1
|
Abstract
PURPOSE Dental implant osseointegration comprises two types of bone formation-contact and distance osteogenesis-which result in bone formation originating from the implant surface or bone edges, respectively. The physicochemical properties of the implant surface regulate initial contact osteogenesis by directly tuning the osteoprogenitor cells in the peri-implant environment. However, whether these implant surface properties can regulate osteoprogenitor cells distant from the implant remains unclear. Innate immune cells, including neutrophils and macrophages, govern bone metabolism, suggesting their involvement in osseointegration and distance osteogenesis. This narrative review discusses the role of innate immunity in osseointegration and the effects of implant surface properties on distant osteogenesis, focusing on innate immune regulation. STUDY SELECTION The role of innate immunity in bone formation and the effects of implant surface properties on innate immune function were reviewed based on clinical, animal, and in vitro studies. RESULTS Neutrophils and macrophages are responsible for bone formation during osseointegration, via inflammatory mediators. The microroughness and hydrophilic status of titanium implants have the potential to alleviate this inflammatory response of neutrophils, and induce an anti-inflammatory response in macrophages, to tune both contact and distance osteogenesis through the activation of osteoblasts. Thus, the surface micro-roughness and hydrophilicity of implants can regulate the function of distant osteoprogenitor cells through innate immune cells. CONCLUSIONS Surface modification of implants aimed at regulating innate immunity may be useful in promoting further osteogenesis and overcoming the limitations encountered in severe situations, such as early loading protocol application.
Collapse
Affiliation(s)
- Takeru Kondo
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Masahiro Yamada
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
2
|
Shirazi S, Huang CC, Kang M, Lu Y, Leung KS, Pitol-Palin L, Gomes-Ferreira PHS, Okamoto R, Ravindran S, Cooper LF. Evaluation of nanoscale versus hybrid micro/nano surface topographies for endosseous implants. Acta Biomater 2024; 173:199-216. [PMID: 37918471 DOI: 10.1016/j.actbio.2023.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
We examined the effect of a nanoscale titanium surface topography (D) versus two hybrid micro/nanoscale topographies (B and OS) on adherent mesenchymal stem cells (MSCs) and bone marrow derived macrophages (BMMs) function in cell culture and in vivo. In the in vitro study, compared to OS and B surfaces, D surface induced earlier and greater cell spreading, and earlier and profound mRNA expression of RUNX2, Osterix and BMP2 in MSCs. D surface induced earlier and higher expression of RUNX2 and BMP2 and lower expression of inflammatory genes in implant adherent cells in vivo. Measurement of osteogenesis at implant surfaces showed greater bone-to-implant contact at D versus OS surfaces after 21 days. We explored the cell population on the D and OS implant surfaces 24 h after placement using single-cell RNA sequencing and identified distinct cell clusters including macrophages, neutrophils and B cells. D surface induced lower expression and earlier reduction of inflammatory genes expression in BMMs in vitro. BMMs on D, B and OS surfaces demonstrated a marked increase of BMP2 expression after 1 and 3 days, and this increase was significantly higher on D surface at day 3. Our data implicates a dynamic process that may be influenced by nanotopography at multiple stages of osseointegration including initial immunomodulation, recruitment of MSCs and later osteoblastic differentiation leading to bone matrix production and mineralization. The results suggest that a nanoscale topography (D) favorably modulates adherent macrophage polarization toward anti-inflammatory and regenerative phenotypes and promotes the osteoinductive phenotype of adherent mesenchymal stem cells. STATEMENT OF SIGNIFICANCE: Our manuscript contains original data developed to define effects of a novel nanotopography on the process of osseointegration at the cell and tissue level. Few studies have compared the effects of a nanoscale surface versus the more typical hybrid micro/nano-scale surfaces used today. We have utilized single-cell RNA sequencing for the first time to identify earliest cell populations on implant surfaces in vivo. We provide data indicating that the nanoscale surface acts upon both osteoprogenitor and immune cell (macrophages) to alter the process of bone formation in a surface-specific manner. This work represents new observations regarding osseointegration and immunomodulation.
Collapse
Affiliation(s)
- Sajjad Shirazi
- School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA; Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Chun-Chieh Huang
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Miya Kang
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Yu Lu
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Kasey S Leung
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Letícia Pitol-Palin
- Diagnosis and Surgery Department, São Paulo State University (UNESP), School of Dentistry, Araçatuba, 16018-805, Brazil
| | | | - Roberta Okamoto
- Basic Sciences Department, São Paulo State University (UNESP), School of Dentistry, Araçatuba, 16018-805, Brazil
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA.
| | - Lyndon F Cooper
- School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
3
|
Shirazi S, Ravindran S, Cooper LF. Topography-mediated immunomodulation in osseointegration; Ally or Enemy. Biomaterials 2022; 291:121903. [PMID: 36410109 PMCID: PMC10148651 DOI: 10.1016/j.biomaterials.2022.121903] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Osteoimmunology is at full display during endosseous implant osseointegration. Bone formation, maintenance and resorption at the implant surface is a result of bidirectional and dynamic reciprocal communication between the bone and immune cells that extends beyond the well-defined osteoblast-osteoclast signaling. Implant surface topography informs adherent progenitor and immune cell function and their cross-talk to modulate the process of bone accrual. Integrating titanium surface engineering with the principles of immunology is utilized to harness the power of immune system to improve osseointegration in healthy and diseased microenvironments. This review summarizes current information regarding immune cell-titanium implant surface interactions and places these events in the context of surface-mediated immunomodulation and bone regeneration. A mechanistic approach is directed in demonstrating the central role of osteoimmunology in the process of osseointegration and exploring how regulation of immune cell function at the implant-bone interface may be used in future control of clinical therapies. The process of peri-implant bone loss is also informed by immunomodulation at the implant surface. How surface topography is exploited to prevent osteoclastogenesis is considered herein with respect to peri-implant inflammation, osteoclastic precursor-surface interactions, and the upstream/downstream effects of surface topography on immune and progenitor cell function.
Collapse
Affiliation(s)
- Sajjad Shirazi
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA.
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Lyndon F Cooper
- School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
4
|
Pitchai M, Ipe D, Tadakamadla S, Hamlet S. Titanium Implant Surface Effects on Adherent Macrophage Phenotype: A Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7314. [PMID: 36295379 PMCID: PMC9609829 DOI: 10.3390/ma15207314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Immunomodulatory biomaterials have the potential to stimulate an immune response able to promote constructive and functional tissue remodeling responses as opposed to persistent inflammation and scar tissue formation. As such, the controlled activation of macrophages and modulation of their phenotype through implant surface modification has emerged as a key therapeutic strategy. METHODS Online databases were searched for in vitro studies between January 1991 and June 2020 which examined the effect of titanium implant surface topography on the adherent macrophage phenotype at either the gene or protein level. RESULTS Thirty-nine studies were subsequently included for review. Although there was significant heterogeneity between studies, treatment of titanium surfaces increased the surface roughness or hydrophilicity, and hence increased macrophage attachment but decreased cell spreading. Physical coating of the titanium surface also tended to promote the formation of cell clusters. Titanium and titanium-zirconium alloy with a micro- or nano-scale rough topography combined with a hydrophilic surface chemistry were the most effective surfaces for inducing an anti-inflammatory phenotype in adherent macrophages, as indicated by significant changes in cytokine gene expression and or cytokine secretion profiles. CONCLUSIONS The published data support the hypothesis that incorporation of specific topographical and physiochemical surface modifications to titanium can modulate the phenotypic response of adherent macrophages.
Collapse
Affiliation(s)
| | | | | | - Stephen Hamlet
- School of Medicine and Dentistry, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| |
Collapse
|
5
|
Aoyagi A, Hata M, Matsukawa R, Imanishi Y, Takebe J. Physicochemical properties of anodized-hydrothermally treated titanium with a nanotopographic surface structure promote osteogenic differentiation in dental pulp stem cells. J Prosthodont Res 2021; 65:474-481. [PMID: 33612663 DOI: 10.2186/jpr.jpr_d_20_00114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSE Implants made of anodized-hydrothermally treated commercially pure titanium with a nanotopographic surface structure (SA-treated c.p.Ti) may advantageously promote contact osteogenesis during the early stages of healing. We hypothesized that utilizing SA-treated c.p.Ti with dental pulp stem cells (DPSCs) might improve osteoconduction during the process of osseointegration. This in vitro study investigated the effect of initial adhesion of DPSCs to SA-treated c.p.Ti compared with conventional c.p.Ti and anodic oxide (AO) c.p.Ti. METHODS DPSCs were obtained from the mandibular incisors of Sprague-Dawley rats and cultured without osteogenic induction medium on c.p.Ti, AO c.p.Ti, and SA-treated c.p.Ti disks for up to 14 days. The morphology, proliferation, and differentiation of DPSCs were assessed by scanning electron microscopy, an MTT assay, and Alizarin Red S staining, respectively. A real-time quantitative polymerase chain reaction was used to quantify the mRNA expression of osteocalcin, osteopontin, and bone sialoprotein. RESULTS On all disks, the DPSCs appeared flattened with the formation of extensions over time. The filopodium-like extensions were closely bound to the SA-treated c.p.Ti surface. The proliferation of DPSCs was not significantly different among the c.p.Ti treatments. However, DPSCs on SA-treated c.p.Ti showed the greatest mRNA levels of osteopontin, osteocalcin, and bone sialoprotein, as well as increased Alizarin Red S staining. CONCLUSIONS The results of the present in vitro study demonstrate that the surface properties of SA-treated c.p.Ti disks enhance osteogenic differentiation of DPSCs and may facilitate mineralized matrix formation on SA-treated c.p.Ti implant surfaces, which can enhance early bone regeneration.
Collapse
Affiliation(s)
- Atsushi Aoyagi
- Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya
| | - Masaki Hata
- Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya
| | - Ryohei Matsukawa
- Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya
| | - Yuka Imanishi
- Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya
| | - Jun Takebe
- Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya
| |
Collapse
|
6
|
Hydrothermal treatment and butylphosphonic acid derived self-assembled monolayers for improving the surface chemistry and corrosion resistance of AZ61 magnesium alloy. Sci Rep 2017; 7:16910. [PMID: 29203906 PMCID: PMC5715064 DOI: 10.1038/s41598-017-17199-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/22/2017] [Indexed: 11/24/2022] Open
Abstract
The hydrothermal treatment followed by a self-assembled monolayer (SAM) of 1-butylphosphonic acid through the tethering by aggregation and growth (T-BAG) method was employed to produce protective surface coatings on the Mg-6Al-1Zn alloy (AZ61) for reducing the degradation rate in physiological environments. Potentiodynamic polarization measurements revealed that the organic self-assembled monolayer and Mg(OH)2 coating can further enhance the surface chemical stability and corrosion resistance of Mg alloys. SAM-treated Mg(OH)2 coatings can be served as a more passive surface layer as a result of their much higher charge transfer resistance and the presence of Warburg impedance in electrochemical impedance spectroscopy measurement.
Collapse
|
7
|
Pan H, Xie Y, Zhang Z, Li K, Hu D, Zheng X, Tang T. Immunomodulation effect of a hierarchical macropore/nanosurface on osteogenesis and angiogenesis. Biomed Mater 2017; 12:045006. [DOI: 10.1088/1748-605x/aa6b7c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Rydén L, Omar O, Johansson A, Jimbo R, Palmquist A, Thomsen P. Inflammatory cell response to ultra-thin amorphous and crystalline hydroxyapatite surfaces. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:9. [PMID: 27896599 PMCID: PMC5126180 DOI: 10.1007/s10856-016-5814-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/08/2016] [Indexed: 05/04/2023]
Abstract
It has been suggested that surface modification with a thin hydroxyapatite (HA) coating enhances the osseointegration of titanium implants. However, there is insufficient information about the biological processes involved in the HA-induced response. This study aimed to investigate the inflammatory cell response to titanium implants with either amorphous or crystalline thin HA. Human mononuclear cells were cultured on titanium discs with a machined surface or with a thin, 0.1 μm, amorphous or crystalline HA coating. Cells were cultured for 24 and 96 h, with and without lipopolysaccharide (LPS) stimulation. The surfaces were characterized with respect to chemistry, phase composition, wettability and topography. Biological analyses included the percentage of implant-adherent cells and the secretion of pro-inflammatory cytokine (TNF-α) and growth factors (BMP-2 and TGF-β1). Crystalline HA revealed a smooth surface, whereas the amorphous HA displayed a porous structure, at nano-scale, and a hydrophobic surface. Higher TNF-α secretion and a higher ratio of adherent cells were demonstrated for the amorphous HA compared with the crystalline HA. TGF-β1 secretion was detected in all groups, but without any difference. No BMP-2 secretion was detected in any of the groups. The addition of LPS resulted in a significant increase in TNF-α in all groups, whereas TGF-β1 was not affected. Taken together, the results show that thin HA coatings with similar micro-roughness but a different phase composition, nano-scale roughness and wettability are associated with different monocyte responses. In the absence of strong inflammatory stimuli, crystalline hydroxyapatite elicits a lower inflammatory response compared with amorphous hydroxyapatite.
Collapse
Affiliation(s)
- Louise Rydén
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Box 412, Gothenburg, SE-405 30, Sweden
| | - Omar Omar
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Box 412, Gothenburg, SE-405 30, Sweden.
- BIOMATCELL, VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden.
| | - Anna Johansson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Box 412, Gothenburg, SE-405 30, Sweden
- BIOMATCELL, VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Ryo Jimbo
- Department of Oral and Maxillofacial Surgery and Oral Medicine, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Box 412, Gothenburg, SE-405 30, Sweden
- BIOMATCELL, VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Box 412, Gothenburg, SE-405 30, Sweden
- BIOMATCELL, VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| |
Collapse
|
9
|
Moura CCG, Zanetta-Barbosa D, Dechichi P, Carvalho VF, Soares PBF. Effects of titanium surfaces on the developmental profile of monocytes/macrophages. Braz Dent J 2016; 25:96-103. [PMID: 25140712 DOI: 10.1590/0103-6440201302260] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 12/19/2013] [Indexed: 01/03/2023] Open
Abstract
Due to the critical role of monocytes/macrophages (Mϕ) in bone healing, this study evaluated the effects of bio-anodized, acid-etched, and machined titanium surfaces (Ti) on Mϕ behavior. Cells were separated from whole human blood from 10 patients, plated on Ti or polystyrene (control) surfaces, and cultured for 72 h. At 24, 48 and 72 h, cell viability, levels of IL1β, IL10, TNFα, TGFβ1 inflammatory mediators, and nitric oxide (NO) release were analyzed by mitochondrial colorimetric assay (MTT assay) and immunoenzymatic assays, respectively. Real-time PCR was used to verify the expression of TNFα and IL10 at 72 h. The data were subjected to a Kruskal-Wallis analysis. IL1β, TNFα and TGFβ1 release were not significantly different between the Ti surfaces (p>0.05). The presence of NO and IL10 was not detected in the samples. Cell viability did not differ between the samples cultivated on Ti and those cultivated on control surfaces, except at 24 h (p=0.0033). With respect to the mediators evaluated, the surface characteristics did not induce a typical Th1 or Th2 cytokine profile, although the cell morphology and topography were influenced by the Ti surface during the initial period.
Collapse
Affiliation(s)
| | - Darceny Zanetta-Barbosa
- Department of Oral and Maxillofacial Surgery and Implantology, School of Dentistry, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Paula Dechichi
- Department of Morphology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Valessa Florindo Carvalho
- Department of Operative Dentistry and Dental Materials, School of Dentistry, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Priscilla Barbosa Ferreira Soares
- Department of Oral and Maxillofacial Surgery and Implantology, School of Dentistry, Federal University of Uberlândia, Uberlândia, MG, Brazil
| |
Collapse
|
10
|
Lee CH, Kim YJ, Jang JH, Park JW. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces. NANOTECHNOLOGY 2016; 27:085101. [PMID: 26807875 DOI: 10.1088/0957-4484/27/8/085101] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function.
Collapse
Affiliation(s)
- Chung-Ho Lee
- Department of Periodontology, School of Dentistry, Kyungpook National University, 188-1, Samduk 2Ga, Jung-Gu, Daegu 700-412, Korea
| | | | | | | |
Collapse
|
11
|
Morra M, Cassinelli C, Bollati D, Cascardo G, Bellanda M. Adherent endotoxin on dental implant surfaces: a reappraisal. J ORAL IMPLANTOL 2015; 41:10-6. [PMID: 25699642 DOI: 10.1563/aaid-joi-d-12-00137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Osteoimmunology is the crosstalk between cells from the immune and skeletal systems, suggesting a role of pro-inflammatory cytokines in the stimulation of osteoclast activity. Endotoxin or bacterial challenges to inflammatory cells are directly relevant to dental implant pathologies involving bone resorption, such as osseointegration failure and peri-implantitis. While the endotoxin amount on implant devices is regulated by standards, it is unknown whether commercially available dental implants elicit different levels of adherent-endotoxin stimulated cytokines. The objective of this work is to develop a model system and evaluate endotoxin-induced expression of pro-inflammatory cytokine genes relevant to osteoclast activation on commercially available dental implants. Murine J774-A1 macrophages were cultured on Ti disks with different level of lipopolysaccharide (LPS) contamination to define the time-course of the inflammatory response to endotoxin, as evaluated by reverse transcription polymerase chain reaction analysis. The developed protocol was then used to measure adherent endotoxin on commercially available packaged and sterile dental implants in the "as-implanted" condition. Results show that tested dental implants induce variable expression of endotoxin-stimulated genes, sometimes above the level expected to promote bone resorption in vivo. Results are unaffected by the specific surface treatment; rather, they likely reflect care in cleaning and packaging protocols. In conclusion, expression of genes that enhance osteoclast activity through endotoxin stimulation of inflammatory cells is widely different on commercially available dental implants. A reappraisal of the clinical impact of adherent endotoxins on dental (and bone) implant devices is required in light of increasing knowledge on crosstalk between cells from the immune and skeletal systems.
Collapse
|
12
|
Chamberlain LM, Holt-Casper D, Gonzalez-Juarrero M, Grainger DW. Extended culture of macrophages from different sources and maturation results in a common M2 phenotype. J Biomed Mater Res A 2015; 103:2864-74. [PMID: 25684281 DOI: 10.1002/jbm.a.35415] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/12/2014] [Accepted: 01/20/2015] [Indexed: 01/13/2023]
Abstract
Inflammatory responses to biomaterials heavily influence the environment surrounding implanted devices, often producing foreign-body reactions. The macrophage is a key immunomodulatory cell type consistently associated with implanted biomaterials and routinely used in short-term in vitro cell studies of biomaterials aiming to reproduce host responses. Inconsistencies within these studies, including differently sourced cells, different durations of culture, and assessment of different activation markers, lead to many conflicting results in vitro that confound consistency and conclusions. We hypothesize that different experimentally popular monocyte-macrophage cell types have intrinsic in vitro culture-specific differences that yield conflicting results. Recent studies demonstrate changes in cultured macrophage cytokine expression over time, leading to the hypothesis that changes in macrophage phenotype also occur in response to extended culture. Here, macrophage cells of different transformed and primary-derived origins were cultured for 21 days on model polymer biomaterials. Cell type-based differences in morphology and cytokine/chemokine expression as well as changes in cell surface biomarkers associated with differentiation stage, activation state, and adhesion were compared. Results reflect consistent macrophage development toward an M2 phenotype via up-regulation of the macrophage mannose receptor for all cell types following 21-day extended culture. Significantly, implanted biomaterials experiencing the foreign-body response and encapsulation in vivo often elicit a shift toward an analogous M2 macrophage phenotype. In vitro "default" of macrophage cultures, regardless of lineage, to this M2 state in the presence of biomaterials at long culture periods is not recognized, but has important implications to in vitro modeling of in vivo host response.
Collapse
Affiliation(s)
- Lisa M Chamberlain
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado, 80523.,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, 84112-5820
| | - Dolly Holt-Casper
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, 84112-5820
| | - Mercedes Gonzalez-Juarrero
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado, 80523.,Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, 80523
| | - David W Grainger
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, 84112-5820.,Department of Bioengineering, University of Utah, Salt Lake City, Utah, 84112-5820
| |
Collapse
|
13
|
Formation and bioactivity of HA nanorods on micro-arc oxidized zirconium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 43:86-91. [DOI: 10.1016/j.msec.2014.06.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 05/23/2014] [Accepted: 06/30/2014] [Indexed: 11/23/2022]
|
14
|
Takebe J, Miyata K, Miura S, Ito S. Effects of the nanotopographic surface structure of commercially pure titanium following anodization-hydrothermal treatment on gene expression and adhesion in gingival epithelial cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:273-9. [PMID: 25063119 DOI: 10.1016/j.msec.2014.05.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/28/2014] [Accepted: 05/18/2014] [Indexed: 11/22/2022]
Abstract
The long-term stability and maintenance of endosseous implants with anodized-hydrothermally treated commercially pure titanium surfaces and a nanotopographic structure (SA-treated c.p.Ti) depend on the barrier function provided by the interface between the transmucosal portion of the implant surface and the peri-implant epithelium. This study investigated the effects of extracellular and intracellular gene expression in adherent gingival epithelial cells cultured for 1-7 days on SA-treated c.p.Ti implant surfaces compared to anodic oxide (AO) c.p.Ti and c.p.Ti disks. Scanning electron microscopy (SEM) showed filopodium-like extensions bound closely to the nanotopographic structure of SA-treated c.p.Ti at day 7 of culture. Gene expressions of focal adhesion kinase, integrin-α6β4, and laminin-5 (α3, β3, γ2) were significantly higher on SA-treated c.p.Ti than on c.p.Ti or AO c.p.Ti after 7 days (P<0.05). Our results confirmed that gingival epithelial cells adhere to SA-treated c.p.Ti as the transmucosal portion of an implant, and that this interaction markedly improves expression of focal adhesion molecules and enhances the epithelial cell phenotype. The cellular gene expression responses driving extracellular and intracellular molecular interactions thus play an important role in maintenance at the interface between SA-treated c.p.Ti implant surfaces and the gingival epithelial cells.
Collapse
Affiliation(s)
- J Takebe
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 1-3-27 Chuodori, Morioka, Iwate 020-8505, Japan.
| | - K Miyata
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 1-3-27 Chuodori, Morioka, Iwate 020-8505, Japan
| | - S Miura
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 1-3-27 Chuodori, Morioka, Iwate 020-8505, Japan
| | - S Ito
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 1-3-27 Chuodori, Morioka, Iwate 020-8505, Japan
| |
Collapse
|
15
|
Dolanmaz D, Saglam M, Inan O, Dundar N, Alniacık G, Gursoy Trak B, Kocak E, Hakki SS. Monitoring bone morphogenetic protein-2 and -7, soluble receptor activator of nuclear factor-κB ligand and osteoprotegerin levels in the peri-implant sulcular fluid during the osseointegration of hydrophilic-modified sandblasted acid-etched and sandblasted acid-etched surface dental implants. J Periodontal Res 2014; 50:62-73. [PMID: 24697526 DOI: 10.1111/jre.12182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND OBJECTIVE The implant surface plays a major role in the biological response to titanium dental implants. The aim of this study was to investigate levels of soluble receptor activator of nuclear factor-κB ligand (sRANKL), osteoprotegerin (OPG), bone morphogenetic protein-2 (BMP-2) and -7 (BMP-7) in the peri-implant crevicular fluid (PICF) of different implants during the osseointegration period. MATERIAL AND METHODS Forty-seven patients (22 females and 25 males, mean age 47.34 ± 10.11) were included in this study. Forty-seven implants from two implant systems (group A1 (sandblasted acid-etched [SLA]-16), group A2 (hydrophilic-modified SLA [SLActive]-16), and group B (sandblasted acid-etched [SLA]-15) were placed using standard surgical protocols. PICF samples, plaque index, gingival index and probing depth measurements were obtained at 1 and 3 mo after surgery. PICF levels of sRANKL, OPG, BMP-2/-7 were analyzed by ELISA. RESULTS No complications were observed during the healing period. No significant differences were observed in the PICF levels of sRANKL, OPG, BMP-2 and BMP-7 for all groups at any time point (p > 0.05). A significant decrease was observed in BMP-2 levels in group A1 (p < 0.05). A significant increase in BMP-7 levels was observed only for group A2 (p < 0.05). There was a strong negative correlation between OPG and gingival index and a negative correlation between BMP-7 and plaque index (p < 0.05). CONCLUSION Considering the correlations between clinical and biochemical parameters, the levels of these cytokines in PICF during early healing of implants reflects the degree of peri-implant inflammation, rather than differences in the implant surfaces.
Collapse
Affiliation(s)
- D Dolanmaz
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Selçuk University, Konya, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Sun SJ, Yu WQ, Zhang YL, Jiang XQ, Zhang FQ. Effects of TiO2 nanotube layers on RAW 264.7 macrophage behaviour and bone morphogenetic protein-2 expression. Cell Prolif 2014; 46:685-94. [PMID: 24460720 DOI: 10.1111/cpr.12072] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 07/21/2013] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES To investigate behaviour and osteogenic cytokine expression of RAW264.7 macrophages grown on TiO2 nanotube layers. MATERIALS AND METHODS The murine macrophage cell line RAW 264.7 was cultured on TiO2 nanotubes of varying diameter; macrophage morphology was examined using scanning electron microscopy. Cell adhesion and viability were assessed with the aid of the MTT method and BMP-2 and TGF-β gene expression were examined by RT-PCR analysis. Levels of BMP-2, TGF-β1 and ICAM-1 proteins secreted into the supernatant were measured by ELISA assay. RESULTS Macrophages cultured on nanotube layers had spread out morphology, the largest (120 nm) nanotube layer eliciting an elongation by 24 h. Macrophages adhered significantly less to 120 nm TiO2 nanotubes than to control discs at 4 h after application; after 24 h incubation, macrophages were sufficiently viable (P < 0.05) on 30 and 70 nm nanotube layers. Increasing nanotube diameter led to increased BMP-2 protein secretion and increased BMP-2 mRNA expression. CONCLUSION These results demonstrate that nanoscale topography of TiO2 nanotube layers can affect macrophage morphology, adhesion, viability and BMP-2 expression. Macrophages grown on layers of large nanotubes had the highest potential to enhance bone formation during bone healing.
Collapse
Affiliation(s)
- S J Sun
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | | | | | | | | |
Collapse
|
17
|
Zhou J, Li B, Lu S, Zhang L, Han Y. Regulation of osteoblast proliferation and differentiation by interrod spacing of Sr-HA nanorods on microporous titania coatings. ACS APPLIED MATERIALS & INTERFACES 2013; 5:5358-65. [PMID: 23668394 DOI: 10.1021/am401339n] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Strontium-doped hydroxyapatite (Ca9Sr1(PO4)6(OH)2, Sr1-HA) nanorods with different lateral spacing (e.g., interrod spacing) values (67.3 ± 3.8, 95.7 ± 4.2, and 136.8 ± 8.7 nm) and nanogranulates were grown on microarc-oxidized microporous TiO2, respectively, to form multilayer coatings. The coatings reveal two kinds of micro/nanoscaled hierarchical surfaces with a similar microscale roughness, e.g., nanogranulated 2D pattern and nanorod-shaped 3D pattern in nanotopography. When hFOB1.19 cells are employed, the proliferation and differentiation of osteoblasts on the coatings were evaluated by examining MTT assay, expressions of osteogenesis-related genes [alkaline phosphatase (ALP), runt-related transcription factor 2, osterix, osteopontin (OPN), osteocalcin (OCN), and collagen I (Col-I)], ALP activity, contents of intracellular Ca(2+), Col-I, OPN, and OCN, extracellular collagen secretion, and extracellular matrix mineralization. The results reveal that the proliferation and differentiation of osteoblasts can be directly regulated by the interrod spacing of the Sr1-HA nanorods, which are significantly enhanced on the nanorod-shaped 3D patterns with interrod spacing smaller than 96 nm and more pronounced with decreasing the interrod spacing but inhibited on the nanorods with spacing larger than 96 nm compared to the nanogranulated 2D pattern. The difference in the cellular activity is found to be related with the intracellular Ca(2+) concentrations, which are regulated by variation of the surface topology of Sr1-HA crystals. Our work provides insight to the surface structural design of a biomedical implant favoring osteointegration.
Collapse
Affiliation(s)
- Jianhong Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | | | | | | | | |
Collapse
|
18
|
Miyata K, Takebe J. Anodized-hydrothermally treated titanium with a nanotopographic surface structure regulates integrin-α6β4 and laminin-5 gene expression in adherent murine gingival epithelial cells. J Prosthodont Res 2013; 57:99-108. [PMID: 23415882 DOI: 10.1016/j.jpor.2012.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/13/2012] [Accepted: 12/16/2012] [Indexed: 11/13/2022]
Abstract
PURPOSE Peri-implant epithelium associated with the structure of the internal basal lamina is in contact with a transmucosal portion of the endosseous implant surface. This contact is important to protect the many complex factors required for the long-term stability and maintenance of the implant. This study investigated the effect of initial adhesion of gingival epithelial cells to anodized-hydrothermally treated commercially pure titanium with nanotopographic structure (SA-treated c.p.Ti). Changes in cell morphology and gene expression of integrin-α6β4 and laminin-5 were assessed. METHODS Murine immortalized gingival epithelial (GE1) cells were cultured for 1-3 days on c.p.Ti, anodic oxide (AO) c.p.Ti, and SA-treated c.p.Ti disks. Cell morphology was analyzed using scanning electron microscopy (SEM). Cell proliferation was analyzed using the WST-1 assay. Integrin-α6β4 and laminin-5 (α3, β3, γ2) mRNA levels were measured using real-time quantitative RT-PCR. RESULTS The GE1 cells appeared flattened with extensions on all disks by SEM analysis. Filopodium-like extensions were bound closely to the nanotopographic structure surface of SA-treated c.p.Ti especially at day 3 of culture. GE1 cell proliferation as well as the expression of integrin-α6β4 and laminin-5 (α3, β3, γ2) mRNAs was significantly higher on SA-treated c.p.Ti than on c.p.Ti and AO c.p.Ti disks after 3 days (P<0.05). CONCLUSIONS Gingival epithelial cells initially attach to a transmucosal portion of SA-treated c.p.Ti implant material and subsequently express the integrin-α6β4 adhesion molecule and the laminin-5 extracellular matrix molecule. This cell behavior may play a key role in maintaining the peri-implant oral mucosal tissue barrier.
Collapse
Affiliation(s)
- Kyohei Miyata
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, Japan
| | | |
Collapse
|
19
|
Moura CG, Souza MA, Kohal RJ, Dechichi P, Zanetta-Barbosa D, Jimbo R, Teixeira CC, Teixeira HS, Tovar N, Coelho PG. Evaluation of osteogenic cell culture and osteogenic/peripheral blood mononuclear human cell co-culture on modified titanium surfaces. Biomed Mater 2013; 8:035002. [DOI: 10.1088/1748-6041/8/3/035002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Han Y, Zhou J, Lu S, Zhang L. Enhanced osteoblast functions of narrow interligand spaced Sr-HA nano-fibers/rods grown on microporous titania coatings. RSC Adv 2013. [DOI: 10.1039/c3ra23425h] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Miura S, Takebe J. Biological behavior of fibroblast-like cells cultured on anodized-hydrothermally treated titanium with a nanotopographic surface structure. J Prosthodont Res 2012; 56:178-86. [DOI: 10.1016/j.jpor.2011.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 10/27/2011] [Accepted: 11/21/2011] [Indexed: 11/28/2022]
|
22
|
Jakobsen SS, Larsen A, Stoltenberg M, Bruun JM, Soballe K. Hydroxyapatite Coatings Did not Increase TGF-β and BMP-2 Secretion in Murine J774A.1 Macrophages, but Induced a Pro-inflammatory Cytokine Response. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 20:455-65. [DOI: 10.1163/156856209x416476] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Stig S. Jakobsen
- a Department of Orthopaedics, Aarhus University Hospital, Tage-Hansens Gade 2, DK-8000 Aarhus, Denmark; Department of Neurobiology, Institute of Anatomy, University of Aarhus, Denmark
| | - Agnete Larsen
- b Department of Neurobiology, Institute of Anatomy, University of Aarhus, Denmark
| | - Meredin Stoltenberg
- c Department of Neurobiology, Institute of Anatomy, University of Aarhus, Denmark
| | - Jens M. Bruun
- d Department of Endocrinology and Metabolism C, Aarhus University Hospital, Denmark
| | - Kjeld Soballe
- e Department of Orthopaedics, Aarhus University Hospital, Tage-Hansens Gade 2, DK-8000 Aarhus, Denmark
| |
Collapse
|
23
|
Takebe J, Ito S, Miura S, Miyata K, Ishibashi K. Physicochemical state of the nanotopographic surface of commercially pure titanium following anodization-hydrothermal treatment reveals significantly improved hydrophilicity and surface energy profiles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2011.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
24
|
Moura CCG, Soares PBF, Souza MAD, Zanetta-Barbosa D. Effect of titanium surface on secretion of IL1β and TGFβ1 by mononuclear cells. Braz Oral Res 2011; 25:500-5. [DOI: 10.1590/s1806-83242011000600005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 10/15/2011] [Indexed: 12/26/2022] Open
|
25
|
Preliminary investigations on the anodic oxidation of Ti–13Nb–13Zr alloy in a solution containing calcium and phosphorus. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.08.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Simka W, Sadkowski A, Warczak M, Iwaniak A, Dercz G, Michalska J, Maciej A. Characterization of passive films formed on titanium during anodic oxidation. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.07.129] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Omar OM, Granéli C, Ekström K, Karlsson C, Johansson A, Lausmaa J, Wexell CL, Thomsen P. The stimulation of an osteogenic response by classical monocyte activation. Biomaterials 2011; 32:8190-204. [PMID: 21835463 DOI: 10.1016/j.biomaterials.2011.07.055] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/17/2011] [Indexed: 12/12/2022]
Abstract
The monocyte/macrophage system plays a central role in host defense, wound healing and immune regulation at biomaterial surfaces. Monocytes can be classically and alternatively activated, and can be stimulated differently in response to variations in biomaterial surface properties. In this study, human monocytes, cultured on polystyrene surfaces (Ps), were activated either classically, by lipopolysaccharide (LPS), or alternatively, by interleukin-4 (IL-4). Monocytes were also cultured on anodically oxidized (Ox) and machined (Ma) titanium surfaces, with and without LPS stimulation. Cells were cultured for 1 and 3 days and their conditioned media (CM) were collected. The osteogenic response of hMSCs to the monocyte CM was determined by analyzing the gene expression of key osteogenic markers. The CM from classically activated monocytes increased the hMSCs expression of runt-related transcription factor 2 (Runx2) and alkaline phosphatase (ALP). Furthermore, CM from monocytes cultured on Ox surface resulted in a modest increase of the expression of bone morphogenetic protein-2 (BMP-2). LPS stimulation of the surface-seeded monocytes overwhelmed the effect of the surface properties and resulted in significant upregulation of BMP-2 and Runx2 for all samples. The results show that human monocytes, cultured on different surfaces and/or under different activation pathways, communicate pro-osteogenic signals to hMSCs. The signals involve regulation of autologous BMP-2 in the hMSCs. The classical activation results in profound and prolonged osteogenic effect compared to the effect of the investigated surface properties.
Collapse
Affiliation(s)
- Omar M Omar
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, SE-405 30 Göteborg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Han Y, Zhou J, Zhang L, Xu K. A multi-scaled hybrid orthopedic implant: bone ECM-shaped Sr-HA nanofibers on the microporous walls of a macroporous titanium scaffold. NANOTECHNOLOGY 2011; 22:275603. [PMID: 21597161 DOI: 10.1088/0957-4484/22/27/275603] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We report here, for the first time, a novel multi-scaled hybrid orthopedic implant material consisting of a macroporous Ti scaffold, whose macropores' walls have a microporous titania layer which is fully covered with nanofibers of Sr-doped hydroxyapatite (Sr-HA). The microporous titania layer is formed on and within the Ti scaffold by micro-arc oxidation, which firmly binds to the Ti substrate and contains Ca2+, Sr2+ and PO4(3-) ions. It is then hydrothermally treated to form Sr-HA nanofibers. During the hydrothermal treatment, Sr-HA nanoprisms nucleate from Ca0.5Sr0.5TiO3 pre-formed on the TiO2 and grow in length to nanofibers at the expense of Ca2+, Sr2+ and PO4(3-) ions that migrate from the TiO2. These Sr-HA nanofibers construct a network structure similar to the hierarchical organization of bone extracellular matrix (ECM), and the resulting nanofibrous surface displays a firm adhesion to substrate, superhydrophilicity and apatite-inducing ability. The induced apatite prefers to nucleate on the basal-faceted surfaces of Sr-HA nanofibers. The nanofiber-walled scaffold has a great potential for load-bearing orthotopic use.
Collapse
Affiliation(s)
- Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China.
| | | | | | | |
Collapse
|
29
|
Iwasa F, Tsukimura N, Sugita Y, Kanuru RK, Kubo K, Hasnain H, Att W, Ogawa T. TiO2 micro-nano-hybrid surface to alleviate biological aging of UV-photofunctionalized titanium. Int J Nanomedicine 2011; 6:1327-41. [PMID: 21760728 PMCID: PMC3133524 DOI: 10.2147/ijn.s22099] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bioactivity and osteoconductivity of titanium degrade over time after surface processing. This time-dependent degradation is substantial and defined as the biological aging of titanium. UV treatment has shown to reactivate the aged surfaces, a process known as photofunctionalization. This study determined whether there is a difference in the behavior of biological aging for titanium with micro-nano-hybrid topography and titanium with microtopography alone, following functionalization. Titanium disks were acid etched to create micropits on the surface. Micro-nano-hybrid surfaces were created by depositioning 300-nm diameter TiO2 nodules onto the micropits using a previously established self-assembly protocol. These disks were stored for 8 weeks in the dark to allow sufficient aging, then treated with UV light for 48 hours. Rat bone marrow–derived osteoblasts were cultured on fresh disks (immediately after UV treatment), 3-day-old disks (disks stored for 3 days after UV treatment), and 7-day- old disks. The rates of cell attachment, spread, proliferation, and levels of alkaline phosphatase activity, and calcium deposition were reduced by 30%–50% on micropit surfaces, depending on the age of the titanium. In contrast, 7-day-old hybrid surfaces maintained equivalent levels of bioactivity compared with the fresh surfaces. Both micropit and micro-nano-hybrid surfaces were superhydrophilic immediately after UV treatment. However, after 7 days, the micro-nano- hybrid surfaces became hydrorepellent, while the micropit surfaces remained hydrophilic. The sustained bioactivity levels of the micro-nano-hybrid surfaces were nullified by treating these surfaces with Cl−anions. A thin TiO2 coating on the micropit surface without the formation of nanonodules did not result in the prevention or alleviation of the time-dependent decrease in biological activity. In conclusion, the micro-nano-hybrid titanium surfaces may slow the rate of time-dependent degradation of titanium bioactivity after UV photofunctionalization compared with titanium surfaces with microtopography alone. This antibiological aging effect was largely regulated by its sustained electropositivity uniquely conferred in TiO2 nanonodules, and was independent of the degree of hydrophilicity. These results demonstrate the potential usefulness of these hybrid surfaces to effectively utilize the benefits of UV photofunctionalization and provide a model to explore the mechanisms underlying antibiological aging properties.
Collapse
Affiliation(s)
- Fuminori Iwasa
- Laboratory of Bone and Implant Sciences (LBIS), The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kikuchi S, Takebe J. Characterization of the surface deposition on anodized-hydrothermally treated commercially pure titanium after immersion in simulated body fluid. J Prosthodont Res 2010; 54:70-7. [DOI: 10.1016/j.jpor.2009.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 10/16/2009] [Accepted: 11/10/2009] [Indexed: 11/26/2022]
|
31
|
Carvalho DRD, Carvalho PSPD, Magro Filho O, Mello JDBD, Beloti MM, Rosa AL. Characterization and in vitro cytocompatibility of an acid-etched titanium surface. Braz Dent J 2010; 21:3-11. [DOI: 10.1590/s0103-64402010000100001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Indexed: 11/22/2022] Open
Abstract
The aims of this study were to characterize the microstructure of a commercially pure titanium (cpTi) surface etched with HCl/H2SO4 (AE-cpTi) and to investigate its in vitro cytocompatibility compared to turned cpTi (T-cpTi). T-cpTi showed a grooved surface and AE-cpTi revealed a surface characterized by the presence of micropits. Surface parameters indicated that the AE-cpTi surface is more isotropic and present a greater area compared to T-cpTi. The oxide film thickness was similar between both surfaces; however, AE-cpTi presented more Ti and O and less C. Osteoblastic cell proliferation, alkaline phosphatase activity, and bone-like nodule formation were greater on T-cpTi than on AE-cpTi. These results show that acid etching treatment produced a surface with different topographical and chemical features compared to the turned one, and such surface modification affected negatively the in vitro cytocompatibility of cpTi as demonstrated by decreasing culture growth and expression of osteoblastic phenotype.
Collapse
|
32
|
|
33
|
Preparation andin vivoevaluation of apatite/collagen packed composite by alternate immersion method and Newton press. J Biomed Mater Res B Appl Biomater 2009; 90:566-73. [DOI: 10.1002/jbm.b.31318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Abstract
This review deals with the contemporary investigations of carcinogenesis induced by foreign bodies. The main attention is given to the interactions of macrophages with an implanted foreign body and their possible role in tumorigenesis.
Collapse
Affiliation(s)
- T G Moizhess
- Institute of Carcinogenesis, Blokhin Cancer Research Center, Russian Academy of Medical Sciences, Moscow, 115478, Russia.
| |
Collapse
|
35
|
Ito S, Takebe J. Longitudinal Observation of Thin Hydroxyapatite Layers Formed on Anodic Oxide Titanium Implants after Hydrothermal Treatment in a Rat Maxilla Model. ACTA ACUST UNITED AC 2008. [DOI: 10.2186/prp.7.82] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Takebe J, Nakasato Y, Ito S, Kikuchi S, Itoh S, Shioyama T, Ishibashi K. Surface Modification Enhances Osteoblast Behavior and Bone Formation on Thin Hydroxyapatite Layers Deposited Using a Novel Anodization-Hydrothermal Treatment on Commercially Pure Titanium Endosseous Implants. ACTA ACUST UNITED AC 2008. [DOI: 10.2186/prp.7.159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|