ENG-BIOMED TE 2024; 69:355-365. [PMID: 38462974 DOI: 10.1515/bmt-2023-0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 02/21/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVES One main challenge for textile implants is to limit the foreign body reaction (FBR) and in particular the fibrosis development once the device is implanted. Fibrotic tissue in-growth depends on the fiber size, the pore size, and the organization of the fibrous construction. Basically, non-woven fibrous assemblies present a more favorable interface to biological tissues than do woven structures. However, they are mechanically less strong. In order to combine both strength and appropriate topography properties, the design of a hybrid fibrous construct was considered and discussed in this work. METHODS Two polyethylene terephthalate (PET) weaves (satin and plain) were assembled with a non-woven PET mat, using an ultrasound welding process. RESULTS The physical and mechanical properties of the construction as well as its ability to interact with the biological environment were then evaluated. In particular, the wettability of the obtained substrate as well as its ability to interact with mesenchymal stem cells (MSC) at 24 h (adhesion) and 72 h (proliferation) in vitro were studied. CONCLUSIONS The results show that the non-woven layer helps limiting cell proliferation in the plain weave construction and promotes conversely proliferation in the satin construction.
Collapse
Affiliation(s)
- Malèke Zidi
- Laboratoire de Génie Textile (LGTex), Ksar-Hellal, Tunisia
| | - Foued Khoffi
- Laboratoire de Génie Textile (LGTex), Ksar-Hellal, Tunisia
| | - Elise Girault
- Laboratoire de Physique et Mécanique Textiles (LPMT), ENSISA, Mulhouse, France
| | | | - Romain Barbet
- Institut de Recherche en Hématologie et Transplantation (IRHT), Mulhouse, France
| | - Abdel Tazibt
- CRITT Techniques Jet Fluide et Usinage (TJFU), Bar-Le-Duc, France
| | - Fréderic Heim
- Laboratoire de Physique et Mécanique Textiles (LPMT), ENSISA, Mulhouse, France
- GEPROMED, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Slah Msahli
- Laboratoire de Génie Textile (LGTex), Ksar-Hellal, Tunisia
| |
Collapse
|
3
|
Stewart CL, Hook AL, Zelzer M, Marlow M, Piccinini AM. Cellular and microenvironmental cues that promote macrophage fusion and foreign body response. Front Immunol 2024; 15:1411872. [PMID: 39034997 PMCID: PMC11257916 DOI: 10.3389/fimmu.2024.1411872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/13/2024] [Indexed: 07/23/2024] Open
Abstract
During the foreign body response (FBR), macrophages fuse to form foreign body giant cells (FBGCs). Modulation of FBGC formation can prevent biomaterial degradation and loss of therapeutic efficacy. However, the microenvironmental cues that dictate FBGC formation are poorly understood with conflicting reports. Here, we identified molecular and cellular factors involved in driving FBGC formation in vitro. Macrophages demonstrated distinct fusion competencies dependent on monocyte differentiation. The transition from a proinflammatory to a reparative microenvironment, characterised by specific cytokine and growth factor programmes, accompanied FBGC formation. Toll-like receptor signalling licensed the formation of FBGCs containing more than 10 nuclei but was not essential for cell-cell fusion to occur. Moreover, the fibroblast-macrophage crosstalk influenced FBGC development, with the fibroblast secretome inducing macrophages to secrete more PDGF, which enhanced large FBGC formation. These findings advance our understanding as to how a specific and timely combination of cellular and microenvironmental factors is required for an effective FBR, with monocyte differentiation and fibroblasts being key players.
Collapse
Affiliation(s)
- Chloe L Stewart
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew L Hook
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Mischa Zelzer
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Maria Marlow
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Anna M Piccinini
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
4
|
Blackman SA, Miles D, Suresh J, Calve S, Bryant SJ. Cell- and Serum-Derived Proteins Act as DAMPs to Activate RAW 264.7 Macrophage-like Cells on Silicone Implants. ACS Biomater Sci Eng 2024; 10:1418-1434. [PMID: 38319825 PMCID: PMC11316276 DOI: 10.1021/acsbiomaterials.3c01393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Protein adsorption after biomaterial implantation is the first stage of the foreign body response (FBR). However, the source(s) of the adsorbed proteins that lead to damaged associated molecular patterns (DAMPs) and induce inflammation have not been fully elucidated. This study examined the effects of different protein sources, cell-derived (from a NIH/3T3 fibroblast cell lysate) and serum-derived (from fetal bovine serum), which were compared to implant-derived proteins (after a 30 min subcutaneous implantation in mice) on activation of RAW 264.7 cells cultured in minimal (serum-free) medium. Both cell-derived and serum-derived protein sources when preadsorbed to either tissue culture polystyrene or medical-grade silicone induced RAW 264.7 cell activation. The combination led to an even higher expression of pro-inflammatory cytokine genes and proteins. Implant-derived proteins on silicone explants induced a rapid inflammatory response that then subsided more quickly and to a greater extent than the studies with in vitro cell-derived or serum-derived protein sources. Proteomic analysis of the implant-derived proteins identified proteins that included cell-derived and serum-derived, but also other proteinaceous sources (e.g., extracellular matrix), suggesting that the latter or nonproteinaceous sources may help to temper the inflammatory response in vivo. These findings indicate that both serum-derived and cell-derived proteins adsorbed to implants can act as DAMPs to drive inflammation in the FBR, but other protein sources may play an important role in controlling inflammation.
Collapse
Affiliation(s)
- Samuel A. Blackman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
| | - Dalton Miles
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
| | - Joshita Suresh
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309-0427, USA
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
| | - Stephanie J. Bryant
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
- Materials Science and Engineering Program, University of Colorado Boulder, 4001 Discovery Dr, Boulder, CO 80300-0613, USA
| |
Collapse
|
5
|
Wilczek G, Surmiak-Stalmach K, Morenc M, Niemiec-Cyganek A, Rost-Roszkowska M, Karcz J, Skowronek M. The effect of ingested copper on the structural and cytotoxic properties of Steatoda grossa (Theridiidae) spider silk. ZOOLOGY 2024; 162:126143. [PMID: 38218003 DOI: 10.1016/j.zool.2024.126143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Spiders, assigned to macroconcentrators of heavy metals, are particularly threatened by the toxic effects of these chemicals. Until now, it has not been specified to what extent metals alter the processes proceeding in silk glands and if such changes could consequently influence the chemical and structural properties of the spun web threads. In the present study selected biological properties of Steatoda grossa (Theridiidae) silk yarn after nutritional exposure to copper at sublethal doses (0.234 mM CuSO4) were assessed. It was determined both changes in ultrastructure of ampullate glands and hunting web's architecture as well the cytotoxic effect in model cells (fibroblasts: line ATCC® CCL-1 NCTC clone 929), that were in contact with the analyzed biomaterial. The exposure of spiders to copper caused the occurrence of apoptotic cells in the ampullate glands as well as a significant reduction in the diameter of single fibers in double and multiple connection complexes as compared with control. At both 24 and 72 h of incubation, intensification of apoptotic and necrotic processes was observed in the fibroblast cultures that were remaining in indirect contact with the webs produced by copper-contaminated individuals. In the case of fibroblasts in direct contact with silk from the copper group, a clear cytotoxic effect resulting in an increased frequency of necrosis was observed after 72 h of incubation. The results indicated that copper may change the biological properties of spider silk and compromise its biomaterial properties.
Collapse
Affiliation(s)
- Grażyna Wilczek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland.
| | - Kinga Surmiak-Stalmach
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
| | - Małgorzata Morenc
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland; Prof. Zbigniew Religa Foundation of Cardiac Surgery Development, Wolności 345a, 41-800 Zabrze, Poland
| | | | - Magdalena Rost-Roszkowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
| | - Jagna Karcz
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
| | - Magdalena Skowronek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
6
|
Yadav TC, Bachhuka A. Tuning foreign body response with tailor-engineered nanoscale surface modifications: fundamentals to clinical applications. J Mater Chem B 2023; 11:7834-7854. [PMID: 37528807 DOI: 10.1039/d3tb01040f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Biomaterials are omnipresent in today's healthcare services and are employed in various applications, including implants, sensors, healthcare accessories, and drug delivery systems. Unfavorable host immunological responses frequently jeopardize the efficacy of biomaterials. As a result, surface modification has received much attention in controlling inflammatory responses since it helps camouflage the biomaterial from the host immune system, influencing the foreign body response (FBR) from protein adsorption to fibrous capsule formation. Surfaces with controlled nanotopography and chemistry, among other surface modification methodologies, have effectively altered the immune response to biomaterials. However, the field is still in its early stages, with only a few studies showing a synergistic effect of surface chemistry and nanotopography on inflammatory and wound healing pathways. Therefore, this review will concentrate on the individual and synergistic effects of surface chemistry and nanotopography on FBR modulation and the molecular processes known to modulate these responses. This review will also provide insights into crucial research gaps and advancements in various tactics for modulating FBR, opening new paths for future research. This will further aid in improving our understanding of the immune response to biomaterials, developing advanced surface modification techniques, designing immunomodulatory biomaterials, and translating discoveries into clinical applications.
Collapse
Affiliation(s)
- Tara Chand Yadav
- Department of Bioinformatics, Faculty of Engineering & Technology, Marwadi University, Gujarat, 360003, India
- Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), Tarragona, 43003, Spain.
| | - Akash Bachhuka
- Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), Tarragona, 43003, Spain.
| |
Collapse
|
7
|
Johnson CD, Aranda-Espinoza H, Fisher JP. A Case for Material Stiffness as a Design Parameter in Encapsulated Islet Transplantation. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:334-346. [PMID: 36475851 PMCID: PMC10442690 DOI: 10.1089/ten.teb.2022.0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Diabetes is a disease that plagues over 463 million people globally. Approximately 40 million of these patients have type 1 diabetes mellitus (T1DM), and the global incidence is increasing by up to 5% per year. T1DM is where the body's immune system attacks the pancreas, specifically the pancreatic beta cells, with antibodies to prevent insulin production. Although current treatments such as exogenous insulin injections have been successful, exorbitant insulin costs and meticulous administration present the need for alternative long-term solutions to glucose dysregulation caused by diabetes. Encapsulated islet transplantation (EIT) is a tissue-engineered solution to diabetes. Donor islets are encapsulated in a semipermeable hydrogel, allowing the diffusion of oxygen, glucose, and insulin but preventing leukocyte infiltration and antibody access to the transplanted cells. Although successful in small animal models, EIT is still far from commercial use owing to necessary long-term systemic immunosuppressants and consistent immune rejection. Most published research has focused on tailoring the characteristics of the capsule material to promote clinical viability. However, most studies have been limited in scope to biochemical changes. Current mechanobiology studies on the effect of substrate stiffness on the function of leukocytes, especially macrophages-primary foreign body response (FBR) orchestrators, show promise in tailoring a favorable response to tissue-engineered therapies such as EIT. In this review, we explore strategies to improve the clinical viability of EIT. A brief overview of the immune system, the FBR, and current biochemical approaches will be elucidated throughout this exploration. Furthermore, an argument for using substrate stiffness as a capsule design parameter to increase EIT efficacy and clinical viability will be posed.
Collapse
Affiliation(s)
- Courtney D. Johnson
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Fischell Department of Bioengineering, Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Helim Aranda-Espinoza
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Fischell Department of Bioengineering, Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
8
|
Dong C, Tan G, Zhang G, Lin W, Wang G. The function of immunomodulation and biomaterials for scaffold in the process of bone defect repair: A review. Front Bioeng Biotechnol 2023; 11:1133995. [PMID: 37064239 PMCID: PMC10090379 DOI: 10.3389/fbioe.2023.1133995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
The process of bone regeneration involves the interaction of the skeletal, blood, and immune systems. Bone provides a solid barrier for the origin and development of immune cells in the bone marrow. At the same time, immune cells secrete related factors to feedback on the remodeling of the skeletal system. Pathological or traumatic injury of bone tissue involves changes in blood supply, cell behavior, and cytokine expression. Immune cells and their factors play an essential role in repairing foreign bodies in bone injury or implantation of biomaterials, the clearance of dead cells, and the regeneration of bone tissue. This article reviews the bone regeneration application of the bone tissue repair microenvironment in bone cells and immune cells in the bone marrow and the interaction of materials and immune cells.
Collapse
Affiliation(s)
- Changchao Dong
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Orthopedics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Gang Tan
- Department of Orthopedics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guangyan Zhang
- Department of Respiratory Medicine, The 7th Hospital of Chengdu, Chengdu, Sichuan, China
| | - Wei Lin
- Department of Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Wei Lin, ; Guanglin Wang,
| | - Guanglin Wang
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Orthopedics, West China Hospital, Orthopedics Research Institute, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Wei Lin, ; Guanglin Wang,
| |
Collapse
|
9
|
Lequeux A, Maze B, Laroche G, Heim F. Non-woven textiles for medical implants: mechanical performances improvement. BIOMED ENG-BIOMED TE 2022; 67:317-330. [PMID: 35611716 DOI: 10.1515/bmt-2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/03/2022] [Indexed: 11/15/2022]
Abstract
Non-woven textile has been largely used as medical implant material over the last decades, especially for scaffold manufacturing purpose. This material presents a large surface area-to-volume ratio, which promotes adequate interaction with biological tissues. However, its strength is limited due to the lack of cohesion between the fibers. The goal of the present work was to investigate if a non-woven substrate can be reinforced by embroidery stitching towards strength increase. Non-woven samples were produced from both melt-blowing and electro-spinning techniques, reinforced with a stitching yarn and tested regarding several performances: ultimate tensile strength, burst strength and strength loss after fatigue stress. Several stitching parameters were considered: distance between stitches, number of stitch lines (1, 2 or 3) and line geometry (horizontal H, vertical L, cross X). The performance values obtained after reinforcement were compared with values obtained for control samples. Results bring out that reinforcement can increase the strength by up to 50% for a melt-blown mat and by up to 100% for an electro-spun mat with an X reinforcement pattern. However, after cyclic loading, the reinforcement yarn tends to degrade the ES mat in particular. Moreover, increasing the number of stitches tends to fragilize the mats.
Collapse
Affiliation(s)
- Amandine Lequeux
- Laboratoire de Physique et Mécanique Textiles (LPMT), ENSISA, Mulhouse, France
| | - Benoit Maze
- The Nonwovens Institute, North Carolina State University, Raleigh, NC, USA
| | - Gaetan Laroche
- Département de Génie des Mines, de la Métallurgie et des Matériaux, Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Université Laval, Québec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, Québec, Canada
| | - Frederic Heim
- Laboratoire de Physique et Mécanique Textiles (LPMT), ENSISA, Mulhouse, France
- Geprovas, Strasbourg, France
| |
Collapse
|
10
|
Fibronectin-Enriched Biomaterials, Biofunctionalization, and Proactivity: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112412111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Modern innovation in reconstructive medicine implies the proposition of material-based strategies suitable for tissue repair and regeneration. The development of such systems necessitates the design of advanced materials and the control of their interactions with their surrounding cellular and molecular microenvironments. Biomaterials must actively engage cellular matter to direct and modulate biological responses at implant sites and beyond. Indeed, it is essential that a true dialogue exists between the implanted device and the cells. Biomaterial engineering implies the knowledge and control of cell fate considering the globality of the adhesion process, from initial cell attachment to differentiation. The extracellular matrix (ECM) represents a complex microenvironment able to meet these essential needs to establish a relationship between the material and the contacting cells. The ECM exhibits specific physical, chemical, and biochemical characteristics. Considering the complexity, heterogeneity, and versatility of ECM actors, fibronectin (Fn) has emerged among the ECM protagonists as the most pertinent representative key actor. The following review focuses on and synthesizes the research supporting the potential to use Fn in biomaterial functionalization to mimic the ECM and enhance cell–material interactions.
Collapse
|
11
|
Fibrin polymer on the surface of biomaterial implants drives the foreign body reaction. Biomaterials 2021; 277:121087. [PMID: 34478933 DOI: 10.1016/j.biomaterials.2021.121087] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022]
Abstract
Implantation of biomaterials and medical devices in the body triggers the foreign body reaction (FBR) which is characterized by macrophage fusion at the implant surface leading to the formation of foreign body giant cells and the development of the fibrous capsule enveloping the implant. While adhesion of macrophages to the surface is an essential step in macrophage fusion and implanted biomaterials are known to rapidly acquire a layer of host proteins, a biological substrate that is responsible for this process in vivo is unknown. Here we show that mice with genetically imposed fibrinogen deficiency display a dramatic reduction of macrophage fusion on biomaterials implanted intraperitoneally and subcutaneously and are protected from the formation of the fibrin-containing fibrous capsule. Furthermore, macrophage fusion on biomaterials implanted in FibAEK mice that express a mutated form of fibrinogen incapable of thrombin-mediated polymerization was strongly reduced. Despite the lack of fibrin, the capsule was formed in FibAEK mice, although it had a different composition and distinct mechanical properties than that in wild-type mice. Specifically, while mononuclear α-SMA-expressing macrophages embedded in the capsule of both strains of mice secreted collagen, the amount of collagen and its density in the tissue of FibAEK mice was reduced. These data identify fibrin polymer as a key biological substrate driving the development of the FBR.
Collapse
|
12
|
Girault E, Biguenet F, Eidenschenk A, Dupuis D, Barbet R, Heim F. Fibrous biomaterials: Effect of textile topography on foreign body reaction. J Biomed Mater Res B Appl Biomater 2021; 109:1512-1524. [PMID: 33523550 DOI: 10.1002/jbm.b.34810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 11/12/2022]
Abstract
Foreign Body Reaction (FBR) is a critical issue to be addressed when polyethylene terephthalate (PET) textile implants are considered in the medical field to treat pathologies involving hernia repair, revascularization strategies in arterial disease, and aneurysm or heart valve replacement. The natural porosity of textile materials tends to induce exaggerated tissue ingrowth which may prevent the implants from remaining flexible. The purpose of this study is to assess the influence of the textile topography of various woven substrates on the wetting properties of these substrates and on their in vitro interaction with mesenchymal stem cells (MSC) at 24 and 72 hr. The tests were performed both at yarn and fabric level under forced wetting and ingrowth conditions in order to replicate the mechanisms going on in vivo under blood pressure. Results demonstrate that cell proliferation is influenced by the textile wetting properties, which can be tuned at yarn and fabric level. In particular, it is shown that a satin weave obtained from porous spun yarn limits cell proliferation due to the high porosity of the yarn and the limited saturation index of the weave. Yarn and fabric saturation seems to play a predominant role in cell proliferation on textile substrates.
Collapse
Affiliation(s)
- Elise Girault
- Université de Haute Alsace, Laboratoire de Physique et Mécanique Textiles (LPMT), Mulhouse, France
| | - Florence Biguenet
- Université de Haute Alsace, Laboratoire de Physique et Mécanique Textiles (LPMT), Mulhouse, France
| | | | - Dominique Dupuis
- Université de Haute Alsace, Laboratoire de Physique et Mécanique Textiles (LPMT), Mulhouse, France
| | - Romain Barbet
- Institut de Recherche en Hématologie et Transplantation (IRHT), Mulhouse, France
| | - Frederic Heim
- Université de Haute Alsace, Laboratoire de Physique et Mécanique Textiles (LPMT), Mulhouse, France.,Hôpitaux Universitaires de Strasbourg, Geprovas, Strasbourg, France
| |
Collapse
|
13
|
Heim F. Heart valves from polymeric fibers: potential and limits. THE JOURNAL OF CARDIOVASCULAR SURGERY 2020; 61:586-595. [DOI: 10.23736/s0021-9509.20.11604-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Khoffi F, Khalsi Y, Chevrier J, Kerdjoudj H, Tazibt A, Heim F. Surface modification of polymer textile biomaterials by N 2 supercritical jet: Preliminary mechanical and biological performance assessment. J Mech Behav Biomed Mater 2020; 107:103772. [PMID: 32283519 DOI: 10.1016/j.jmbbm.2020.103772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/18/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
Foreign Body Reaction (FBR) is a critical issue to be addressed when polyethylene terephthalate (PET) textile implants are considered in the medical field to treat pathologies involving hernia repair, revascularization strategies in arterial disease, and aneurysm or heart valve replacement. The natural porosity of textile materials tends to induce exaggerated tissue ingrowth which may prevent the implants from remaining flexible. One hypothesized way to limit the FBR process is to increase the material surface roughness at the yarn level. Supercritical N2 (ScN2) jet particle projection is a technique that provides enough velocity to particles in order to induce plastic deformation on the impacted surface. This work investigates the influence of ScN2 jet projection parameters like standoff distance or particle size on the roughness that can be obtained on medical polymer yarns of various diameters (100 and 400 μm) and woven textile surfaces obtained from a 100 μm yarn. Moreover, the mechanical and biological performances of the obtained modified textile material are assessed. Results bring out that with appropriate testing conditions (500 bars jet/500 mm distance between nozzle and PET textile) and particle size around 50 μm, it is possible to generate 20 μm large and 4 μm deep craters on a 100 μm monofilament PET yarn and fabric. Regarding the strength of the textile material, it is only slightly modified with the treatment process, as the tenacity of the yarns decreases by only 10%. Moreover, It is shown that the obtained structures tend to limit the adhesion and slow down the proliferation of human fibroblasts.
Collapse
Affiliation(s)
- F Khoffi
- Laboratoire de Physique et Mécanique Textiles (LPMT), ENSISA, Mulhouse, France; CRITT Techniques Jet Fluide et Usinage (TJFU), Bar-Le-Duc, France; Laboratoire de Génie Textile (LGTex), Ksar-Hellal, Tunisia
| | - Y Khalsi
- Laboratoire de Physique et Mécanique Textiles (LPMT), ENSISA, Mulhouse, France; CRITT Techniques Jet Fluide et Usinage (TJFU), Bar-Le-Duc, France
| | - J Chevrier
- Université de Reims Champagne Ardenne, BIOS EA 4691, Reims, France
| | - H Kerdjoudj
- Université de Reims Champagne Ardenne, BIOS EA 4691, Reims, France; UFR d'Odontologie, Université de Reims Champagne Ardenne, Reims, France
| | - A Tazibt
- CRITT Techniques Jet Fluide et Usinage (TJFU), Bar-Le-Duc, France
| | - F Heim
- Laboratoire de Physique et Mécanique Textiles (LPMT), ENSISA, Mulhouse, France; GEPROVAS, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
15
|
Frazão LP, Vieira de Castro J, Neves NM. In Vivo Evaluation of the Biocompatibility of Biomaterial Device. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1250:109-124. [PMID: 32601941 DOI: 10.1007/978-981-15-3262-7_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biomaterials are widely used to produce devices for regenerative medicine. After its implantation, an interaction between the host immune system and the implanted biomaterial occurs, leading to biomaterial-specific cellular and tissue responses. These responses may include inflammatory, wound healing responses, immunological and foreign-body reactions, and even fibrous encapsulation of the implanted biomaterial device. In fact, the cellular and molecular events that regulate the success of the implant and tissue regeneration are played at the interface between the foreign body and the host inflammation, determined by innate and adaptive immune responses. This chapter focuses on host responses that must be taken into consideration in determining the biocompatibility of biomaterial devices when implanted in vivo of animal models.
Collapse
Affiliation(s)
- L P Frazão
- I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho: 3Bs Research Group, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Vieira de Castro
- I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho: 3Bs Research Group, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno M Neves
- I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho: 3Bs Research Group, Guimarães, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
16
|
Dave K, Gomes VG. Interactions at scaffold interfaces: Effect of surface chemistry, structural attributes and bioaffinity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110078. [PMID: 31546353 DOI: 10.1016/j.msec.2019.110078] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 01/01/2023]
Abstract
Effective regenerative medicine relies on understanding the interplay between biomaterial implants and the adjoining cells. Scaffolds contribute by presenting sites for cellular adhesion, growth, proliferation, migration, and differentiation which lead to regeneration of tissues over desired periods of time. The fabrication and recruitment of scaffolds often fail to consider the interactions that occur at the interfaces, thereby risking rejection. This lack of knowledge on interfacial microenvironments and related exchanges often causes reduced cellular interactions, poor cell survival and intervention failure. Successful regenerative therapy requires scaffolds with bespoke biocompatibility, optimum pore structure, and cues for cell attachments. These factors determine the development of cellular affinity in scaffolds. For biomedical applications, a detailed understanding of scaffolds and their interfaces is required for better tuning of biomaterials to suit the microenvironments. In this review, we discuss the role of biointerfaces with a focus on surface chemistry, pore structure, scaffold hydro-affinity and their biointeractions. An understanding of the effect of scaffold interfacial properties is crucial for enhancing the progress of tissue engineering towards clinical applications.
Collapse
Affiliation(s)
- Khyati Dave
- The University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, NSW 2006, Australia
| | - Vincent G Gomes
- The University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, NSW 2006, Australia.
| |
Collapse
|
17
|
Dreger NZ, Zander ZK, Hsu YH, Luong D, Chen P, Le N, Parsell T, Søndergaard C, Dunbar ML, Koewler NJ, Suckow MA, Becker ML. Zwitterionic amino acid-based Poly(ester urea)s suppress adhesion formation in a rat intra-abdominal cecal abrasion model. Biomaterials 2019; 221:119399. [PMID: 31421314 DOI: 10.1016/j.biomaterials.2019.119399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022]
Abstract
Hernia repair outcomes have improved with more robust material options for surgeons and optimized surgical techniques. However, ventral hernia repairs remain challenging with an inherent risk of post-surgical adhesions in the peritoneal space which can occur regardless of interventional material or its surgical placement. Herein, amino acid-based poly(ester urea)s (PEUs) with varied amount of an allyl ether side chains were modified post polymerization modification with the zwitterionic sulfnate group (3-((3-((3-mercaptopropanoyl)oxy)propyl) dimethylammonio)propane-1-sulfonate) to promote anti-adhesive properties. These alloc-PEUs were processed using roll-to-roll fabrication methods to afford films that were amenable to surface functionalization via a zwitterion-thiol. Functional group availability on the surface was confirmed via fluorescence microscopy, x-ray photoelectron spectroscopy (XPS), and quartz crystal microbalance (QCM) measurements. Zwitterionic treated PEUs exhibited reduced fibrinogen adsorption in vitro when compared to unfunctionalized control polymer. A rat intrabdominal cecal abrasion adhesion model was used to assess the extent and tenacity of adhesion formation in the presence of the PEUs. The 10% alloc-PEU zwitterion functionalized material was found to reduce the extent and tenacity of adhesions when compared to adhesion controls and the unfunctionalized PEU controls.
Collapse
Affiliation(s)
- Nathan Z Dreger
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Zachary K Zander
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Yen-Hao Hsu
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Derek Luong
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Peiru Chen
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Nancy Le
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | | | | | - Misha L Dunbar
- College of Veterinary Medicine, The University of Minnesota, Minneapolis, MN, 55455, USA
| | - Nathan J Koewler
- College of Veterinary Medicine, The University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mark A Suckow
- Department of Biomedical Engineering, The University of Kentucky, Lexington, KY, 40506, USA
| | - Matthew L Becker
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA; Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA; Department of Chemistry, Duke University, Durham, NC, 27708, USA; Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, 27708, USA; Orthopaedic Surgery, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
18
|
Coating of cobalt chrome substrates with thin films of polar/hydrophobic/ionic polyurethanes: Characterization and interaction with human immunoglobulin G and fibronectin. Colloids Surf B Biointerfaces 2019; 179:114-120. [PMID: 30952017 DOI: 10.1016/j.colsurfb.2019.03.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/14/2019] [Accepted: 03/18/2019] [Indexed: 01/13/2023]
Abstract
Biomaterial implants often lead to specific tissue reactions that could compromise their bio-integration and/or optimal cellular interactions. Polyurethanes (PU) are of particular interest as coatings to mask CoCr's bioactivity, since they are generally more biocompatible than metal substrates, present a broad range of chemistry, and have highly tunable-mechanical properties. In the current work, complex polyvinyl-urethanes (referred to as D-PHI materials) are studied for their surface phase structures: specifically, an original D-PHI polymer (O-D-PHI) and a differential formulation with relatively higher hydrophobic and ionic content (HHHI) are of interest. The PUs are diluted in tetrahydrofuran (THF) to generate thin films which differentially influence the physical and chemical properties of the D-PHI coatings. AFM images over time show the gradual appearance of domains exhibiting crystalline organisation, and whose shape and size were dependent on D-PHI thickness (thin films vs non-solvent cast resin materials). After three weeks, a complete stabilization of the crystal state is observed. The thin coatings are stable in an aqueous and 37 °C environment. The adsorption of two human plasmatic proteins Immunoglobulin G (IgG) and Fibronectin (Fn), involved in inflammation and coagulation, was studied. The exposure of specific protein sequences (IgG-Fab, Fn-Cell Binding Domain and Fn-N-terminal domain) were dramatically reduced on both D-PHI materials when compared to bare metal CoCr. The implications of these findings would be relevant to defining coating strategies used to improve the blood clotting and immune cell reactivity to CoCr implant materials.
Collapse
|
19
|
Biomaterials: Foreign Bodies or Tuners for the Immune Response? Int J Mol Sci 2019; 20:ijms20030636. [PMID: 30717232 PMCID: PMC6386828 DOI: 10.3390/ijms20030636] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
The perspectives of regenerative medicine are still severely hampered by the host response to biomaterial implantation, despite the robustness of technologies that hold the promise to recover the functionality of damaged organs and tissues. In this scenario, the cellular and molecular events that decide on implant success and tissue regeneration are played at the interface between the foreign body and the host inflammation, determined by innate and adaptive immune responses. To avoid adverse events, rather than the use of inert scaffolds, current state of the art points to the use of immunomodulatory biomaterials and their knowledge-based use to reduce neutrophil activation, and optimize M1 to M2 macrophage polarization, Th1 to Th2 lymphocyte switch, and Treg induction. Despite the fact that the field is still evolving and much remains to be accomplished, recent research breakthroughs have provided a broader insight on the correct choice of biomaterial physicochemical modifications to tune the reaction of the host immune system to implanted biomaterial and to favor integration and healing.
Collapse
|
20
|
Aigner TB, DeSimone E, Scheibel T. Biomedical Applications of Recombinant Silk-Based Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704636. [PMID: 29436028 DOI: 10.1002/adma.201704636] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/26/2017] [Indexed: 05/18/2023]
Abstract
Silk is mostly known as a luxurious textile, which originates from silkworms first cultivated in China. A deeper look into the variety of silk reveals that it can be used for much more, in nature and by humanity. For medical purposes, natural silks were recognized early as a potential biomaterial for surgical threads or wound dressings; however, as biomedical engineering advances, the demand for high-performance, naturally derived biomaterials becomes more pressing and stringent. A common problem of natural materials is their large batch-to-batch variation, the quantity available, their potentially high immunogenicity, and their fast biodegradation. Some of these common problems also apply to silk; therefore, recombinant approaches for producing silk proteins have been developed. There are several research groups which study and utilize various recombinantly produced silk proteins, and many of these have also investigated their products for biomedical applications. This review gives a critical overview over of the results for applications of recombinant silk proteins in biomedical engineering.
Collapse
Affiliation(s)
| | - Elise DeSimone
- University Bayreuth, Lehrstuhl Biomaterialien, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Thomas Scheibel
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayreuther Zentrum für Bio-Makromoleküle (bio-mac), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Bayerisches Polymerinstitut (BPI), University Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| |
Collapse
|
21
|
Gossart A, Battiston KG, Gand A, Pauthe E, Santerre JP. Mono vs multilayer fibronectin coatings on polar/hydrophobic/ionic polyurethanes: Altering surface interactions with human monocytes. Acta Biomater 2018; 66:129-140. [PMID: 29127068 DOI: 10.1016/j.actbio.2017.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/07/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022]
Abstract
Monocyte interactions with materials that are biofunctionalized with fibronectin (Fn) are of interest because of the documented literature which associates this protein with white blood cell function at implant sites. A degradable-polar hydrophobic ionic polyurethane (D-PHI), has been reported to promote an anti-inflammatory response from human monocytes. The aim of the current work was to study the influence of intrinsic D-PHI material chemistry on Fn adsorption (mono and multi-layer structures), and to investigate the influence of such chemistry on the structural state of the Fn, as well as the latter's influence on the activity of human monocytes on the protein coated substrates. Significant differences in Fn adsorption, surface hydrophobicity and the availability of defined peptide sequences (N terminal, C terminal or Cell Binding Domain) for the Fn in mono vs multilayer structures were observed as a function of the changes in intrinsic material chemistry. A D-PHI-formulated polyurethane substrate with subtle changes in anionic and hydrophobic domain content relative to the polar non-ionic urethane/carbonate groups within the polymer matrix promoted the lowest activation of monocytes, in the presence of multi-layer Fn constructs. These results highlight the importance of chemical heterogeneity as a design parameter for biomaterial surfaces, and establishes a desired strategy for controlling human monocyte activity at the surface of devices, when these are coated with multi-layer Fn structures. The latter is an important step towards functionalizing the materials with multi-layer protein drug carriers as interventional therapeutic agents. STATEMENT OF SIGNIFICANCE The control of the behavior of monocytes, especially migration and activation, is of crucial interest to modulate the inflammatory response at the site of implanted biomaterial. Several studies report the influence of adsorbed serum proteins on the behavior of monocytes on biomaterials. However, few studies show the influence of surface chemical group distribution on the controlled adsorption and the subsequent induced conformation- of mono versus multi-layer assembled structures generated from specific proteins implicated in wound repair. The current research considered the role of Fn adsorption and conformation in thin films while interacting with the intrinsic chemistry of segmented block polyurethanes; and the influence of the former on modulation and activation of human monocytes.
Collapse
|
22
|
Lotti F, Ranieri F, Vadalà G, Zollo L, Di Pino G. Invasive Intraneural Interfaces: Foreign Body Reaction Issues. Front Neurosci 2017; 11:497. [PMID: 28932181 PMCID: PMC5592213 DOI: 10.3389/fnins.2017.00497] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022] Open
Abstract
Intraneural interfaces are stimulation/registration devices designed to couple the peripheral nervous system (PNS) with the environment. Over the last years, their use has increased in a wide range of applications, such as the control of a new generation of neural-interfaced prostheses. At present, the success of this technology is limited by an electrical impedance increase, due to an inflammatory response called foreign body reaction (FBR), which leads to the formation of a fibrotic tissue around the interface, eventually causing an inefficient transduction of the electrical signal. Based on recent developments in biomaterials and inflammatory/fibrotic pathologies, we explore and select the biological solutions that might be adopted in the neural interfaces FBR context: modifications of the interface surface, such as organic and synthetic coatings; the use of specific drugs or molecular biology tools to target the microenvironment around the interface; the development of bio-engineered-scaffold to reduce immune response and promote interface-tissue integration. By linking what we believe are the major crucial steps of the FBR process with related solutions, we point out the main issues that future research has to focus on: biocompatibility without losing signal conduction properties, good reproducible in vitro/in vivo models, drugs exhaustion and undesired side effects. The underlined pros and cons of proposed solutions show clearly the importance of a better understanding of all the molecular and cellular pathways involved and the need of a multi-target action based on a bio-engineered combination approach.
Collapse
Affiliation(s)
- Fiorenza Lotti
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-MedicoRome, Italy.,Research Unit of Orthopaedic and Trauma Surgery, Università Campus Bio-MedicoRome, Italy
| | - Federico Ranieri
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-MedicoRome, Italy.,Fondazione Alberto Sordi-Research Institute for AgingRome, Italy.,Research Unit of Neurology, Neurophysiology and Neurobiology, Università Campus Bio-MedicoRome, Italy
| | - Gianluca Vadalà
- Research Unit of Orthopaedic and Trauma Surgery, Università Campus Bio-MedicoRome, Italy
| | - Loredana Zollo
- Research Unit of Biomedical Robotics and Biomicrosystems, Università Campus Bio-MedicoRome, Italy
| | - Giovanni Di Pino
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-MedicoRome, Italy.,Research Unit of Neurology, Neurophysiology and Neurobiology, Università Campus Bio-MedicoRome, Italy
| |
Collapse
|
23
|
Geelhoed WJ, Moroni L, Rotmans JI. Utilizing the Foreign Body Response to Grow Tissue Engineered Blood Vessels in Vivo. J Cardiovasc Transl Res 2017; 10:167-179. [PMID: 28205013 PMCID: PMC5437130 DOI: 10.1007/s12265-017-9731-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/23/2017] [Indexed: 12/21/2022]
Abstract
It is well known that the number of patients requiring a vascular grafts for use as vessel replacement in cardiovascular diseases, or as vascular access site for hemodialysis is ever increasing. The development of tissue engineered blood vessels (TEBV's) is a promising method to meet this increasing demand vascular grafts, without having to rely on poorly performing synthetic options such as polytetrafluoroethylene (PTFE) or Dacron. The generation of in vivo TEBV's involves utilizing the host reaction to an implanted biomaterial for the generation of completely autologous tissues. Essentially this approach to the development of TEBV's makes use of the foreign body response to biomaterials for the construction of the entire vascular replacement tissue within the patient's own body. In this review we will discuss the method of developing in vivo TEBV's, and debate the approaches of several research groups that have implemented this method.
Collapse
Affiliation(s)
- Wouter J Geelhoed
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Eindhoven Laboratory of Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lorenzo Moroni
- MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration, Maastricht University, Maastricht, The Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands. .,Eindhoven Laboratory of Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
24
|
Abstract
Macrophages are the initial biologic responders to biomaterials. These highly plastic immune sentinels control and modulate responses to materials, foreign or natural. The responses may vary from immune stimulatory to immune suppressive. Several parameters have been identified that influence macrophage response to biomaterials, specifically size, geometry, surface topography, hydrophobicity, surface chemistry, material mechanics, and protein adsorption. In this review, the influence of these parameters is supported with examples of both synthetic and naturally derived materials and illustrates that a combination of these parameters ultimately influences macrophage responses to the biomaterial. Having an understanding of these properties may lead to highly efficient design of biomaterials with desirable biologic response properties.
Collapse
|
25
|
The impact of surface chemistry modification on macrophage polarisation. Immunobiology 2016; 221:1237-46. [DOI: 10.1016/j.imbio.2016.06.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/01/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
|
26
|
Bygd HC, Bratlie KM. The effect of chemically modified alginates on macrophage phenotype and biomolecule transport. J Biomed Mater Res A 2016; 104:1707-19. [DOI: 10.1002/jbm.a.35700] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/29/2016] [Accepted: 02/23/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Hannah C. Bygd
- Department of Materials Science and EngineeringIowa State UniversityAmes Iowa50011
| | - Kaitlin M. Bratlie
- Department of Materials Science and EngineeringIowa State UniversityAmes Iowa50011
- Department of Chemical and Biological EngineeringIowa State UniversityAmes Iowa50011
- Division of Materials Science & EngineeringAmes National LaboratoryAmes Iowa50011
| |
Collapse
|
27
|
Hua K, Ålander E, Lindström T, Mihranyan A, Strømme M, Ferraz N. Surface Chemistry of Nanocellulose Fibers Directs Monocyte/Macrophage Response. Biomacromolecules 2015; 16:2787-95. [DOI: 10.1021/acs.biomac.5b00727] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kai Hua
- Nanotechnology
and Functional Materials, Department of Engineering Sciences, Uppsala University, Box
534, 75121 Uppsala, Sweden
| | - Eva Ålander
- Innventia AB, Drottning Kristinas
väg 55, 11486 Stockholm, Sweden
| | - Tom Lindström
- Innventia AB, Drottning Kristinas
väg 55, 11486 Stockholm, Sweden
| | - Albert Mihranyan
- Nanotechnology
and Functional Materials, Department of Engineering Sciences, Uppsala University, Box
534, 75121 Uppsala, Sweden
| | - Maria Strømme
- Nanotechnology
and Functional Materials, Department of Engineering Sciences, Uppsala University, Box
534, 75121 Uppsala, Sweden
| | - Natalia Ferraz
- Nanotechnology
and Functional Materials, Department of Engineering Sciences, Uppsala University, Box
534, 75121 Uppsala, Sweden
| |
Collapse
|
28
|
Innate Immunity and Biomaterials at the Nexus: Friends or Foes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:342304. [PMID: 26247017 PMCID: PMC4515263 DOI: 10.1155/2015/342304] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 06/15/2015] [Accepted: 06/22/2015] [Indexed: 01/04/2023]
Abstract
Biomaterial implants are an established part of medical practice, encompassing a broad range of devices that widely differ in function and structural composition. However, one common property amongst biomaterials is the induction of the foreign body response: an acute sterile inflammatory reaction which overlaps with tissue vascularisation and remodelling and ultimately fibrotic encapsulation of the biomaterial to prevent further interaction with host tissue. Severity and clinical manifestation of the biomaterial-induced foreign body response are different for each biomaterial, with cases of incompatibility often associated with loss of function. However, unravelling the mechanisms that progress to the formation of the fibrotic capsule highlights the tightly intertwined nature of immunological responses to a seemingly noncanonical “antigen.” In this review, we detail the pathways associated with the foreign body response and describe possible mechanisms of immune involvement that can be targeted. We also discuss methods of modulating the immune response by altering the physiochemical surface properties of the biomaterial prior to implantation. Developments in these areas are reliant on reproducible and effective animal models and may allow a “combined” immunomodulatory approach of adapting surface properties of biomaterials, as well as treating key immune pathways to ultimately reduce the negative consequences of biomaterial implantation.
Collapse
|
29
|
Qi P, Yang Y, Xiong K, Wang J, Tu Q, Yang Z, Wang J, Chen J, Huang N. Multifunctional Plasma-Polymerized Film: Toward Better Anticorrosion Property, Enhanced Cellular Growth Ability, and Attenuated Inflammatory and Histological Responses. ACS Biomater Sci Eng 2015; 1:513-524. [DOI: 10.1021/ab5001595] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pengkai Qi
- Key Laboratory of Advanced Technology for Materials of Education
Ministry, ‡The Institute of Biomaterials and Surface Engineering, School of
Materials Science and Engineering, and §Laboratory of Biosensing and MicroMechatronics, Southwest Jiaotong University, Chengdu 610031, China
| | - Ying Yang
- Key Laboratory of Advanced Technology for Materials of Education
Ministry, ‡The Institute of Biomaterials and Surface Engineering, School of
Materials Science and Engineering, and §Laboratory of Biosensing and MicroMechatronics, Southwest Jiaotong University, Chengdu 610031, China
| | - Kaiqin Xiong
- Key Laboratory of Advanced Technology for Materials of Education
Ministry, ‡The Institute of Biomaterials and Surface Engineering, School of
Materials Science and Engineering, and §Laboratory of Biosensing and MicroMechatronics, Southwest Jiaotong University, Chengdu 610031, China
| | - Juan Wang
- Key Laboratory of Advanced Technology for Materials of Education
Ministry, ‡The Institute of Biomaterials and Surface Engineering, School of
Materials Science and Engineering, and §Laboratory of Biosensing and MicroMechatronics, Southwest Jiaotong University, Chengdu 610031, China
| | - Qiufen Tu
- Key Laboratory of Advanced Technology for Materials of Education
Ministry, ‡The Institute of Biomaterials and Surface Engineering, School of
Materials Science and Engineering, and §Laboratory of Biosensing and MicroMechatronics, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhilu Yang
- Key Laboratory of Advanced Technology for Materials of Education
Ministry, ‡The Institute of Biomaterials and Surface Engineering, School of
Materials Science and Engineering, and §Laboratory of Biosensing and MicroMechatronics, Southwest Jiaotong University, Chengdu 610031, China
| | - Jin Wang
- Key Laboratory of Advanced Technology for Materials of Education
Ministry, ‡The Institute of Biomaterials and Surface Engineering, School of
Materials Science and Engineering, and §Laboratory of Biosensing and MicroMechatronics, Southwest Jiaotong University, Chengdu 610031, China
| | - Junying Chen
- Key Laboratory of Advanced Technology for Materials of Education
Ministry, ‡The Institute of Biomaterials and Surface Engineering, School of
Materials Science and Engineering, and §Laboratory of Biosensing and MicroMechatronics, Southwest Jiaotong University, Chengdu 610031, China
| | - Nan Huang
- Key Laboratory of Advanced Technology for Materials of Education
Ministry, ‡The Institute of Biomaterials and Surface Engineering, School of
Materials Science and Engineering, and §Laboratory of Biosensing and MicroMechatronics, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
30
|
Yu K, Mei Y, Hadjesfandiari N, Kizhakkedathu JN. Engineering biomaterials surfaces to modulate the host response. Colloids Surf B Biointerfaces 2014; 124:69-79. [PMID: 25193153 DOI: 10.1016/j.colsurfb.2014.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/29/2014] [Accepted: 08/09/2014] [Indexed: 12/16/2022]
Abstract
Undesirable host response is responsible for the surface induced thrombus generation, activation of the complement system and the inflammatory reactions by the blood-contacting biomaterials. The surface interaction of biomaterials with different blood components is thought to be the critical factor that dictates the host response to biomaterials. Surface engineering can be utilized as a method to enhance the biocompatibility and tailor the biological response to biomaterials. This review provides a brief account of various polymer brush based approaches used for biomaterials surface modification, both passive and bioactive, to make the material surfaces biocompatible and antibacterial. Initially we discuss the utilization of polymer brushes with different structure and chemistry as a novel strategy to design the surface non-fouling that passively prevent the subsequent biological responses. Further we explore the utility of different bioactive agents including peptides, carbohydrates and proteins which can be conjugated the polymer brush to make the surface actively interact with the body and modulate the host response. A number of such avenues have also been explored in this review.
Collapse
Affiliation(s)
- Kai Yu
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yan Mei
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Narges Hadjesfandiari
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6 T 1Z3, Canada.
| |
Collapse
|
31
|
Milov AD, Samoilova RI, Tsvetkov YD, Peggion C, Formaggio F, Toniolo C. Peptides on the Surface. PELDOR Data for Spin-Labeled Alamethicin F50/5 Analogues on Organic Sorbent. J Phys Chem B 2014; 118:7085-90. [DOI: 10.1021/jp503691n] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Alexander D. Milov
- V.V.
Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russian Federation
| | - Rimma I. Samoilova
- V.V.
Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russian Federation
| | - Yuri D. Tsvetkov
- V.V.
Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russian Federation
| | - Cristina Peggion
- Institute
of Biomolecular Chemistry, Padova Unit, CNR, Department of Chemistry, University of Padova, 35131 Padova, Italy
| | - Fernando Formaggio
- Institute
of Biomolecular Chemistry, Padova Unit, CNR, Department of Chemistry, University of Padova, 35131 Padova, Italy
| | - Claudio Toniolo
- Institute
of Biomolecular Chemistry, Padova Unit, CNR, Department of Chemistry, University of Padova, 35131 Padova, Italy
| |
Collapse
|
32
|
Effect of peptide secondary structure on adsorption and adsorbed film properties on end-grafted polyethylene oxide layers. Acta Biomater 2014; 10:56-66. [PMID: 24060880 DOI: 10.1016/j.actbio.2013.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/09/2013] [Accepted: 09/13/2013] [Indexed: 01/12/2023]
Abstract
Poly-l-lysine (PLL), in α-helix or β-sheet configuration, was used as a model peptide for investigating the effect of secondary structures on adsorption events to poly(ethylene oxide) (PEO) modified surfaces formed using θ solvents. Circular dichroism results showed that the secondary structure of PLL persisted upon adsorption to Au and PEO modified Au surfaces. Quartz crystal microbalance with dissipation (QCM-D) was used to characterize the chemisorbed PEO layer in different solvents (θ and good solvents), as well as the sequential adsorption of PLL in different secondary structures (α-helix or β-sheet). QCM-D results suggest that chemisorption of PEO 750 and 2000 from θ solutions led to brushes 3.8 ± 0.1 and 4.5 ± 0.1 nm thick with layer viscosities of 9.2 ± 0.8 and 4.8 ± 0.5 cP, respectively. The average number of H2O per ethylene oxides, while in θ solvent, was determined as ~0.9 and ~1.2 for the PEO 750 and 2000 layers, respectively. Upon immersion in good solvent (as used for PLL adsorption experiments), the number of H2O per ethylene oxides increased to ~1.5 and ~2.0 for PEO 750 and 2000 films, respectively. PLL adsorbed masses for α-helix and β-sheet on Au sensors was 231 ± 5 and 1087 ± 14 ng cm(-2), with layer viscosities of 2.3 ± 0.1 and 1.2 ± 0.1 cP, respectively; suggesting that the α-helix layer was more rigid, despite a smaller adsorbed mass, than that of β-sheet layers. The PEO 750 layer reduced PLL adsorbed amounts to ~10 and 12% of that on Au for α-helices and β-sheets respectively. The PLL adsorbed mass to PEO 2000 layers dropped to ~12% and 4% of that on Au, for α-helix and β-sheet respectively. No significant differences existed for the viscosities of adsorbed α-helix and β-sheet PLL on PEO surfaces. These results provide new insights into the fundamental understanding of the effects of secondary structures of peptides and proteins on their surface adsorption.
Collapse
|
33
|
Binazadeh M, Faghihnejad A, Unsworth LD, Zeng H. Understanding the Effect of Secondary Structure on Molecular Interactions of Poly-l-lysine with Different Substrates by SFA. Biomacromolecules 2013; 14:3498-508. [DOI: 10.1021/bm400837t] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mojtaba Binazadeh
- Department of Chemical
and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Ali Faghihnejad
- Department of Chemical
and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Larry D. Unsworth
- Department of Chemical
and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
- National Institute of Nanotechnology, Edmonton, Alberta, T6G 2M9, Canada
| | - Hongbo Zeng
- Department of Chemical
and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| |
Collapse
|
34
|
Effect of peptide secondary structure on adsorption and adsorbed film properties. Acta Biomater 2013; 9:6403-13. [PMID: 23376129 DOI: 10.1016/j.actbio.2013.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 01/07/2013] [Accepted: 01/12/2013] [Indexed: 01/15/2023]
Abstract
Protein adsorption at the biomaterial-tissue interface is of utmost importance to the widespread application of engineered materials. The present study asked what role the secondary structures of peptides play in their adsorption, as well as how these structures affect the physicochemical properties of the final adsorbed layer. To this end, α-helices and β-sheets were induced in poly-l-lysine, and their adsorption to Au surfaces was monitored using quartz crystal microbalance with dissipation. It was observed that secondary structures played an important role in governing both the adsorption process and the final film properties. Higher initial adsorption rates were obtained for α-helices compared with β-sheets, regardless of solution salt concentration. Adsorption half-time for β-sheets was greater than that for α-helices, and the final amount adsorbed on β-sheet was significantly higher than that on α-helix. The adsorbed amount and adsorption half-time decreased with increasing salt concentration, suggesting that electrostatic interactions played a role. It was found that the differences in Zeta potential coupled with the apparent effect of surface contact area differences between α-helix and β-sheet conformations are ultimately responsible for these different peptide adsorption behaviours at the Au interface. The initial adsorption rate of α-helix increased with salt concentrations up to 50mM, whereas β-sheet initial adsorption rates increased with salt concentrations up to 500 mM. Viscosities for films formed from α-helices were about twice those of β-sheets films, regardless of solution ionic strength. It was evident that the peptide secondary structures influence all aspects of their adsorption, as well as affecting the adsorbed film properties.
Collapse
|
35
|
Battiston KG, Labow RS, Santerre JP. Protein binding mediation of biomaterial-dependent monocyte activation on a degradable polar hydrophobic ionic polyurethane. Biomaterials 2012; 33:8316-28. [DOI: 10.1016/j.biomaterials.2012.08.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/05/2012] [Indexed: 12/25/2022]
|
36
|
Park J, Babensee JE. Differential functional effects of biomaterials on dendritic cell maturation. Acta Biomater 2012; 8:3606-17. [PMID: 22705044 DOI: 10.1016/j.actbio.2012.06.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 06/01/2012] [Accepted: 06/06/2012] [Indexed: 12/18/2022]
Abstract
The immunological outcome of dendritic cell (DC) treatment with different biomaterials was assessed to demonstrate the range of DC phenotypes induced by biomaterials commonly used in combination products. Immature DCs (iDCs) were derived from human peripheral blood monocytes, and treated with different biomaterial films of alginate, agarose, chitosan, hyaluronic acid (HA), or 75:25 poly(lactic-co-glycolic acid) (PLGA) and a comprehensive battery of phenotypic functional outcomes was assessed. Different levels of functional changes in DC phenotype were observed depending on the type of biomaterial films used to treat the DCs. Treatment of DCs with PLGA or chitosan films supported DC maturation, with higher levels of DC allostimulatory capacity, pro-inflammatory cytokine release, and expression of CD80, CD86, CD83, HLA-DQ and CD44 compared with iDCs, and lower endocytic ability compared with iDCs. Alginate film induced pro-inflammatory cytokine release from DCs at levels higher than from iDCs. Dendritic cells treated with HA film expressed lower levels of CD40, CD80, CD86 and HLA-DR compared with iDCs. They also exhibited lower endocytic ability and CD44 expression than iDCs, possibly due to an insolubilized (cross-linked) form of high molecular weight HA. Interestingly, treatment of DCs with agarose film maintained the DC functional phenotype at levels similar to iDCs except for CD44 expression, which was lower than that of iDCs. Taken together, these results can provide selection criteria for biomaterials to be used in immunomodulating applications and can inform potential outcomes of biomaterials within combination products on associated immune responses as desired by the application.
Collapse
|
37
|
Binazadeh M, Kabiri M, Unsworth LD. Poly(ethylene glycol) and Poly(carboxy betaine) Based Nonfouling Architectures: Review and Current Efforts. ACS SYMPOSIUM SERIES 2012. [DOI: 10.1021/bk-2012-1120.ch028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
38
|
Bellezza F, Alberani A, Posati T, Tarpani L, Latterini L, Cipiciani A. Protein interactions with nanosized hydrotalcites of different composition. J Inorg Biochem 2011; 106:134-42. [PMID: 22115829 DOI: 10.1016/j.jinorgbio.2011.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 09/09/2011] [Accepted: 10/03/2011] [Indexed: 11/29/2022]
Abstract
Nanosized hydrotalcite-like compounds (HTlc) with different chemical composition were prepared and used to study protein adsorption. Two soft proteins, myoglobin (Mb) and bovine serum albumin (BSA), were chosen to investigate the nature of the forces controlling the adsorption and how these depend on the chemical composition of the support. Both proteins strongly interact with HTlc exhibiting in most cases a Langmuir-type adsorption. Mb showed a higher affinity for Nickel Chromium (NiCr-HTlc) than for Nickel Aluminum (NiAl-HTlc), while for BSA no significant differences between supports were found. Adsorption experiments in the presence of additives showed that proteins exhibited different types of interactions onto the same HTlc surface and that the adsorption was strongly suppressed by the addition of disodium hydrogen phosphate (Na(2)HPO(4)). Atomic force microscopy images showed that the adsorption of both proteins onto nanoparticles was followed by the aggregation of biocomposites, with a more disordered structure for BSA. Fluorescence measurements for adsorbed Mb showed that the inorganic nanoparticles induced conformational changes in the biomolecules; in particular, the interactions with HTlc surface quenched the tryptophan fluorescence and this process was particularly efficient for NiCr-HTlc. The adsorption of BSA onto the HTlc nanoparticles induced a selective quenching of the exposed fluorescent residues, as indicated by the blue-shift of the emission spectra of tryptophan residues and by the shortening of the fluorescence decay times.
Collapse
|
39
|
Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S. Protein-nanoparticle interactions: opportunities and challenges. Chem Rev 2011; 111:5610-37. [PMID: 21688848 DOI: 10.1021/cr100440g] [Citation(s) in RCA: 989] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
|
41
|
Giri J, Diallo MS, Simpson AJ, Liu Y, Goddard WA, Kumar R, Woods GC. Interactions of poly(amidoamine) dendrimers with human serum albumin: binding constants and mechanisms. ACS NANO 2011; 5:3456-3468. [PMID: 21438566 DOI: 10.1021/nn1021007] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The interactions of nanomaterials with plasma proteins have a significant impact on their in vivo transport and fate in biological fluids. This article discusses the binding of human serum albumin (HSA) to poly(amidoamine) [PAMAM] dendrimers. We use protein-coated silica particles to measure the HSA binding constants (K(b)) of a homologous series of 19 PAMAM dendrimers in aqueous solutions at physiological pH (7.4) as a function of dendrimer generation, terminal group, and core chemistry. To gain insight into the mechanisms of HSA binding to PAMAM dendrimers, we combined (1)H NMR, saturation transfer difference (STD) NMR, and NMR diffusion ordered spectroscopy (DOSY) of dendrimer-HSA complexes with atomistic molecular dynamics (MD) simulations of dendrimer conformation in aqueous solutions. The binding measurements show that the HSA binding constants (K(b)) of PAMAM dendrimers depend on dendrimer size and terminal group chemistry. The NMR (1)H and DOSY experiments indicate that the interactions between HSA and PAMAM dendrimers are relatively weak. The (1)H NMR STD experiments and MD simulations suggest that the inner shell protons of the dendrimers groups interact more strongly with HSA proteins. These interactions, which are consistently observed for different dendrimer generations (G0-NH(2)vs G4-NH(2)) and terminal groups (G4-NH(2)vs G4-OH with amidoethanol groups), suggest that PAMAM dendrimers adopt backfolded configurations as they form weak complexes with HSA proteins in aqueous solutions at physiological pH (7.4).
Collapse
Affiliation(s)
- Jyotsnendu Giri
- Materials and Process Simulation Center, Division of Chemistry and Chemical Engineering, California Institute of Technology, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:1322-37. [PMID: 21520409 DOI: 10.1002/smll.201100001] [Citation(s) in RCA: 775] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 02/15/2011] [Indexed: 05/20/2023]
Abstract
The interactions of nanoparticles with the soft surfaces of biological systems like cells play key roles in executing their biomedical functions and in toxicity. The discovery or design of new biomedical functions, or the prediction of the toxicological consequences of nanoparticles in vivo, first require knowledge of the interplay processes of the nanoparticles with the target cells. This article focusses on the cellular uptake, location and translocation, and any biological consequences, such as cytotoxicity, of the most widely studied and used nanoparticles, such as carbon-based nanoparticles, metallic nanoparticles, and quantum dots. The relevance of the size and shape, composition, charge, and surface chemistry of the nanoparticles in cells is considered. The intracellular uptake pathways of the nanoparticles and the cellular responses, with potential signaling pathways activated by nanoparticle interactions, are also discussed.
Collapse
Affiliation(s)
- Feng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
43
|
Lynn AD, Blakney AK, Kyriakides TR, Bryant SJ. Temporal progression of the host response to implanted poly(ethylene glycol)-based hydrogels. J Biomed Mater Res A 2011; 96:621-31. [PMID: 21268236 DOI: 10.1002/jbm.a.33015] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/18/2010] [Accepted: 10/06/2010] [Indexed: 12/18/2022]
Abstract
Poly(ethylene glycol) (PEG) hydrogels hold great promise as in vivo cell carriers for tissue engineering. To ensure appropriate performance of these materials when implanted, the host response must be well understood. The objectives for this study were to characterize the temporal evolution of the foreign body reaction (FBR) to acellular PEG-based hydrogels prepared from PEG diacrylate precursors when implanted subcutaneously in immunocompentent c57bl/6 mice by (immuno)histochemical analysis and gene expression. Compared with a normal FBR elicited by silicone (SIL), PEG hydrogels without or with a cell adhesion ligand RGD elicited a strong early inflammatory response evidenced by a thick band of macrophages as early as day 2, persisting through two weeks, and by increased interleukin-1β expression. PEG-only hydrogels showed a slower, but more sustained progression of inflammation over PEG-RGD. Temporal changes in gene expression were observed in response to PEG-based materials and in general exhibited, elevated expression of inflammatory and wound healing genes in the tissues surrounding the implants, while the expression patterns were more stable in response to SIL. While a stabilized FBR was achieved with SIL and to a lesser degree with PEG-RGD, the PEG-only hydrogels had not yet stabilized after 4 weeks. In summary, PEG-only hydrogels elicit a strong early inflammatory reaction, which persists throughout the course of the implantation even as a collagenous capsule begins to form. However, the incorporation of RGD tethers partially attenuates this response within 2 weeks leading to an improved FBR to PEG-based hydrogels.
Collapse
Affiliation(s)
- Aaron D Lynn
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | | | | | | |
Collapse
|
44
|
Nanoporosity of alumina surfaces induces different patterns of activation in adhering monocytes/macrophages. Int J Biomater 2010; 2010:402715. [PMID: 21234322 PMCID: PMC3018647 DOI: 10.1155/2010/402715] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 11/09/2010] [Accepted: 12/01/2010] [Indexed: 02/01/2023] Open
Abstract
The present study shows that alumina nanotopography affects monocyte/macrophage behavior. Human mononuclear cells cultured on alumina membranes with pore diameters of 20 and 200 nm were evaluated in terms of cell adhesion, viability, morphology, and release of proinflammatory cytokines. After 24 hours, cell adhesion was assessed by means of light microscopy and cell viability by measuring LDH release. The inflammatory response was evaluated by quantifying interleukin-1β and tumour necrosis factor-α. Finally, scanning electron microscopy was used to study cell morphology. Results showed pronounced differences in cell number, morphology, and cytokine release depending on the nanoporosity. Few but highly activated cells were found on the 200 nm porous alumina, while relatively larger number of cells were found on the 20 nm porous surface. However, despite their larger number, the cells adhering on the 20 nm surface exhibited reduced pro-inflammatory activity. The data of this paper implies that nanotopography could be exploited for controlling the inflammatory response to implants.
Collapse
|
45
|
Bockelmann J, Klinkhammer K, von Holst A, Seiler N, Faissner A, Brook GA, Klee D, Mey J. Functionalization of electrospun poly(ε-caprolactone) fibers with the extracellular matrix-derived peptide GRGDS improves guidance of schwann cell migration and axonal growth. Tissue Eng Part A 2010; 17:475-86. [PMID: 20819000 DOI: 10.1089/ten.tea.2010.0369] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The best available treatment of peripheral nerve lesions involves transplantation of an autologous nerve. This approach, however, entails sensory deficits at the donor site and requires additional surgery. Such limitations have motivated the search for a bioengineering solution to design artificial implants. For this purpose we are producing orientated biodegradable microfibers of poly(ε-caprolactone) (PCL) with electrospinning. The present study describes the functionalization of these electrospun fibers with biologically active peptides to produce guidance structures for Schwann cell migration and axonal regeneration. For the chemical modification PCL was blended with star-shaped NCO-poly(ethylene glycol)-stat-poly(propylene glycol) (PCL/sPEG) as a covalent linker for the peptide GRGDS, derived from extracellular matrix proteins. To test biological functions of electrospun fibers, Schwann cell migration and axonal growth from dorsal root ganglia explants were investigated with time lapse video microscopy. Migrating Schwann cells as well as growing sensory axons closely followed the electrospun fibers with occasional leaps between adjacent fibers. Cell migration was characterized by frequent changes in velocity and direction reversals. Comparison of substrates showed that functionalized fibers caused more Schwann cells to move out of the explants, supported faster cell migration and axonal growth than the nonfunctional fibers. Using inhibitors of intracellular signaling kinases, we found that these biological effects required activation of the phosphatidyl inositol-3-kinase pathway. Since sPEG-containing fibers also showed low levels of nonspecific protein adsorption, which is desirable in the context of artificial implant design, the peptide modification of fibers appears to provide good substrates for nerve repair.
Collapse
|
46
|
Hamid ZA, Blencowe A, Ozcelik B, Palmer JA, Stevens GW, Abberton KM, Morrison WA, Penington AJ, Qiao GG. Epoxy-amine synthesised hydrogel scaffolds for soft-tissue engineering. Biomaterials 2010; 31:6454-67. [DOI: 10.1016/j.biomaterials.2010.05.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 05/07/2010] [Indexed: 12/27/2022]
|
47
|
Miller IS, Lynch I, Dowling D, Dawson KA, Gallagher WM. Surface-induced cell signaling events control actin rearrangements and motility. J Biomed Mater Res A 2010; 93:493-504. [PMID: 19585567 DOI: 10.1002/jbm.a.32530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Understanding the interrelationship between material surface properties and the biological response to such materials remains a fundamental scientific challenge, as well as being of considerable practical importance in medicine. Through the use of a homologous series of copolymers of increasing hydrophobicity, we aimed to illuminate the interplay between material surface hydrophobicity and signalling events within cells in contact with this model system. Extending previous work, we hereby unravel key pathways controlling cell motility and the formation of a stellate phenotype, following interaction with polymer-coated surfaces. We reveal a comparative increase in cellular motility with increasing surface hydrophilicity, conjoint with an arrest in cell cycle progression. We also show an anomalous turnover of actin within the cell as a function of changing surface hydrophobicity. Finally, we show that cyclic adenosine monophosphate may be an effector of the cellular phenotype, as its production is increased in response to changes in the surface properties. These results highlight important signaling events which control actin rearrangements and the subsequent motility and its effectors.
Collapse
Affiliation(s)
- Ian S Miller
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | |
Collapse
|
48
|
Ghanaati SM, Thimm BW, Unger RE, Orth C, Kohler T, Barbeck M, Müller R, Kirkpatrick CJ. Collagen-embedded hydroxylapatite-beta-tricalcium phosphate-silicon dioxide bone substitute granules assist rapid vascularization and promote cell growth. Biomed Mater 2010; 5:25004. [PMID: 20208127 DOI: 10.1088/1748-6041/5/2/025004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the present study we assessed the biocompatibility in vitro and in vivo of a low-temperature sol-gel-manufactured SiO(2)-based bone graft substitute. Human primary osteoblasts and the osteoblastic cell line, MG63, cultured on the SiO(2) biomatrix in monoculture retained their osteoblastic morphology and cellular functionality in vitro. The effect of the biomaterial in vivo and its vascularization potential was tested subcutaneously in Wistar rats and demonstrated both rapid vascularization and good integration within the peri-implant tissue. Scaffold degradation was progressive during the first month after implantation, with tartrate-resistant acid phosphatase-positive macrophages being present and promoting scaffold degradation from an early stage. This manuscript describes successful osteoblastic growth promotion in vitro and a promising biomaterial integration and vasculogenesis in vivo for a possible therapeutic application of this biomatrix in future clinical studies.
Collapse
|
49
|
Di Pino G, Formica D, Lonini L, Accoto D, Benvenuto A, Micera S, Rossini PM, Guglielmelli E. ODEs model of foreign body reaction around peripheral nerve implanted electrode. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2010:1543-1546. [PMID: 21096377 DOI: 10.1109/iembs.2010.5626825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The foreign body reaction that the neural tissue develops around an implanted electrode contributes to insulate the probe and enhances the electrical and mechanical mismatch. It is a complex interaction among cells and soluble mediators and the knowledge of this phenomenon can benefits of formal and analytical methods that characterize the mathematical models. This work offers a lumped component model, described by ordinary differential equations, that taking into account the main geometrical (size, shape, insertion angle) and chemical (coating surface) properties of the implant predict the thickness of the fibrotic capsule in a time frame when the reaction stabilizes. This tool allows to evaluate different hypothetical solutions for accounting the tissue-electrode mismatch.
Collapse
|
50
|
A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf B Biointerfaces 2009; 75:300-9. [PMID: 19781921 DOI: 10.1016/j.colsurfb.2009.08.044] [Citation(s) in RCA: 238] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 08/24/2009] [Accepted: 08/31/2009] [Indexed: 11/20/2022]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are increasingly used in medical applications, such as targeting delivery and imaging. In the future, patients are more likely to be exposed to pharmaceutical products containing such particles. The study of toxicity of SPIONs has become of great importance in recent years, although the published data in this arena is limited. The aim of the present work is to investigate the cytotoxicity of SPIONs and the effect of the particles on the cell medium components. For this purpose, uncoated and polyvinyl alcohol (PVA) coated SPIONs with narrow size distribution were synthesized via a well-known coprecipitation method. The mouse fibroblast cell line L929 was exposed to SPIONs to probe the toxicity of magnetic nanoparticles during the bio application. Changes to the cell medium caused by SPIONs were analyzed with zeta potential measurements, ultraviolet visible spectroscopy (UV/vis) and the 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide (MTT) assay. It is observed that gas vesicles are formed in SPION-treated cells. Toxicity is conventionally explained by changes in the DMEM's pH and composition due to the tendency of SPIONs to interact with biomolecules. A new procedure is proposed to examine the in vitro toxicity of nanoparticles in a more rigorous manner, which gives an improvement in the relationship between in vivo and in vitro toxicity studies.
Collapse
|