1
|
Yin J, Zhao C, Huang J, Chen C, Lei T, He J, Qiu D. Diabetic conditions promote drug coating degradation but prevent endothelial coverage after stenting. Acta Biomater 2024; 177:189-202. [PMID: 38307481 DOI: 10.1016/j.actbio.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
The endothelialization of drug-eluting stents is delayed after implantation in patients with diabetes. Although numerous factors were implicated in hyperglycemia-induced endothelial dysfunction, the effects of stent drug coating degradation on endothelial dysfunction remains unclear. We hypothesized that diabetic conditions promote drugcoating degradation and enhance antiproliferative agent release, but that the rapid release of these antiproliferative agents inhibits endothelial cell proliferation leading to poor reendothelialization post-stenting. To verify this hypothesis, a dynamic hyperglycemic circulation system was introduced to measure the profile of drugcoating degradation in vitro. Flow cytometry and RNA sequencing were performed to evaluate endothelial cell proliferation. Moreover, a Type 1 diabetic rabbit model was generated and a rescue experiment conducted to evaluate the effects of rapid drugcoating elution on endothelial coverage in vivo. The main findings were as follows: 1) diabetic conditions promoted drugcoating degradation and increased antiproliferative agent release; 2) this increase in antiproliferative agent release inhibited endothelial cell proliferation and delayed endothelial coverage; and 3) strict glycemic control attenuated drugcoating degradation and promoted endothelial coverage post-stenting. This is the first study to illustrate rapid drugcoating degradation and its potential effects on endothelial recovery under diabetic conditions, highlighting the importance of strict glycemic management in patients with diabetes after drug-eluting stent implantation. STATEMENT OF SIGNIFICANCE: Diabetic conditions promote drug coating degradation and increase the release of antiproliferative agents. Rapid drug coating degradation under diabetic conditions inhibits endothelial cell proliferation and delays endothelialization. Strict glycemic control attenuates drug coating degradation and promotes endothelialization.
Collapse
Affiliation(s)
- Jun Yin
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Chunguang Zhao
- Department of Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha 410008, Hunan Province, China.
| | - Jiabing Huang
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, PR China
| | - Changqing Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Ting Lei
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China.
| | - Jiawei He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Dongxu Qiu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Wilson S, Mone P, Kansakar U, Jankauskas SS, Donkor K, Adebayo A, Varzideh F, Eacobacci M, Gambardella J, Lombardi A, Santulli G. Diabetes and restenosis. Cardiovasc Diabetol 2022; 21:23. [PMID: 35164744 PMCID: PMC8845371 DOI: 10.1186/s12933-022-01460-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/21/2022] [Indexed: 01/05/2023] Open
Abstract
Restenosis, defined as the re-narrowing of an arterial lumen after revascularization, represents an increasingly important issue in clinical practice. Indeed, as the number of stent placements has risen to an estimate that exceeds 3 million annually worldwide, revascularization procedures have become much more common. Several investigators have demonstrated that vessels in patients with diabetes mellitus have an increased risk restenosis. Here we present a systematic overview of the effects of diabetes on in-stent restenosis. Current classification and updated epidemiology of restenosis are discussed, alongside the main mechanisms underlying the pathophysiology of this event. Then, we summarize the clinical presentation of restenosis, emphasizing the importance of glycemic control in diabetic patients. Indeed, in diabetic patients who underwent revascularization procedures a proper glycemic control remains imperative.
Collapse
Affiliation(s)
- Scott Wilson
- Department of Medicine, Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY, USA
| | - Pasquale Mone
- Department of Medicine, Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY, USA
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI),, Albert Einstein College of Medicine, New York, NY, USA
| | - Urna Kansakar
- Department of Medicine, Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY, USA
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI),, Albert Einstein College of Medicine, New York, NY, USA
| | - Stanislovas S Jankauskas
- Department of Medicine, Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY, USA
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI),, Albert Einstein College of Medicine, New York, NY, USA
| | - Kwame Donkor
- Department of Medicine, Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY, USA
| | - Ayobami Adebayo
- Department of Medicine, Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY, USA
| | - Fahimeh Varzideh
- Department of Medicine, Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY, USA
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI),, Albert Einstein College of Medicine, New York, NY, USA
| | - Michael Eacobacci
- Department of Medicine, Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY, USA
| | - Jessica Gambardella
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI),, Albert Einstein College of Medicine, New York, NY, USA
- International Translational Research and Medical Education (ITME) Consortium, Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy
| | - Angela Lombardi
- Department of Medicine, Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY, USA
| | - Gaetano Santulli
- Department of Medicine, Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY, USA.
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI),, Albert Einstein College of Medicine, New York, NY, USA.
- International Translational Research and Medical Education (ITME) Consortium, Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy.
| |
Collapse
|
3
|
Kaewarpai T, Thongboonkerd V. High-glucose-induced changes in macrophage secretome: regulation of immune response. Mol Cell Biochem 2018; 452:51-62. [PMID: 30022449 DOI: 10.1007/s11010-018-3411-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/13/2018] [Indexed: 01/05/2023]
Abstract
Secretory products from infiltrating macrophages have been thought to play crucial roles in development and progression of diabetic complications in various tissues/organs. Nevertheless, diabetes-induced changes in macrophage secretory products remained largely unknown. We thus analyzed high-glucose (HG)-induced changes in secretome of human macrophages derived from U937 human monocytic cell line after phorbol 12-myristate 13-acetate (PMA) activation. Serum-free culture supernatants were collected from macrophages exposed to 5.5 mM glucose (NG-M-sup) (normal control), 25 mM glucose (HG-M-sup), or 5.5 mM glucose + 19.5 mM mannitol (MN-M-sup) (osmotic control) for 16 h. After dialysis and lyophilization, secreted proteins were subjected to 2-DE analysis (n = 5 gels derived from 5 independent cultures per group). Quantitative analysis and statistics revealed 23 protein spots whose secretory levels significantly differed among the three conditions. These proteins were successfully identified by nanoLC-ESI-MS/MS analyses and changes in levels of heat shock protein 90 (HSP90), HSP70, HSP60, and β-actin were confirmed by Western blotting. Global protein network and functional enrichment analyses revealed that the altered proteins in HG-M-sup were involved mainly in regulation of immune response that might communicate with other bystander cells through the release of extracellular vesicles. These data may lead to a wider view of pathogenic mechanisms of diabetic complications.
Collapse
Affiliation(s)
- Taniya Kaewarpai
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand. .,Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand. .,Medical Proteomics Unit, Office for Research and Development, Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
4
|
Guildford AL, Stewart HJS, Morris C, Santin M. Substrate-induced phenotypic switches of human smooth muscle cells: an in vitro study of in-stent restenosis activation pathways. J R Soc Interface 2010; 8:641-9. [PMID: 21106574 DOI: 10.1098/rsif.2010.0532] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In-stent restenosis is a clinical complication following coronary angioplasty caused by the implantation of the metal device in the atherosclerotic vessel. Histological examination has shown a clear contribution of both inflammatory and smooth muscle cells (SMCs) to the deposition of an excess of neointimal tissue. However, the sequence of events leading to clinically relevant restenosis is unknown. This paper aims to study the phenotype of SMCs when adhering on substrates and exposed to biochemical stimuli typical of the early phases of stent implantation. In particular, human SMC phenotype was studied when adhering on extracellular matrix-like material (collagen-rich gel), thrombus-like material (fibrin gel) and stent material (stainless steel) in the presence or absence of a platelet-derived growth factor (PDGF) stimulus. Cells on the collagen and fibrin-rich substrates maintained their contractile phenotype. By contrast, cells on stainless steel acquired a secretory phenotype with a proliferation rate 50 per cent higher than cells on the natural substrates. Cells on stainless steel also showed an increase in PDGF-BB receptor expression, thus explaining the increase in proliferation observed when cells were subject to PDGF-BB stimuli. The stainless steel substrate also promoted a different pattern of β1-integrin localization and an altered expression of hyaluronan (HA) synthase isoforms where the synthesis of high-molecular-weight HA seemed to be favoured. These findings highlighted the induction of a phenotypic pattern in SMC by the stainless steel substrate whereby the formation of a HA-rich neointimal tissue is enhanced.
Collapse
Affiliation(s)
- Anna L Guildford
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | | | | | | |
Collapse
|
6
|
Guildford AL, Poletti T, Osbourne LH, Di Cerbo A, Gatti AM, Santin M. Nanoparticles of a different source induce different patterns of activation in key biochemical and cellular components of the host response. J R Soc Interface 2009; 6:1213-21. [PMID: 19324665 DOI: 10.1098/rsif.2009.0021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Nanoparticulate materials are produced by industrial processing or engineered for specific biomedical applications. In both cases, their contact with the human body may lead to adverse reactions. Most of the published papers so far have focused on the cytotoxic effects of nanoparticles (NPs). Instead, the present in vitro study investigates the effect of different types of NP on key components of the host response such as clot formation and the inflammatory cells. The different NPs were pre-conditioned with platelet-rich human plasma for 30 min and then incubated with the blood mononuclear cells for 20 hours. The potential of the different NPs to induce clot formation, platelet activation and monocyte/macrophage differentiation was assessed by morphological analysis, immunocytochemistry and biochemical assays. The data showed that nanoparticulate materials based on antimony, silver and nickel were capable of promoting the polymerization of fibrin and the aggregation and fragmentation of platelets, leading to a moderately activated monocyte phenotype. This process was more pronounced in the case of antimony- and silver-based NPs that share a similar size and round-shaped morphology. Conversely, NPs of cobalt, titanium and iron appeared to stimulate cells to acquire a macrophage phenotype able to secrete higher levels of tumour necrosis factor alpha, a pro-inflammatory cytokine. Therefore, the present study provides clear indications about the subtle and adverse effects that the invasion of these materials may produce in the cardiovascular system and in vital organs.
Collapse
Affiliation(s)
- A L Guildford
- School of Pharmacy & Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | | | | | | | | | | |
Collapse
|