1
|
Biofunctional supramolecular hydrogels fabricated from a short self-assembling peptide modified with bioactive sequences for the 3D culture of breast cancer MCF-7 cells. Bioorg Med Chem 2021; 46:116345. [PMID: 34416510 DOI: 10.1016/j.bmc.2021.116345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 11/24/2022]
Abstract
Self-assembling peptides are a type of molecule with promise as scaffold materials for cancer cell engineering. We have reported a short self-assembling peptide, (FFiK)2, that had a symmetric structure connected via a urea bond. In this study, we functionalized (FFiK)2 by conjugation with various bioactive sequences for the 3D culture of cancer cells. Four sequences, RGDS and PHSRN derived from fibronectin and AG73 and C16 derived from laminin, were selected as bioactive sequences to promote cell adhesion, proliferation or migration. (FFiK)2, and its derivatives could co-assemble into supramolecular nanofibers displaying bioactive sequences and form hydrogels. MCF-7 cells were encapsulated in functionalized peptide hydrogels without significant cytotoxicity. Encapsulated MCF-7 cells proliferated under 3D culture conditions. MCF-7 cells proliferated with spheroid formation in hydrogels that displayed RGDS or PHSRN sequences, which will be able to be applied to drug screening targeting cancer stem cells. On the other hand, since MCF-7 cells migrated in a 3D hydrogel that displayed AG73, we could construct the metastatic model of breast cancer cells, which is helpful for the elucidation of breast cancer cells and drug screening against cancer cells under metastatic state. Therefore, functionalized (FFiK)2 hydrogels with various bioactive sequences can be used to regulate cancer cell function for tumor engineering and drug screening.
Collapse
|
2
|
Ding X, Zhao H, Li Y, Lee AL, Li Z, Fu M, Li C, Yang YY, Yuan P. Synthetic peptide hydrogels as 3D scaffolds for tissue engineering. Adv Drug Deliv Rev 2020; 160:78-104. [PMID: 33091503 DOI: 10.1016/j.addr.2020.10.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/25/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
The regeneration of tissues and organs poses an immense challenge due to the extreme complexity in the research work involved. Despite the tissue engineering approach being considered as a promising strategy for more than two decades, a key issue impeding its progress is the lack of ideal scaffold materials. Nature-inspired synthetic peptide hydrogels are inherently biocompatible, and its high resemblance to extracellular matrix makes peptide hydrogels suitable 3D scaffold materials. This review covers the important aspects of peptide hydrogels as 3D scaffolds, including mechanical properties, biodegradability and bioactivity, and the current approaches in creating matrices with optimized features. Many of these scaffolds contain peptide sequences that are widely reported for tissue repair and regeneration and these peptide sequences will also be discussed. Furthermore, 3D biofabrication strategies of synthetic peptide hydrogels and the recent advances of peptide hydrogels in tissue engineering will also be described to reflect the current trend in the field. In the final section, we will present the future outlook in the design and development of peptide-based hydrogels for translational tissue engineering applications.
Collapse
Affiliation(s)
- Xin Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Huimin Zhao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yuzhen Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Ashlynn Lingzhi Lee
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Zongshao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Mengjing Fu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Chengnan Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
3
|
Cha BH, Shin SR, Leijten J, Li YC, Singh S, Liu JC, Annabi N, Abdi R, Dokmeci MR, Vrana NE, Ghaemmaghami AM, Khademhosseini A. Integrin-Mediated Interactions Control Macrophage Polarization in 3D Hydrogels. Adv Healthc Mater 2017; 6:10.1002/adhm.201700289. [PMID: 28782184 PMCID: PMC5677560 DOI: 10.1002/adhm.201700289] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/17/2017] [Indexed: 12/23/2022]
Abstract
Adverse immune reactions prevent clinical translation of numerous implantable devices and materials. Although inflammation is an essential part of tissue regeneration, chronic inflammation ultimately leads to implant failure. In particular, macrophage polarity steers the microenvironment toward inflammation or wound healing via the induction of M1 and M2 macrophages, respectively. Here, this paper demonstrates that macrophage polarity within biomaterials can be controlled through integrin-mediated interactions between human monocytic THP-1 cells and collagen-derived matrix. Surface marker, gene expression, biochemical, and cytokine profiling consistently indicate that THP-1 cells within a biomaterial lacking cell attachment motifs yield proinflammatory M1 macrophages, whereas biomaterials with attachment sites in the presence of interleukin-4 (IL-4) induce an anti-inflammatory M2-like phenotype and propagate the effect of IL-4 in induction of M2-like macrophages. Importantly, integrin α2β1 plays a pivotal role as its inhibition blocks the induction of M2 macrophages. The influence of the microenvironment of the biomaterial over macrophage polarity is further confirmed by its ability to modulate the effect of IL-4 and lipopolysaccharide, which are potent inducers of M2 or M1 phenotypes, respectively. Thus, this study represents a novel, versatile, and effective strategy to steer macrophage polarity through integrin-mediated 3D microenvironment for biomaterial-based programming.
Collapse
Affiliation(s)
- Byung-Hyun Cha
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Jeroen Leijten
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500, AE, Enschede, The Netherlands
| | - Yi-Chen Li
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Sonali Singh
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Julie C Liu
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Davidson School of Chemical Engineering and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Nasim Annabi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Reza Abdi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Transplant Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital, Boston, MA, 02115, USA
| | - Mehmet R Dokmeci
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Nihal Engin Vrana
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Fundamental Research Unit, Protip Medical, 8 Place de l'Hôpital, 67000, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S 1121, "Biomatériaux et Bioingénierie", 11 rue Humann, 67085, Strasbourg Cedex, France
| | - Amir M Ghaemmaghami
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, 143-701, Republic of Korea
- Nanotechnology Center, King Abdulaziz University, Jeddah, 21569, Saudi Arabia
| |
Collapse
|
4
|
Hoshiyama T, Matsueda Y, Tono T, Arinuma Y, Nagai T, Hirohata S. Differential influences of Fc gamma receptor blocking on the effects of certolizumab pegol and infliximab on human monocytes. Mod Rheumatol 2017; 28:506-512. [PMID: 28805137 DOI: 10.1080/14397595.2017.1354796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To compare the effects of certolizumab pegol (CZP) and infliximab (IFX) on human monocytes. METHODS Highly purified monocytes from healthy donors were cultured with CZP, IFX, control IgG1, or polyethylene glycol (PEG) at pharmacological attainable concentrations in culture medium with 10% autologous normal human serum (NHS) or with fetal bovine serum (FBS) for 24 h, after which the supernatants were replaced by fresh culture medium containing LPS. After additional 24 h of incubation, the supernatants were assayed for TNF-α and IL-6. In some experiments, the cells were harvested after 1 h of stimulation with LPS for analysis of mRNA for TNF-α by quantitative PCR. RESULTS Pre-incubation of monocytes with CZP or IFX reduced the production of TNF-α in subsequent cultures stimulated by LPS in a dose-dependent manner. The suppressive effects of IFX on the TNF-α production were significantly diminished, but those of CZP were rather enhanced, in cultures with autologous NHS compared with in cultures with FBS. Addition of IgG, but not IgG F(ab')2 fragments, significantly inhibited the suppressive effects of IFX on the production of TNF-α and IL-6, whereas either IgG or IgG F(ab')2 fragments had no significant influences on the suppressive effects of CZP. Furthermore, pre-incubation with CZP or IFX significantly inhibited the expression of mRNA for TNF-α and IL-6 in monocytes compared with PEG or IgG. CONCLUSION These results indicate that the mechanism of action of CZP is different from that of IFX. Thus, CZP suppresses the production of proinflammatory cytokines independently of Fc receptors, whereas the suppressive effects of IFX on human monocytes are almost totally dependent on the interaction with Fc receptors.
Collapse
Affiliation(s)
- Takayuki Hoshiyama
- a Department of Rheumatology and Infectious Diseases , Kitasato University School of Medicine , Sagamihara , Kanagawa , Japan
| | - Yu Matsueda
- a Department of Rheumatology and Infectious Diseases , Kitasato University School of Medicine , Sagamihara , Kanagawa , Japan
| | - Toshihiro Tono
- b Department of Internal Medicine , Kawasaki Municipal Hospital , Kawasaki , Kanagawa , Japan
| | - Yoshiyuki Arinuma
- c Center for Autoimmune and Musculoskeletal Disease , The Feinstein Institute for Medical Research , Manhasset , NY , USA
| | - Tatsuo Nagai
- a Department of Rheumatology and Infectious Diseases , Kitasato University School of Medicine , Sagamihara , Kanagawa , Japan
| | - Shunsei Hirohata
- a Department of Rheumatology and Infectious Diseases , Kitasato University School of Medicine , Sagamihara , Kanagawa , Japan
| |
Collapse
|
5
|
Pashuck ET, Duchet BJR, Hansel CS, Maynard SA, Chow LW, Stevens MM. Controlled Sub-Nanometer Epitope Spacing in a Three-Dimensional Self-Assembled Peptide Hydrogel. ACS NANO 2016; 10:11096-11104. [PMID: 28024362 DOI: 10.1021/acsnano.6b05975] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cells in the body use a variety of mechanisms to ensure the specificity and efficacy of signal transduction. One way that this is achieved is through tight spatial control over the position of different proteins, signaling sequences, and biomolecules within and around cells. For instance, the extracellular matrix protein fibronectin presents RGDS and PHSRN sequences that synergistically bind the α5β1 integrin when separated by 3.2 nm but are unable to bind when this distance is >5.5 nm.1 Building biomaterials to controllably space different epitopes with subnanometer accuracy in a three-dimensional (3D) hydrogel is challenging. Here, we synthesized peptides that self-assemble into nanofiber hydrogels utilizing the β-sheet motif, which has a known regular spacing along the peptide backbone. By modifying specific locations along the peptide, we are able to controllably space different epitopes with subnanometer accuracy at distances from 0.7 nm to over 6 nm, which is within the size range of many protein clusters. Endothelial cells encapsulated within hydrogels displaying RGDS and PHSRN in the native 3.2 nm spacing showed a significant upregulation in the expression of the alpha 5 integrin subunit compared to those in hydrogels with a 6.2 nm spacing, demonstrating the physiological relevance of the spacing. Furthermore, after 24 h the cells in hydrogels with the 3.2 nm spacing appeared to be more spread with increased staining for the α5β1 integrin. This self-assembling peptide system can controllably space multiple epitopes with subnanometer accuracy, demonstrating an exciting platform to study the effects of ligand density and location on cells within a synthetic 3D environment.
Collapse
Affiliation(s)
- E Thomas Pashuck
- Department of Materials, ‡Department of Bioengineering, §Institute of Biomedical Engineering, and ⊥Department of Chemistry, Imperial College London , London SW7 2AZ, United Kingdom
| | - Benoît J R Duchet
- Department of Materials, ‡Department of Bioengineering, §Institute of Biomedical Engineering, and ⊥Department of Chemistry, Imperial College London , London SW7 2AZ, United Kingdom
| | - Catherine S Hansel
- Department of Materials, ‡Department of Bioengineering, §Institute of Biomedical Engineering, and ⊥Department of Chemistry, Imperial College London , London SW7 2AZ, United Kingdom
| | - Stephanie A Maynard
- Department of Materials, ‡Department of Bioengineering, §Institute of Biomedical Engineering, and ⊥Department of Chemistry, Imperial College London , London SW7 2AZ, United Kingdom
| | - Lesley W Chow
- Department of Materials, ‡Department of Bioengineering, §Institute of Biomedical Engineering, and ⊥Department of Chemistry, Imperial College London , London SW7 2AZ, United Kingdom
| | - Molly M Stevens
- Department of Materials, ‡Department of Bioengineering, §Institute of Biomedical Engineering, and ⊥Department of Chemistry, Imperial College London , London SW7 2AZ, United Kingdom
| |
Collapse
|
6
|
Li WA, Lu BY, Gu L, Choi Y, Kim J, Mooney DJ. The effect of surface modification of mesoporous silica micro-rod scaffold on immune cell activation and infiltration. Biomaterials 2016; 83:249-56. [PMID: 26784009 DOI: 10.1016/j.biomaterials.2016.01.026] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 12/23/2022]
Abstract
Biomaterial scaffold based vaccines show significant potential in generating potent antigen-specific immunity. However, the role of the scaffold surface chemistry in initiating and modulating the immune response is not well understood. In this study, a mesoporous silica micro-rod (MSR) scaffold was modified with PEG, PEG-RGD and PEG-RDG groups. PEG modification significantly enhanced BMDC activation marker up-regulation and IL-1β production in vitro, and innate immune cell infiltration in vivo. PEG-RGD MSRs and PEG-RDG MSRs displayed decreased inflammation compared to PEG MSRs, and the effect was not RGD specific. Finally, the Nlrp3 inflammasome was found to be necessary for MSR stimulated IL-1β production in vitro and played a key role in regulating immune cell infiltration in vivo. These findings suggest that simply modulating the surface chemistry of a scaffold can regulate its immune cell infiltration profile and have implications for the design and development of new material based vaccines.
Collapse
Affiliation(s)
- Weiwei Aileen Li
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Beverly Ying Lu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Luo Gu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Youngjin Choi
- School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, South Korea
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Lieberthal TJ, Cohen HC, Kao WJ. Poly(ethylene glycol)-containing hydrogels modulate α-defensin release from polymorphonuclear leukocytes and monocyte recruitment. J Biomed Mater Res A 2015; 103:3772-80. [DOI: 10.1002/jbm.a.35519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/20/2015] [Accepted: 06/04/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Tyler Jacob Lieberthal
- Department of Biomedical Engineering; University of Wisconsin-Madison; 1550 Engineering Drive Madison Wisconsin 53706
| | - Hannah Caitlin Cohen
- Pharmaceutical Sciences Division, School of Pharmacy; University of Wisconsin-Madison; 777 Highland Avenue Madison Wisconsin 53705
| | - W. John Kao
- Department of Biomedical Engineering; University of Wisconsin-Madison; 1550 Engineering Drive Madison Wisconsin 53706
- Pharmaceutical Sciences Division, School of Pharmacy; University of Wisconsin-Madison; 777 Highland Avenue Madison Wisconsin 53705
- Department of Surgery, School of Medicine and Public Health; University of Wisconsin-Madison; 600 Highland Avenue Madison Wisconsin 53792
| |
Collapse
|
8
|
Lau HK, Kiick KL. Opportunities for multicomponent hybrid hydrogels in biomedical applications. Biomacromolecules 2015; 16:28-42. [PMID: 25426888 PMCID: PMC4294583 DOI: 10.1021/bm501361c] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/14/2014] [Indexed: 02/08/2023]
Abstract
Hydrogels provide mechanical support and a hydrated environment that offer good cytocompatibility and controlled release of molecules, and myriad hydrogels thus have been studied for biomedical applications. In the past few decades, research in these areas has shifted increasingly to multicomponent hydrogels that better capture the multifunctional nature of native biological environments and that offer opportunities to selectively tailor materials properties. This review summarizes recent approaches aimed at producing multicomponent hydrogels, with descriptions of contemporary chemical and physical approaches for forming networks, and of the use of both synthetic and biologically derived molecules to impart desired properties. Specific multicomponent materials with enhanced mechanical properties are presented, as well as materials in which multiple biological functions are imparted for applications in tissue engineering, cancer treatment, and gene therapies. The progress in the field suggests significant promise for these approaches in the development of biomedically relevant materials.
Collapse
Affiliation(s)
- Hang Kuen Lau
- Department of Materials Science and Engineering and ‡Biomedical Engineering, University of Delaware , Newark Delaware 19716, United States
| | | |
Collapse
|
9
|
Abstract
With advancements in biological and engineering sciences, the definition of an ideal biomaterial has evolved over the past 50 years from a substance that is inert to one that has select bioinductive properties and integrates well with adjacent host tissue. Biomaterials are a fundamental component of tissue engineering, which aims to replace diseased, damaged, or missing tissue with reconstructed functional tissue. Most biomaterials are less than satisfactory for pediatric patients because the scaffold must adapt to the growth and development of the surrounding tissues and organs over time. The pediatric community, therefore, provides a distinct challenge for the tissue engineering community.
Collapse
Affiliation(s)
- Timothy J Keane
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, Bridgeside Point 2, 450 Technology Drive, Pittsburgh, Pennsylvania 15219; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, Bridgeside Point 2, 450 Technology Drive, Pittsburgh, Pennsylvania 15219; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
10
|
Mas-Moruno C, Fraioli R, Albericio F, Manero JM, Gil FJ. Novel peptide-based platform for the dual presentation of biologically active peptide motifs on biomaterials. ACS APPLIED MATERIALS & INTERFACES 2014; 6:6525-6536. [PMID: 24673628 DOI: 10.1021/am5001213] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biofunctionalization of metallic materials with cell adhesive molecules derived from the extracellular matrix is a feasible approach to improve cell-material interactions and enhance the biointegration of implant materials (e.g., osseointegration of bone implants). However, classical biomimetic strategies may prove insufficient to elicit complex and multiple biological signals required in the processes of tissue regeneration. Thus, newer strategies are focusing on installing multifunctionality on biomaterials. In this work, we introduce a novel peptide-based divalent platform with the capacity to simultaneously present distinct bioactive peptide motifs in a chemically controlled fashion. As a proof of concept, the integrin-binding sequences RGD and PHSRN were selected and introduced in the platform. The biofunctionalization of titanium with this platform showed a positive trend towards increased numbers of cell attachment, and statistically higher values of spreading and proliferation of osteoblast-like cells compared to control noncoated samples. Moreover, it displayed statistically comparable or improved cell responses compared to samples coated with the single peptides or with an equimolar mixture of the two motifs. Osteoblast-like cells produced higher levels of alkaline phosphatase on surfaces functionalized with the platform than on control titanium; however, these values were not statistically significant. This study demonstrates that these peptidic structures are versatile tools to convey multiple biofunctionality to biomaterials in a chemically defined manner.
Collapse
Affiliation(s)
- Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC) , ETSEIB, Avenida Diagonal 647, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
11
|
Cai L, Dinh CB, Heilshorn SC. One-pot Synthesis of Elastin-like Polypeptide Hydrogels with Grafted VEGF-Mimetic Peptides. Biomater Sci 2014; 2:757-765. [PMID: 24729868 PMCID: PMC3979545 DOI: 10.1039/c3bm60293a] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Immobilization of growth factors to polymeric matrices has been a common strategy in the design of tissue engineering scaffolds to promote tissue regeneration, which requires complex cell signaling events with the surrounding matrix. However, the use of large protein growth factors in polymeric scaffolds is often plagued by immunogenicity, short in vivo half-lives, and reduced bioactivity. To address these concerns, we develop a single-step, cell-compatible strategy to tether small, growth-factor-mimetic peptides into a protein-engineered hydrogel with tunable biomaterial properties. Specifically, we covalently immobilize the QK peptide, an angiogenic peptide mimicking the receptor-binding region of vascular endothelial growth factor (VEGF), within tunable elastin-like polypeptide (ELP) hydrogels that include a cell-adhesive RGD sequence. Using a cell-compatible, amine-reactive crosslinker, we conducted a one-pot synthesis to simultaneously encapsulate cells while precisely controlling the QK grafting density (10 nM - 100 μM) in the ELP hydrogels without altering other material properties. Fluorescence analysis of fluor-labeled QK peptides demonstrated that the conjugation efficiency to ELP hydrogels was >75% and that covalent immobilization effectively eliminates all QK diffusion. Compared with pristine ELP hydrogels, human umbilical vein endothelial cell (HUVEC) proliferation was significantly enhanced on ELP hydrogels immobilized with 10 nM or 1 μM QK. Moreover, upon encapsulation within tethered QK-ELP hydrogels, HUVEC spheroids maintained near 100% viability and demonstrated significantly more three-dimensional outgrowth compared to those supplemented with soluble QK peptide at the same concentration. These results encourage the further development of protein-engineered scaffolds decorated with growth-factor-mimetic peptides to provide long-term biological signals using this versatile, single-step synthesis.
Collapse
Affiliation(s)
- Lei Cai
- Department of Materials Science and Engineering, Stanford University, Stanford, CA
| | - Cong B. Dinh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA
- Department of Bioengineering, Stanford University, Stanford, CA
| |
Collapse
|
12
|
Gandavarapu NR, Azagarsamy MA, Anseth KS. Photo-click living strategy for controlled, reversible exchange of biochemical ligands. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:2521-6. [PMID: 24523204 PMCID: PMC4528616 DOI: 10.1002/adma.201304847] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/11/2013] [Indexed: 05/21/2023]
Abstract
A novel addition-fragmentation-chain transfer capable allyl sulfide functionalized PEG hydrogel is reported to allow controlled, reversible exchange of biochemical ligands. The exchange of biochemical ligands is achieved without permanent consumption of reactive functionalities. Demonstrated is the ability to exchange biochemical ligands multiple times using cytocompatible 720 nm two-photon light.
Collapse
Affiliation(s)
- Navakanth R Gandavarapu
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303 USA
| | - Malar A. Azagarsamy
- Department of Chemical and Biological Engineering and the Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303 USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, the BioFrontiers Institute, and the Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303 USA
| |
Collapse
|
13
|
Gonzalez AL, Berger CL, Remington J, Girardi M, Tigelaar RE, Edelson RL. Integrin-driven monocyte to dendritic cell conversion in modified extracorporeal photochemotherapy. Clin Exp Immunol 2014; 175:449-57. [PMID: 24188174 DOI: 10.1111/cei.12231] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2013] [Indexed: 01/28/2023] Open
Abstract
Due to clinical efficacy and safety profile, extracorporeal photochemotherapy (ECP) is a commonly used cell treatment for patients with cutaneous T cell lymphoma (CTCL) and graft-versus-host disease (GVHD). The capacity of ECP to induce dendritic antigen-presenting cell (DC)-mediated selective immunization or immunosuppression suggests a novel mechanism involving pivotal cell signalling processes that have yet to be clearly identified as related to this procedure. In this study we employ two model systems of ECP to dissect the role of integrin signalling and adsorbed plasma proteins in monocyte-to-DC differentiation. We demonstrate that monocytes that were passed through protein-modified ECP plates adhered transiently to plasma proteins, including fibronectin, adsorbed to the plastic ECP plate and activated signalling pathways that initiate monocyte-to-DC conversion. Plasma protein adsorption facilitated 54·2 ± 4·7% differentiation, while fibronectin supported 29·8 ± 7·2% differentiation, as detected by DC phenotypic expression of membrane CD80 and CD86, as well as CD36, human leucocyte antigen D-related (HLA-DR) and cytoplasmic CD83. Further, we demonstrate the ability of fibronectin and other plasma proteins to act through cell adhesion via the ubiquitous arginine-glycine-aspartic (RGD) motif to drive monocyte-to-DC differentiation, with high-density RGD substrates supporting 54·1 ± 5·8% differentiation via αVβ3 and α5β1integrin signalling. Our results demonstrate that plasma protein binding integrins and plasma proteins operate through specific binding domains to induce monocyte-to-DC differentiation in ECP, providing a mechanism that can be harnessed to enhance ECP efficacy.
Collapse
Affiliation(s)
- A L Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | | |
Collapse
|
14
|
Cohen HC, Lieberthal TJ, Kao WJ. Poly(ethylene glycol)-containing hydrogels promote the release of primary granules from human blood-derived polymorphonuclear leukocytes. J Biomed Mater Res A 2014; 102:4252-61. [PMID: 24497370 DOI: 10.1002/jbm.a.35101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 01/29/2014] [Indexed: 01/13/2023]
Abstract
Polymorphonuclear leukocytes (PMNs) are recruited to sites of injury and biomaterial implants. Once activated, PMNs can exocytose their granule subsets to recruit monocytes (MCs) and mediate MC/macrophage activation. We investigated the release of myeloperoxidase (MPO), a primary granule marker, and matrix metalloproteinase-9 (MMP-9), a tertiary granule marker, from human blood-derived PMNs cultured on poly(ethylene glycol) (PEG) hydrogels, polydimethylsiloxane (PDMS), tissue culture polystyrene (TCPS) and gelatin-PEG (GP) hydrogels, with and without the presence of the bacterial peptide formyl-Met-Leu-Phe. Supernatants from PMN cultures on PEG-containing hydrogels (i.e., PEG and GP hydrogels) had higher concentrations of MPO than those from PMN cultures on PDMS or TCPS at 2 h. PMNs on all biomaterials released comparable levels of MMP-9 at 2 h, indicating that PMNs cultured on PEG-containing hydrogels have different mechanisms of release for primary and tertiary granules. Src family kinases were involved in the release of MPO from PMNs cultured on PEG hydrogels, TCPS and GP hydrogels and in the release of MMP-9 from PMNs cultured on all four biomaterials. The increased release of primary granules from PMNs on PEG-containing hydrogels did not significantly increase MC chemotaxis, indicating that additional co-effectors in the dynamic inflammatory milieu in vivo modulate PMN-mediated MC recruitment.
Collapse
Affiliation(s)
- Hannah Caitlin Cohen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin, 53705
| | | | | |
Collapse
|
15
|
Fisher SA, Tam RY, Shoichet MS. Tissue mimetics: engineered hydrogel matrices provide biomimetic environments for cell growth. Tissue Eng Part A 2014; 20:895-8. [PMID: 24417669 DOI: 10.1089/ten.tea.2013.0765] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Stephanie A Fisher
- 1 Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada
| | | | | |
Collapse
|
16
|
Cantu DA, Kao WJ. Combinatorial biomatrix/cell-based therapies for restoration of host tissue architecture and function. Adv Healthc Mater 2013; 2:1544-63. [PMID: 23828863 PMCID: PMC3896550 DOI: 10.1002/adhm.201300063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/08/2013] [Indexed: 12/13/2022]
Abstract
This Progress Report reviews recent advances in the utility of extracellular matrix (ECM)-mimic biomaterials in presenting and delivering therapeutic cells to promote tissue healing. This overview gives a brief introduction of different cell types being used in regenerative medicine and tissue engineering while addressing critical issues that must be overcome before cell-based approaches can be routinely employed in the clinic. A selection of five commonly used cell-associated, biomaterial platforms (collagen, hyaluronic acid, fibrin, alginate, and poly(ethylene glycol)) are reviewed for treatment of a number of acute injury or diseases with emphasis on animal models and clinical trials. This article concludes with current challenges and future perspectives regarding foreign body host response to biomaterials and immunological reactions to allogeneic or xenogeneic cells, vascularization and angiogenesis, matching mechanical strength and anisotropy of native tissues, as well as other non-technical issues regarding the clinical translation of biomatrix/cell-based therapies.
Collapse
Affiliation(s)
- David Antonio Cantu
- School of Pharmacy, Division of Pharmaceutical Sciences University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - W. John Kao
- School of Pharmacy, Division of Pharmaceutical Sciences University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Univeristy of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
17
|
Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 2013; 40:363-408. [PMID: 23339648 DOI: 10.1615/critrevbiomedeng.v40.i5.10] [Citation(s) in RCA: 1350] [Impact Index Per Article: 122.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The worldwide incidence of bone disorders and conditions has trended steeply upward and is expected to double by 2020, especially in populations where aging is coupled with increased obesity and poor physical activity. Engineered bone tissue has been viewed as a potential alternative to the conventional use of bone grafts, due to their limitless supply and no disease transmission. However, bone tissue engineering practices have not proceeded to clinical practice due to several limitations or challenges. Bone tissue engineering aims to induce new functional bone regeneration via the synergistic combination of biomaterials, cells, and factor therapy. In this review, we discuss the fundamentals of bone tissue engineering, highlighting the current state of this field. Further, we review the recent advances of biomaterial and cell-based research, as well as approaches used to enhance bone regeneration. Specifically, we discuss widely investigated biomaterial scaffolds, micro- and nano-structural properties of these scaffolds, and the incorporation of biomimetic properties and/or growth factors. In addition, we examine various cellular approaches, including the use of mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), adult stem cells, induced pluripotent stem cells (iPSCs), and platelet-rich plasma (PRP), and their clinical application strengths and limitations. We conclude by overviewing the challenges that face the bone tissue engineering field, such as the lack of sufficient vascularization at the defect site, and the research aimed at functional bone tissue engineering. These challenges will drive future research in the field.
Collapse
Affiliation(s)
- Ami R Amini
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT, USA
| | | | | |
Collapse
|
18
|
Chen X, Sevilla P, Aparicio C. Surface biofunctionalization by covalent co-immobilization of oligopeptides. Colloids Surf B Biointerfaces 2013; 107:189-97. [PMID: 23500730 DOI: 10.1016/j.colsurfb.2013.02.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/07/2013] [Accepted: 02/11/2013] [Indexed: 02/07/2023]
Abstract
Functionalization of implants with multiple bioactivities is desired to obtain surfaces with improved biological and clinical performance. Our objective was developing a simple and reliable method to obtain stable multifunctional coatings incorporating different oligopeptides. We co-immobilized on titanium surface oligopeptides of known cooperative bioactivities with a simple and reliable method. Appropriately designed oligopeptides containing either RGD or PHSRN bioactive sequences were mixed and covalently bonded on CPTES-silanized surfaces. Coatings made of only one of the two investigated peptides and coatings with physisorbed oligopeptides were produced and tested as control groups. We performed thorough characterization of the obtained surfaces after each step of the coating preparation and after mechanically challenging the obtained coatings. Fluorescence labeling of RGD and PHSRN peptides with fluorescence probes of different colors enabled the direct visualization of the co-immobilization of the oligopeptides. We proved that the coatings were mechanically stable. The surfaces with co-immobilized RGD and PHSRN peptides significantly improved osteoblasts response in comparison with control surfaces, which assessed the effectiveness of our coating method to bio-activate the implant surfaces. This same simple method can be used to obtain other multi-functional surfaces by co-immobilizing oligopeptides with different targeted bioactivities--cell recruitment and differentiation, biomineral nucleation, antimicrobial activity--and thus, further improving the clinical performance of titanium implants.
Collapse
Affiliation(s)
- Xi Chen
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
19
|
Xu K, Fu Y, Chung W, Zheng X, Cui Y, Hsu IC, Kao WJ. Thiol-ene-based biological/synthetic hybrid biomatrix for 3-D living cell culture. Acta Biomater 2012; 8:2504-16. [PMID: 22484717 DOI: 10.1016/j.actbio.2012.03.049] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/06/2012] [Accepted: 03/29/2012] [Indexed: 11/19/2022]
Abstract
Although various cell encapsulation materials are available commercially for a wide range of potential therapeutic cells, their combined clinical impact remains inconsistent. Synthetic materials such as poly(ethylene glycol) (PEG) hydrogels are mechanically robust and have been extensively explored but lack natural biofunctionality. Naturally derived materials including collagen, fibrin and alginate-chitosan are often labile and mechanically weak. In this paper we report the development of a hybrid biomatrix based on the thiol-ene reaction of PEG diacrylate (PEGdA) and cysteine/PEG-modified gelatin (gel-PEG-Cys). We hypothesized that covalent crosslinking decreases gelatin dissolution thus increasing gelatin resident time within the matrix and the duration of its biofunctionality; at the same time the relative ratio of PEGdA to gel-PEG-Cys in the matrix formulation directly affects hydrogel bulk and local microenvironment properties. Bulk viscoelastic properties were highly dependent on PEGdA concentration and total water content, while gel-PEG-Cys concentration was more critical to swelling profiles. Microviscoelastic properties were related to polymer concentration. The covalently crosslinked gel-PEG-Cys with PEGdA decreased gelatin dissolution out of the matrix and collagenase-mediated degradation. Fibroblasts and keratinocyte increased adhesion density and formed intercellular connections on stiffer hydrogel surfaces, while cells exhibited more cytoplasmic spreading and proliferation when entrapped within softer hydrogels. Hence, this material system contains multiparametric factors that can easily be controlled to modulate the chemical, physical and biological properties of the biomatrix for soft tissue scaffolding and cell presentation to reconstruct lost tissue architecture and physical functionality.
Collapse
Affiliation(s)
- Kedi Xu
- School of Pharmacy, University of Wisconsin-Madison, 53705, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Wattamwar PP, Biswal D, Cochran DB, Lyvers AC, Eitel RE, Anderson KW, Hilt JZ, Dziubla TD. Synthesis and characterization of poly(antioxidant β-amino esters) for controlled release of polyphenolic antioxidants. Acta Biomater 2012; 8:2529-37. [PMID: 22426289 DOI: 10.1016/j.actbio.2012.03.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/09/2012] [Accepted: 03/09/2012] [Indexed: 11/18/2022]
Abstract
Attenuation of cellular oxidative stress, which plays a central role in biomaterial-induced inflammation, provides an exciting opportunity to control the host tissue response to biomaterials. In the case of biodegradable polymers, biomaterial-induced inflammation is often a result of local accumulation of polymer degradation products, hence there is a need for new biomaterials that can inhibit this response. Antioxidant polymers, which have antioxidants incorporated into the polymer backbone, are a class of biomaterials that, upon degradation, release active antioxidants, which can scavenge free radicals and attenuate oxidative stress, resulting in improved material biocompatibility. In this work, we have synthesized poly(antioxidant β-amino ester) (PAβAE) biodegradable hydrogels of two polyphenolic antioxidants, quercetin and curcumin. The degradation characteristics of PAβAE hydrogels and the antioxidant activity of PAβAE degradation products were studied. Treatment of endothelial cells with PAβAE degradation products protected cells from hydrogen-peroxide-induced oxidative stress.
Collapse
Affiliation(s)
- Paritosh P Wattamwar
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, 40506, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang X, Boire TC, Bronikowski C, Zachman AL, Crowder SW, Sung HJ. Decoupling polymer properties to elucidate mechanisms governing cell behavior. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:396-404. [PMID: 22536977 DOI: 10.1089/ten.teb.2012.0011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Determining how a biomaterial interacts with cells ("structure-function relationship") reflects its eventual clinical applicability. Therefore, a fundamental understanding of how individual material properties modulate cell-biomaterial interactions is pivotal to improving the efficacy and safety of clinically translatable biomaterial systems. However, due to the coupled nature of material properties, their individual effects on cellular responses are difficult to understand. Structure-function relationships can be more clearly understood by the effective decoupling of each individual parameter. In this article, we discuss three basic decoupling strategies: (1) surface modification, (2) cross-linking, and (3) combinatorial approaches (i.e., copolymerization and polymer blending). Relevant examples of coupled material properties are briefly reviewed in each section to highlight the need for improved decoupling methods. This follows with examples of more effective decoupling techniques, mainly from the perspective of three primary classes of synthetic materials: polyesters, polyethylene glycol, and polyacrylamide. Recent strides in decoupling methodologies, especially surface-patterning and combinatorial techniques, offer much promise in further understanding the structure-function relationships that largely govern the success of future advancements in biomaterials, tissue engineering, and drug delivery.
Collapse
Affiliation(s)
- Xintong Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | |
Collapse
|
22
|
Park KR, Bryers JD. Effect of macrophage classical (M1) activation on implant-adherent macrophage interactions with Staphylococcus epidermidis: A murine in vitro model system. J Biomed Mater Res A 2012; 100:2045-53. [PMID: 22581669 DOI: 10.1002/jbm.a.34087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/21/2011] [Accepted: 01/10/2012] [Indexed: 01/22/2023]
Abstract
A model in vitro system was developed for eliciting classical (M1) activation of surface-adherent murine macrophages, which was then used to study the interaction of the M1 macrophages with Staphylococcus epidermidis. Glass substrata were first covalently grafted with a mixture of methoxy- and biotin-terminated silanated polyethylene glycol. Interferon (IFN)-γ and/or lipopolysaccharide (LPS), ligands known to induce the highly microbicidal M1 activation state in macrophages, were biotinylated and immobilized by way of a streptavidin intermediate to the biotin-PEG base substratum. Assessment of mouse bone marrow-derived macrophage (BMDM) interleukin (IL)-12(p40) and nitric oxide response to the fabricated surfaces confirmed that the model system achieved activation of adherent macrophage: IFN-γ-presenting surfaces primed cells for M1 activation, LPS-presenting surfaces elicited innate activation, and surface presenting a combination of IFN-γ and LPS induced M1 activation. The phagocytic and microbicidal capacity of activated, surface-adherent BMDM was evaluated using S. epidermidis, a bacterial species prevalent in implant-associated infections. Results indicate that M1 activation of implant-adherent macrophages trends towards diminishing their phagocytic capacity, but enhances their microbicidal capacity for S. epidermidis.
Collapse
Affiliation(s)
- Kyung R Park
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, USA
| | | |
Collapse
|
23
|
Inducing healing-like human primary macrophage phenotypes by 3D hydrogel coated nanofibres. Biomaterials 2012; 33:4136-46. [PMID: 22417617 DOI: 10.1016/j.biomaterials.2012.02.050] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 02/27/2012] [Indexed: 12/11/2022]
Abstract
Immune cells are present in the blood and in resident tissues, and the nature of their reaction towards biomaterials is decisive for materials success or failure. Macrophages may for example be classically activated to trigger inflammation (M1), or alternatively activated which supports healing and vascularisation (M2). Here, we have generated 3D nanofibrous meshes in different porosities and precisely controlled surface chemistries comprising PLGA, hydrogel-coated protein repellant and protein repellant endowed with the bioactive peptide sequences GRGDS or GLF. We also prepared 2D substrates with corresponding surface chemistry for a systematic evaluation of primary human macrophage adhesion, migration, transcriptome expression, cytokine release and surface marker expression. Our data show that material morphology is a powerful means in biomaterial design to influence immune cell response. Flat substrates lead to an increased number of M2 classified CD163(+) macrophages. However, these M2 cells released large amounts of pro-inflammatory cytokines. In contrast, 3D nanofibres with corresponding surface chemistry yielded M1 classified 27E10(+) macrophages with a significantly increased release of pro-angiogenic chemokines and angiogenesis related molecules and a strong decrease of pro-inflammatory cytokines. We thus suggest that, for macrophages in contact with biomaterials, cytokine release is taken as main criterion instead of surface-markers for macrophage classifications.
Collapse
|
24
|
Battiston KG, McBane JE, Labow RS, Paul Santerre J. Differences in protein binding and cytokine release from monocytes on commercially sourced tissue culture polystyrene. Acta Biomater 2012; 8:89-98. [PMID: 21963405 DOI: 10.1016/j.actbio.2011.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/14/2011] [Accepted: 09/14/2011] [Indexed: 12/23/2022]
Abstract
Tissue culture polystyrene (TCPS) is a ubiquitous substrate used by many researchers in the biomedical and biological sciences. Different parameters involved in the production of TCPS, including the treatment time and the use of reactive gases and chemical agents, can have a significant influence on the ultimate surface properties achieved. The assumption that they will all yield a consistent and controlled product has not proven to be true. To provide a better insight into the bioactivity differences in TCPS supplied by different manufacturers, TCPS from three different companies (Sarstedt, Wisent Corp., and Becton Dickinson (BD)) were analyzed for their surface properties, protein adsorption characteristics, and interactions with human monocytes. Marked differences were observed in terms of surface wettability and surface chemistry. Furthermore, Wisent TCPS adsorbed more than twice the amount of serum proteins compared with BD and Sarstedt TCPS. Sarstedt showed significantly more cell retention (more DNA) compared with both BD and Wisent TCPS brands over a 7 day culture period. Cytokine release from monocytes adherent on the three different TCPS also differed significantly, suggesting that the differences in the surface properties were sufficient to differentially mediate monocyte activation. These results have important implications for TCPS research use, in terms of appreciating the interpretation of the data when TCPS is used as a control substrate as well as when it is used where a pre-conditioned state would influence the outcome of the study.
Collapse
|
25
|
Fu Y, Xu K, Zheng X, Giacomin AJ, Mix AW, Kao WJ. 3D cell entrapment in crosslinked thiolated gelatin-poly(ethylene glycol) diacrylate hydrogels. Biomaterials 2012; 33:48-58. [PMID: 21955690 PMCID: PMC3282186 DOI: 10.1016/j.biomaterials.2011.09.031] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/13/2011] [Indexed: 12/24/2022]
Abstract
The combined use of natural ECM components and synthetic materials offers an attractive alternative to fabricate hydrogel-based tissue engineering scaffolds to study cell-matrix interactions in three-dimensions (3D). A facile method was developed to modify gelatin with cysteine via a bifunctional PEG linker, thus introducing free thiol groups to gelatin chains. A covalently crosslinked gelatin hydrogel was fabricated using thiolated gelatin and poly(ethylene glycol) diacrylate (PEGdA) via thiol-ene reaction. Unmodified gelatin was physically incorporated in a PEGdA-only matrix for comparison. We sought to understand the effect of crosslinking modality on hydrogel physicochemical properties and the impact on 3D cell entrapment. Compared to physically incorporated gelatin hydrogels, covalently crosslinked gelatin hydrogels displayed higher maximum weight swelling ratio (Q(max)), higher water content, significantly lower cumulative gelatin dissolution up to 7 days, and lower gel stiffness. Furthermore, fibroblasts encapsulated within covalently crosslinked gelatin hydrogels showed extensive cytoplasmic spreading and the formation of cellular networks over 28 days. In contrast, fibroblasts encapsulated in the physically incorporated gelatin hydrogels remained spheroidal. Hence, crosslinking ECM protein with synthetic matrix creates a stable scaffold with tunable mechanical properties and with long-term cell anchorage points, thus supporting cell attachment and growth in the 3D environment.
Collapse
Affiliation(s)
- Yao Fu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, USA
| | - Kedi Xu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, USA
- Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Xiaoxiang Zheng
- Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - A. Jeffrey Giacomin
- Rheology Research Center, Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Adam W. Mix
- Rheology Research Center, Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Weiyuan John Kao
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, USA
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
26
|
Wilson MJ, Liliensiek SJ, Murphy CJ, Murphy WL, Nealey PF. Hydrogels with well-defined peptide-hydrogel spacing and concentration: impact on epithelial cell behavior(). SOFT MATTER 2011; 8:390-398. [PMID: 23264803 PMCID: PMC3526380 DOI: 10.1039/c1sm06589k] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The spacing of peptides away from a hydrogel matrix dramatically impacts their availability and subsequent interactions with cells. Peptides were synthesized with monodisperse poly(ethylene glycol) spacers of different lengths that separate the peptide from the monomeric functionality which reacts during hydrogel polymerization. Specifically, bioactive RGD ligands were conjugated to PEG(5), PEG(11) or PEG(27) spacers via solid phase techniques and then functionalized with an acryloyl end group. These acryloyl-PEGx-RGD conjugates were then copolymerized with PEGDA to form an inert hydrogel network decorated with RGD ligands for cell interactions. As the PEG spacer length increases, the RGD concentration required to support cell attachment and spreading decreases. The competitive detachment of hTCEpi cells in the presence of soluble linear RGD also shows non-linear dependence on the PEG spacer length, as more cells remained attached and spread on gels functionalized with longer PEG-RGD conjugates in comparison to the shorter PEG-RGD conjugates. The strategy and synthetic techniques developed here allow for reproducible control over peptide-hydrogel spacing and peptide concentration, and may be extended for incorporation of multiple peptides and to other hydrogel platforms.
Collapse
Affiliation(s)
- Michelle J. Wilson
- Department of Chemical and Biological Engineering, The University of Wisconsin, Madison, WI, 53706, USA
| | - Sara J. Liliensiek
- Department of Chemical and Biological Engineering, The University of Wisconsin, Madison, WI, 53706, USA
| | - Christopher J. Murphy
- Department of Opthalmology and Vision Science, University of California, Davis, CA, 95616, USA
| | - William L. Murphy
- Department of Biomedical Engineering, The University of Wisconsin, Madison, WI, 53706, USA
| | - Paul F. Nealey
- Department of Chemical and Biological Engineering, The University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
27
|
Abstract
This article summarizes the recent progress in the design and synthesis of hydrogels as tissue-engineering scaffolds. Hydrogels are attractive scaffolding materials owing to their highly swollen network structure, ability to encapsulate cells and bioactive molecules, and efficient mass transfer. Various polymers, including natural, synthetic and natural/synthetic hybrid polymers, have been used to make hydrogels via chemical or physical crosslinking. Recently, bioactive synthetic hydrogels have emerged as promising scaffolds because they can provide molecularly tailored biofunctions and adjustable mechanical properties, as well as an extracellular matrix-like microenvironment for cell growth and tissue formation. This article addresses various strategies that have been explored to design synthetic hydrogels with extracellular matrix-mimetic bioactive properties, such as cell adhesion, proteolytic degradation and growth factor-binding.
Collapse
Affiliation(s)
- Junmin Zhu
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | |
Collapse
|
28
|
Fu Y, Kao WJ. In situ forming poly(ethylene glycol)-based hydrogels via thiol-maleimide Michael-type addition. J Biomed Mater Res A 2011; 98:201-11. [PMID: 21548071 PMCID: PMC4529490 DOI: 10.1002/jbm.a.33106] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 03/02/2011] [Accepted: 03/07/2011] [Indexed: 11/10/2022]
Abstract
The incorporation of cells and sensitive compounds can be better facilitated without the presence of UV or other energy sources that are common in the formation of biomedical hydrogels such as poly(ethylene glycol) hydrogels. The formation of hydrogels by the step-growth polymerization of maleimide- and thiol-terminated poly(ethylene glycol) macromers via Michael-type addition is described. The effects of macromer concentration, pH, temperature, and the presence of biomolecule gelatin on gel formation were investigated. Reaction kinetics between maleimide and thiol functional groups were found to be rapid. Molecular weight increase over time was characterized via gel permeation chromatography during step-growth polymerization. Swelling and degradation results showed incorporating gelatin enhanced swelling and accelerated degradation. Increasing gelatin content resulted in the decreased storage modulus (G'). The in vitro release kinetics of fluorescein isothiocyanate (FITC)-labeled dextran from the resulting matrices demonstrated the potential in the development of novel in situ gel-forming drug delivery systems. Moreover, the resulting networks were minimally adhesive to primary human monocytes, fibroblasts, and keratinocytes thus providing an ideal platform for further biofunctionalizations to direct specific biological response.
Collapse
Affiliation(s)
- Yao Fu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, USA
| | - Weiyuan John Kao
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, USA
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
29
|
Franz S, Rammelt S, Scharnweber D, Simon JC. Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 2011; 32:6692-709. [PMID: 21715002 DOI: 10.1016/j.biomaterials.2011.05.078] [Citation(s) in RCA: 908] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/26/2011] [Indexed: 12/11/2022]
Abstract
A key for long-term survival and function of biomaterials is that they do not elicit a detrimental immune response. As biomaterials can have profound impacts on the host immune response the concept emerged to design biomaterials that are able to trigger desired immunological outcomes and thus support the healing process. However, engineering such biomaterials requires an in-depth understanding of the host inflammatory and wound healing response to implanted materials. One focus of this review is to outline the up-to-date knowledge on immune responses to biomaterials. Understanding the complex interactions of host response and material implants reveals the need for and also the potential of "immunomodulating" biomaterials. Based on this knowledge, we discuss strategies of triggering appropriate immune responses by functional biomaterials and highlight recent approaches of biomaterials that mimic the physiological extracellular matrix and modify cellular immune responses.
Collapse
Affiliation(s)
- Sandra Franz
- Department of Dermatology, Venerology and Allergology, University Leipzig, 04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
30
|
Segat D, Tavano R, Donini M, Selvestrel F, Rio-Echevarria I, Rojnik M, Kocbek P, Kos J, Iratni S, Sheglmann D, Mancin F, Dusi S, Papini E. Proinflammatory effects of bare and PEGylated ORMOSIL-, PLGA- and SUV-NPs on monocytes and PMNs and their modulation by f-MLP. Nanomedicine (Lond) 2011; 6:1027-46. [PMID: 21644818 DOI: 10.2217/nnm.11.30] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIMS We wanted to test the proinflammatory effects of vinyltriethoxysilane-based organically modified silica nanoparticles (ORMOSIL-NPs) in vitro on blood leukocytes. MATERIALS & METHODS Cell selectivity, cytokines/chemokines and O(2) (-) production were analyzed using nonpolyethylene glycol (PEG)ylated and PEGylated ORMOSIL-NPs, poly(lactic-co-glycolic acid) (PLGA)-NPs and small unilamellar vesicles (SUV)-NPs. RESULTS ORMOSIL-NPs mostly bound to monocytes while other NPs to all leukocyte types similarly. Cell capture of PEGylated-NPs decreased strongly (ORMOSIL), moderately (PLGA) and weakly (SUV). Bare ORMOSIL-NPs effectively stimulated the production of IL-1β/IL-6/TNF-α/IL-8 by monocytes and of IL-8 by polymorphonuclear leukocytes (PMNs). NP PEGylation inhibited such effects only partially. Formyl-methionine-leucine phenylalanine (f-MLP) further increased the release of cytokines/chemokines by monocytes/PMNs primed with bare and PEGylated ORMOSIL-NPs. PEGylated SUV-NPs, bare and PEGylated ORMOSIL- and PLGA-NPs sensitize PMNs and monocytes to secrete O(2) (-) upon f-MLP stimulation. CONCLUSION ORMOSIL-NPs are preferentially captured by circulating monocytes but stimulate both monocytes and PMNs per se or by sensitizing them to another agonist (f-MLP). PEG-coating confers stealth effects but does not completely eliminate leukocyte activation. Safe nanomedical applications require the evaluation of both intrinsic and cooperative proinflammatory potential of NPs.
Collapse
Affiliation(s)
- Daniela Segat
- Centro di Ricerca Interdipartimentale per le Biotecnologie Innovative, Dipartimento di Biologia, Università di Padova, via U. Bassi 58/B, I-35131, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Schmidt D, Joyce EJ, Kao WJ. Fetal bovine serum xenoproteins modulate human monocyte adhesion and protein release on biomaterials in vitro. Acta Biomater 2011; 7:515-25. [PMID: 20837169 DOI: 10.1016/j.actbio.2010.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/25/2010] [Accepted: 08/25/2010] [Indexed: 10/19/2022]
Abstract
Monocyte-derived macrophages are critical in the host-foreign body response to biomaterials and have been studied extensively in various culture conditions in vitro, such as medium supplemented with fetal bovine serum (FBS) or autologous human serum (AHS). Since monocyte maturation into macrophages is highly plastic and may vary considerably depending on the surface, isolation procedures and in vitro culture conditions, we hypothesize that variations in protein adsorption and serum type will greatly impact monocyte behavior in a surface-dependent manner. The impact of xenoproteins on monocyte-surface interactions has not been well studied methodically and the use of AHS rather than FBS for macrophage-biomaterials studies in vitro is far from universal. The commonly used reference materials - tissue culture polystyrene (TCPS), polyethylene glycol (PEG) and polydimethylsiloxane (PDMS) - were employed in this study and we found a 3-fold higher adherent monocyte density on TCPS when AHS was used vs. FBS-supplemented medium. On PEG hydrogels, an 8- to 10-fold higher adhesion density was observed when AHS was employed vs. FBS, while on PDMS no difference in adhesion density was observed between the two sera conditions. Additionally, the presence of lipopolysaccharide abrogated the serum-dependent effect on cell adhesion on TCPS. Significantly different variations in protein release were observed between the serum conditions on these surfaces; in particular, there was a 100-fold higher concentration of growth-related oncogene for the AHS condition on PDMS even though the adhesion levels were comparable between the two serum conditions. These results emphasize the combined impact of the surface type and FBS xenoproteins in mediating the observed monocyte response to biomaterials in vitro.
Collapse
|
32
|
Lynn AD, Blakney AK, Kyriakides TR, Bryant SJ. Temporal progression of the host response to implanted poly(ethylene glycol)-based hydrogels. J Biomed Mater Res A 2011; 96:621-31. [PMID: 21268236 DOI: 10.1002/jbm.a.33015] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/18/2010] [Accepted: 10/06/2010] [Indexed: 12/18/2022]
Abstract
Poly(ethylene glycol) (PEG) hydrogels hold great promise as in vivo cell carriers for tissue engineering. To ensure appropriate performance of these materials when implanted, the host response must be well understood. The objectives for this study were to characterize the temporal evolution of the foreign body reaction (FBR) to acellular PEG-based hydrogels prepared from PEG diacrylate precursors when implanted subcutaneously in immunocompentent c57bl/6 mice by (immuno)histochemical analysis and gene expression. Compared with a normal FBR elicited by silicone (SIL), PEG hydrogels without or with a cell adhesion ligand RGD elicited a strong early inflammatory response evidenced by a thick band of macrophages as early as day 2, persisting through two weeks, and by increased interleukin-1β expression. PEG-only hydrogels showed a slower, but more sustained progression of inflammation over PEG-RGD. Temporal changes in gene expression were observed in response to PEG-based materials and in general exhibited, elevated expression of inflammatory and wound healing genes in the tissues surrounding the implants, while the expression patterns were more stable in response to SIL. While a stabilized FBR was achieved with SIL and to a lesser degree with PEG-RGD, the PEG-only hydrogels had not yet stabilized after 4 weeks. In summary, PEG-only hydrogels elicit a strong early inflammatory reaction, which persists throughout the course of the implantation even as a collagenous capsule begins to form. However, the incorporation of RGD tethers partially attenuates this response within 2 weeks leading to an improved FBR to PEG-based hydrogels.
Collapse
Affiliation(s)
- Aaron D Lynn
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | | | | | | |
Collapse
|
33
|
Lynn AD, Bryant SJ. Phenotypic changes in bone marrow-derived murine macrophages cultured on PEG-based hydrogels activated or not by lipopolysaccharide. Acta Biomater 2011; 7:123-32. [PMID: 20674808 DOI: 10.1016/j.actbio.2010.07.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 07/15/2010] [Accepted: 07/26/2010] [Indexed: 11/29/2022]
Abstract
Macrophages are phenotypically diverse cells performing a number of functions involved in immunity, inflammation, wound healing, tissue homeostasis and the foreign body reaction. In the latter, the type of biomaterial and the surrounding environment likely have an impact on macrophage phenotype and, subsequently, the severity of the reaction. The objectives for this study were to characterize the phenotype of bone marrow-derived murine macrophages in response to poly(ethylene glycol) (PEG)-based hydrogels, a promising class of materials for cell delivery. Gene expression was used as a measure of phenotype and characterized by IL-1β, TNF-α, iNOS, IL-12β, arginase, VEGF-A, and IL-10. Macrophages were cultured on PEG hydrogels, PEG hydrogels with RGD tethers, and medical grade silicone rubber, a well-characterized biomaterial, up to 96 h in the absence and presence of lipopolysaccharide (LPS) to simulate an inflammatory environment. Macrophage interrogation led to immediate up-regulation (10×) of IL-1β and TNF-α within 4h, followed by an increase in IL-10/IL-12β and a subsequent concomitant decrease in the pro-inflammatory genes by 96 h, suggesting a shift from classically activated to a regulatory phenotype. LPS stimulation led to a stronger early up-regulation of pro-inflammatory genes (e.g. 20-30× for IL-1β and TNF-α), followed by upregulation (4-6×) of arginase, suggesting a shift from an elevated classically activated to a wound healing phenotype. Material type played a significant role in regulating pro-inflammatory genes, which was most pronounced with PEG alone. Overall, our findings indicate that macrophages undergo similar phenotypic changes for the materials tested, but the magnitudes of these responses are highly material dependent.
Collapse
Affiliation(s)
- Aaron D Lynn
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, 80309, USA
| | | |
Collapse
|
34
|
Jeon O, Powell C, Ahmed SM, Alsberg E. Biodegradable, Photocrosslinked Alginate Hydrogels with Independently Tailorable Physical Properties and Cell Adhesivity. Tissue Eng Part A 2010; 16:2915-25. [DOI: 10.1089/ten.tea.2010.0096] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Oju Jeon
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Caitlin Powell
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Shaoly M. Ahmed
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
- Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
35
|
Lynn AD, Kyriakides TR, Bryant SJ. Characterization of the in vitro macrophage response and in vivo host response to poly(ethylene glycol)-based hydrogels. J Biomed Mater Res A 2010; 93:941-53. [PMID: 19708075 DOI: 10.1002/jbm.a.32595] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Photopolymerizable poly(ethylene glycol) (PEG)- based hydrogels have great potential as in vivo cell delivery vehicles for tissue engineering. However, their success in vivo will be dependent on the host response. The objectives for this study were to explore the in vivo host response and in vitro macrophage response to commonly used PEG-based hydrogels, PEG and PEG containing RGD. Acellular hydrogels were implanted subcutaneously into c57bl/6 mice and the foreign body response (FBR) was compared to medical grade silicone. Our findings demonstrated PEG-RGD hydrogels resulted in a FBR similar to silicone, while PEG-only hydrogels resulted in a robust inflammatory reaction characterized by a thick layer of macrophages at the material surface with evidence of gel degradation. In vitro, bone marrow-derived primary macrophages adhered well and similarly to PEG-based hydrogels, silicone, and tissue culture polystyrene when cultured for 4 days. Significantly higher gene expressions of the proinflammatory cytokines, TNF-alpha and Il-1beta, were found in macrophages seeded onto PEG compared to PEG-RGD and silicone at 1 and 2 days. PEG hydrogels were also shown to be susceptible to oxidative biodegradation. Our findings indicate that PEG-only hydrogels are proinflammatory while RGD attenuates this negative reaction leading to a moderate FBR.
Collapse
Affiliation(s)
- Aaron D Lynn
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309-0424, USA
| | | | | |
Collapse
|
36
|
Liu X, Xue Y, Sun J. Indirect induction of endothelial cell injury by PU- or PTFE-mediated activation of monocytes. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2010; 21:1783-97. [PMID: 20557688 DOI: 10.1163/092050609x12567180627536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Polyurethanes (PUs) and polytetrafluoroethylene (PTFE) are widely used for making cardiovascular devices, but thrombus formation on the surfaces of these devices is inevitable. Since endothelial injury can lead to thrombosis, most of the studies on PUs or PTFE focused on their damage to endothelial cells. However, few studies have attempted to clarify whether the use of foreign objects as biomaterials can cause endothelial injury by activating the innate immune system. In this study, we aimed to investigate the roles of PU- or PTFE-stimulated immune cells in endothelial-cell injury. First, monocytes (THP-1 cells) were stimulated with PU or PTFE for 24 h and, subsequently, human umbilical vein endothelial cells (HUVECs) were treated with the supernatants of the stimulated cells for 24 h. We measured the generation of intracellular reactive oxygen species (ROS) from THP-1 cells treated with PU and PTFE for 24 h, meanwhile hydrogen dioxide (H(2)O(2)), tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the supernatants were also detected. Then, we assessed the apoptosis rate of the HUVECs and determined the expression of NO, inducible nitric oxide synthase (iNOS), and apoptosis-related proteins (p53, Bax, Bcl-2) in the HUVECs. The results showed that large amounts of ROS and low levels of pro-inflammatory cytokines (TNF-α and IL-1β) were produced by the stimulated THP-1 cells. After culturing with the supernatants of the PU- or PTFE-stimulated THP-1 cells, the apoptosis rate, NO production and expression of iNOS, p53 and Bax in the HUVECs were up-regulated, while Bcl-2 expression was down-regulated. In conclusion, the release of ROS by PU- or PTFE-treated THP-1 cells may induce iNOS expression and cause apoptosis in HUVECs via the p53, Bax and Bcl-2 proteins. These data provide the interesting finding that endothelial injury in the process of biomaterial-induced thrombosis can be initiated through the release of soluble mediators by monocytes.
Collapse
Affiliation(s)
- Xin Liu
- Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P R China
| | | | | |
Collapse
|
37
|
Zhu J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 2010; 31:4639-56. [PMID: 20303169 PMCID: PMC2907908 DOI: 10.1016/j.biomaterials.2010.02.044] [Citation(s) in RCA: 835] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 02/16/2010] [Indexed: 12/12/2022]
Abstract
In this review, we explore different approaches for introducing bioactivity into poly(ethylene glycol) (PEG) hydrogels. Hydrogels are excellent scaffolding materials for repairing and regenerating a variety of tissues because they can provide a highly swollen three-dimensional (3D) environment similar to soft tissues. Synthetic hydrogels like PEG-based hydrogels have advantages over natural hydrogels, such as the ability for photopolymerization, adjustable mechanical properties, and easy control of scaffold architecture and chemical compositions. However, PEG hydrogels alone cannot provide an ideal environment to support cell adhesion and tissue formation due to their bio-inert nature. The natural extracellular matrix (ECM) has been an attractive model for the design and fabrication of bioactive scaffolds for tissue engineering. ECM-mimetic modification of PEG hydrogels has emerged as an important strategy to modulate specific cellular responses. To tether ECM-derived bioactive molecules (BMs) to PEG hydrogels, various strategies have been developed for the incorporation of key ECM biofunctions, such as specific cell adhesion, proteolytic degradation, and signal molecule-binding. A number of cell types have been immobilized on bioactive PEG hydrogels to provide fundamental knowledge of cell/scaffold interactions. This review addresses the recent progress in material designs and fabrication approaches leading to the development of bioactive hydrogels as tissue engineering scaffolds.
Collapse
Affiliation(s)
- Junmin Zhu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
38
|
Zeng Q, Chen W. The functional behavior of a macrophage/fibroblast co-culture model derived from normal and diabetic mice with a marine gelatin-oxidized alginate hydrogel. Biomaterials 2010; 31:5772-81. [PMID: 20452666 DOI: 10.1016/j.biomaterials.2010.04.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 04/12/2010] [Indexed: 01/13/2023]
Abstract
Tissues/cells-mediated biodegradable material degradation is epitomized by the constantly changing tissues/cell-implant interface, implicating the constant adaptation of the tissues/cells. Macrophages and fibroblasts are multi-functional cells highly involved in the interactions; the two cell types modulates the behaviors of each other, but their combinatorial functional behavior in the presence of interactive bioactive wound dressings has not been adequately examined. The activity is further complicated by the implantation of biodegradable materials, such as hydrogels commonly utilized as wound dressings, in a pathological environment and this is exemplified by the macrophages with a diabetic pathology producing an alternative cytokine profile which is implicated in wound healing delay. In this study, an in situ gelable formable/conformable hydrogel formulated from modified alginate and marine gelatin was used as a model biodegradable interactive wound dressing to elucidate the combinatorial behavior of macrophages/fibroblasts derived from both normal and diabetic hosts. Cell proliferation, migration and distribution were first characterized; this was followed by simultaneous quantitative detection of 40 inflammatory cytokines and chemokines by a protein microarray. The results showed that the macrophages/fibroblasts co-culture promoted fibroblasts proliferation and migration in the presence of the hydrogel; moreover, the expressions of inflammatory cytokines and chemokines were altered when compared with the corresponding fibroblasts or macrophages monocultures. The inflammatory cytokines patterns between the normal and diabetic hosts were considerably different.
Collapse
Affiliation(s)
- Qiong Zeng
- Department of Biomedical Engineering, Health Science Center T18-030, State University of New York-Stony Brook, Stony Brook, NY 11794-8181, USA
| | | |
Collapse
|
39
|
Chung AS, Waldeck H, Schmidt DR, Kao WJ. Monocyte inflammatory and matrix remodeling response modulated by grafted ECM-derived ligand concentration. J Biomed Mater Res A 2009; 91:742-52. [PMID: 19051303 PMCID: PMC2767419 DOI: 10.1002/jbm.a.32259] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ligands presented on biomaterials are a common method to facilitate and control the host response. In a gelatin and polyethylene glycol diacrylate (PEGdA) based semi-interpenetrating network (sIPN), the effects of extracellular matrix (ECM)-derived peptide amount on monocyte adhesion and subsequent protein and mRNA expression were examined. Peptide amount on the sIPN surface was controlled by varying the wt % ratio of the peptide-PEG grafted gelatin to PEGdA. We hypothesized that increasing bioactive peptide amount would modulate human blood-derived monocyte adhesion, cytokine expression, and gene regulation. Monocyte adhesion, release of gelatin degrading proteases matrix metalloprotease-2 (MMP-2), matrix metalloprotease-9 (MMP-9), and proinflammatory protein interleukin-1beta (IL-1beta), and mRNA expression of these proteins were evaluated. We found RGD-PEG grafted sIPNs with higher surface RGD concentrations showed increased adherent density. MMP-2 and IL-1beta protein release was also influenced by the ligand concentration, as initial increase in protein concentration was observed at higher ligand concentrations. MMP-9 protein showed an initial increase that subsided then increased. A decreased IL-1beta protein and mRNA expression was observed over time but MMP-2 mRNA was not detected at any time though MMP-2 protein concentrations showed an initial burst. Hence, monocyte behavior was modulated by surface ligand identity in tandem with ligand concentration.
Collapse
Affiliation(s)
- Amy S Chung
- School of Pharmacy, University of Wisconsin-Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
40
|
Jones KS. Assays on the influence of biomaterials on allogeneic rejection in tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2009; 14:407-17. [PMID: 18826337 DOI: 10.1089/ten.teb.2008.0264] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In tissue engineering, innate responses to biomaterial scaffolds will affect rejection of allogeneic cells. Biomaterials directly influence innate and adaptive immune cell adhesion, reactive oxygen intermediate production, cytokine secretion, nuclear factor-kappa B nuclear translocation, gene expression, and cell surface markers, all of which are likely to affect allogeneic rejection responses. A major goal in tissue engineering is to induce transplant tolerance, potentially by manipulating the biomaterial component. This review describes methods of measuring responses of macrophages, dendritic cells, and T cells stimulated in vitro and in vivo and addresses key factors in assay development. Such tests include mixed leukocyte reactions, enzyme-linked immunosorbent spot assays, trans-vivo delayed-type hypersensitivity assays, and measurement of dendritic cell subsets and anti-donor antibodies; we propose extending these studies to tissue engineering.
Collapse
Affiliation(s)
- Kim S Jones
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
41
|
Chung AS, Kao WJ. Fibroblasts regulate monocyte response to ECM-derived matrix: The effects on monocyte adhesion and the production of inflammatory, matrix remodeling, and growth factor proteins. J Biomed Mater Res A 2009; 89:841-53. [DOI: 10.1002/jbm.a.32431] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
42
|
Zuckerman ST, Brown JF, Kao WJ. Identification of regulatory Hck and PAI-2 proteins in the monocyte response to PEG-containing matrices. Biomaterials 2009; 30:3825-33. [PMID: 19443025 DOI: 10.1016/j.biomaterials.2009.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 04/13/2009] [Indexed: 11/29/2022]
Abstract
Mass spectrometry is a powerful proteomic tool enabling researchers to survey the global proteome of a cell. This technique has only recently been employed to investigate cell-material interactions. We had previously identified material scarcity and limited adherent cells as challenges facing mass spectrometric analysis of cell-material interactions. U937 adherent to tissue culture poly(styrene) was used as a model system for identifying proteins expressed by adherent monocytes and analyzed by HPLC coupled offline to MALDI-ToF/ToF (LC-MALDI). We identified 645 proteins from two cation fractions of crude U937 monocyte cell lysate. Forty three proteins of interest from the 645 were chosen based on literature searches for relevance to monocyte-material inflammation and wound healing. Proteins such as 40S ribosomal protein S19 and tyrosyl tRNA synthetase highlight the ability of LC-MALDI to identify proteins relevant to monocyte-material interactions that are currently unexplored. We used PEG-based semi-interpenetrating polymer networks and PEG-only hydrogels to investigate surface dependent effects on the Src family kinase Hck and plasminogen activator inhibitor-2 (PAI-2) using the pyrazolo pyrimidine small molecule inhibitor PP2 and exogenous urokinase plasminogen activator addition, respectively. Hck is well researched in cell adhesion while PAI-2 is virtually unknown in cell-material interactions. U937 on TCPS and PEG-only hydrogels secreted similar levels of inflammatory cytokines and gelatinase MMP-9. MCP-1 secretion from monocytes on PEG-only hydrogels was Hck independent in contrast to Hck-dependent MCP-1 secretion in U937 on TCPS. Overall, U937 adherent to sIPNs secrete low levels of soluble gelatinase MMP-9, IL-1beta, TNF-alpha, IL-6, and MCP-1 independent of Hck and PAI-2. This work demonstrates significant changes in surface dependent expression of proteins from monocytes adherent to PEG-based materials compared to TCPS.
Collapse
Affiliation(s)
- Sean T Zuckerman
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI 53705, USA
| | | | | |
Collapse
|
43
|
Place ES, George JH, Williams CK, Stevens MM. Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev 2009; 38:1139-51. [DOI: 10.1039/b811392k] [Citation(s) in RCA: 582] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
44
|
Zhang J, Srivastava S, Duffadar R, Davis JM, Rotello VM, Santore MM. Manipulating microparticles with single surface-immobilized nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:6404-6408. [PMID: 18537273 DOI: 10.1021/la800857v] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This experimental study explores the capture and manipulation of micrometer-scale particles by single surface-immobilized nanoparticles. The nanoparticles, approximately 10 nm in diameter, are cationic and therefore attract the micrometer-scale silica particles in an analyte suspension. The supporting surface on which the nanoparticles reside is negative (also silica) and repulsive toward approaching microparticles. In the limit where there are as few as 9 nanoparticles per square micrometer of collector, it becomes possible to capture and hold micrometer-scale silica particles with single nanoparticles. The strong nanoparticle-microparticle attractions, their nanometer-scale protrusion forward of the supporting surface, and their controlled density on the supporting surface facilitate microparticle-surface contact occurring through a single nanoelement. This behavior differs from most particle-particle, cell-cell, or particle (or cell)-surface interactions that involve multiple ligand-receptor bonds or much larger contact areas. Despite the limited contact of microparticles with surface-immobilized nanoparticles, microparticles resist shear forces of 9 pN or more but can be released through an increase in the ionic strength. The ability of nanoparticles to reversibly trap and hold much larger targets has implications in materials self-assembly, cell capture, and sorting applications, whereas the single point of contact affords precision in particle manipulation.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | |
Collapse
|