1
|
Bonde S, Osmani RAM, Trivedi R, Patravale V, Angolkar M, Prasad AG, Ravikumar AA. Harnessing DNA origami's therapeutic potential for revolutionizing cardiovascular disease treatment: A comprehensive review. Int J Biol Macromol 2024; 270:132246. [PMID: 38735608 DOI: 10.1016/j.ijbiomac.2024.132246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
DNA origami is a cutting-edge nanotechnology approach that creates precise and detailed 2D and 3D nanostructures. The crucial feature of DNA origami is how it is created, which enables precise control over its size and shape. Biocompatibility, targetability, programmability, and stability are further advantages that make it a potentially beneficial technique for a variety of applications. The preclinical studies of sophisticated programmable nanomedicines and nanodevices that can precisely respond to particular disease-associated triggers and microenvironments have been made possible by recent developments in DNA origami. These stimuli, which are endogenous to the targeted disorders, include protein upregulation, pH, redox status, and small chemicals. Oncology has traditionally been the focus of the majority of past and current research on this subject. Therefore, in this comprehensive review, we delve into the intricate world of DNA origami, exploring its defining features and capabilities. This review covers the fundamental characteristics of DNA origami, targeting DNA origami to cells, cellular uptake, and subcellular localization. Throughout the review, we emphasised on elucidating the imperative for such a therapeutic platform, especially in addressing the complexities of cardiovascular disease (CVD). Moreover, we explore the vast potential inherent in DNA origami technology, envisioning its promising role in the realm of CVD treatment and beyond.
Collapse
Affiliation(s)
- Smita Bonde
- Department of Pharmaceutics, SSR College of Pharmacy, Silvassa 396230, UT of Dadra and Nagar Haveli, India.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Rashmi Trivedi
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, Maharashtra, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Aprameya Ganesh Prasad
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Akhila Akkihebbal Ravikumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| |
Collapse
|
2
|
Dubey AK, Mostafavi E. Biomaterials-mediated CRISPR/Cas9 delivery: recent challenges and opportunities in gene therapy. Front Chem 2023; 11:1259435. [PMID: 37841202 PMCID: PMC10568484 DOI: 10.3389/fchem.2023.1259435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The use of biomaterials in delivering CRISPR/Cas9 for gene therapy in infectious diseases holds tremendous potential. This innovative approach combines the advantages of CRISPR/Cas9 with the protective properties of biomaterials, enabling accurate and efficient gene editing while enhancing safety. Biomaterials play a vital role in shielding CRISPR/Cas9 components, such as lipid nanoparticles or viral vectors, from immunological processes and degradation, extending their effectiveness. By utilizing the flexibility of biomaterials, tailored systems can be designed to address specific genetic diseases, paving the way for personalized therapeutics. Furthermore, this delivery method offers promising avenues in combating viral illnesses by precisely modifying pathogen genomes, and reducing their pathogenicity. Biomaterials facilitate site-specific gene modifications, ensuring effective delivery to infected cells while minimizing off-target effects. However, challenges remain, including optimizing delivery efficiency, reducing off-target effects, ensuring long-term safety, and establishing scalable production techniques. Thorough research, pre-clinical investigations, and rigorous safety evaluations are imperative for successful translation from the laboratory to clinical applications. In this review, we discussed how CRISPR/Cas9 delivery using biomaterials revolutionizes gene therapy and infectious disease treatment, offering precise and safe editing capabilities with the potential to significantly improve human health and quality of life.
Collapse
Affiliation(s)
- Ankit Kumar Dubey
- Global Research and Publishing Foundation, New Delhi, India
- Institute of Scholars, Bengaluru, Karnataka, India
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
3
|
Carballo-Pedrares N, Ponti F, Lopez-Seijas J, Miranda-Balbuena D, Bono N, Candiani G, Rey-Rico A. Non-viral gene delivery to human mesenchymal stem cells: a practical guide towards cell engineering. J Biol Eng 2023; 17:49. [PMID: 37491322 PMCID: PMC10369726 DOI: 10.1186/s13036-023-00363-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Abstract
In recent decades, human mesenchymal stem cells (hMSCs) have gained momentum in the field of cell therapy for treating cartilage and bone injuries. Despite the tri-lineage multipotency, proliferative properties, and potent immunomodulatory effects of hMSCs, their clinical potential is hindered by donor variations, limiting their use in medical settings. To address this challenge, gene delivery technologies have emerged as a promising approach to modulate the phenotype and commitment of hMSCs towards specific cell lineages, thereby enhancing osteochondral repair strategies. This review provides a comprehensive overview of current non-viral gene delivery approaches used to engineer MSCs, highlighting key factors such as the choice of nucleic acid or delivery vector, transfection strategies, and experimental parameters. Additionally, it outlines various protocols and methods for qualitative and quantitative evaluation of their therapeutic potential as a delivery system in osteochondral regenerative applications. In summary, this technical review offers a practical guide for optimizing non-viral systems in osteochondral regenerative approaches. hMSCs constitute a key target population for gene therapy techniques. Nevertheless, there is a long way to go for their translation into clinical treatments. In this review, we remind the most relevant transfection conditions to be optimized, such as the type of nucleic acid or delivery vector, the transfection strategy, and the experimental parameters to accurately evaluate a delivery system. This survey provides a practical guide to optimizing non-viral systems for osteochondral regenerative approaches.
Collapse
Affiliation(s)
- Natalia Carballo-Pedrares
- Gene & Cell Therapy Research Group (G-CEL). Centro Interdisciplinar de Química y Biología - CICA, Universidade da Coruña, As Carballeiras, S/N. Campus de Elviña, 15071 A, Coruña, Spain
| | - Federica Ponti
- genT_LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico Di Milano, 20131, Milan, Italy
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, QC, Canada
| | - Junquera Lopez-Seijas
- Gene & Cell Therapy Research Group (G-CEL). Centro Interdisciplinar de Química y Biología - CICA, Universidade da Coruña, As Carballeiras, S/N. Campus de Elviña, 15071 A, Coruña, Spain
| | - Diego Miranda-Balbuena
- Gene & Cell Therapy Research Group (G-CEL). Centro Interdisciplinar de Química y Biología - CICA, Universidade da Coruña, As Carballeiras, S/N. Campus de Elviña, 15071 A, Coruña, Spain
| | - Nina Bono
- genT_LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico Di Milano, 20131, Milan, Italy
| | - Gabriele Candiani
- genT_LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico Di Milano, 20131, Milan, Italy.
| | - Ana Rey-Rico
- Gene & Cell Therapy Research Group (G-CEL). Centro Interdisciplinar de Química y Biología - CICA, Universidade da Coruña, As Carballeiras, S/N. Campus de Elviña, 15071 A, Coruña, Spain.
| |
Collapse
|
4
|
Pressly BB, Hooshdaran B, Alferiev IS, Chorny M, Levy RJ, Fishbein I. Adeno-Associated Viral Vector Immobilization and Local Delivery from Bare Metal Surfaces. Methods Mol Biol 2022; 2394:601-616. [PMID: 35094349 PMCID: PMC9250281 DOI: 10.1007/978-1-0716-1811-0_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Spatially and temporally controlled delivery of biologicals, including gene vectors, represents an unmet need for regenerative medicine and gene therapy applications. Here we describe a method of reversible attachment of serotype 2 adeno-associated viral vectors (AAV2) to metal surfaces. This technique enables localized delivery of the vector to the target cell population in vitro and in vivo with the subsequent effective transduction of cells adjacent to the metal substrate. The underlying bioengineering approach employs coordination chemistry between the bisphosphonic groups of polyallylamine bisphosphonates and the metal atoms on the surface of metallic samples. Formation of a stable polybisphosphonate monolayer with plentiful allyl-derived amines allows for further chemical modification to consecutively append thiol-modified protein G, an anti-AAV2 antibody, and AAV2 particles. Herein we present a detailed protocols for the metal substrate modification, for the visualization of the metal surface-immobilized vector using direct and indirect fluorescent AAV2 labeling and scanning electron microscopy, for quantification of the surface-immobilized vector load with RT-PCR, and for the localized vector transduction in vitro and in vivo.
Collapse
Affiliation(s)
- Ben B. Pressly
- The Children’s Hospital of Philadelphia Research Institute
| | | | - Ivan S. Alferiev
- The Children’s Hospital of Philadelphia Research Institute,The University of Pennsylvania Perelman School of Medicine
| | - Michael Chorny
- The Children’s Hospital of Philadelphia Research Institute,The University of Pennsylvania Perelman School of Medicine
| | - Robert J. Levy
- The Children’s Hospital of Philadelphia Research Institute,The University of Pennsylvania Perelman School of Medicine
| | - Ilia Fishbein
- The Children’s Hospital of Philadelphia Research Institute,The University of Pennsylvania Perelman School of Medicine
| |
Collapse
|
5
|
The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduct Target Ther 2021; 6:351. [PMID: 34620843 PMCID: PMC8497566 DOI: 10.1038/s41392-021-00727-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023] Open
Abstract
DNA, a genetic material, has been employed in different scientific directions for various biological applications as driven by DNA nanotechnology in the past decades, including tissue regeneration, disease prevention, inflammation inhibition, bioimaging, biosensing, diagnosis, antitumor drug delivery, and therapeutics. With the rapid progress in DNA nanotechnology, multitudinous DNA nanomaterials have been designed with different shape and size based on the classic Watson-Crick base-pairing for molecular self-assembly. Some DNA materials could functionally change cell biological behaviors, such as cell migration, cell proliferation, cell differentiation, autophagy, and anti-inflammatory effects. Some single-stranded DNAs (ssDNAs) or RNAs with secondary structures via self-pairing, named aptamer, possess the ability of targeting, which are selected by systematic evolution of ligands by exponential enrichment (SELEX) and applied for tumor targeted diagnosis and treatment. Some DNA nanomaterials with three-dimensional (3D) nanostructures and stable structures are investigated as drug carrier systems to delivery multiple antitumor medicine or gene therapeutic agents. While the functional DNA nanostructures have promoted the development of the DNA nanotechnology with innovative designs and preparation strategies, and also proved with great potential in the biological and medical use, there is still a long way to go for the eventual application of DNA materials in real life. Here in this review, we conducted a comprehensive survey of the structural development history of various DNA nanomaterials, introduced the principles of different DNA nanomaterials, summarized their biological applications in different fields, and discussed the current challenges and further directions that could help to achieve their applications in the future.
Collapse
|
6
|
Graceffa V. Physical and mechanical cues affecting biomaterial-mediated plasmid DNA delivery: insights into non-viral delivery systems. J Genet Eng Biotechnol 2021; 19:90. [PMID: 34142237 PMCID: PMC8211807 DOI: 10.1186/s43141-021-00194-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Whilst traditional strategies to increase transfection efficiency of non-viral systems aimed at modifying the vector or the polyplexes/lipoplexes, biomaterial-mediated gene delivery has recently sparked increased interest. This review aims at discussing biomaterial properties and unravelling underlying mechanisms of action, for biomaterial-mediated gene delivery. DNA internalisation and cytoplasmic transport are initially discussed. DNA immobilisation, encapsulation and surface-mediated gene delivery (SMD), the role of extracellular matrix (ECM) and topographical cues, biomaterial stiffness and mechanical stimulation are finally outlined. MAIN TEXT Endocytic pathways and mechanisms to escape the lysosomal network are highly variable. They depend on cell and DNA complex types but can be diverted using appropriate biomaterials. 3D scaffolds are generally fabricated via DNA immobilisation or encapsulation. Degradation rate and interaction with the vector affect temporal patterns of DNA release and transgene expression. In SMD, DNA is instead coated on 2D surfaces. SMD allows the incorporation of topographical cues, which, by inducing cytoskeletal re-arrangements, modulate DNA endocytosis. Incorporation of ECM mimetics allows cell type-specific transfection, whereas in spite of discordances in terms of optimal loading regimens, it is recognised that mechanical loading facilitates gene transfection. Finally, stiffer 2D substrates enhance DNA internalisation, whereas in 3D scaffolds, the role of stiffness is still dubious. CONCLUSION Although it is recognised that biomaterials allow the creation of tailored non-viral gene delivery systems, there still are many outstanding questions. A better characterisation of endocytic pathways would allow the diversion of cell adhesion processes and cytoskeletal dynamics, in order to increase cellular transfection. Further research on optimal biomaterial mechanical properties, cell ligand density and loading regimens is limited by the fact that such parameters influence a plethora of other different processes (e.g. cellular adhesion, spreading, migration, infiltration, and proliferation, DNA diffusion and release) which may in turn modulate gene delivery. Only a better understanding of these processes may allow the creation of novel robust engineered systems, potentially opening up a whole new area of biomaterial-guided gene delivery for non-viral systems.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Institute of Technology Sligo, Ash Ln, Bellanode, Sligo, Ireland.
- Department of Life Sciences, Institute of Technology Sligo, Ash Ln, Bellanode, Sligo, Ireland.
| |
Collapse
|
7
|
Ho TC, Kim HS, Chen Y, Li Y, LaMere MW, Chen C, Wang H, Gong J, Palumbo CD, Ashton JM, Kim HW, Xu Q, Becker MW, Leong KW. Scaffold-mediated CRISPR-Cas9 delivery system for acute myeloid leukemia therapy. SCIENCE ADVANCES 2021; 7:eabg3217. [PMID: 34138728 PMCID: PMC8133753 DOI: 10.1126/sciadv.abg3217] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/23/2021] [Indexed: 05/06/2023]
Abstract
Leukemia stem cells (LSCs) sustain the disease and contribute to relapse in acute myeloid leukemia (AML). Therapies that ablate LSCs may increase the chance of eliminating this cancer in patients. To this end, we used a bioreducible lipidoid-encapsulated Cas9/single guide RNA (sgRNA) ribonucleoprotein [lipidoid nanoparticle (LNP)-Cas9 RNP] to target the critical gene interleukin-1 receptor accessory protein (IL1RAP) in human LSCs. To enhance LSC targeting, we loaded LNP-Cas9 RNP and the chemokine CXCL12α onto mesenchymal stem cell membrane-coated nanofibril (MSCM-NF) scaffolds mimicking the bone marrow microenvironment. In vitro, CXCL12α release induced migration of LSCs to the scaffolds, and LNP-Cas9 RNP induced efficient gene editing. IL1RAP knockout reduced LSC colony-forming capacity and leukemic burden. Scaffold-based delivery increased the retention time of LNP-Cas9 in the bone marrow cavity. Overall, sustained local delivery of Cas9/IL1RAP sgRNA via CXCL12α-loaded LNP/MSCM-NF scaffolds provides an effective strategy for attenuating LSC growth to improve AML therapy.
Collapse
Affiliation(s)
- Tzu-Chieh Ho
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Hye Sung Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Yumei Chen
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yamin Li
- Department of Biomedical Engineering, Tufts University, Boston, MA, USA
| | - Mark W LaMere
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Caroline Chen
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Hui Wang
- Humanized Mouse Core Facility, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
| | - Jing Gong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Cal D Palumbo
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Genomics Research Center, University of Rochester, Rochester, NY, USA
| | - John M Ashton
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Genomics Research Center, University of Rochester, Rochester, NY, USA
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, Republic of Korea
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Boston, MA, USA
| | - Michael W Becker
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
8
|
Díaz-Amaya S, Zhao M, Allebach JP, Chiu GTC, Stanciu LA. Ionic Strength Influences on Biofunctional Au-Decorated Microparticles for Enhanced Performance in Multiplexed Colorimetric Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32397-32409. [PMID: 32645268 DOI: 10.1021/acsami.0c07636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The rising development of biosensors offers a great potential for health, food, and environmental monitoring. However, in many colorimetric platforms, there is a performance limitation stemming from the tendency of traditional Au nanoparticles toward nonspecific aggregation in response to changing ionic strength (salt concentration). This work puts forward a new type of colorimetric aptamer-functionalized labeling of microparticles, which allows to leverage an increase in ionic strength as a positive driver of enhanced detection performance of analytical targets. The resulting device is a cost-effective, instrument-free, portable, and reliable aptasensor that serves as basis for the fabrication of universal paper-based colorimetric platforms with the capability of multiplex, multireplicates and provides quantitative colorimetric detection. A controlled fabrication process was demonstrated by keeping 90% of the signal obtained from the as-fabricated devices (n = 40) within ± 1 standard deviation (SD) (relative SD = 5.69%) and following a mesokurtic normal-like distribution (p = 0.385). We propose for the first time a salt-induced aggregation mechanism for highly stable multilayered label particles (ssDNA-PEI-Au-PS) as the basis of the detection scheme. The use of DNA aptamers as capture biomolecules and PEI as an encapsulating agent allows for a sensitive and highly specific colorimetric response. As a proof of concept, multiplexed detection of mercury (Hg2+) and arsenic (As3+) was demonstrated. In addition, we introduced a robust image analysis algorithm for testing zone segmentation and color signal quantification that allowed for analytical detection, reaching a limit of detection of 1 ppm for both targeted analytes, with enough evidence (p > 0.05) to prove the high specificity of the fabricated device versus a pool of possible interferent ions.
Collapse
Affiliation(s)
- Susana Díaz-Amaya
- Department of Materials Engineering, Purdue University. West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University. West Lafayette, Indiana 47907, United States
| | - Min Zhao
- School of Electrical and Computer Engineering, Purdue University. West Lafayette, Indiana 47907, United States
| | - Jan P Allebach
- School of Electrical and Computer Engineering, Purdue University. West Lafayette, Indiana 47907, United States
| | - George T-C Chiu
- School of Electrical and Computer Engineering, Purdue University. West Lafayette, Indiana 47907, United States
- School of Mechanical Engineering, Purdue University. West Lafayette, Indiana 47907, United States
| | - Lia A Stanciu
- Department of Materials Engineering, Purdue University. West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University. West Lafayette, Indiana 47907, United States
| |
Collapse
|
9
|
S Zaitseva T, Yang G, Dionyssiou D, Zamani M, Sawamura S, Yakubov E, Ferguson J, Hallett RL, Fleischmann D, Paukshto MV, Huang NF. Delivery of hepatocyte growth factor mRNA from nanofibrillar scaffolds in a pig model of peripheral arterial disease. Regen Med 2020; 15:1761-1773. [PMID: 32772903 PMCID: PMC7787177 DOI: 10.2217/rme-2020-0023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/28/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Chemical modification of mRNA (mmRNA) substantially improves their stability and translational efficiency within cells. Nanofibrillar collagen scaffolds were previously shown to enable the spatially localized delivery and temporally controlled release of mmRNA encoding HGF both in vitro and in vivo. Materials & methods: Herein we developed an improved slow-releasing HGF mmRNA scaffold and tested its therapeutic efficacy in a porcine model of peripheral arterial disease. Results & conclusion: The HGF mmRNA was released from scaffolds in a temporally controlled fashion in vitro with preserved transfection activity. The mmRNA scaffolds improved vascular regeneration when sutured to the ligated porcine femoral artery. These studies validate the therapeutic potential of HGF mmRNA delivery from nanofibrillar scaffolds for treatment of peripheral arterial disease.
Collapse
Affiliation(s)
| | - Guang Yang
- Stanford Cardiovascular Institute, Stanford, CA 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304,USA
| | - Dimitris Dionyssiou
- Fibralign Corporation, Union City, CA 94587, USA
- Department of Plastic Surgery, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Maedeh Zamani
- Stanford Cardiovascular Institute, Stanford, CA 94305, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | | | | | | | - Richard L Hallett
- Stanford Cardiovascular Institute, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Dominik Fleischmann
- Stanford Cardiovascular Institute, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | | | - Ngan F Huang
- Stanford Cardiovascular Institute, Stanford, CA 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304,USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Hamann A, Thomas AK, Kozisek T, Farris E, Lück S, Zhang Y, Pannier AK. Screening a chemically defined extracellular matrix mimetic substrate library to identify substrates that enhance substrate-mediated transfection. Exp Biol Med (Maywood) 2020; 245:606-619. [PMID: 32183552 DOI: 10.1177/1535370220913501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nonviral gene delivery, though limited by inefficiency, has extensive utility in cell therapy, tissue engineering, and diagnostics. Substrate-mediated gene delivery (SMD) increases efficiency and allows transfection at a cell-biomaterial interface, by immobilizing and concentrating nucleic acid complexes on a surface. Efficient SMD generally requires substrates to be coated with serum or other protein coatings to mediate nucleic acid complex immobilization, as well as cell adhesion and growth; however, this strategy limits reproducibility and may be difficult to translate for clinical applications. As an alternative, we screened a chemically defined combinatorial library of 20 different extracellular matrix mimetic substrates containing combinations of (1) different sulfated polysaccharides that are essential extracellular matrix glycosaminoglycans (GAGs), with (2) mimetic peptides derived from adhesion proteins, growth factors, and cell-penetrating domains, for use as SMD coatings. We identified optimal substrates for DNA lipoplex and polyplex SMD transfection of fibroblasts and human mesenchymal stem cells. Optimal extracellular matrix mimetic substrates varied between cell type, donor source, and transfection reagent, but typically contained Heparin GAG and an adhesion peptide. Multiple substrates significantly increased transgene expression (i.e. 2- to 20-fold) over standard protein coatings. Considering previous research of similar ligands, we hypothesize extracellular matrix mimetic substrates modulate cell adhesion, proliferation, and survival, as well as plasmid internalization and trafficking. Our results demonstrate the utility of screening combinatorial extracellular matrix mimetic substrates for optimal SMD transfection towards application- and patient-specific technologies. Impact statement Substrate-mediated gene delivery (SMD) approaches have potential for modification of cells in applications where a cell-material interface exists. Conventional SMD uses ill-defined serum or protein coatings to facilitate immobilization of nucleic acid complexes, cell attachment, and subsequent transfection, which limits reproducibility and clinical utility. As an alternative, we screened a defined library of extracellular matrix mimetic substrates containing combinations of different glycosaminoglycans and bioactive peptides to identify optimal substrates for SMD transfection of fibroblasts and human mesenchymal stem cells. This strategy could be utilized to develop substrates for specific SMD applications in which variability exists between different cell types and patient samples.
Collapse
Affiliation(s)
- Andrew Hamann
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Alvin K Thomas
- B CUBE - Center for Molecular Bioengineering, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 41, Dresden 01307, Germany
| | - Tyler Kozisek
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Eric Farris
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Steffen Lück
- B CUBE - Center for Molecular Bioengineering, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 41, Dresden 01307, Germany
| | - Yixin Zhang
- B CUBE - Center for Molecular Bioengineering, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 41, Dresden 01307, Germany
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| |
Collapse
|
11
|
Gao C, Yang Y, Zhang Y, Qian M, Yang J. HGF Gene Delivering Alginate/Galactosylated Chitosan Sponge Scaffold for Three-Dimensional Coculture of Hepatocytes/3T3 Cells. DNA Cell Biol 2020; 39:451-458. [PMID: 31910350 DOI: 10.1089/dna.2019.5136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gene delivery from tissue engineering scaffold is a novel strategy in regulating long-term growth and function of cells in vitro culture. In this study, a hepatocyte growth factor plasmid/polyetherimide (pHGF/PEI) polyplex delivering alginate (AL)/galactosylated chitosan (GC) (pHGF/PEI-AL/GC) sponge scaffold was prepared for the in vitro coculture of hepatocytes/3T3 cells. The pHGF/PEI polyplex released for 6 days in the sponge scaffold with weight ratio of AL/GC being 3:1 and fixed amount of pHGF being 40 μg (24-well scaffold). In addition, the 3T3 cells culturing in the pHGF/PEI-AL/GC sponge scaffold could be continually transfected and expressed the exogenous HGF for 6 days. Furthermore, the albumin secretion and urea synthesis of hepatocytes were significantly enhanced when cocultured with 3T3 cells in the pHGF/PEI-AL/GC sponge scaffold compared with that in the AL/GC sponge without pHGF. In summary, the preparation of AL/GC sponge scaffold delivering pHGF/PEI polyplex is a critical significance for maintaining the long-term survival and function of primary hepatocytes in vitro.
Collapse
Affiliation(s)
- Chao Gao
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Ying Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Yan Zhang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Mengyuan Qian
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| |
Collapse
|
12
|
Zaitseva TS, Alcazar C, Zamani M, Hou L, Sawamura S, Yakubov E, Hopkins M, Woo YJ, Paukshto MV, Huang NF. Aligned Nanofibrillar Scaffolds for Controlled Delivery of Modified mRNA. Tissue Eng Part A 2019; 25:121-130. [PMID: 29717619 PMCID: PMC6352505 DOI: 10.1089/ten.tea.2017.0494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/26/2018] [Indexed: 01/04/2023] Open
Abstract
RNA-based vector delivery is a promising gene therapy approach. Recent advances in chemical modification of mRNA structure to form modified mRNA (mmRNA or cmRNA or modRNA) have substantially improved their stability and translational efficiency within cells. However, mmRNA conventionally delivered in solution can be taken up nonspecifically or become cleared away prematurely, which markedly limits the potential benefit of mmRNA therapy. To address this limitation, we developed mmRNA-incorporated nanofibrillar scaffolds that could target spatially localized delivery and temporally controlled release of the mmRNA both in vitro and in vivo. To establish the efficacy of mmRNA therapy, mmRNA encoding reporter proteins such as green fluorescence protein or firefly luciferase (Fluc) was loaded into aligned nanofibrillar collagen scaffolds. The mmRNA was released from mmRNA-loaded scaffolds in a transient and temporally controlled manner and induced transfection of human fibroblasts in a dose-dependent manner. In vitro transfection was further verified using mmRNA encoding the angiogenic growth factor, hepatocyte growth factor (HGF). Finally, scaffold-based delivery of HGF mmRNA to the site of surgically induced muscle injury in mice resulted in significantly higher vascular regeneration after 14 days, compared to implantation of Fluc mmRNA-releasing scaffolds. After transfection with Fluc mmRNA-releasing scaffold in vivo, Fluc activity was detectable and localized to the muscle region, based on noninvasive bioluminescence imaging. Scaffold-based local mmRNA delivery as an off-the-shelf form of gene therapy has broad translatability for treating a wide range of diseases or injuries.
Collapse
Affiliation(s)
| | - Cynthia Alcazar
- Stanford Cardiovascular Institute, Stanford, California
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Maedeh Zamani
- Stanford Cardiovascular Institute, Stanford, California
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California
| | - Luqia Hou
- Stanford Cardiovascular Institute, Stanford, California
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California
| | | | | | - Michael Hopkins
- Stanford Cardiovascular Institute, Stanford, California
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California
| | - Y. Joseph Woo
- Stanford Cardiovascular Institute, Stanford, California
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California
| | | | - Ngan F. Huang
- Stanford Cardiovascular Institute, Stanford, California
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California
| |
Collapse
|
13
|
Chen R, Zhang H, Yan J, Bryers JD. Scaffold-mediated delivery for non-viral mRNA vaccines. Gene Ther 2018; 25:556-567. [PMID: 30242259 DOI: 10.1038/s41434-018-0040-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Abstract
mRNA is increasingly being recognized as a promising alternative to pDNA in gene vaccinations. Only recently, owing to the needs of cancer immunotherapies, has the biomaterials/gene delivery community begun to develop new biomaterial strategies for immunomodulation. Here, we report a novel way to use implantable porous scaffolds as a local gene delivery depot to enhance mRNA vaccine immunization in vitro, and in vivo when compared with conventional bolus injections. We first evaluated transfection efficiencies of single-stranded mRNA condensed and charge neutralized with two lipids (Lipofectamine Messenger MAXTM LM-MM and StemfectTM SF) and two cationic polymers (in vivo-jetPEI™, Poly (β-amino ester)) as gene carriers. As SF demonstrated highest in vitro transfection and cell viability, it was selected for subsequent porous polymer scaffold-loading trials. Enhanced in vitro transfection of SF:mRNA nanoparticle-loaded poly (2-hydroxyethyl methacrylate) (pHEMA) scaffolds was also observed with a DC2.4 cell line. Improved sustained local release and local transgene expression were also demonstrated with SF:mRNA nanoparticle-loaded pHEMA scaffolds in vivo compared with bolus injections. Our results suggest that mRNA polyplex-loaded scaffolds may be a superior alternative to either repeated bolus immunizations or ex vivo transfection cell immunotherapies.
Collapse
Affiliation(s)
- Ruying Chen
- Department of Bioengineering, University of Washington, Seattle, WA, 98195-5061, USA
| | - Hong Zhang
- Department of Bioengineering, University of Washington, Seattle, WA, 98195-5061, USA
| | - Jingxuan Yan
- Department of Bioengineering, University of Washington, Seattle, WA, 98195-5061, USA
| | - James D Bryers
- Department of Bioengineering, University of Washington, Seattle, WA, 98195-5061, USA.
| |
Collapse
|
14
|
Youngblood RL, Truong NF, Segura T, Shea LD. It's All in the Delivery: Designing Hydrogels for Cell and Non-viral Gene Therapies. Mol Ther 2018; 26:2087-2106. [PMID: 30107997 PMCID: PMC6127639 DOI: 10.1016/j.ymthe.2018.07.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 01/08/2023] Open
Abstract
Hydrogels provide a regenerative medicine platform with their ability to create an environment that supports transplanted or endogenous infiltrating cells and enables these cells to restore or replace the function of tissues lost to disease or trauma. Furthermore, these systems have been employed as delivery vehicles for therapeutic genes, which can direct and/or enhance the function of the transplanted or endogenous cells. Herein, we review recent advances in the development of hydrogels for cell and non-viral gene delivery through understanding the design parameters, including both physical and biological components, on promoting transgene expression, cell engraftment, and ultimately cell function. Furthermore, this review identifies emerging opportunities for combining cell and gene delivery approaches to overcome challenges to the field.
Collapse
Affiliation(s)
- Richard L Youngblood
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Norman F Truong
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tatiana Segura
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
15
|
Controlled Non-Viral Gene Delivery in Cartilage and Bone Repair: Current Strategies and Future Directions. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Truong NF, Segura T. Sustained Transgene Expression via Hydrogel-Mediated Gene Transfer Results from Multiple Transfection Events. ACS Biomater Sci Eng 2018; 4:981-987. [DOI: 10.1021/acsbiomaterials.7b00957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Norman F. Truong
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Tatiana Segura
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Biomedical Engineering, Duke University, 305 Teer Engineering Building, Box 90271, Durham, North Carolina 27708, United States
| |
Collapse
|
17
|
Lee YH, Wu HC, Yeh CW, Kuan CH, Liao HT, Hsu HC, Tsai JC, Sun JS, Wang TW. Enzyme-crosslinked gene-activated matrix for the induction of mesenchymal stem cells in osteochondral tissue regeneration. Acta Biomater 2017; 63:210-226. [PMID: 28899816 DOI: 10.1016/j.actbio.2017.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/26/2017] [Accepted: 09/02/2017] [Indexed: 11/18/2022]
Abstract
The development of osteochondral tissue engineering is an important issue for the treatment of traumatic injury or aging associated joint disease. However, the different compositions and mechanical properties of cartilage and subchondral bone show the complexity of this tissue interface, making it challenging for the design and fabrication of osteochondral graft substitute. In this study, a bilayer scaffold is developed to promote the regeneration of osteochondral tissue within a single integrated construct. It has the capacity to serve as a gene delivery platform to promote transfection of human mesenchymal stem cells (hMSCs) and the functional osteochondral tissues formation. For the subchondral bone layer, the bone matrix with organic (type I collagen, Col) and inorganic (hydroxyapatite, Hap) composite scaffold has been developed through mineralization of hydroxyapatite nanocrystals oriented growth on collagen fibrils. We also prepare multi-shell nanoparticles in different layers with a calcium phosphate core and DNA/calcium phosphate shells conjugated with polyethyleneimine to act as non-viral vectors for delivery of plasmid DNA encoding BMP2 and TGF-β3, respectively. Microbial transglutaminase is used as a cross-linking agent to crosslink the bilayer scaffold. The ability of this scaffold to act as a gene-activated matrix is demonstrated with successful transfection efficiency. The results show that the sustained release of plasmids from gene-activated matrix can promote prolonged transgene expression and stimulate hMSCs differentiation into osteogenic and chondrogenic lineages by spatial and temporal control within the bilayer composite scaffold. This improved delivery method may enhance the functionalized composite graft to accelerate healing process for osteochondral tissue regeneration. STATEMENT OF SIGNIFICANCE In this study, a gene-activated matrix (GAM) to promote the growth of both cartilage and subchondral bone within a single integrated construct is developed. It has the capacity to promote transfection of human mesenchymal stem cells (hMSCs) and the functional osteochondral tissues formation. The results show that the sustained release of plasmids including TGF-beta and BMP-2 from GAM could promote prolonged transgene expression and stimulate hMSCs differentiation into the osteogenic and chondrogenic lineages by spatial control manner. This improved delivery method should enhance the functionalized composite graft to accelerate healing process in vitro and in vivo for osteochondral tissue regeneration.
Collapse
Affiliation(s)
- Yi-Hsuan Lee
- Institute of Biomedical Engineering, National Tsing Hua University, Taiwan
| | - Hsi-Chin Wu
- Department of Materials Engineering, Tatung University, Taiwan
| | - Chia-Wei Yeh
- Department of Materials Science and Engineering, National Tsing Hua University, Taiwan
| | - Chen-Hsiang Kuan
- Department of Plastic and Reconstructive Surgery, National Taiwan University Hospital, Taiwan
| | - Han-Tsung Liao
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taiwan
| | - Horng-Chaung Hsu
- Department of Orthopedics, China Medical University Hospital, Taiwan
| | - Jui-Che Tsai
- Department of Materials Engineering, Tatung University, Taiwan
| | - Jui-Sheng Sun
- Institute of Biomedical Engineering, National Tsing Hua University, Taiwan; Department of Orthopedic Surgery, National Taiwan University Hospital, Taiwan.
| | - Tzu-Wei Wang
- Institute of Biomedical Engineering, National Tsing Hua University, Taiwan; Department of Materials Science and Engineering, National Tsing Hua University, Taiwan.
| |
Collapse
|
18
|
Khalil AS, Yu X, Xie AW, Fontana G, Umhoefer JM, Johnson HJ, Hookway TA, McDevitt TC, Murphy WL. Functionalization of microparticles with mineral coatings enhances non-viral transfection of primary human cells. Sci Rep 2017; 7:14211. [PMID: 29079806 PMCID: PMC5660152 DOI: 10.1038/s41598-017-14153-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/02/2017] [Indexed: 12/28/2022] Open
Abstract
Gene delivery to primary human cells is a technology of critical interest to both life science research and therapeutic applications. However, poor efficiencies in gene transfer and undesirable safety profiles remain key limitations in advancing this technology. Here, we describe a materials-based approach whereby application of a bioresorbable mineral coating improves microparticle-based transfection of plasmid DNA lipoplexes in several primary human cell types. In the presence of these mineral-coated microparticles (MCMs), we observed up to 4-fold increases in transfection efficiency with simultaneous reductions in cytotoxicity. We identified mechanisms by which MCMs improve transfection, as well as coating compositions that improve transfection in three-dimensional cell constructs. The approach afforded efficient transfection in primary human fibroblasts as well as mesenchymal and embryonic stem cells for both two- and three-dimensional transfection strategies. This MCM-based transfection is an advancement in gene delivery technology, as it represents a non-viral approach that enables highly efficient, localized transfection and allows for transfection of three-dimensional cell constructs.
Collapse
Affiliation(s)
- Andrew S Khalil
- Department of Biomedical Engineering-University of Wisconsin-Madison, Madison, WI, USA
| | - Xiaohua Yu
- Department of Orthopedics and Rehabilitation-University of Wisconsin-Madison, Madison, WI, USA
| | - Angela W Xie
- Department of Biomedical Engineering-University of Wisconsin-Madison, Madison, WI, USA
| | - Gianluca Fontana
- Department of Biomedical Engineering-University of Wisconsin-Madison, Madison, WI, USA
| | - Jennifer M Umhoefer
- Department of Biomedical Engineering-University of Wisconsin-Madison, Madison, WI, USA
| | - Hunter J Johnson
- Department of Biomedical Engineering-University of Wisconsin-Madison, Madison, WI, USA
| | - Tracy A Hookway
- Department of Bioengineering & Therapeutic Sciences-University of California, San Francisco, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology & Medicine-Gladstone Institutes, San Francisco, CA, USA
| | - Todd C McDevitt
- Department of Bioengineering & Therapeutic Sciences-University of California, San Francisco, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology & Medicine-Gladstone Institutes, San Francisco, CA, USA
| | - William L Murphy
- Department of Biomedical Engineering-University of Wisconsin-Madison, Madison, WI, USA.
- Department of Orthopedics and Rehabilitation-University of Wisconsin-Madison, Madison, WI, USA.
- The Materials Science Program-University of Wisconsin-Madison, Madison, WI, USA.
- The Stem Cell and Regenerative Medicine Center-University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
19
|
Shin K, Acri T, Geary S, Salem AK. Biomimetic Mineralization of Biomaterials Using Simulated Body Fluids for Bone Tissue Engineering and Regenerative Medicine<sup/>. Tissue Eng Part A 2017; 23:1169-1180. [PMID: 28463603 DOI: 10.1089/ten.tea.2016.0556] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Development of synthetic biomaterials imbued with inorganic and organic characteristics of natural bone that are capable of promoting effective bone tissue regeneration is an ongoing goal of regenerative medicine. Calcium phosphate (CaP) has been predominantly utilized to mimic the inorganic components of bone, such as calcium hydroxyapatite, due to its intrinsic bioactivity and osteoconductivity. CaP-based materials can be further engineered to promote osteoinductivity through the incorporation of osteogenic biomolecules. In this study, we briefly describe the microstructure and the process of natural bone mineralization and introduce various methods for coating CaP onto biomaterial surfaces. In particular, we summarize the advantages and current progress of biomimetic surface-mineralizing processes using simulated body fluids for coating bone-like carbonated apatite onto various material surfaces such as metals, ceramics, and polymers. The osteoinductive effects of integrating biomolecules such as proteins, growth factors, and genes into the mineral coatings are also discussed.
Collapse
Affiliation(s)
- Kyungsup Shin
- 1 Department of Orthodontics, College of Dentistry and Dental Clinics, University of Iowa , Iowa City, Iowa
| | - Timothy Acri
- 2 Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa , Iowa City, Iowa
| | - Sean Geary
- 2 Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa , Iowa City, Iowa
| | - Aliasger K Salem
- 2 Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa , Iowa City, Iowa
| |
Collapse
|
20
|
|
21
|
Shin J, Cho JH, Jin Y, Yang K, Lee JS, Park HJ, Han HS, Lee J, Jeon H, Shin H, Cho SW. Mussel Adhesion-Inspired Reverse Transfection Platform Enhances Osteogenic Differentiation and Bone Formation of Human Adipose-Derived Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:6266-6278. [PMID: 27717233 DOI: 10.1002/smll.201601868] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/21/2016] [Indexed: 06/06/2023]
Abstract
Using small interfering RNA (siRNA) to regulate gene expression is an emerging strategy for stem cell manipulation to improve stem cell therapy. However, conventional methods of siRNA delivery into stem cells based on solution-mediated transfection are limited due to low transfection efficiency and insufficient duration of cell-siRNA contact during lengthy culturing protocols. To overcome these limitations, a bio-inspired polymer-mediated reverse transfection system is developed consisting of implantable poly(lactic-co-glycolic acid) (PLGA) scaffolds functionalized with siRNA-lipidoid nanoparticle (sLNP) complexes via polydopamine (pDA) coating. Immobilized sLNP complexes are stably maintained without any loss of siRNA on the pDA-coated scaffolds for 2 weeks, likely due to the formation of strong covalent bonds between amine groups of sLNP and catechol group of pDA. siRNA reverse transfection with the pDA-sLNP-PLGA system does not exhibit cytotoxicity and induces efficient silencing of an osteogenesis inhibitor gene in human adipose-derived stem cells (hADSCs), resulting in enhanced osteogenic differentiation of hADSCs. Finally, hADSCs osteogenically committed on the pDA-sLNP-PLGA scaffolds enhanced bone formation in a mouse model of critical-sized bone defect. Therefore, the bio-inspired reverse transfection system can provide an all-in-one platform for genetic modification, differentiation, and transplantation of stem cells, simultaneously enabling both stem cell manipulation and tissue engineering.
Collapse
Affiliation(s)
- Jisoo Shin
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Jung Ho Cho
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Yoonhee Jin
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Kisuk Yang
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Jong Seung Lee
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Hyun-Ji Park
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Hyung-Seop Han
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 136-650, Republic of Korea
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, U.K
| | - Jinkyu Lee
- Department of Bioengineering, Hanyang University, Seoul, 133-791, Republic of Korea
| | - Hojeong Jeon
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 136-650, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, 133-791, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| |
Collapse
|
22
|
Nair BG, Hagiwara K, Ueda M, Yu HH, Tseng HR, Ito Y. High Density of Aligned Nanowire Treated with Polydopamine for Efficient Gene Silencing by siRNA According to Cell Membrane Perturbation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:18693-18700. [PMID: 27420034 DOI: 10.1021/acsami.6b04913] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
High aspect ratio nanomaterials, such as vertically aligned silicon nanowire (SiNW) substrates, are three-dimensional topological features for cell manipulations. A high density of SiNWs significantly affects not only cell adhesion and proliferation but also the delivery of biomolecules to cells. Here, we used polydopamine (PD) that simply formed a thin coating on various material surfaces by the action of dopamine as a bioinspired approach. The PD coating not only enhanced cell adhesion, spreading, and growth but also anchored more siRNA by adsorption and provided more surface concentration for substrate-mediated delivery. By comparing plain and SiNW surfaces with the same amount of loaded siRNA, we quantitatively found that PD coating efficiently anchored siRNA on the surface, which knocked down the expression of a specific gene by RNA interference. It was also found that the interaction of SiNWs with the cell membrane perturbed the lateral diffusion of lipids in the membrane by fluorescence recovery after photobleaching. The perturbation was considered to induce the effective delivery of siRNA into cells and allow the cells to carry out their biological functions. These results suggest promising applications of PD-coated, high-density SiNWs as simple, fast, and versatile platforms for transmembrane delivery of biomolecules.
Collapse
Affiliation(s)
- Baiju G Nair
- Nano Medical Engineering Laboratory, RIKEN , 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | - Kyoji Hagiwara
- Emergent Bioengineering Material Research Team, RIKEN Centre for Emergent Matter Science , 2-1 Hirosawa, Wako, Saitama 3510198, Japan
- Laboratory of Human Science and Engineering , 1-3-1 Minaminagasaki, Toshima-ku, Tokyo 1710052, Japan
| | - Motoki Ueda
- Nano Medical Engineering Laboratory, RIKEN , 2-1 Hirosawa, Wako, Saitama 3510198, Japan
- Emergent Bioengineering Material Research Team, RIKEN Centre for Emergent Matter Science , 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | - Hsiao-Hua Yu
- Nano Medical Engineering Laboratory, RIKEN , 2-1 Hirosawa, Wako, Saitama 3510198, Japan
- Institute of Chemistry, Academia Sinica , 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, University of California , Los Angeles CNSI, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN , 2-1 Hirosawa, Wako, Saitama 3510198, Japan
- Emergent Bioengineering Material Research Team, RIKEN Centre for Emergent Matter Science , 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| |
Collapse
|
23
|
Ramalingam K, Castro R, Pires P, Shi X, Rodrigues J, Xiao S, Tomás H. Gene delivery using dendrimer/pDNA complexes immobilized in electrospun fibers using the Layer-by-Layer technique. RSC Adv 2016. [DOI: 10.1039/c6ra22444j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Dendrimer/pDNA complexes can be immobilized in PLGA fibers through the Layer-by-Layer technique and direct hMSCs towards osteogenic differentiation.
Collapse
Affiliation(s)
- Kirthiga Ramalingam
- CQM – Centro de Química da Madeira
- MMRG
- Universidade da Madeira
- Campus da Penteada
- 9000-390 Funchal
| | - Rita Castro
- CQM – Centro de Química da Madeira
- MMRG
- Universidade da Madeira
- Campus da Penteada
- 9000-390 Funchal
| | - Pedro Pires
- CQM – Centro de Química da Madeira
- MMRG
- Universidade da Madeira
- Campus da Penteada
- 9000-390 Funchal
| | - Xiangyang Shi
- CQM – Centro de Química da Madeira
- MMRG
- Universidade da Madeira
- Campus da Penteada
- 9000-390 Funchal
| | - João Rodrigues
- CQM – Centro de Química da Madeira
- MMRG
- Universidade da Madeira
- Campus da Penteada
- 9000-390 Funchal
| | - Shili Xiao
- CQM – Centro de Química da Madeira
- MMRG
- Universidade da Madeira
- Campus da Penteada
- 9000-390 Funchal
| | - Helena Tomás
- CQM – Centro de Química da Madeira
- MMRG
- Universidade da Madeira
- Campus da Penteada
- 9000-390 Funchal
| |
Collapse
|
24
|
Surface-mediated delivery of siRNA from fibrin hydrogels for knockdown of the BMP-2 binding antagonist noggin. Acta Biomater 2015; 25:109-20. [PMID: 26234488 DOI: 10.1016/j.actbio.2015.07.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/28/2015] [Accepted: 07/29/2015] [Indexed: 12/26/2022]
Abstract
Antagonists and inhibitory molecules responsible for maintaining tissue homeostasis can present a significant barrier to healing when tissue engineering/regenerative medicine strategies are employed. One example of this situation is the up-regulation of antagonists such as noggin in response to increasing concentrations of bone morphogenetic protein-2 (BMP-2) present from endogenous bone repair processes or delivered exogenously from biomaterials (synthetic bone grafts). While recombinant human (rh)BMP-2 delivered from synthetic bone grafts has been shown to be an effective alternative to autografts and allografts, the supraphysiological doses of rhBMP-2 have led to clinically-adverse side effects. The high rhBMP-2 dosage may be required, in part, to overcome the presence of antagonists such as noggin. Small interfering RNA (siRNA) is an appealing approach to overcome this problem because it can knock-down antagonists or inhibitory molecules in a temporary manner. Here, we conducted fundamental studies on the delivery of siRNA from material surfaces as a means to knock-down antagonists like noggin. Non-viral cationic lipid (Lipofectamine)-siRNA complexes were delivered from a fibrin hydrogel surface to MC3T3-E1 preosteoblasts that were treated with a supraphysiological dose of rhBMP-2 to achieve noggin mRNA expression levels higher than cells naïve to rhBMP-2. Confocal microscopy and flow cytometry showed intracellular uptake of siRNA in over 98% of MC3T3-E1 cells after 48 h. Doses of 0.5 and 1 μg noggin siRNA were able to significantly reduce noggin mRNA to levels equivalent to those in MC3T3-E1 cells not exposed to rhBMP-2 with no effects on cell viability. STATEMENT OF SIGNIFICANCE Small interfering RNA (siRNA) has been considered for treatment of diseases ranging from Alzheimer's to cancer. However, the ability to use siRNA in conjunction with biomaterials to direct tissue regeneration processes has received relatively little attention. Using the bone morphogenetic protein 2 antagonist, noggin, as a model, this research describes an approach to knock-down molecules that are inhibitory to desired regenerative pathways at the mRNA level via siRNA delivery from a hydrogel surface. Interactions between the material (fibrin) surface and polycation-siRNA complexes, release of the siRNA from the material surface, high levels of cellular uptake/internalization of siRNA, and significant knockdown of the targeting (noggin) mRNA are demonstrated. Broader future applications include those to nerve regeneration, cardiovascular tissue engineering, directing (stem) cell behavior, and mitigating inflammatory responses to materials.
Collapse
|
25
|
Lee S, Jin G, Jang JH. Electrospun nanofibers as versatile interfaces for efficient gene delivery. J Biol Eng 2014; 8:30. [PMID: 25926887 PMCID: PMC4414388 DOI: 10.1186/1754-1611-8-30] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/27/2014] [Indexed: 12/31/2022] Open
Abstract
The integration of gene delivery technologies with electrospun nanofibers is a versatile strategy to increase the potential of gene therapy as a key platform technology that can be readily utilized for numerous biomedical applications, including cancer therapy, stem cell therapy, and tissue engineering. As a spatial template for gene delivery, electrospun nanofibers possess highly advantageous characteristics, such as their ease of production, their ECM-analogue nature, the broad range of choices for materials, the feasibility of producing structures with varied physical and chemical properties, and their large surface-to-volume ratios. Thus, electrospun fiber-mediated gene delivery exhibits a great capacity to modulate the spatial and temporal release kinetics of gene vectors and enhance gene delivery efficiency. This review discusses the powerful characteristics of electrospun nanofibers, which can function as spatial interfaces capable of promoting controlled and efficient gene delivery.
Collapse
Affiliation(s)
- Slgirim Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 120-749 Korea
| | - Gyuhyung Jin
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 120-749 Korea
| | - Jae-Hyung Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 120-749 Korea
| |
Collapse
|
26
|
Bicomponent electrospinning to fabricate three-dimensional hydrogel-hybrid nanofibrous scaffolds with spatial fiber tortuosity. Biomed Microdevices 2014; 16:793-804. [DOI: 10.1007/s10544-014-9883-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Wang C, Li L, Ma L, Li B, Gao C. Biotin-triggered release and transfection of DNA complexes immobilized on a substrate via biotin–avidin interaction. J BIOACT COMPAT POL 2014. [DOI: 10.1177/0883911514528147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this study, the highly specific biotin–avidin interaction was used to immobilize DNA complexes to a substrate. An excess of biotin was added to trigger the dissociation of DNA complexes from the substrate to mediate their release and transfection. Biotin-grafted-polyethyleneimine/DNA complexes with N/P ratio of 5 were prepared with diameter of 170.2 nm and ζ-potential of 16.1 mV. The DNA immobilized substrates were fabricated using a biotin–avidin–biotin sandwich model, which were characterized by atom force microscope and fluorescent microscope. Compared to DNA immobilization by physical adsorption, a higher DNA density of 935 ng/cm2 was observed on biotinylated substrates. Based on the in vitro release profiles, the DNA complexes immobilized on silanized substrate released faster than those on biotinylated substrate. Triggered by the addition of extra biotin, more DNA complexes were released. The transfection efficiencies of the DNA complexes immobilized on different substrates were assayed on HEK-293T cells. The highest transfection efficiency was obtained in the group of biotinylated substrate with the trigger of extra biotin. Thus, the system of demobilized DNA complexes onto a substrate by the biotin–avidin interaction and the dissociation of DNA complexes from a substrate triggered by the extra biotin provides a promising strategy for the realization of the controlled release and enhanced transgene expression of genes.
Collapse
Affiliation(s)
- Chunfen Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Luyan Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Bo Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Wiederkehr RS, Mendes SB. Extension of the broadband single-mode integrated optical waveguide technique to the ultraviolet spectral region and its applications. Analyst 2014; 139:1396-402. [PMID: 24466569 DOI: 10.1039/c3an02201c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here the fabrication, characterization, and application of a single-mode integrated optical waveguide (IOW) spectrometer capable of acquiring optical absorbance spectra of surface-immobilized molecules in the visible and ultraviolet spectral region down to 315 nm. The UV-extension of the single-mode IOW technique to shorter wavelengths was made possible by our development of a low-loss single-mode dielectric waveguide in the UV region based on an alumina film grown by atomic layer deposition (ALD) over a high quality fused silica substrate, and by our design/fabrication of a broadband waveguide coupler formed by an integrated diffraction grating combined with a highly anamorphic optical beam of large numerical aperture. As an application of the developed technology, we report here the surface adsorption process of bacteriochlorophyll a on different interfaces using its Soret absorption band centred at 370 nm. The effects of different chemical compositions at the solid-liquid interface on the adsorption and spectral properties of bacteriochlorophyll a were determined from the polarized UV-Vis IOW spectra acquired with the developed instrumentation. The spectral extension of the single-mode IOW technique into the ultraviolet region is an important advance as it enables extremely sensitive studies in key characteristics of surface molecular processes (e.g., protein unfolding and solvation of aromatic amino-acid groups under surface binding) whose spectral features are mainly located at wavelengths below the visible spectrum.
Collapse
Affiliation(s)
- Rodrigo S Wiederkehr
- Department of Physics and Astronomy, University of Louisville, Louisville 40292, Kentucky, USA.
| | | |
Collapse
|
29
|
Inorganic coatings for optimized non-viral transfection of stem cells. Sci Rep 2013; 3:1567. [PMID: 23535735 PMCID: PMC3610100 DOI: 10.1038/srep01567] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/06/2013] [Indexed: 12/14/2022] Open
Abstract
“Biomimetic” approaches for heterogeneous growth of inorganic coatings have become particularly widespread in biomedical applications, where calcium phosphate (CaP) mineral coatings are used to improve biomedical implants. Changes in coating properties can influence the effects of mineral coatings on adjacent cells, but to date it has not been practical to systematically vary inorganic coating properties to optimize specific cell behaviors. Here, we present an approach to grow CaP mineral coatings in an enhanced throughput format to identify unprecedented capabilities in non-viral gene delivery. Subtle changes in coating properties resulted in widely variable transfection, and optimized coatings led to greater than 10-fold increases in transgene expression by multiple target cell types when compared to standard techniques. The enhanced transfection observed here is substrate-mediated, and related to the characteristics of the local environment near the surface of dissolving mineral coatings. These findings may be particularly translatable to medical device applications.
Collapse
|
30
|
Ma G, Wang Y, Fishbein I, Yu M, Zhang L, Alferiev IS, Yang J, Song C, Levy RJ. Anchoring of self-assembled plasmid DNA/anti-DNA antibody/cationic lipid micelles on bisphosphonate-modified stent for cardiovascular gene delivery. Int J Nanomedicine 2013; 8:1029-35. [PMID: 23687446 PMCID: PMC3655620 DOI: 10.2147/ijn.s40077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Indexed: 01/24/2023] Open
Abstract
Purpose: To investigate the anchoring of plasmid DNA/anti-DNA antibody/cationic lipid tri-complex (DAC
micelles) onto bisphosphonate-modified 316 L coronary stents for cardiovascular site-specific gene
delivery. Methods: Stents were first modified with polyallylamine bisphosphonate (PAA-BP), thereby enabling the
retention of a PAA-BP molecular monolayer that permits the anchoring (via vector-binding molecules)
of DAC micelles. DAC micelles were then chemically linked onto the PAA-BP-modified stents by using
N-succinimidyl-3-(2-pyridyldithiol)-propionate (SPDP) as a crosslinker. Rhodamine-labeled DNA was
used to assess the anchoring of DAC micelles, and radioactive-labeled antibody was used to evaluate
binding capacity and stability. DAC micelles (encoding green fluorescent protein) were tethered onto
the PAA-BP-modified stents, which were assessed in cell culture. The presence of a PAA-BP molecular
monolayer on the steel surface was confirmed by X-ray photoelectron spectroscopy and atomic force
microscope analysis. Results: The anchoring of DAC micelles was generally uniform and devoid of large-scale patches of defects.
Isotopic quantification confirmed that the amount of antibody chemically linked on the stents was
17-fold higher than that of the physical adsorbed control stents and its retention time was also
significantly longer. In cell culture, numerous green fluorescent protein-positive cells were found
on the PAA-BP modified stents, which demonstrated high localization and efficiency of gene
delivery. Conclusion: The DAC micelle-immobilized PAA-BP-modified stents were successful as a gene delivery system.
Gene delivery using DAC micelle-tethered stent-based PAA-BP functionalization should be suitable for
a wide array of single or multiple therapeutic gene strategies, and could be used on cardiovascular
metallic implants for achieving efficient gene therapy.
Collapse
Affiliation(s)
- Guilei Ma
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rujitanaroj PO, Jao B, Yang J, Wang F, Anderson JM, Wang J, Chew SY. Controlling fibrous capsule formation through long-term down-regulation of collagen type I (COL1A1) expression by nanofiber-mediated siRNA gene silencing. Acta Biomater 2013; 9:4513-24. [PMID: 23036951 PMCID: PMC3523808 DOI: 10.1016/j.actbio.2012.09.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 09/22/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
The foreign body reaction often interferes with the long-term functionality and performance of implanted biomedical devices through fibrous capsule formation. While many implant modification techniques have been adopted in attempts to control fibrous encapsulation, the outcomes remained sub-optimal. Nanofiber scaffold-mediated RNA interference may serve as an alternative approach through the localized and sustained delivery of siRNA at implant sites. In this study, we investigated the efficacy of siRNA-poly(caprolactone-co-ethylethylene phosphate) nanofibers in controlling fibrous capsule formation through the down-regulation of collagen type I (COL1A1) in vitro and in vivo. By encapsulating complexes of COL1A1 siRNA with a transfection reagent (Transit TKO) or the cell penetrating peptides CADY or MPG within the nanofibers (550-650 nm in diameter), a sustained release of siRNA was obtained for at least 28 days (loading efficiency ~60-67%). Scaffold-mediated transfection significantly enhanced cellular uptake of oligonucleotides and prolonged in vitro gene silencing duration by at least 2-3 times as compared to conventional bolus delivery of siRNA (14 days vs. 5-7 days by bolus delivery). In vivo subcutaneous implantation of siRNA scaffolds revealed a significant decrease in fibrous capsule thickness at weeks 2 and 4 as compared to plain nanofibers (p<0.05). Taken together, the results demonstrated the efficacy of scaffold-mediated siRNA gene-silencing in providing effective long-term control of fibrous capsule formation.
Collapse
Affiliation(s)
- Pim-on Rujitanaroj
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Brian Jao
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Junghoon Yang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Feng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - James M. Anderson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Jun Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| |
Collapse
|
32
|
Jen MC, Baler K, Hood AR, Shin S, Shea LD, Ameer GA. Sustained, localized transgene expression mediated from lentivirus-loaded biodegradable polyester elastomers. J Biomed Mater Res A 2012; 101:1328-35. [PMID: 23065823 DOI: 10.1002/jbm.a.34449] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 08/03/2012] [Accepted: 08/20/2012] [Indexed: 12/27/2022]
Abstract
The study of biomaterials for gene delivery in tissue engineering and regenerative medicine is a growing area, necessitating the investigation of new biomaterials and gene delivery vectors. Poly(1,8-octanediol citrate) (POC) and poly(glycerol-sebacate) (PGS) are biodegradable, biocompatible elastomers that have tunable mechanical properties, surface characteristics, and degradation rate. The objective of this work was to investigate whether POC and PGS would support the immobilization and release of lentivirus to allow sustained and localized transgene expression. Porous biomaterials were prepared using salt as a porogen, and in vitro and in vivo transgene expression from immobilized and released lentiviruses were assessed. Cells seeded onto biomaterials loaded with lentiviruses yielded titer-dependent transgene expression in vitro. Lentivirus activity on both biomaterials was maintained for at least 5 days. When implanted subcutaneously in rats, POC and PGS with immobilized lentivirus exhibited sustained and localized transgene expression for at least 5 weeks. This research demonstrates that lentivirus immobilization on POC and PGS is feasible and potentially useful for a variety of tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Michele C Jen
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | |
Collapse
|
33
|
Calcium phosphate composite layers for surface-mediated gene transfer. Acta Biomater 2012; 8:2034-46. [PMID: 22343517 DOI: 10.1016/j.actbio.2012.02.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/27/2012] [Accepted: 02/01/2012] [Indexed: 01/17/2023]
Abstract
In this review, the surface-mediated gene transfer system using calcium phosphate composite layers is described. Calcium phosphate ceramics are osteoconductive bioceramics used typically in orthopedic and dental applications. Additionally, calcium phosphate particles precipitated by a liquid-phase process have long been used as a safe and biocompatible transfection reagent in molecular biology. Recently, calcium phosphate composite layers immobilizing DNA were fabricated on the surfaces of base materials through a biomimetic process using supersaturated solutions. These composite layers possess useful characteristics of both osteoconductive bioceramics and transfection reagents; they thus provide a biocompatible surface to support cell adhesion and growth, and can stimulate the cell effectively via surface-mediated gene transfer. By modifying the fabrication conditions, physicochemical and biological properties of the composite layers can be varied. With such an approach, these composite layers can be designed to have improved affinity for cells and to exhibit increased gene transfer efficiency over that of conventional lipid transfection reagents. The composite layers with the increased gene transfer efficiency induced specific cell differentiation and tissue regeneration in vivo. These composite layers, given their good biocompatibility and the potential to control cell behavior on their surfaces, have great potential in tissue engineering applications.
Collapse
|
34
|
Gibly RF, Zhang X, Graham ML, Hering BJ, Kaufman DB, Lowe WL, Shea LD. Extrahepatic islet transplantation with microporous polymer scaffolds in syngeneic mouse and allogeneic porcine models. Biomaterials 2011; 32:9677-84. [PMID: 21959005 DOI: 10.1016/j.biomaterials.2011.08.084] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 08/31/2011] [Indexed: 02/03/2023]
Abstract
Intraportal transplantation of islets has successfully treated select patients with type 1 diabetes. However, intravascular infusion and the intrahepatic site contribute to significant early and late islet loss, yet a clinical alternative has remained elusive. We investigated non-encapsulating, porous, biodegradable polymer scaffolds as a vehicle for islet transplantation into extrahepatic sites, using syngeneic mouse and allogeneic porcine models. Scaffold architecture was modified to enhance cell infiltration leading to revascularization of the islets with minimal inflammatory response. In the diabetic mouse model, 125 islets seeded on scaffolds implanted into the epididymal fat pad restored normoglycemia within an average of 1.95 days and transplantation of only 75 islets required 12.1 days. Increasing the pore size to increase islet-islet interactions did not significantly impact islet function. The porcine model was used to investigate early islet engraftment. Increasing the islet seeding density led to a greater mass of engrafted islets, though the efficiency of islet survival decreased. Transplantation into the porcine omentum provided greater islet engraftment than the gastric submucosa. These results demonstrate scaffolds support murine islet transplantation with high efficiency, and feasibility studies in large animals support continued pre-clinical studies with scaffolds as a platform to control the transplant microenvironment.
Collapse
Affiliation(s)
- Romie F Gibly
- Institute of Bionanotechnology in Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Elastin-like polypeptide matrices for enhancing adeno-associated virus-mediated gene delivery to human neural stem cells. Gene Ther 2011; 19:329-37. [PMID: 21654823 DOI: 10.1038/gt.2011.84] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The successful development of efficient and safe gene delivery vectors continues to be a major obstacle to gene delivery in stem cells. In this study, we have developed an elastin-like polypeptide (ELP)-mediated adeno-associated virus (AAV) delivery system for transducing fibroblasts and human neural stem cells (hNSCs). AAVs have significant promise as therapeutic vectors because of their safety and potential for use in gene targeting in stem cell research. ELP has been recently employed as a biologically inspired 'smart' biomaterial that exhibits an inverse temperature phase transition, thereby demonstrating promise as a novel drug carrier. The ELP that was investigated in this study was composed of a repetitive penta-peptide with [Val-Pro-Gly-Val-Gly]. A novel AAV variant, AAV r3.45, which was previously engineered by directed evolution to enhance transduction in rat NSCs, was nonspecifically immobilized onto ELPs that were adsorbed beforehand on a tissue culture polystyrene surface (TCPS). The presence of different ELP quantities on the TCPS led to variations in surface morphology, roughness and wettability, which were ultimately key factors in the modulation of cellular transduction. Importantly, with substantially reduced viral quantities compared with bolus delivery, ELP-mediated AAV delivery significantly enhanced delivery efficiency in fibroblasts and hNSCs, which have great potential for use in tissue engineering applications and neurodegenerative disorder treatments, respectively. The enhancement of cellular transduction in stem cells, as well as the feasibility of ELPs for utilization in three-dimensional scaffolds, will contribute to the advancement of gene therapy for stem cell research and tissue regenerative medicine.
Collapse
|
36
|
Gajria S, Neumann T, Tirrell M. Self‐assembly and applications of nucleic acid solid‐state films. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 3:479-500. [DOI: 10.1002/wnan.148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Surekha Gajria
- Department of Chemistry, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Thorsten Neumann
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Matthew Tirrell
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
37
|
Rujitanaroj PO, Wang YC, Wang J, Chew SY. Nanofiber-mediated controlled release of siRNA complexes for long term gene-silencing applications. Biomaterials 2011; 32:5915-23. [PMID: 21596430 DOI: 10.1016/j.biomaterials.2011.04.065] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 04/23/2011] [Indexed: 12/20/2022]
Abstract
Nanofiber scaffold-mediated delivery of small-interfering RNA (siRNA) holds great potential in regenerative medicine by providing biomimicking topographical signals and enhanced gene silencing effects to seeded cells. While the delivery of naked siRNA was demonstrated previously using poly (ε-caprolactone) (PCL) nanofibers, the resulting siRNA release kinetics and gene knockdown efficiencies were sub-optimal. In this study, we investigated the feasibility of encapsulating siRNA and transfection reagent (TKO) complexes within nanofibers comprising of a copolymer of caprolactone and ethyl ethylene phosphate (PCLEEP, diameter ∼ 400 nm). Sustained release of bioactive naked siRNA and siRNA/TKO complexes were obtained for at least 28 days. By copolymerizing EEP with caprolactone, siRNA release was significantly enhanced (total siRNA that was released by day 49 was ∼ 89.3-97.2% as compared to previously reported 3% by plain PCL nanofiber delivery). Using GAPDH as the model protein, bioactivity analyses by supernatant transfection revealed the partial retention of bioactivity of naked siRNA and siRNA/TKO complexes for at least 30 days. In particular, GAPDH siRNA/TKO supernatant alone induced significant gene silencing (∼40%), indicating the feasibility of co-encapsulating siRNA and transfection reagent within a single scaffold construct for sustained delivery. Direct culture of cells on siRNA incorporated scaffolds for scaffold-mediated gene transfection revealed significant gene knockdown even in the absence of transfection reagent (21.3% knockdown efficiency by scaffolds incorporating naked siRNA only). By encapsulating siRNA/TKO complexes, more significant gene knockdown was obtained (30.9% knockdown efficiency as compared to previously reported 18% by plain PCL scaffold-mediated transfection). Taken together, the results demonstrated the feasibility of co-encapsulating siRNA-transfection reagent complexes within a single nanofiber construct for sustained siRNA delivery and enhanced gene knockdown efficiency. The study also highlights the potential of PCLEEP as a platform for tailoring siRNA release kinetics for long-term gene silencing applications.
Collapse
Affiliation(s)
- Pim-on Rujitanaroj
- Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | | | | | | |
Collapse
|
38
|
Gene carriers and transfection systems used in the recombination of dendritic cells for effective cancer immunotherapy. Clin Dev Immunol 2010; 2010:565643. [PMID: 21197274 PMCID: PMC3010860 DOI: 10.1155/2010/565643] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 10/28/2010] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells. They play a vital role in the initiation of immune response by presenting antigens to T cells and followed by induction of T-cell response. Reported research in animal studies indicated that vaccine immunity could be a promising alternative therapy for cancer patients. However, broad clinical utility has not been achieved yet, owing to the low transfection efficiency of DCs. Therefore, it is essential to improve the transfection efficiency of DC-based vaccination in immunotherapy. In several studies, DCs were genetically engineered by tumor-associated antigens or by immune molecules such as costimulatory molecules, cytokines, and chemokines. Encouraging results have been achieved in cancer treatment using various animal models. This paper describes the recent progress in gene delivery systems including viral vectors and nonviral carriers for DC-based genetically engineered vaccines. The reverse and three-dimensional transfection systems developed in DCs are also discussed.
Collapse
|
39
|
Xing Z, Zhou Z, Yu R, Li S, Li C, Nilsson S, Liu Z. XAF1 expression and regulatory effects of somatostatin on XAF1 in prostate cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:162. [PMID: 21143993 PMCID: PMC3012038 DOI: 10.1186/1756-9966-29-162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 12/11/2010] [Indexed: 11/19/2022]
Abstract
Background Somatostatin prevents cell proliferation by inducing apoptosis. Downregulation of the XAF1 transcript may occur during the development of prostate cancer. It is interesting to evaluate the potential regulatory effects of somatostatin on XAF1 expression during the development of prostate cancer cells. Methods XAF1 mRNA and protein expression in human prostate epithelial cells RWPE-1, androgen dependent prostate cancer LNCaP, and androgen independent DU145 and PC3 cells were evaluated using RT-PCR and Western blot. The regulation of XAF1 mRNA and protein expression by somatostatin and its analogue Octreotide was evaluated. Results Substantial levels of XAF1 mRNA and proteins were detected in RWPE-1 cells, whereas prostate cancer cells LNCaP, DU145 and PC3 exhibited lower XAF1 expression. Somatostatin and Octreotide up-regulated XAF1 mRNA and protein expression in all prostate cancer cell lines. Conclusions XAF1 down-regulation may contribute to the prostate cancer development. The enhanced XAF1 expression by somatostatin indicates a promising strategy for prostate cancer therapy.
Collapse
Affiliation(s)
- Zhaoquan Xing
- Department of Integrated Traditional Chinese and Western Medicine, Qilu Hospital, Shandong University, Jinan, 250012 P.R. China
| | | | | | | | | | | | | |
Collapse
|
40
|
Shin S, Salvay DM, Shea LD. Lentivirus delivery by adsorption to tissue engineering scaffolds. J Biomed Mater Res A 2010; 93:1252-9. [PMID: 19827108 DOI: 10.1002/jbm.a.32619] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biomaterial scaffolds capable of localized gene delivery are being investigated for numerous regenerative medicine applications and as model systems for fundamental studies of tissue formation. In this manuscript, we investigate the delivery of lentivirus from a tissue engineering scaffold using a surface immobilization strategy. Poly(lactide-co-glycolide) (PLG) was employed as the biomaterial for delivery, which has been widely used for a number of tissue engineering applications. The virus was immobilized by freezing and subsequent lyophilization of the virus with the scaffold. The presence of sucrose during freezing and lyophilization maintained the activity of the lentivirus, and was similar to an adenovirus control. Collagen and fibronectin were investigated for their ability to enhance surface immobilization. Fibronectin modestly increased binding and transduction of the adenovirus, yet did not significantly impact the lentivirus delivery. Most of the immobilized lentivirus was released from the scaffold within 24 h. In vivo implantation of the scaffolds yielded transgene expression that persisted for at least 4 weeks. These findings indicate the potential for delivering lentivirus from tissue engineering scaffolds using a surface immobilization strategy. To our knowledge, this report is the first to investigate lentivirus delivery from porous tissue engineering scaffolds. Delivery of lentiviral vectors from PLG scaffolds could provide an efficient and versatile gene delivery system for use with in vitro and in vivo models of tissue formation, and ultimately for therapeutic applications.
Collapse
Affiliation(s)
- Seungjin Shin
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road E156, Evanston, Illinois 60208-3120, USA
| | | | | |
Collapse
|
41
|
Zhang J, Duan Y, Wei D, Wang L, Wang H, Gu Z, Kong D. Co-electrospun fibrous scaffold-adsorbed DNA for substrate-mediated gene delivery. J Biomed Mater Res A 2010; 96:212-20. [DOI: 10.1002/jbm.a.32962] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/30/2010] [Accepted: 08/24/2010] [Indexed: 01/08/2023]
|
42
|
Rao RR, He J, Leach JK. Biomineralized composite substrates increase gene expression with nonviral delivery. J Biomed Mater Res A 2010; 94:344-54. [PMID: 20186740 DOI: 10.1002/jbm.a.32690] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Current strategies to enhance gene transfer have focused on the development of vectors to increase the efficiency of DNA delivery. However, the extracellular matrix and microenvironment have a profound impact on numerous cellular activities including spreading and proliferation; two processes that have been associated with gene transfer efficiency. This study was designed to test the hypothesis that the presence of a biomineralized coating on biodegradable substrates would affect transgene expression following nonviral gene delivery. Thin films were prepared from polymeric microspheres, while biomineralized films were fabricated from microspheres previously soaked in modified simulated body fluid. Mineralized films were significantly more rigid and had widespread mineral coverage compared with nonmineralized substrates. Human mesenchymal stem cells (MSCs) were cultured on biomineralized or nonmineralized films and transfected with plasmid DNA condensed with linear polyethyleneimine (PEI). Compared with cells transfected on nonmineralized films, increases in gene expression were detected in the presence of biomineral at all charge ratios examined. We observed increased uptake of both PEI and DNA by cells on mineralized films. The results of these studies offer an approach to modulate gene delivery and improve the potential benefit of nonviral gene delivery approaches.
Collapse
Affiliation(s)
- Rameshwar R Rao
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
43
|
Choi S, Murphy WL. Sustained plasmid DNA release from dissolving mineral coatings. Acta Biomater 2010; 6:3426-35. [PMID: 20304109 DOI: 10.1016/j.actbio.2010.03.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/21/2010] [Accepted: 03/15/2010] [Indexed: 10/19/2022]
Abstract
Calcium phosphate (CaP) minerals such as hydroxyapatite are able to bind a diverse range of biological molecules due to the presence of anions and cations in their crystal structure. The well-characterized ability of CaP minerals to bind and release plasmid DNA, coupled with the ability of biodegradable CaP coatings to form on the surface of common biomaterials, provides a potential mechanism for controlled release of plasmid DNA from various biomaterials. In this study we hypothesized that the release of plasmid DNA from CaP coatings formed on poly(lactide-co-glycolide) (PLG) substrates would be dependent on both the intrinsic properties of the CaP mineral coating and the surrounding solution conditions. Experiments were designed to consider two general parameters: (i) the stability of various CaP mineral coatings in solution environments that are relevant to physiological conditions; (ii) the relationship between mineral stability and sustained plasmid DNA release. Our results corroborate previous studies that have demonstrated a direct relationship between intrinsic mineral composition and mineral stability. In addition, we further demonstrate that ion composition and pH of the surrounding solution environment can significantly influence mineral stability. In turn, mineral stability significantly influenced release of plasmid DNA from mineral coatings in vitro, and the DNA release efficiency could be tuned by controlling the mineral properties in various solution environments. These CaP mineral coatings may be a useful platform for plasmid DNA delivery applications using various biomaterial platforms.
Collapse
|
44
|
Jang JH, Koerber JT, Gujraty K, Bethi SR, Kane RS, Schaffer DV. Surface immobilization of hexa-histidine-tagged adeno-associated viral vectors for localized gene delivery. Gene Ther 2010; 17:1384-9. [PMID: 20508598 PMCID: PMC2932747 DOI: 10.1038/gt.2010.81] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Adeno-associated viral vectors, which are undergoing broad exploration in clinical trials, have significant promise for therapeutic gene delivery due to their safety and delivery efficiency. Gene delivery technologies capable of mediating localized gene expression may further enhance AAV’s potential in a variety of therapeutic applications by reducing spread outside of a target region, which may thereby reduce off-target side effects. We have genetically engineered an AAV variant capable of binding to surfaces with high affinity via a hexahistidine-metal binding interaction. This immobilized AAV vector system mediates high efficiency delivery to cells that contact the surface and thus may have promise for localized gene delivery, which may aid numerous applications of AAV delivery to gene therapy.
Collapse
Affiliation(s)
- J-H Jang
- Department of Chemical Engineering, The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-1462, USA
| | | | | | | | | | | |
Collapse
|
45
|
Salvay DM, Zelivyanskaya M, Shea LD. Gene delivery by surface immobilization of plasmid to tissue-engineering scaffolds. Gene Ther 2010; 17:1134-41. [PMID: 20485383 PMCID: PMC2927809 DOI: 10.1038/gt.2010.79] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biomaterial scaffolds that serve as vehicles for gene delivery to promote expression of inductive factors have numerous regenerative medicine applications. In this report, we investigate plasmid delivery from biomaterial scaffolds using a surface immobilization strategy. Porous scaffolds were fabricated from poly(D,L-lactide-co-glycolide) (PLG), and plasmids were immobilized by drying. In vitro plasmid release indicated that the majority (>70%) of adsorbed plasmids were released within 24 h and >98% within 3 days; however, in vivo implantation of the scaffolds at the subcutaneous site yielded transgene expression that persisted for at least 28 weeks and was localized to the site of implantation. Histological analysis of DNA-adsorbed scaffolds indicated that macrophages at the scaffold were transfected in the first 2 weeks after implantation, whereas muscle cells adjacent to the implant primarily expressed the transgene at 4 weeks. In addition to localized gene expression, a secreted protein (human factor IX) was retained at the implant site and not available systemically after 3 days, indicating minimal off-target effects. These findings show that surface immobilization of plasmid onto microporous PLG scaffolds can produce localized and long-term gene expression in vivo, which may be used to enhance the bioactivity of scaffolds used for regenerative medicine.
Collapse
Affiliation(s)
- D M Salvay
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208-3120, USA
| | | | | |
Collapse
|
46
|
Rea JC, Gibly RF, Davis NE, Barron AE, Shea LD. Engineering surfaces for substrate-mediated gene delivery using recombinant proteins. Biomacromolecules 2010; 10:2779-86. [PMID: 19775146 DOI: 10.1021/bm900628e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Immobilized fibronectin and other natural proteins have been utilized to enhance substrate-mediated gene delivery, with apparent contributions from the intrinsic bioactivity and also physical properties of the immobilized proteins. In this report, we investigated the use of recombinant proteins, compared to the full-length fibronectin protein, as surface coatings for gene delivery to investigate the mechanisms by which fibronectin enhances gene transfer. The recombinant fibronectin fragment FNIII(7-10) (FNIII) contains the alpha(5)beta(1) binding domain of fibronectin and supports cell adhesion, whereas the recombinant protein polymer PP-12 is also negatively charged and has a molecular weight similar to FNIII, but lacks cell binding domains. Transfection was compared on surfaces modified with FNIII, full-length fibronectin, or PP-12. The full-length fibronectin provided the greatest extent of transgene expression relative to FNIII or PP-12, which was consistent with the amount of DNA that associated with cells. FNIII had 4.2-fold or 4.7-fold lower expression levels relative to fibronectin for polyplexes and lipoplexes, respectively. PP-12 produced expression levels that were 317-fold and 12.0-fold less than fibronectin for polyplexes and lipoplexes, respectively. Although expression was greater on FNIII relative to PP-12, the levels of DNA associated per cell with FNIII were similar to or less than those with PP-12, suggesting that the bioactive sequences may contribute to an enhanced intracellular trafficking. For lipoplexes delivered on FNIII, the efficiency of intracellular trafficking and levels of caveolar DNA were greater than that observed with either the full-length fibronectin or PP-12. For polyplexes, fibronectin fragment resulted in greater intracellular trafficking efficiency compared to PP-12 protein polymer. Recombinant proteins can be employed in place of full-length extracellular matrix proteins for substrate-mediated gene delivery, and bioactive sequences can influence one or more steps in the gene delivery process to maximize transfection.
Collapse
Affiliation(s)
- Jennifer C Rea
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|
47
|
Kim TG, Lee Y, Park TG. Controlled gene-eluting metal stent fabricated by bio-inspired surface modification with hyaluronic acid and deposition of DNA/PEI polyplexes. Int J Pharm 2010; 384:181-8. [DOI: 10.1016/j.ijpharm.2009.09.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 09/22/2009] [Indexed: 10/20/2022]
|
48
|
Regulated non-viral gene delivery from coaxial electrospun fiber mesh scaffolds. J Control Release 2009; 143:95-103. [PMID: 20006660 DOI: 10.1016/j.jconrel.2009.12.009] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 12/03/2009] [Accepted: 12/06/2009] [Indexed: 11/21/2022]
Abstract
In an effort to add to the versatility of three-dimensional scaffolds for tissue engineering applications, recent experimental designs are incorporating biological molecules such as plasmids and proteins within the scaffold structure. Such scaffolds act as reservoirs for the biological molecules of interest while regulating their release over various durations of time. Here, we describe the use of coaxial electrospinning as a means for the fabrication of fiber mesh scaffolds and the encapsulation and subsequent release of a non-viral gene delivery vector over a period of up to 60 days. Various fiber mesh scaffolds containing plasmid DNA (pDNA) within the core and the non-viral gene delivery vector poly(ethylenimine)-hyaluronic acid (PEI-HA) within the sheath of coaxial fibers were fabricated based on a fractional factorial design that investigated the effects of four processing parameters at two levels. Poly(epsilon-caprolactone) sheath polymer concentration, poly(ethylene glycol) core polymer molecular weight and concentration, and the concentration of pDNA were investigated for their effects on average fiber diameter, release kinetics of PEI-HA, and transfection efficiency. It was determined that increasing the values of each of the investigated parameters caused an increase in the average diameter of the fibers. The release kinetics of PEI-HA from the fibers were affected by the loading concentration of pDNA (with PEI-HA concentration adjusted accordingly to maintain a constant nitrogen to phosphorous (N:P) ratio within the complexes). Two-dimensional cell culture experiments with model fibroblast-like cells demonstrated that complexes of pDNA with PEI-HA released from fiber mesh scaffolds could successfully transfect cells and induce expression of enhanced green fluorescent protein (EGFP). Peak EGFP expression varied with the investigated processing parameters, and the average transfection observed was a function of poly(ethylene glycol) (core) molecular weight and concentration. Furthermore, fibroblast-like cells seeded directly onto coaxial fiber mesh scaffolds containing PEI-HA and pDNA showed EGFP expression over 60 days, which was significantly greater than the EGFP expression observed with scaffolds containing pDNA alone. Hence, variable transfection activity can be achieved over extended periods of time upon release of pDNA and non-viral gene delivery vectors from electrospun coaxial fiber mesh scaffolds, with release and subsequent transfection controlled by tunable coaxial fiber mesh fabrication parameters.
Collapse
|
49
|
Zhang Q, Cheng SX, Zhang XZ, Zhuo RX. Water Soluble Polymer Protected Lipofectamine 2000/DNA Complexes for Solid-Phase Transfection. Macromol Biosci 2009; 9:1262-71. [DOI: 10.1002/mabi.200900255] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Bengali Z, Rea JC, Gibly RF, Shea LD. Efficacy of immobilized polyplexes and lipoplexes for substrate-mediated gene delivery. Biotechnol Bioeng 2009; 102:1679-91. [PMID: 19148921 DOI: 10.1002/bit.22212] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Non-viral gene delivery by immobilization of complexes to cell-adhesive biomaterials, a process termed substrate-mediated delivery, has many in vitro research applications such as transfected cell arrays or models of tissue growth. In this report, we quantitatively investigate the efficiency of gene delivery by surface immobilization, and compare this efficiency to the more typical bolus delivery. The ability to immobilize vectors while allowing cellular internalization is impacted by the biomaterial and vector properties. Thus, to compare this efficiency between vector types and delivery methods, transfection conditions were initially identified that maximized transgene expression. For surface delivery from tissue culture polystyrene, DNA complexes were immobilized to pre-adsorbed serum proteins prior to cell seeding, while for bolus delivery, complexes were added to the media above adherent cells. Mathematical modeling of vector binding, release, and cell association using a two-site model indicated that the kinetics of polyplex binding to cells was faster than for lipoplexes, yet both vectors have a half-life on the surface of approximately 17 min. For bolus and surface delivery, the majority of the DNA in the system remained in solution or on the surface, respectively. For polyplexes, the efficiency of trafficking of cell-associated polyplexes to the nucleus for surface delivery is similar or less than bolus delivery, suggesting that surface immobilization may decrease the activity of the complex. The efficiency of nuclear association for cell-associated lipoplexes is similar or greater for surface delivery relative to bolus. These studies suggest that strategies to enhance surface delivery for polyplexes should target the vector design to enhance its potency, whereas enhancing lipoplex delivery should target the material design to increase internalization.
Collapse
Affiliation(s)
- Zain Bengali
- Department of Interdepartmental Biological Sciences, Northwestern University, Evanston, Illinois, USA
| | | | | | | |
Collapse
|