1
|
Akunna C, Cerruti M. Structural connectivity and bioactivity in sol-gel silicate glass design. Acta Biomater 2024; 188:374-392. [PMID: 39182803 DOI: 10.1016/j.actbio.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Bioactive glasses (BGs) bond with bone by forming hydroxy carbonate apatite (HCA) upon reaction in physiological fluid, a phenomenon known as bioactivity. BGs structural network connectivity determines their bioactivity. Sol-gel BGs are synthesized through the hydrolysis and condensation of metal alkoxide precursors in the presence of a catalyst, in aqueous environments. Several sol-gel synthesis parameters directly impact BG network connectivity: pH (i.e. acid or basic catalysis), water to alkoxide ratio (Rw), alkoxide type and presence of dopant ions. However, the relationship between bioactivity and these parameters remains surprisingly unexplored. This study highlights the relationship between synthesis pH, Rw, network connectivity and bioactivity in silica-based sol-gel BGs and BGs doped with titanium (Ti) ions (TiBGs), the latter selected for their known ability to enhance network connectivity. BGs and TiBGs are synthesized with various Rw values under acidic and basic conditions, and their bioactivity is assessed in simulated body fluid for 7 days. Increasing Rw decreases network connectivity and increases bioactivity of BGs with high network connectivity, as observed for base-catalyzed BGs and for both acid and base catalyzed TiBGs, but not in BGs with lower connectivity as evidenced in acid-catalyzed BGs. Basic catalysis of TiBGs prevents crystalline TiO2 domain formation, which was instead consistently observed in TiBGs synthesized under acidic catalysis. These findings help the design of BGs for applications where ion release needs to be enhanced even in the presence of dopants that slow down HCA formation, and of BGs with specific properties, e.g. TiO2-containing BGs with potential bactericidal activity. STATEMENT OF SIGNIFICANCE: Bioactive glasses (BGs) bond with bone by dissolving and forming hydroxycarbonate apatite (HCA) on their surface, offering applications in medicine and dentistry. BG's network connectivity influences its dissolution rate, and hence HCA formation. While solution-gelation (sol-gel) is commonly used for BG production, the effect of sol gel synthesis parameters on HCA formation remains unexplored. We studied the relationship between synthesis parameters (water-to-alkoxide ratio (Rw), catalyst, and dopant ions, particularly titanium), BG network connectivity, and HCA formation. We find that increasing Rw with any catalyst enhances HCA formation, particularly in glasses with high network connectivity. This understanding allows tailoring BG synthesis for different applications, e.g. those requiring doping with ions that increase network connectivity and fills a crucial gap in BG literature.
Collapse
Affiliation(s)
- Chisokwuo Akunna
- Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5, Québec, Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5, Québec, Canada.
| |
Collapse
|
2
|
Fernández-Galiana Á, Bibikova O, Vilms Pedersen S, Stevens MM. Fundamentals and Applications of Raman-Based Techniques for the Design and Development of Active Biomedical Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210807. [PMID: 37001970 DOI: 10.1002/adma.202210807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Raman spectroscopy is an analytical method based on light-matter interactions that can interrogate the vibrational modes of matter and provide representative molecular fingerprints. Mediated by its label-free, non-invasive nature, and high molecular specificity, Raman-based techniques have become ubiquitous tools for in situ characterization of materials. This review comprehensively describes the theoretical and practical background of Raman spectroscopy and its advanced variants. The numerous facets of material characterization that Raman scattering can reveal, including biomolecular identification, solid-to-solid phase transitions, and spatial mapping of biomolecular species in bioactive materials, are highlighted. The review illustrates the potential of these techniques in the context of active biomedical material design and development by highlighting representative studies from the literature. These studies cover the use of Raman spectroscopy for the characterization of both natural and synthetic biomaterials, including engineered tissue constructs, biopolymer systems, ceramics, and nanoparticle formulations, among others. To increase the accessibility and adoption of these techniques, the present review also provides the reader with practical recommendations on the integration of Raman techniques into the experimental laboratory toolbox. Finally, perspectives on how recent developments in plasmon- and coherently-enhanced Raman spectroscopy can propel Raman from underutilized to critical for biomaterial development are provided.
Collapse
Affiliation(s)
- Álvaro Fernández-Galiana
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| | - Olga Bibikova
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| | - Simon Vilms Pedersen
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| |
Collapse
|
3
|
Sohrabi M, Hesaraki S, Shahrezaee M, Shams-Khorasani A, Roshanfar F, Glasmacher B, Heinemann S, Xu Y, Makvandi P. Antioxidant flavonoid-loaded nano-bioactive glass bone paste: in vitro apatite formation and flow behavior. NANOSCALE ADVANCES 2024; 6:1011-1022. [PMID: 38298585 PMCID: PMC10825906 DOI: 10.1039/d3na00941f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
Non-cement pastes in the form of injectable materials have gained considerable attention in non-invasive regenerative medicine. Different osteoconductive bioceramics have been used as the solid phase of these bone pastes. Mesoporous bioactive glass can be used as an alternative bioceramic for paste preparation because of its osteogenic qualities. Plant-derived osteogenic agents can also be used in paste formulation to improve osteogenesis; however, their side effects on physical and physicochemical properties should be investigated. In this study, nano-bioactive glass powder was synthesized by a sol-gel method, loaded with different amounts of quercetin (0, 100, 150, and 200 μM), an antioxidant flavonoid with osteogenesis capacity. The loaded powder was then homogenized with a mixture of hyaluronic acid and sodium alginate solution to form a paste. We subsequently evaluated the rheological behavior, injectability, washout resistance, and in vitro bioactivity of the quercetin-loaded pastes. The washout resistance was found to be more than 96% after 14 days of immersion in simulated body fluid (SBF) as well as tris-buffered and citric acid-buffered solutions at 25 °C and 37 °C. All pastes exhibited viscoelastic behavior, in which the elastic modulus exceeded the viscous modulus. The pastes displayed shear-thinning behavior, in which viscosity was more influenced by angular frequency when the quercetin content increased. Results indicated that injectability was much improved using quercetin and the injection force was in the range 20-150 N. Following 14 days of SBF soaking, the formation of a nano-structured apatite phase on the surfaces of quercetin-loaded pastes was confirmed through scanning electron microscopy, X-ray diffractometry, and Fourier-transform infrared spectroscopy. Overall, quercetin, an antioxidant flavonoid osteogenic agent, can be loaded onto the nano-bioactive glass/hyaluronic acid/sodium alginate paste system to enhance injectability, rheological properties, and bioactivity.
Collapse
Affiliation(s)
- Mehri Sohrabi
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center Alborz Iran
| | - Saeed Hesaraki
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center Alborz Iran
| | | | - Alireza Shams-Khorasani
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center Alborz Iran
| | - Fahimeh Roshanfar
- Institute for Multiphase Processes (IMP), Leibniz University Hannover 30823 Garbsen Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE) 30625 Hannover Germany
| | - Brigit Glasmacher
- Institute for Multiphase Processes (IMP), Leibniz University Hannover 30823 Garbsen Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE) 30625 Hannover Germany
| | | | - Yi Xu
- Department of Science & Technology, Department of Urology, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital Quzhou China
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital 324000 Quzhou Zhejiang China
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University Rajpura-140401 Punjab India
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University Chennai 600077 India
| |
Collapse
|
4
|
Kim J, Chin YW. Antimicrobial Agent against Methicillin-Resistant Staphylococcus aureus Biofilm Monitored Using Raman Spectroscopy. Pharmaceutics 2023; 15:1937. [PMID: 37514124 PMCID: PMC10384418 DOI: 10.3390/pharmaceutics15071937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The prevalence of antimicrobial-resistant bacteria has become a major challenge worldwide. Methicillin-resistant Staphylococcus aureus (MRSA)-a leading cause of infections-forms biofilms on polymeric medical devices and implants, increasing their resistance to antibiotics. Antibiotic administration before biofilm formation is crucial. Raman spectroscopy was used to assess MRSA biofilm development on solid culture media from 0 to 48 h. Biofilm formation was monitored by measuring DNA/RNA-associated Raman peaks and protein/lipid-associated peaks. The search for an antimicrobial agent against MRSA biofilm revealed that Eugenol was a promising candidate as it showed significant potential for breaking down biofilm. Eugenol was applied at different times to test the optimal time for inhibiting MRSA biofilms, and the Raman spectrum showed that the first 5 h of biofilm formation was the most antibiotic-sensitive time. This study investigated the performance of Raman spectroscopy coupled with principal component analysis (PCA) to identify planktonic bacteria from biofilm conglomerates. Raman analysis, microscopic observation, and quantification of the biofilm growth curve indicated early adhesion from 5 to 10 h of the incubation time. Therefore, Raman spectroscopy can help in monitoring biofilm formation on a solid culture medium and performing rapid antibiofilm assessments with new antibiotics during the early stages of the procedure.
Collapse
Affiliation(s)
- Jina Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Won Chin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Walther AR, Ditzel N, Kassem M, Andersen MØ, Hedegaard MAB. In vivo non-invasive monitoring of tissue development in 3D printed subcutaneous bone scaffolds using fibre-optic Raman spectroscopy. BIOMATERIALS AND BIOSYSTEMS 2022; 7:100059. [PMID: 36824488 PMCID: PMC9934492 DOI: 10.1016/j.bbiosy.2022.100059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022] Open
Abstract
The development of novel biomaterials for regenerative therapy relies on the ability to assess tissue development, quality, and similarity with native tissue types in in vivo experiments. Non-invasive imaging modalities such as X-ray computed tomography offer high spatial resolution but limited biochemical information while histology and biochemical assays are destructive. Raman spectroscopy is a non-invasive, label-free and non-destructive technique widely applied for biochemical characterization. Here we demonstrate the use of fibre-optic Raman spectroscopy for in vivo quantitative monitoring of tissue development in subcutaneous calcium phosphate scaffolds in mice over 16 weeks. Raman spectroscopy was able to quantify the time dependency of different tissue components related to the presence, absence, and quantity of mesenchymal stem cells. Scaffolds seeded with stem cells produced 3-5 times higher amount of collagen-rich extracellular matrix after 16 weeks implantation compared to scaffolds without. These however, showed a 2.5 times higher amount of lipid-rich tissue compared to implants with stem cells. Ex vivo micro-computed tomography and histology showed stem cell mediated collagen and bone development. Histological measures of collagen correlated well with Raman derived quantifications (correlation coefficient in vivo 0.74, ex vivo 0.93). In the absence of stem cells, the scaffolds were largely occupied by adipocytes. The technique developed here could potentially be adapted for a range of small animal experiments for assessing tissue engineering strategies at the biochemical level.
Collapse
Affiliation(s)
- Anders Runge Walther
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Nicholas Ditzel
- Endocrine Research (KMEB), Department of Endocrinology, Odense University Hospital and University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense, Denmark
| | - Moustapha Kassem
- Endocrine Research (KMEB), Department of Endocrinology, Odense University Hospital and University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense, Denmark
| | - Morten Østergaard Andersen
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Martin Aage Barsøe Hedegaard
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
6
|
Manoochehri H, Ghorbani M, Moosazadeh Moghaddam M, Nourani MR, Makvandi P, Sharifi E. Strontium doped bioglass incorporated hydrogel-based scaffold for amplified bone tissue regeneration. Sci Rep 2022; 12:10160. [PMID: 35715472 PMCID: PMC9205926 DOI: 10.1038/s41598-022-14329-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/06/2022] [Indexed: 11/27/2022] Open
Abstract
Repairing of large bone injuries is an important problem in bone regeneration field. Thus, developing new therapeutic approaches such as tissue engineering using 3D scaffolds is necessary. Incorporation of some bioactive materials and trace elements can improve scaffold properties. We made chitosan/alginate/strontium-doped bioglass composite scaffolds with optimized properties for bone tissue engineering. Bioglass (BG) and Sr-doped bioglasses (Sr-BG) were synthesized using Sol-Gel method. Alginate-Chitosan (Alg/Cs) scaffold and scaffolds containing different ratio (10%, 20% and 30%) of BG (Alg/Cs/BG10, 20, 30) or Sr-BG (Alg/Cs/Sr-BG10, 20, 30) were fabricated using freeze drying method. Characterization of bioglasses/scaffolds was done using zeta sizer, FTIR, XRD, (FE) SEM and EDS. Also, mechanical strength, antibacterial effect degradation and swelling profile of scaffolds were evaluated. Bone differentiation efficiency and viability of MSCs on scaffolds were determined by Alizarin Red, ALP and MTT methods. Cell toxicity and antibacterial effect of bioglasses were determined using MTT, MIC and MBC methods. Incorporation of BG into Alg/Cs scaffolds amplified biomineralization and mechanical properties along with improved swelling ratio, degradation profile and cell differentiation. Mechanical strength and cell differentiation efficiency of Alg/Cs/BG20 scaffold was considerably higher than scaffolds with lower or higher BG concentrations. Alg/Cs/Sr-BG scaffolds had higher mechanical stability and more differentiation efficiency in comparison with Alg/Cs and Alg/Cs/BG scaffolds. Also, Mechanical strength and cell differentiation efficiency of Alg/Cs/Sr-BG20 scaffold was considerably higher than scaffolds with various Sr-BG concentrations. Biomineralization of Alg/Cs/BG scaffolds slightly was higher than Alg/Cs/Sr-BG scaffolds. Overall, we concluded that Alg/Cs/Sr-BG20 scaffolds are more suitable for repairing bone major injuries.
Collapse
Affiliation(s)
- Hamed Manoochehri
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Ghorbani
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | | | - Mohammad Reza Nourani
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Pooyan Makvandi
- Center for Materials Interfaces, Istituto Italiano di Tecnologia, 56025, Pontedera, Pisa, Italy
| | - Esmaeel Sharifi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
7
|
Borden M, Westerlund LE, Lovric V, Walsh W. Controlling the bone regeneration properties of bioactive glass: Effect of particle shape and size. J Biomed Mater Res B Appl Biomater 2021; 110:910-922. [PMID: 34936202 PMCID: PMC9305884 DOI: 10.1002/jbm.b.34971] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 11/24/2022]
Abstract
The ability of particulate bioactive glass to function as an effective bone graft material is directly related to its in vivo dissolution, ion release, and interparticle spacing (area associated with bone in‐growth). A spherical shape represents an optimal geometry to control bioactive glass bone formation properties. Spherical particles were fabricated from 45S5 bioactive glass with unimodal (90–180, 180–355, and 355–500 μm) and bimodal size ranges (180–355/355–500 and 90–180/355–500 μm). Particles were formed into bone graft putties and compared to a commercially available product composed of irregular 45S5 bioactive glass particles (32–710 μm). Scanning electron microscopy characterization of spherical particles showed a relatively uniform sphere shape and smooth surfaces. Irregular particles were characterized by random shapes with flat surfaces and sharp edges. X‐ray fluorescence and X‐ray diffraction indicated that the spheroidization process maintained the properties of 45S5 bioactive glass. Cross‐sectional micro‐computed tomography imaging of the putty samples demonstrated that smaller spheres and irregular particles resulted denser packing patterns compared to the larger spheres. Isolated particles were immersed in simulated body fluid for 14 days to measure silicon ion release and bioactivity. Inductively coupled plasma spectroscopy showed faster ion release from smaller particles due to increased surface area. Bioactivity characterization of 14‐day simulated body fluid exposed particle surfaces showed the presence of a hydroxycarbanoapatite mineral layer (characteristic of 45S5 bioactive glass) on all bioactive glass particles. Results demonstrated that spherical particles maintained the properties of the starting 45S5 bioactive glass, and that particle shape and size directly affected short‐term glass dissolution, ion release, and interparticle spacing.
Collapse
Affiliation(s)
- Mark Borden
- Synergy Biomedical, Wayne, Pennsylvania, USA
| | | | - Vedran Lovric
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - William Walsh
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Li H, Wang W, Chang J. Calcium silicate enhances immunosuppressive function of MSCs to indirectly modulate the polarization of macrophages. Regen Biomater 2021; 8:rbab056. [PMID: 34804588 PMCID: PMC8597971 DOI: 10.1093/rb/rbab056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Bioactive silicate ceramics (BSCs) have been widely reported to be able to induce bone tissue regeneration, but the underlying mechanisms have not been fully elucidated. Previous studies have reported that ionic products of BSCs can promote bone regeneration by directly simulating osteogenic differentiation of mesenchymal stem cells (MSCs) and modulating the polarization of macrophages to create a favorable inflammation microenvironment for initiating bone regeneration cascades. However, the immunomodulatory ability of MSCs also plays a critical role in bone regeneration but the effects of BSCs on the immunomodulatory ability of MSCs have been rarely investigated. This study aims to investigate the effects of ionic products of BSCs on the immunoregulatory ability of MSCs to further understand the mechanism of BSCs enhancing bone regeneration. Results showed that ionic products of calcium silicate (CS), one of the representative BSCs, could enhance the immunosuppressive function of human bone marrow mesenchymal stem cells (HBMSCs) by up-regulating the expression of immunosuppressive factors in HBMSCs via NF-κB pathway. In addition, CS-activated HBMSCs showed stronger stimulatory effects on M2 polarization of macrophages than CS ionic products. Furthermore, the macrophages educated by CS-activated HBMSCs showed stronger stimulatory effects on the early osteogenic differentiation of HBMSCs than the ones regulated by CS ionic products. These results not only provide further understanding on the mechanism of BSCs enhancing bone regeneration but also suggest that it is critical to consider the effects of biomaterials on the immunomodulatory function of the tissue forming cells when the immunomodulatory function of biomaterials is investigated.
Collapse
Affiliation(s)
- Haiyan Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.,Chemical and Environment Engineering Department, School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, VIC 3001, Australia
| | - Wenrui Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Jiang Chang
- State Key Laboratory of Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| |
Collapse
|
9
|
Klontzas ME, Protonotarios A. High-Resolution Imaging for the Analysis and Reconstruction of 3D Microenvironments for Regenerative Medicine: An Application-Focused Review. Bioengineering (Basel) 2021; 8:182. [PMID: 34821748 PMCID: PMC8614770 DOI: 10.3390/bioengineering8110182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
The rapid evolution of regenerative medicine and its associated scientific fields, such as tissue engineering, has provided great promise for multiple applications where replacement and regeneration of damaged or lost tissue is required. In order to evaluate and optimise the tissue engineering techniques, visualisation of the material of interest is crucial. This includes monitoring of the cellular behaviour, extracellular matrix composition, scaffold structure, and other crucial elements of biomaterials. Non-invasive visualisation of artificial tissues is important at all stages of development and clinical translation. A variety of preclinical and clinical imaging methods-including confocal multiphoton microscopy, optical coherence tomography, magnetic resonance imaging (MRI), and computed tomography (CT)-have been used for the evaluation of artificial tissues. This review attempts to present the imaging methods available to assess the composition and quality of 3D microenvironments, as well as their integration with human tissues once implanted in the human body. The review provides tissue-specific application examples to demonstrate the applicability of such methods on cardiovascular, musculoskeletal, and neural tissue engineering.
Collapse
Affiliation(s)
- Michail E. Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, 71110, Heraklion, Crete, Greece
- Computational Biomedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology (FORTH), 70013 Heraklion, Crete, Greece
- Department of Radiology, School of Medicine, Voutes Campus, University of Crete, 71003 Heraklion, Crete, Greece
| | | |
Collapse
|
10
|
Huang C, Yu M, Li H, Wan X, Ding Z, Zeng W, Zhou Z. Research Progress of Bioactive Glass and Its Application in Orthopedics. ADVANCED MATERIALS INTERFACES 2021. [DOI: 10.1002/admi.202100606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chao Huang
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Min Yu
- Department of Anesthesiology North‐Kuanren General Hospital No. 69 Xingguang Avenue, Yubei District Chongqing 401121 P. R. China
| | - Hao Li
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Xufeng Wan
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Zichuan Ding
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Weinan Zeng
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Zongke Zhou
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| |
Collapse
|
11
|
Fosca M, Basoli V, Della Bella E, Russo F, Vadala G, Alini M, Rau JV, Verrier S. Raman spectroscopy in skeletal tissue disorders and tissue engineering: present and prospective. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:949-965. [PMID: 34579558 DOI: 10.1089/ten.teb.2021.0139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Musculoskeletal disorders are the most common reason of chronic pain and disability representing worldwide an enormous socio-economic burden. In this review, new biomedical application fields for Raman spectroscopy (RS) technique related to skeletal tissues are discussed showing that it can provide a comprehensive profile of tissue composition in situ, in a rapid, label-free, and non-destructive manner. RS can be used as a tool to study tissue alterations associated to aging, pathologies, and disease treatments. The main advantage with respect to currently applied methods in clinics is its ability to provide specific information on molecular composition, which goes beyond other diagnostic tools. Being compatible with water, RS can be performed without pre-treatment on unfixed, hydrated tissue samples, without any labelling and chemical fixation used in histochemical methods. This review provides first the description of basic principles of RS as a biotechnology tool and introduces into the field of currently available RS based techniques, developed to enhance Raman signal. The main spectral processing statistical tools, fingerprint identification and available databases are mentioned. The recent literature has been analysed for such applications of RS as tendon and ligaments, cartilage, bone, and tissue engineered constructs for regenerative medicine. Several cases of proof-of-concept preclinical studies have been described. Finally, advantages, limitations, future perspectives, and challenges for translation of RS into clinical practice have been also discussed.
Collapse
Affiliation(s)
- Marco Fosca
- Istituto di Struttura della Materia Consiglio Nazionale delle Ricerche, 204549, Roma, Lazio, Italy;
| | - Valentina Basoli
- AO Research Institute Davos, 161930, Regenerative Orthopaedics, Davos, Graubünden, Switzerland;
| | - Elena Della Bella
- AO Research Institute Davos, 161930, Regenerative Orthopaedics, Davos, Graubünden, Switzerland;
| | - Fabrizio Russo
- Campus Bio-Medico University Hospital, 220431, Roma, Lazio, Italy;
| | - Gianluca Vadala
- Campus Bio-Medico University Hospital, 220431, Roma, Lazio, Italy;
| | - Mauro Alini
- AO Research Institute Davos, 161930, Regenerative Orthopaedics, Davos, Graubünden, Switzerland;
| | - Julietta V Rau
- Istituto di Struttura della Materia Consiglio Nazionale delle Ricerche, 204549, Roma, Lazio, Italy.,I M Sechenov First Moscow State Medical University, 68477, Moskva, Moskva, Russian Federation;
| | - Sophie Verrier
- AO Research Institute Davos, 161930, Regenerative Orthopaedics, Davos, Graubünden, Switzerland;
| |
Collapse
|
12
|
Jung N, Moreth T, Stelzer EHK, Pampaloni F, Windbergs M. Non-invasive analysis of pancreas organoids in synthetic hydrogels defines material-cell interactions and luminal composition. Biomater Sci 2021; 9:5415-5426. [PMID: 34318785 DOI: 10.1039/d1bm00597a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The cultivation of cells forming three-dimensional structures like organoids holds great potential in different fields of life sciences and is gaining increasing interest with regards to clinical applications and personalised medicine. However, conventional hydrogels used as cell cultivation matrices (e.g. Matrigel®) contain animal-derived components in varying quantities, implicating low reproducibility of experiments and limited applicability for clinical use. Based on the strong need for developing novel, well defined, and animal-free hydrogels for 3D cell cultures, this study presents a comprehensive analysis of pancreas organoid cultivation in two synthetic hydrogels. Besides established visualisation techniques to monitor organoid formation and growth, confocal Raman microscopy was used for the first time to evaluate the gel matrices and organoid formation within the gels. The approach revealed so far not accessible information about material-cell interactions and the composition of the organoid lumen in a non-invasive and label-free manner. Confocal Raman microscopy thereby enabled a systematic characterisation of different hydrogels with respect to cell culture compatibility and allowed for the rational selection of a hydrogel formulation to serve as a synthetic and fully defined alternative to animal-derived cultivation matrices.
Collapse
Affiliation(s)
- Nathalie Jung
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt am Main, Germany.
| | - Till Moreth
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt am Main, Germany
| | - Ernst H K Stelzer
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt am Main, Germany
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Im SB, Tripathi G, Le TTT, Lee BT. Early-stage bone regeneration of hyaluronic acid supplemented with porous 45s5 bioglass-derived granules: an injectable system. Biomed Mater 2021; 16. [PMID: 34038893 DOI: 10.1088/1748-605x/ac058f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/26/2021] [Indexed: 11/12/2022]
Abstract
In the present study, an injectable bone substitute system which utilized porous bioglass (BG)-derived granules supplemented with hyaluronic acid (Hya), was evaluated. Hya plays ultimate role in wound healing, promoting cell motility. The BG were synthesized by a simple and low sintering temperature process without any foreign phase incorporation. Furthermore, the physical properties in the porous scaffold were optimized to investigate thein vitroandin vivoperformance. The porous BG60 scaffolds system showed excellent bioactivity in anin vitrosimulated body fluid test in which the ions dissolved from the composite materials influenced apatite growth, countered the acidic pH, and increased material degradation. In anin vitrostudy with pre-osteoblasts cells (MC3T3-E1), the porous scaffold supported cell adhesion and proliferation. A post-implantation study conducted in femoral defects showed implant degradation and surprisingly fast bone formation just after 2 weeks of implantation. Initialin vivodegradation of Hya promotes releasing ions which regulates the bone forming cells, clues to tissue repair, and regeneration. On the other hand it also prevent the scattering of BG granule after grafting at implant site. The faster dissolution of the porous BG scaffold increased the resorption of the composite material and hence, facilitated bone tissue regeneration. Our findings suggest that the porous BG scaffold could potentially be used as an injectable bone substitute for fast, early bone regeneration applications.
Collapse
Affiliation(s)
- Soo Bin Im
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Bucheon Hospital, Bucheon, Republic of Korea.,Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Garima Tripathi
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Thi Thao Thanh Le
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Byong Taek Lee
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.,Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
14
|
Jablonská E, Horkavcová D, Rohanová D, Brauer DS. A review of in vitro cell culture testing methods for bioactive glasses and other biomaterials for hard tissue regeneration. J Mater Chem B 2021; 8:10941-10953. [PMID: 33169773 DOI: 10.1039/d0tb01493a] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bioactive glasses are used to regenerate bone by a mechanism which involves surface degradation, the release of ions such as calcium, soluble silica and phosphate and the precipitation of a biomimetic apatite surface layer on the glass. One major area of bioactive glass research is the incorporation of therapeutically active ions to broaden the application range of these materials. When developing such new compositions, in vitro cell culture studies are a key part of their characterisation. However, parameters of cell culture studies vary widely, and depending on the intended use of bioactive glass compositions, different layouts, cell types and assays need to be used. The aim of this publication is to provide materials scientists, particularly those new to cell culture studies, with a tool for selecting the most appropriate assays to give insight into the properties of interest.
Collapse
Affiliation(s)
- Eva Jablonská
- Laboratory of Molecular Biology and Virology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Czech Republic.
| | - Diana Horkavcová
- Laboratory of Chemistry and Technology of Glasses, Department of Glass and Ceramics, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Dana Rohanová
- Laboratory of Chemistry and Technology of Glasses, Department of Glass and Ceramics, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Delia S Brauer
- Otto Schott Institute of Materials Research, Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743 Jena, Germany.
| |
Collapse
|
15
|
Sergi R, Bellucci D, Cannillo V. A Review of Bioactive Glass/Natural Polymer Composites: State of the Art. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5560. [PMID: 33291305 PMCID: PMC7730917 DOI: 10.3390/ma13235560] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Collagen, gelatin, silk fibroin, hyaluronic acid, chitosan, alginate, and cellulose are biocompatible and non-cytotoxic, being attractive natural polymers for medical devices for both soft and hard tissues. However, such natural polymers have low bioactivity and poor mechanical properties, which limit their applications. To tackle these drawbacks, collagen, gelatin, silk fibroin, hyaluronic acid, chitosan, alginate, and cellulose can be combined with bioactive glass (BG) nanoparticles and microparticles to produce composites. The incorporation of BGs improves the mechanical properties of the final system as well as its bioactivity and regenerative potential. Indeed, several studies have demonstrated that polymer/BG composites may improve angiogenesis, neo-vascularization, cells adhesion, and proliferation. This review presents the state of the art and future perspectives of collagen, gelatin, silk fibroin, hyaluronic acid, chitosan, alginate, and cellulose matrices combined with BG particles to develop composites such as scaffolds, injectable fillers, membranes, hydrogels, and coatings. Emphasis is devoted to the biological potentialities of these hybrid systems, which look rather promising toward a wide spectrum of applications.
Collapse
Affiliation(s)
| | | | - Valeria Cannillo
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (D.B.)
| |
Collapse
|
16
|
Ferreira SA, Young G, Jones JR, Rankin S. Bioglass/carbonate apatite/collagen composite scaffold dissolution products promote human osteoblast differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111393. [PMID: 33254998 DOI: 10.1016/j.msec.2020.111393] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/30/2022]
Abstract
OssiMend® Bioactive (Collagen Matrix Inc., NJ) is a three-component porous composite bone graft device of 45S5 Bioglass/carbonate apatite/collagen. Our in vitro studies showed that conditioned media of the dissolution products of OssiMend Bioactive stimulated primary human osteoblasts to form mineralized bone-like nodules in vitro in one week, in basal culture media (no osteogenic supplements). Osteoblast differentiation was followed by gene expression analysis and a mineralization assay. In contrast, the dissolution products from commercial OssiMend (Bioglass-free carbonate apatite/collagen scaffolds), or from 45S5 Bioglass particulate alone, did not induce the mineralization of the extracellular matrix, but did induce osteoblast differentiation to mature osteoblasts, evidenced by the strong upregulation of BGLAP and IBSP mRNA levels. The calcium ions and soluble silicon species released from 45S5 Bioglass particles and additional phosphorus release from OssiMend mediated the osteostimulatory effects. Medium conditioned with OssiMend Bioactive dissolution had a much higher concentration of phosphorus and silicon than media conditioned with OssiMend and 45S5 Bioglass alone. While OssiMend and OssiMend Bioactive led to calcium precipitation in cell culture media, OssiMend Bioactive produced a higher concentration of soluble silicon than 45S5 Bioglass and higher dissolution of phosphorus than OssiMend. These in vitro results suggest that adding 45S5 Bioglass to OssiMend produces a synergistic osteostimulation effect on primary human osteoblasts. In summary, dissolution products of a Bioglass/carbonate apatite/collagen composite scaffold (OssiMend® Bioactive) stimulate human osteoblast differentiation and mineralization of extracellular matrix in vitro without any osteogenic supplements. The mineralization was faster than for dissolution products of ordinary Bioglass.
Collapse
Affiliation(s)
- Silvia A Ferreira
- National Heart & Lung Institute, Imperial College London, London, UK.
| | - Gloria Young
- Department of Materials, Imperial College London, London, UK.
| | - Julian R Jones
- Department of Materials, Imperial College London, London, UK.
| | - Sara Rankin
- National Heart & Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
17
|
Incorporation of Bioactive Glasses Containing Mg, Sr, and Zn in Electrospun PCL Fibers by Using Benign Solvents. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10165530] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Poly(ε-caprolactone) (PCL) and PCL/bioactive glass composite fiber mats were produced by electrospinning technique. To improve cell adhesion and proliferation (i) 45S5, (ii) a bioactive glass containing strontium and magnesium oxides, and (iii) a bioactive glass containing zinc oxide were separately added to the starting PCL solution before electrospinning. A good incorporation of bioactive glass particles in PCL electrospun mats was confirmed by SEM and FTIR analyses. Bioactivity was evaluated by immersion of PCL mats and PCL/bioactive glass electrospun fiber mats in simulated body fluid (SBF). Bone murine stromal cells (ST-2) were employed in WST-8 assay to assess cell viability, cell morphology, and proliferation. The results showed that the presence of bioactive glass particles in the fibers enhances cell adhesion and proliferation compared to neat PCL mats. Furthermore, PCL/bioactive glass electrospun mats showed higher wound-healing rate (measured as cell migration rate) in vitro compared to neat PCL electrospun mats. Therefore, the characteristics of the PCL matrix combined with biological properties of bioactive glasses make PCL/bioactive glass composite ideal candidate for biomedical application.
Collapse
|
18
|
Haider A, Waseem A, Karpukhina N, Mohsin S. Strontium- and Zinc-Containing Bioactive Glass and Alginates Scaffolds. Bioengineering (Basel) 2020; 7:E10. [PMID: 31941073 PMCID: PMC7148505 DOI: 10.3390/bioengineering7010010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 12/20/2022] Open
Abstract
With an increasingly elderly population, there is a proportionate increase in bone injuries requiring hospitalization. Clinicians are increasingly adopting tissue-engineering methods for treatment due to limitations in the use of autogenous and autologous grafts. The aim of this study was to synthesize a novel, bioactive, porous, mechanically stable bone graft substitute/scaffold. Strontium- and zinc-containing bioactive glasses were synthesized and used with varying amounts of alginate to form scaffolds. Differential scanning calorimetric analysis (DSC), FTIR, XRD, and NMR techniques were used for the characterization of scaffolds. SEM confirmed the adequate porous structure of the scaffolds required for osteoconductivity. The incorporation of the bioactive glass with alginate has improved the compressive strength of the scaffolds. The bioactivity of the scaffolds was demonstrated by an increase in the pH of the medium after the immersion of the scaffolds in a Tris/HCl buffer and by the formation of orthophosphate precipitate on scaffolds. The scaffolds were able to release calcium, strontium and zinc ions in the Tris/HCl buffer, which would have a positive impact on osteogenesis if tested in vivo.
Collapse
Affiliation(s)
- Asfia Haider
- Dental Physical Sciences Unit, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
| | - Ahmad Waseem
- Centre for Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, London E1 2AD, UK
| | - Natalia Karpukhina
- Dental Physical Sciences Unit, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
| | - Sahar Mohsin
- Dental Physical Sciences Unit, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE
| |
Collapse
|
19
|
Hasan ML, Kim B, Padalhin AR, Faruq O, Sultana T, Lee BT. In vitro and in vivo evaluation of bioglass microspheres incorporated brushite cement for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109775. [DOI: 10.1016/j.msec.2019.109775] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 05/04/2019] [Accepted: 05/17/2019] [Indexed: 01/15/2023]
|
20
|
Ab TK, T CN, Ps GD, Triveni MG, Mehta DS. A clinico-radiographic and histomorphometric analysis of alveolar ridge preservation using calcium phosphosilicate, PRF, and collagen plug. Maxillofac Plast Reconstr Surg 2019; 41:32. [PMID: 31523690 PMCID: PMC6717742 DOI: 10.1186/s40902-019-0215-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
Background Tooth extraction commonly leads to loss of residual alveolar ridge, thus compromising the room available for the implant placement. To combat the post-extraction alveolar loss, alveolar ridge preservation is practiced, with the advent of the biomaterial available. The purpose of this study was to assess the efficiency of calcium phosphosilicate biomaterial in alveolar ridge preservation. Twenty patients indicated for extraction were selected followed by socket grafting using calcium phosphosilicate. Implant placement was done 6 months postoperatively during which a core was harvested from the preserved sockets. Clinico-radiographic measurements of hard and soft tissues were taken at baseline and 6 months post-grafting. Results There were no significant changes in the radiographic and soft tissue parameters while significant changes in hard tissue parameters with 1.9 mm (p = 0.013) gain in mid-buccal aspect and 1.1 mm (p = 0.019) loss in horizontal bone width were observed. The histomorphometric evaluation depicted the vital bone volume of 54.5 ± 16.76%, non-mineralized tissue 43.50 ± 15.80%, and residual material 2.00 ± 3.37%. Conclusion The implants placed in these preserved ridges presented 100% success rate with acceptable stability after a 1-year follow-up, concluding calcium phosphosilicate is a predictable biomaterial in alveolar ridge preservation.
Collapse
Affiliation(s)
- Tarun Kumar Ab
- 1Department of Periodontics, Bapuji Dental College and Hospital, Davangere, Karnataka 577004 India
| | - Chaitra N T
- Happy smiles Dental Care, Vidyanagar, Davangere, Karnataka 577004 India
| | | | - M G Triveni
- 1Department of Periodontics, Bapuji Dental College and Hospital, Davangere, Karnataka 577004 India
| | - Dhoom Singh Mehta
- 1Department of Periodontics, Bapuji Dental College and Hospital, Davangere, Karnataka 577004 India
| |
Collapse
|
21
|
How cell culture conditions affect the microstructure and nanomechanical properties of extracellular matrix formed by immortalized human mesenchymal stem cells: An experimental and modelling study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:149-159. [DOI: 10.1016/j.msec.2018.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/02/2018] [Accepted: 03/26/2018] [Indexed: 12/27/2022]
|
22
|
Mirshafiee V, Harley BAC, Kraft ML. Visualizing Intrapopulation Hematopoietic Cell Heterogeneity with Self-Organizing Maps of SIMS Data. Tissue Eng Part C Methods 2018; 24:322-330. [PMID: 29652627 DOI: 10.1089/ten.tec.2017.0382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Characterization of the heterogeneity within stem cell populations, which affects their differentiation potential, is necessary for the design of artificial cultures for stem cell expansion. In this study, we assessed whether self-organizing maps (SOMs) of single-cell time-of-flight secondary ion mass spectrometry (TOF-SIMS) data provide insight into the spectral, and thus the related functional heterogeneity between and within three hematopoietic cell populations. SOMs were created of TOF-SIMS data from individual hematopoietic stem and progenitor cells (HSPCs), lineage-committed common lymphoid progenitors (CLPs), and fully differentiated B cells that had been isolated from murine bone marrow via conventional flow cytometry. The positions of these cells on the SOMs and the spectral variation between adjacent map units, shown on the corresponding unified distance matrix (U-matrix), indicated the CLPs exhibited the highest intrapopulation spectral variation, regardless of the age of the donor mice. SOMs of HSPCs, CLPs, and B cells isolated from young and old mice using the same surface antigen profiles revealed the HSPCs exhibited the most age-related spectral variation, whereas B cells exhibited the least. These results demonstrate that SOMs of single-cell spectra enable characterizing the heterogeneity between and within cell populations that lie along distinct differentiation pathways.
Collapse
Affiliation(s)
- Vahid Mirshafiee
- 1 Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois
| | - Brendan A C Harley
- 1 Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois.,2 Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois
| | - Mary L Kraft
- 1 Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois.,3 Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois.,4 Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois
| |
Collapse
|
23
|
In vitro osteogenesis by intracellular uptake of strontium containing bioactive glass nanoparticles. Acta Biomater 2018; 66:67-80. [PMID: 29129790 DOI: 10.1016/j.actbio.2017.11.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/05/2017] [Accepted: 11/07/2017] [Indexed: 02/02/2023]
Abstract
Monodispersed strontium containing bioactive glass nanoparticles (Sr-BGNPs) with two compositions were synthesised, through a modified sol-gel Stöber process, wherein silica nanoparticles (SiO2-NPs) were formed prior to incorporation of calcium and strontium, with diameters of 90 ± 10 nm. The osteogenic response of a murine preosteoblast cell line, MC3T3-E1, was investigated in vitro for a nanoparticle concentration of 250 µg/mL with compositions of 87 mol% SiO2, 7 mol% CaO, 6 mol% SrO and 83 mol% SiO2, 3 mol% CaO, 14 mol% SrO. Dissolution studies in minimum essential media (α-MEM) at pH 7.4 and artificial lysosomal fluid (ALF) at pH 4.5 showed that the particles dissolved and that Sr2+ ions were released from Sr-BGNPs in both environments. Both particle compositions and their ionic dissolution products enhanced the alkaline phosphatase (ALP) activity of the cells and calcium deposition. Immunohistochemistry (IHC) staining of Col1a1, osteocalcin (OSC) and osteopontin (OSP) showed that these proteins were expressed in the MC3T3-E1 cells following three weeks of culture. In the basal condition, the late osteogenic differentiation markers, OSC and OSP, were more overtly expressed by cells cultured with Sr-BGNPs with 14 mol% SrO and their ionic release products than in the control condition. Col1a1 expression was only slightly enhanced in the basal condition, but was enhanced further by the osteogenic supplements. These data demonstrate that Sr-BGNPs accelerate mineralisation without osteogenic supplements. Sr-BGNPs were internalised into MC3T3-E1 cells by endocytosis and stimulated osteogenic differentiation of the pre-osteoblast cell line. Sr-BGNPs are likely to be beneficial for bone regeneration and the observed osteogenic effects of these particles can be attributed to their ionic release products. STATEMENT OF SIGNIFICANCE We report, for the first time, that monodispersed bioactive glass nanoparticles (∼90 nm) are internalised into preosteoblast cells by endocytosis but by unspecific mechanisms. The bioactive nanoparticles and their dissolution products (without the particles present) stimulated the expression of osteogenic markers from preosteoblast cells without the addition of other osteogenic supplements. Incorporating Sr into the bioactive glass nanoparticle composition, in addition to Ca, increased the total cation content (and therefore dissolution rate) of the nanoparticles, even though nominal total cation addition was constant, without changing size or morphology. Increasing Sr content in the nanoparticles and in their dissolution products enhanced osteogenesis in vitro. The particles therefore have great potential as an injectable therapeutic for bone regeneration, particularly in patients with osteoporosis, for which Sr is known to be therapeutic agent.
Collapse
|
24
|
Calcagnotto T, Schwengber MMB, De Antoni CC, de Oliveira DL, Vago TM, Guilinelli J. Magnetic Field Effects on Bone Repair after Calcium Phosphate Cement Implants: Histometric and Biochemistry Evaluation. Ann Maxillofac Surg 2017; 7:18-24. [PMID: 28713731 PMCID: PMC5502509 DOI: 10.4103/ams.ams_2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE This work evaluated histologic and biochemically the effect of magnetic field buried in bone repair after autogenous bone graft and calcium phosphate cement implants. METHODOLOGY Bone defects with 5,0 mm of diameter in the cranium of Wistar mice were used to analyse. These mice were submitted to different interventions: autogenous bone graft and calcium phosphate cement implants, both with and without magnetic stimulation. Longitudinal and transversal histometric and biochemistry analysis were made in times of 15, 30 and 60 post-operative days. RESULTS The histometric transversal analysis did not show significant differences in the bone repair between groups. Longitudinally, significant difference were found in the quantity of neoformed bone between the times 15 and 60 post-operative days in the autogenous bone graft group under magnetic stimulation. The alkaline phosphatase enzyme presented a higher activity in 30 post-operative days and the groups under magnetic stimulation presented reduced enzymatic activity in comparison to the other groups. CONCLUSION The permanent and static magnetic field promoted significant differences in the neoformed bone in the groups autogenous bone graft.
Collapse
Affiliation(s)
- Thiago Calcagnotto
- Department of Oral and Maxillofacial Surgery, FATEC Dental CEEO, Igrejinha, Brazil
| | | | | | - Danilo Louzada de Oliveira
- Department of Oral and Maxillofacial Surgery, Universidade do Oeste Paulista, Presidente Prudente, Brazil
| | - Théssio Mina Vago
- Department of Oral and Maxillofacial Surgery, Centro Universitário Fluminense, Rio de Janeiro, Brazil
| | | |
Collapse
|
25
|
Alhashimi RA, Mannocci F, Sauro S. Bioactivity, cytocompatibility and thermal properties of experimental Bioglass-reinforced composites as potential root-canal filling materials. J Mech Behav Biomed Mater 2017; 69:355-361. [PMID: 28161689 DOI: 10.1016/j.jmbbm.2017.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 10/20/2022]
|
26
|
Kargozar S, Hashemian SJ, Soleimani M, Milan PB, Askari M, Khalaj V, Samadikuchaksaraie A, Hamzehlou S, Katebi AR, Latifi N, Mozafari M, Baino F. Acceleration of bone regeneration in bioactive glass/gelatin composite scaffolds seeded with bone marrow-derived mesenchymal stem cells over-expressing bone morphogenetic protein-7. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:688-698. [PMID: 28415516 DOI: 10.1016/j.msec.2017.02.097] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/06/2016] [Accepted: 02/21/2017] [Indexed: 01/25/2023]
Abstract
In this research, the osteoinduction effect of a novel variant of bone morphogenetic protein-7 (BMP-7), delivered through bone marrow mesenchymal stem cells (BM-MSCs) seeded on bioactive glass/gelatin nanocomposite scaffolds, was evaluated in a calvarial critical size defect in rats. After being harvested and characterized in vitro, BM-MSCs were infected by a plasmid vector containing BMP-7 encoding gene enriched with a heparin-binding site (B2BMP-7) to assess its osteogenic effects in vivo. The animals were randomly categorized into three groups receiving the scaffold alone (group I), the scaffold seeded with BM-MSCs (group II), and the scaffold seeded with manipulated BM-MSCs (group III). After 2, 4 and 12 postoperative weeks, the animals were sacrificed and the harvested specimens were analyzed using histological and immunohistochemical staining. The results of in vitro tests (preliminary screening) showed that the synthesized scaffolds were biocompatible constructs supporting cell attachment and expansion. The in vivo results revealed higher osteogenesis in the defects filled with the B2BMP-7 excreting BM-MSCs/scaffolds compared to the other two groups. After 12weeks of implantation, fully mature newly formed bone was detected throughout the damaged site, which indicates a synergistic effect of cells, scaffolds and growth factors in the process of tissue regeneration. Therefore, bioactive glass-containing scaffolds pre-seeded with manipulated BM-MSCs exhibit an effective combination to improve osteogenesis in bone defects, and the approach followed in this work could have a significant impact in the development of novel tissue engineering constructs.
Collapse
Affiliation(s)
- Saeid Kargozar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran; Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Jafar Hashemian
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansooreh Soleimani
- Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Askari
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Vahid Khalaj
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Samadikuchaksaraie
- Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Hamzehlou
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Katebi
- Department of Psychology, Allameh Tabatabai University, Tehran, Iran
| | - Noorahmad Latifi
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box 14155-4777, Tehran, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Torino, Italy
| |
Collapse
|
27
|
Liao Z, Sinjab F, Nommeots-Nomm A, Jones J, Ruiz-Cantu L, Yang J, Rose F, Notingher I. Feasibility of Spatially Offset Raman Spectroscopy for in Vitro and in Vivo Monitoring Mineralization of Bone Tissue Engineering Scaffolds. Anal Chem 2016; 89:847-853. [PMID: 27983789 DOI: 10.1021/acs.analchem.6b03785] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We investigated the feasibility of using spatially offset Raman spectroscopy (SORS) for nondestructive characterization of bone tissue engineering scaffolds. The deep regions of these scaffolds, or scaffolds implanted subcutaneously in live animals, are typically difficult to measure by confocal Raman spectroscopy techniques because of the limited depth penetration of light caused by the high level of light scattering. Layered samples consisting of bioactive glass foams (IEIC16), three-dimensional (3D)-printed biodegradable poly(lactic-co-glycolic acid) scaffolds (PLGA), and hydroxyapatite powder (HA) were used to mimic nondestructive detection of biomineralization for intact real-size 3D tissue engineering constructs. SORS spectra were measured with a new SORS instrument using a digital micromirror device (DMD) to allow software selection of the spatial offsets. The results show that HA can be reliably detected at depths of 0-2.3 mm, which corresponds to the maximum accessible spatial offset of the current instrument. The intensity ratio of Raman bands associated with the scaffolds and HA with the spatial offset depended on the depth at which HA was located. Furthermore, we show the feasibility for in vivo monitoring mineralization of scaffold implanted subcutaneously by demonstrating the ability to measure transcutaneously Raman signals of the scaffolds and HA (fresh chicken skin used as a top layer). The ability to measure spectral depth profiles at high speed (5 s acquisition time) and the ease of implementation make SORS a promising approach for noninvasive characterization of cell/tissue development in vitro, and for long-term in vivo monitoring the mineralization in 3D scaffolds subcutaneously implanted in small animals.
Collapse
Affiliation(s)
- Zhiyu Liao
- School of Physics and Astronomy, University of Nottingham , University Park, Nottingham NG7 2RD, United Kingdom
| | - Faris Sinjab
- School of Physics and Astronomy, University of Nottingham , University Park, Nottingham NG7 2RD, United Kingdom
| | - Amy Nommeots-Nomm
- Department of Materials, Imperial College London , SW7 2AZ, London, United Kingdom
| | - Julian Jones
- Department of Materials, Imperial College London , SW7 2AZ, London, United Kingdom
| | - Laura Ruiz-Cantu
- School of Pharmacy, University of Nottingham , University Park, Nottingham NG7 2RD, United Kingdom
| | - Jing Yang
- School of Pharmacy, University of Nottingham , University Park, Nottingham NG7 2RD, United Kingdom
| | - Felicity Rose
- School of Pharmacy, University of Nottingham , University Park, Nottingham NG7 2RD, United Kingdom
| | - Ioan Notingher
- School of Physics and Astronomy, University of Nottingham , University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
28
|
Gómez-Cerezo N, Sánchez-Salcedo S, Izquierdo-Barba I, Arcos D, Vallet-Regí M. In vitro colonization of stratified bioactive scaffolds by pre-osteoblast cells. Acta Biomater 2016; 44:73-84. [PMID: 27521495 DOI: 10.1016/j.actbio.2016.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/28/2016] [Accepted: 08/10/2016] [Indexed: 10/25/2022]
Abstract
UNLABELLED Mesoporous bioactive glass-polycaprolactone (MBG-PCL) scaffolds have been prepared by robocasting, a layer by layer rapid prototyping method, by stacking of individual strati. Each stratus was independently analyzed during the cell culture tests with MC3T3-E1 preosteblast-like cells. The presence of MBG stimulates the colonization of the scaffolds by increasing the cell proliferation and differentiation. MBG-PCL composites not only enhanced pre-osteoblast functions but also allowed cell movement along its surface, reaching the upper stratus faster than in pure PCL scaffolds. The cells behavior on each individual stratus revealed that the scaffolds colonization depends on the chemical stimuli supplied by the MBG dissolution and surface changes associated to the apatite-like formation during the bioactive process. Finally, scanning electron and fluorescence microscopy revealed that the kinetic of cell migration strongly depends on the architectural features of the scaffolds, in such a way that layers interconnections are used as migration routes to reach the farther scaffolds locations from the initial cells source. STATEMENT OF SIGNIFICANCE This manuscript provides new insights on cell behavior in bioceramic/polymer macroporous scaffolds prepared by rapid prototyping methods. The experiments proposed in this work have allowed the evaluation of cell behavior within the different levels of the scaffolds, i.e. from the initials source of cells towards the farther scaffold locations. We could demonstrate that the in vitro cell colonization is encouraged by the presence of a highly bioactive mesoporous glass (MBG). This bioceramic enhances the cell migration towards upper strati through the dissolution of chemical signals and the changes occurred on the scaffolds surface during the bioactive process. In addition the MBG promotes preosteblastic proliferation and differentiation respect to scaffolds made of pure polycaprolactone. Finally, this study reveals the significance of the architectural design to accelerate the cell colonization. These experiments put light on the factors that should be taken into account to accelerate the regeneration processes under in vivo conditions.
Collapse
|
29
|
Vichery C, Nedelec JM. Bioactive Glass Nanoparticles: From Synthesis to Materials Design for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E288. [PMID: 28773412 PMCID: PMC5502981 DOI: 10.3390/ma9040288] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 02/06/2023]
Abstract
Thanks to their high biocompatibility and bioactivity, bioactive glasses are very promising materials for soft and hard tissue repair and engineering. Because bioactivity and specific surface area intrinsically linked, the last decade has seen a focus on the development of highly porous and/or nano-sized materials. This review emphasizes the synthesis of bioactive glass nanoparticles and materials design strategies. The first part comprehensively covers mainly soft chemistry processes, which aim to obtain dispersible and monodispersed nanoparticles. The second part discusses the use of bioactive glass nanoparticles for medical applications, highlighting the design of materials. Mesoporous nanoparticles for drug delivery, injectable systems and scaffolds consisting of bioactive glass nanoparticles dispersed in a polymer, implant coatings and particle dispersions will be presented.
Collapse
Affiliation(s)
- Charlotte Vichery
- SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, BP 10448, Clermont-Ferrand F-63000, France.
- CNRS, UMR 6296, ICCF, Aubiere F-63178, France.
| | - Jean-Marie Nedelec
- SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, BP 10448, Clermont-Ferrand F-63000, France.
- CNRS, UMR 6296, ICCF, Aubiere F-63178, France.
| |
Collapse
|
30
|
Bédouin Y, Pellen Mussi P, Tricot-Doleux S, Chauvel-Lebret D, Auroy P, Ravalec X, Oudadesse H, Pérez F. 3D cell culture to determine in vitro biocompatibility of bioactive glass in association with chitosan. Biomed Mater Eng 2015; 26:169-81. [DOI: 10.3233/bme-151555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Y. Bédouin
- Equipe Chimie du Solide et Matériaux – UMR CNRS 6226 – Sciences Chimiques de Rennes, Université de Rennes 1, Université Européenne de Bretagne, Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
- CHU de Rennes, Pôle d’Odontologie et de Chirurgie Buccale, 2 place Pasteur, 35000 Rennes, France
| | - P. Pellen Mussi
- Equipe Chimie du Solide et Matériaux – UMR CNRS 6226 – Sciences Chimiques de Rennes, Université de Rennes 1, Université Européenne de Bretagne, Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - S. Tricot-Doleux
- Equipe Chimie du Solide et Matériaux – UMR CNRS 6226 – Sciences Chimiques de Rennes, Université de Rennes 1, Université Européenne de Bretagne, Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - D. Chauvel-Lebret
- Equipe Chimie du Solide et Matériaux – UMR CNRS 6226 – Sciences Chimiques de Rennes, Université de Rennes 1, Université Européenne de Bretagne, Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
- CHU de Rennes, Pôle d’Odontologie et de Chirurgie Buccale, 2 place Pasteur, 35000 Rennes, France
| | - P. Auroy
- Faculté de Chirurgie dentaire, Université d’Auvergne, 11 Boulevard Charles de Gaulle, 63000 Clermont-Ferrand, France
- CHU de Clermont-Ferrand, service d’Odontologie, 11 rue Léon Malfreyt, 63000 Clermont-Ferrand, France
| | - X. Ravalec
- CHU de Rennes, Pôle d’Odontologie et de Chirurgie Buccale, 2 place Pasteur, 35000 Rennes, France
| | - H. Oudadesse
- Equipe Chimie du Solide et Matériaux – UMR CNRS 6226 – Sciences Chimiques de Rennes, Université de Rennes 1, Université Européenne de Bretagne, Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - F. Pérez
- Equipe Chimie du Solide et Matériaux – UMR CNRS 6226 – Sciences Chimiques de Rennes, Université de Rennes 1, Université Européenne de Bretagne, Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
- CHU de Nantes, service d’Odontologie, 1 Place Alexis Ricordeau, 44000 Nantes, France
| |
Collapse
|
31
|
Baino F, Novajra G, Vitale-Brovarone C. Bioceramics and Scaffolds: A Winning Combination for Tissue Engineering. Front Bioeng Biotechnol 2015; 3:202. [PMID: 26734605 PMCID: PMC4681769 DOI: 10.3389/fbioe.2015.00202] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/02/2015] [Indexed: 01/07/2023] Open
Abstract
In the last few decades, we have assisted to a general increase of elder population worldwide associated with age-related pathologies. Therefore, there is the need for new biomaterials that can substitute damaged tissues, stimulate the body’s own regenerative mechanisms, and promote tissue healing. Porous templates referred to as “scaffolds” are thought to be required for three-dimensional tissue growth. Bioceramics, a special set of fully, partially, or non-crystalline ceramics (e.g., calcium phosphates, bioactive glasses, and glass–ceramics) that are designed for the repair and reconstruction of diseased parts of the body, have high potential as scaffold materials. Traditionally, bioceramics have been used to fill and restore bone and dental defects (repair of hard tissues). More recently, this category of biomaterials has also revealed promising applications in the field of soft-tissue engineering. Starting with an overview of the fundamental requirements for tissue engineering scaffolds, this article provides a detailed picture on recent developments of porous bioceramics and composites, including a summary of common fabrication technologies and a critical analysis of structure–property and structure–function relationships. Areas of future research are highlighted at the end of this review, with special attention to the development of multifunctional scaffolds exploiting therapeutic ion/drug release and emerging applications beyond hard tissue repair.
Collapse
Affiliation(s)
- Francesco Baino
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino , Turin , Italy
| | - Giorgia Novajra
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino , Turin , Italy
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino , Turin , Italy
| |
Collapse
|
32
|
Jones JR. Reprint of: Review of bioactive glass: From Hench to hybrids. Acta Biomater 2015; 23 Suppl:S53-82. [PMID: 26235346 DOI: 10.1016/j.actbio.2015.07.019] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 08/10/2012] [Accepted: 08/14/2012] [Indexed: 02/07/2023]
Abstract
Bioactive glasses are reported to be able to stimulate more bone regeneration than other bioactive ceramics but they lag behind other bioactive ceramics in terms of commercial success. Bioactive glass has not yet reached its potential but research activity is growing. This paper reviews the current state of the art, starting with current products and moving onto recent developments. Larry Hench's 45S5 Bioglass® was the first artificial material that was found to form a chemical bond with bone, launching the field of bioactive ceramics. In vivo studies have shown that bioactive glasses bond with bone more rapidly than other bioceramics, and in vitro studies indicate that their osteogenic properties are due to their dissolution products stimulating osteoprogenitor cells at the genetic level. However, calcium phosphates such as tricalcium phosphate and synthetic hydroxyapatite are more widely used in the clinic. Some of the reasons are commercial, but others are due to the scientific limitations of the original Bioglass 45S5. An example is that it is difficult to produce porous bioactive glass templates (scaffolds) for bone regeneration from Bioglass 45S5 because it crystallizes during sintering. Recently, this has been overcome by understanding how the glass composition can be tailored to prevent crystallization. The sintering problems can also be avoided by synthesizing sol-gel glass, where the silica network is assembled at room temperature. Process developments in foaming, solid freeform fabrication and nanofibre spinning have now allowed the production of porous bioactive glass scaffolds from both melt- and sol-gel-derived glasses. An ideal scaffold for bone regeneration would share load with bone. Bioceramics cannot do this when the bone defect is subjected to cyclic loads, as they are brittle. To overcome this, bioactive glass polymer hybrids are being synthesized that have the potential to be tough, with congruent degradation of the bioactive inorganic and the polymer components. Key to this is creating nanoscale interpenetrating networks, the organic and inorganic components of which have covalent coupling between them, which involves careful control of the chemistry of the sol-gel process. Bioactive nanoparticles can also now be synthesized and their fate tracked as they are internalized in cells. This paper reviews the main developments in the field of bioactive glass and its variants, covering the importance of control of hierarchical structure, synthesis, processing and cellular response in the quest for new regenerative synthetic bone grafts. The paper takes the reader from Hench's Bioglass 45S5 to new hybrid materials that have tailorable mechanical properties and degradation rates.
Collapse
Affiliation(s)
- Julian R Jones
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
33
|
Ojansivu M, Vanhatupa S, Björkvik L, Häkkänen H, Kellomäki M, Autio R, Ihalainen JA, Hupa L, Miettinen S. Bioactive glass ions as strong enhancers of osteogenic differentiation in human adipose stem cells. Acta Biomater 2015; 21:190-203. [PMID: 25900445 DOI: 10.1016/j.actbio.2015.04.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/19/2015] [Accepted: 04/13/2015] [Indexed: 12/26/2022]
Abstract
Bioactive glasses are known for their ability to induce osteogenic differentiation of stem cells. To elucidate the mechanism of the osteoinductivity in more detail, we studied whether ionic extracts prepared from a commercial glass S53P4 and from three experimental glasses (2-06, 1-06 and 3-06) are alone sufficient to induce osteogenic differentiation of human adipose stem cells. Cells were cultured using basic medium or osteogenic medium as extract basis. Our results indicate that cells stay viable in all the glass extracts for the whole culturing period, 14 days. At 14 days the mineralization in osteogenic medium extracts was excessive compared to the control. Parallel to the increased mineralization we observed a decrease in the cell amount. Raman and Laser Induced Breakdown Spectroscopy analyses confirmed that the mineral consisted of calcium phosphates. Consistently, the osteogenic medium extracts also increased osteocalcin production and collagen Type-I accumulation in the extracellular matrix at 13 days. Of the four osteogenic medium extracts, 2-06 and 3-06 induced the best responses of osteogenesis. However, regardless of the enhanced mineral formation, alkaline phosphatase activity was not promoted by the extracts. The osteogenic medium extracts could potentially provide a fast and effective way to differentiate human adipose stem cells in vitro.
Collapse
Affiliation(s)
- Miina Ojansivu
- Adult Stem Cell Research Group, University of Tampere, Tampere, Finland; BioMediTech, University of Tampere and Tampere University of Technology, Tampere, Finland; Science Centre, Tampere University Hospital, Tampere, Finland.
| | - Sari Vanhatupa
- Adult Stem Cell Research Group, University of Tampere, Tampere, Finland; BioMediTech, University of Tampere and Tampere University of Technology, Tampere, Finland; Science Centre, Tampere University Hospital, Tampere, Finland
| | - Leena Björkvik
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Turku, Finland
| | - Heikki Häkkänen
- Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Minna Kellomäki
- BioMediTech, University of Tampere and Tampere University of Technology, Tampere, Finland; Biomaterials and Tissue Engineering Group, Department of Electronics and Communications Engineering, Tampere University of Technology, Tampere, Finland
| | - Reija Autio
- School of Health Sciences, University of Tampere, Tampere, Finland
| | | | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Turku, Finland
| | - Susanna Miettinen
- Adult Stem Cell Research Group, University of Tampere, Tampere, Finland; BioMediTech, University of Tampere and Tampere University of Technology, Tampere, Finland; Science Centre, Tampere University Hospital, Tampere, Finland; Science Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
34
|
Liu S, Gong W, Dong Y, Hu Q, Chen X, Gao X. The effect of submicron bioactive glass particles on in vitro osteogenesis. RSC Adv 2015. [DOI: 10.1039/c5ra03786g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mono-dispersed submicron bioactive glass could enhance the adhesion and osteogenesis of MG-63 cells.
Collapse
Affiliation(s)
- Shaoqing Liu
- Department of Cariology and Endodontology
- Peking University School and Hospital of Stomatology
- Beijing 100081
- People's Republic of China
| | - Weiyu Gong
- Department of Cariology and Endodontology
- Peking University School and Hospital of Stomatology
- Beijing 100081
- People's Republic of China
| | - Yanmei Dong
- Department of Cariology and Endodontology
- Peking University School and Hospital of Stomatology
- Beijing 100081
- People's Republic of China
| | - Qing Hu
- National Engineering Research Center for Tissue Restoration and Reconstruction
- South China University of Technology
- Guangzhou 510640
- People's Republic of China
| | - Xiaofeng Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction
- South China University of Technology
- Guangzhou 510640
- People's Republic of China
| | - Xuejun Gao
- Department of Cariology and Endodontology
- Peking University School and Hospital of Stomatology
- Beijing 100081
- People's Republic of China
| |
Collapse
|
35
|
Ioannou AL, Kotsakis GA, Kumar T, Hinrichs JE, Romanos G. Evaluation of the bone regeneration potential of bioactive glass in implant site development surgeries: a systematic review of the literature. Clin Oral Investig 2014; 19:181-91. [DOI: 10.1007/s00784-014-1376-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 11/20/2014] [Indexed: 01/08/2023]
|
36
|
Secondary ion mass spectrometry and Raman spectroscopy for tissue engineering applications. Curr Opin Biotechnol 2014; 31:108-16. [PMID: 25462628 DOI: 10.1016/j.copbio.2014.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/17/2014] [Accepted: 10/22/2014] [Indexed: 12/28/2022]
Abstract
Identifying the matrix properties that permit directing stem cell fate is crucial for expanding desired cell lineages ex vivo for disease treatment. Such efforts require knowledge of matrix surface chemistry and the cell responses they elicit. Recent progress in analyzing biomaterial composition and identifying cell phenotype with two label-free chemical imaging techniques, TOF-SIMS and Raman spectroscopy are presented. TOF-SIMS is becoming indispensable for the surface characterization of biomaterial scaffolds. Developments in TOF-SIMS data analysis enable correlating surface chemistry with biological response. Advances in the interpretation of Raman spectra permit identifying the fate decisions of individual, living cells with location specificity. Here we highlight this progress and discuss further improvements that would facilitate efforts to develop artificial scaffolds for tissue regeneration.
Collapse
|
37
|
Takagi M. Cell Processing Engineering for Regenerative Medicine : Noninvasive Cell Quality Estimation and Automatic Cell Processing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 152:53-74. [PMID: 25373455 DOI: 10.1007/10_2014_282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The cell processing engineering including automatic cell processing and noninvasive cell quality estimation of adherent mammalian cells for regenerative medicine was reviewed. Automatic cell processing necessary for the industrialization of regenerative medicine was introduced. The cell quality such as cell heterogeneity should be noninvasively estimated before transplantation to patient, because cultured cells are usually not homogeneous but heterogeneous and most protocols of regenerative medicine are autologous system. The differentiation level could be estimated by two-dimensional cell morphology analysis using a conventional phase-contrast microscope. The phase-shifting laser microscope (PLM) could determine laser phase shift at all pixel in a view, which is caused by the transmitted laser through cell, and might be more noninvasive and more useful than the atomic force microscope and digital holographic microscope. The noninvasive determination of the laser phase shift of a cell using a PLM was carried out to determine the three-dimensional cell morphology and estimate the cell cycle phase of each adhesive cell and the mean proliferation activity of a cell population. The noninvasive discrimination of cancer cells from normal cells by measuring the phase shift was performed based on the difference in cytoskeleton density. Chemical analysis of the culture supernatant was also useful to estimate the differentiation level of a cell population. A probe beam, an infrared beam, and Raman spectroscopy are useful for diagnosing the viability, apoptosis, and differentiation of each adhesive cell.
Collapse
Affiliation(s)
- Mutsumi Takagi
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, N13W8 Kita-ku, Sapporo, 060-8628, Japan.
| |
Collapse
|
38
|
Li JJ, Kaplan DL, Zreiqat H. Scaffold-based regeneration of skeletal tissues to meet clinical challenges. J Mater Chem B 2014; 2:7272-7306. [PMID: 32261954 DOI: 10.1039/c4tb01073f] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The management and reconstruction of damaged or diseased skeletal tissues have remained a significant global healthcare challenge. The limited efficacy of conventional treatment strategies for large bone, cartilage and osteochondral defects has inspired the development of scaffold-based tissue engineering solutions, with the aim of achieving complete biological and functional restoration of the affected tissue in the presence of a supporting matrix. Nevertheless, significant regulatory hurdles have rendered the clinical translation of novel scaffold designs to be an inefficient process, mainly due to the difficulties of arriving at a simple, reproducible and effective solution that does not rely on the incorporation of cells and/or bioactive molecules. In the context of the current clinical situation and recent research advances, this review will discuss scaffold-based strategies for the regeneration of skeletal tissues, with focus on the contribution of bioactive ceramic scaffolds and silk fibroin, and combinations thereof, towards the development of clinically viable solutions.
Collapse
Affiliation(s)
- Jiao Jiao Li
- Biomaterials and Tissue Engineering Research Unit, School of AMME, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
39
|
|
40
|
Eldesoqi K, Henrich D, El-Kady AM, Arbid MS, Abd El-Hady BM, Marzi I, Seebach C. Safety evaluation of a bioglass-polylactic acid composite scaffold seeded with progenitor cells in a rat skull critical-size bone defect. PLoS One 2014; 9:e87642. [PMID: 24498345 PMCID: PMC3912065 DOI: 10.1371/journal.pone.0087642] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 12/29/2013] [Indexed: 01/09/2023] Open
Abstract
Treating large bone defects represents a major challenge in traumatic and orthopedic surgery. Bone tissue engineering provides a promising therapeutic option to improve the local bone healing response. In the present study tissue biocompatibility, systemic toxicity and tumorigenicity of a newly developed composite material consisting of polylactic acid (PLA) and 20% or 40% bioglass (BG20 and BG40), respectively, were analyzed. These materials were seeded with mesenchymal stem cells (MSC) and endothelial progenitor cells (EPC) and tested in a rat calvarial critical size defect model for 3 months and compared to a scaffold consisting only of PLA. Serum was analyzed for organ damage markers such as GOT and creatinine. Leukocyte count, temperature and free radical indicators were measured to determine the degree of systemic inflammation. Possible tumor occurrence was assessed macroscopically and histologically in slides of liver, kidney and spleen. Furthermore, the concentrations of serum malondialdehyde (MDA) and sodium oxide dismutase (SOD) were assessed as indicators of tumor progression. Qualitative tissue response towards the implants and new bone mass formation was histologically investigated. BG20 and BG40, with or without progenitor cells, did not cause organ damage, long-term systemic inflammatory reactions or tumor formation. BG20 and BG40 supported bone formation, which was further enhanced in the presence of EPCs and MSCs. This investigation reflects good biocompatibility of the biomaterials BG20 and BG40 and provides evidence that additionally seeding EPCs and MSCs onto the scaffold does not induce tumor formation.
Collapse
Affiliation(s)
- Karam Eldesoqi
- Department of Trauma-, Hand- and Reconstructive Surgery, Hospital of the Goethe- University, Frankfurt/Main, Germany
- Department of Biomaterial, National Research Centre, Cairo, Egypt
| | - Dirk Henrich
- Department of Trauma-, Hand- and Reconstructive Surgery, Hospital of the Goethe- University, Frankfurt/Main, Germany
| | - Abeer M. El-Kady
- Department of Biomaterial, National Research Centre, Cairo, Egypt
| | - Mahmoud S. Arbid
- Department of Pharmacology, National Research Centre, Cairo, Egypt
| | | | - Ingo Marzi
- Department of Trauma-, Hand- and Reconstructive Surgery, Hospital of the Goethe- University, Frankfurt/Main, Germany
| | - Caroline Seebach
- Department of Trauma-, Hand- and Reconstructive Surgery, Hospital of the Goethe- University, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|
41
|
Eldesoqi K, Seebach C, Nguyen Ngoc C, Meier S, Nau C, Schaible A, Marzi I, Henrich D. High calcium bioglass enhances differentiation and survival of endothelial progenitor cells, inducing early vascularization in critical size bone defects. PLoS One 2013; 8:e79058. [PMID: 24244419 PMCID: PMC3828289 DOI: 10.1371/journal.pone.0079058] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/21/2013] [Indexed: 01/21/2023] Open
Abstract
Early vascularization is a prerequisite for successful bone healing and endothelial progenitor cells (EPC), seeded on appropriate biomaterials, can improve vascularization. The type of biomaterial influences EPC function with bioglass evoking a vascularizing response. In this study the influence of a composite biomaterial based on polylactic acid (PLA) and either 20 or 40% bioglass, BG20 and BG40, respectively, on the differentiation and survival of EPCs in vitro was investigated. Subsequently, the effect of the composite material on early vascularization in a rat calvarial critical size defect model with or without EPCs was evaluated. Human EPCs were cultured with β-TCP, PLA, BG20 or BG40, and seeding efficacy, cell viability, cell morphology and apoptosis were analysed in vitro. BG40 released the most calcium, and improved endothelial differentiation and vitality best. This effect was mimicked by adding an equivalent amount of calcium to the medium and was diminished in the presence of the calcium chelator, EGTA. To analyze the effect of BG40 and EPCs in vivo, a 6-mm diameter critical size calvarial defect was created in rats (n = 12). Controls (n = 6) received BG40 and the treatment group (n = 6) received BG40 seeded with 5×105 rat EPCs. Vascularization after 1 week was significantly improved when EPCs were seeded onto BG40, compared to implanting BG40 alone. This indicates that Ca2+ release improves EPC differentiation and is useful for enhanced early vascularization in critical size bone defects.
Collapse
Affiliation(s)
- Karam Eldesoqi
- Department of Trauma-, Hand- and Reconstructive Surgery, Hospital of the Goethe- University, Frankfurt/Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Yu L, Li Y, Zhao K, Tang Y, Cheng Z, Chen J, Zang Y, Wu J, Kong L, Liu S, Lei W, Wu Z. A novel injectable calcium phosphate cement-bioactive glass composite for bone regeneration. PLoS One 2013; 8:e62570. [PMID: 23638115 PMCID: PMC3636220 DOI: 10.1371/journal.pone.0062570] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/22/2013] [Indexed: 02/01/2023] Open
Abstract
Background Calcium phosphate cement (CPC) can be molded or injected to form a scaffold in situ, which intimately conforms to complex bone defects. Bioactive glass (BG) is known for its unique ability to bond to living bone and promote bone growth. However, it was not until recently that literature was available regarding CPC-BG applied as an injectable graft. In this paper, we reported a novel injectable CPC-BG composite with improved properties caused by the incorporation of BG into CPC. Materials and Methods The novel injectable bioactive cement was evaluated to determine its composition, microstructure, setting time, injectability, compressive strength and behavior in a simulated body fluid (SBF). The in vitro cellular responses of osteoblasts and in vivo tissue responses after the implantation of CPC-BG in femoral condyle defects of rabbits were also investigated. Results CPC-BG possessed a retarded setting time and markedly better injectability and mechanical properties than CPC. Moreover, a new Ca-deficient apatite layer was deposited on the composite surface after immersing immersion in SBF for 7 days. CPC-BG samples showed significantly improved degradability and bioactivity compared to CPC in simulated body fluid (SBF). In addition, the degrees of cell attachment, proliferation and differentiation on CPC-BG were higher than those on CPC. Macroscopic evaluation, histological evaluation, and micro-computed tomography (micro-CT) analysis showed that CPC-BG enhanced the efficiency of new bone formation in comparison with CPC. Conclusions A novel CPC-BG composite has been synthesized with improved properties exhibiting promising prospects for bone regeneration.
Collapse
Affiliation(s)
- Long Yu
- Institute of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Yang Li
- Institute of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Kang Zhao
- School of Materials and Engineering, Xi’an University of Technology, Xi’an, Shaanxi Province, People’s Republic of China
| | - Yufei Tang
- School of Materials and Engineering, Xi’an University of Technology, Xi’an, Shaanxi Province, People’s Republic of China
| | - Zhe Cheng
- School of Materials and Engineering, Xi’an University of Technology, Xi’an, Shaanxi Province, People’s Republic of China
| | - Jun Chen
- Institute of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Yuan Zang
- Institute of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Jianwei Wu
- Institute of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Liang Kong
- Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Shuai Liu
- Institute of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Wei Lei
- Institute of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
- * E-mail: (WL); (ZW)
| | - Zixiang Wu
- Institute of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
- * E-mail: (WL); (ZW)
| |
Collapse
|
43
|
Wang B, Sun JY, Qian S, Liu XY, Zhang SL, Dong SJ, Zha GC. Adhesion of osteoblast-like cell on silicon-doped TiO2 film prepared by cathodic arc deposition. Biotechnol Lett 2013; 35:975-82. [PMID: 23436126 DOI: 10.1007/s10529-013-1155-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/06/2013] [Indexed: 12/13/2022]
Abstract
Silicon-doped TiO2 (Si-TiO2) and pure TiO2 films were deposited on titanium substrates by cathodic arc deposition technique. The surface characteristics of the films, such as surface topography, elemental composition and wettability, were studied. About 4.6 % Si was incorporated into the Si-TiO2 films with a water contact angle of about 83°. The adhesive behaviors of osteoblast-like MG63 cells on both films were investigated through cell counting assay, immunocytochemistry, real-time PCR and western blotting analysis. Cells cultured on the Si-TiO2 films had a greater cellular viability, stronger cytoskeleton and focal adhesion, and more cellular spreading than those on the pure TiO2 films. Moreover, the expression levels of integrin β1 and focal adhesion kinase (FAK) genes, FAK and the phosphorylation of FAK proteins were up-regulated in cells cultured on the Si-TiO2 films. These results indicated that the Si-TiO2 films possess significantly enhanced cytocompatibility and provide potential solutions for the surface modification of implants in the future.
Collapse
Affiliation(s)
- Bing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
44
|
Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater 2013; 9:4457-86. [PMID: 22922331 DOI: 10.1016/j.actbio.2012.08.023] [Citation(s) in RCA: 1003] [Impact Index Per Article: 91.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 08/10/2012] [Accepted: 08/14/2012] [Indexed: 12/18/2022]
Abstract
Bioactive glasses are reported to be able to stimulate more bone regeneration than other bioactive ceramics but they lag behind other bioactive ceramics in terms of commercial success. Bioactive glass has not yet reached its potential but research activity is growing. This paper reviews the current state of the art, starting with current products and moving onto recent developments. Larry Hench's 45S5 Bioglass® was the first artificial material that was found to form a chemical bond with bone, launching the field of bioactive ceramics. In vivo studies have shown that bioactive glasses bond with bone more rapidly than other bioceramics, and in vitro studies indicate that their osteogenic properties are due to their dissolution products stimulating osteoprogenitor cells at the genetic level. However, calcium phosphates such as tricalcium phosphate and synthetic hydroxyapatite are more widely used in the clinic. Some of the reasons are commercial, but others are due to the scientific limitations of the original Bioglass 45S5. An example is that it is difficult to produce porous bioactive glass templates (scaffolds) for bone regeneration from Bioglass 45S5 because it crystallizes during sintering. Recently, this has been overcome by understanding how the glass composition can be tailored to prevent crystallization. The sintering problems can also be avoided by synthesizing sol-gel glass, where the silica network is assembled at room temperature. Process developments in foaming, solid freeform fabrication and nanofibre spinning have now allowed the production of porous bioactive glass scaffolds from both melt- and sol-gel-derived glasses. An ideal scaffold for bone regeneration would share load with bone. Bioceramics cannot do this when the bone defect is subjected to cyclic loads, as they are brittle. To overcome this, bioactive glass polymer hybrids are being synthesized that have the potential to be tough, with congruent degradation of the bioactive inorganic and the polymer components. Key to this is creating nanoscale interpenetrating networks, the organic and inorganic components of which have covalent coupling between them, which involves careful control of the chemistry of the sol-gel process. Bioactive nanoparticles can also now be synthesized and their fate tracked as they are internalized in cells. This paper reviews the main developments in the field of bioactive glass and its variants, covering the importance of control of hierarchical structure, synthesis, processing and cellular response in the quest for new regenerative synthetic bone grafts. The paper takes the reader from Hench's Bioglass 45S5 to new hybrid materials that have tailorable mechanical properties and degradation rates.
Collapse
Affiliation(s)
- Julian R Jones
- Department of Materials, Imperial College London, South Kensington Campus, London, UK.
| |
Collapse
|
45
|
Wang B, Sun J, Qian S, Liu X, Zhang S, Liu F, Dong S, Zha G. Proliferation and differentiation of osteoblastic cells on silicon-doped TiO2 film deposited by cathodic arc. Biomed Pharmacother 2012; 66:633-41. [DOI: 10.1016/j.biopha.2012.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/15/2012] [Indexed: 10/27/2022] Open
|
46
|
Antioxidative/oxidative effects of strontium-doped bioactive glass as bone graft. In vivo assays in ovariectomised rats. J Appl Biomed 2012. [DOI: 10.2478/v10136-012-0009-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
47
|
Allo BA, Rizkalla AS, Mequanint K. Hydroxyapatite formation on sol-gel derived poly(ε-caprolactone)/bioactive glass hybrid biomaterials. ACS APPLIED MATERIALS & INTERFACES 2012; 4:3148-3156. [PMID: 22625179 DOI: 10.1021/am300487c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Investigation of novel biomaterials for bone regeneration is based on the development of scaffolds that exhibit bone-bonding ability, biocompatibility, and sufficient mechanical strength. In this study, using novel poly (ε-caprolactone)/bioactive glass (PCL/BG) hybrids with different organic/inorganic ratios, the effects of BG contents on the in vitro bone-like hydroxyapatite (HA) formation, mechanical properties, and biocompatibility were investigated. Rapid precipitation of HA on the PCL/BG hybrid surfaces were observed after incubating in simulated body fluid (SBF) for only 6 h, as confirmed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier-transform infrared spectroscopy (FTIR), and inductively coupled plasma atomic emission spectroscopy (ICPS). The ICPS elemental analysis results were further analyzed in terms of the Ca(2+) and PO4(3-) which were consumed to form the apatite layer. The results revealed that the rate and total amount of HA deposition decreased with an increase in PCL content. The compressive modulus and strength of the PCL/BG hybrids increased with the decrease in PCL content. The highest values were achieved at the lowest PCL content (10 wt %) and were around, 90 MPa and 1.4 GPa, respectively. To evaluate the cytotoxicity of PCL/BG bioactive hybrids, MC3T3-E1 osteoblast-like cells were cultured for up to 72 h. Our data indicated that whereas initial cell attachment was marginally lower than the control tissue culture poly styrene (TCPS) surface, the hybrid materials promoted cell growth in a time-dependent manner. Cell viability within the different PCL/BG hybrid samples appeared to be influenced by compositional differences whereby higher PCL contents correlated with slight reduction in cell viability. Taken together, this study adds important new information to our knowledge on hydroxyapatite formation, mechanical properties, and cytotoxic effects of PCL/BG hybrids prepared by the sol-gel process using a tertiary glass composition and may have considerable potential for bone tissue regeneration applications.
Collapse
Affiliation(s)
- Bedilu A Allo
- Department of Chemical and Biochemical Engineering, The University of Western Ontario , London, ON, Canada N6A 5B9
| | | | | |
Collapse
|
48
|
Cerruti M. Surface characterization of silicate bioceramics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2012; 370:1281-1312. [PMID: 22349243 DOI: 10.1098/rsta.2011.0274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The success of an implanted prosthetic material is determined by the early events occurring at the interface between the material and the body. These events depend on many surface properties, with the main ones including the surface's composition, porosity, roughness, topography, charge, functional groups and exposed area. This review will portray how our understanding of the surface reactivity of silicate bioceramics has emerged and evolved in the past four decades, owing to the adoption of many complementary surface characterization tools. The review is organized in sections dedicated to a specific surface property, each describing how the property influences the body's response to the material, and the tools that have been adopted to analyse it. The final section introduces the techniques that have yet to be applied extensively to silicate bioceramics, and the information that they could provide.
Collapse
Affiliation(s)
- Marta Cerruti
- Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec, Canada H3A 2B2.
| |
Collapse
|
49
|
Stevens MM, Mecklenburg G. Bio-inspired materials for biosensing and tissue engineering. POLYM INT 2012. [DOI: 10.1002/pi.4183] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
McManus LL, Bonnier F, Burke GA, Meenan BJ, Boyd AR, Byrne HJ. Assessment of an osteoblast-like cell line as a model for human primary osteoblasts using Raman spectroscopy. Analyst 2012; 137:1559-69. [DOI: 10.1039/c2an16209a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|