1
|
Tang J, Zhang Y, Qi C, Li B, Wu Y, Ma S, Ma Y, Yu Q, Yang W, Xi P, Yu B, Zhou F. Robust and Lubricating Interface Semi-Interpenetrating Network on Inert Polymer Substrates Enabled by Subsurface-Initiated Polymerization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403303. [PMID: 39031810 DOI: 10.1002/smll.202403303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/30/2024] [Indexed: 07/22/2024]
Abstract
Lubricating hydrogel coatings on inert rubber and plastic surfaces significantly reduce friction and wear, thus enhancing material durability and lifespan. However, achieving optimal hydration lubrication typically requires a porous polymer network, which unfortunately reduces their mechanical strength and limits their applicability where robust durability and wear-resistance are essential. In the research, a hydrogel coating with remarkable wear resistance and surface stability is developed by forming a semi-interpenetrating polymer network with polymer substrate at the interface. By employing a good solvent swelling method, monomers, and photoinitiators are embedded within the substrates' subsurface, followed by in situ polymerization under ultraviolet light, creating a robust semi-interpenetrating and entangled network structure. This approach, offering a thicker energy-dissipating layer, outperforms traditional surface modifications in wear resistance while preserving anti-fatigue, hydrophilicity, oleophobicity, and other properties. Adaptable to various rubber and plastic substrates by using suitable solvents, this method provides an efficient solution for creating durable, lubricating surfaces, broadening the potential applications in multiple industries.
Collapse
Affiliation(s)
- Jie Tang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunlei Zhang
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Changmin Qi
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yang Wu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yanfei Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Qiangliang Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wufang Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Pinxian Xi
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bo Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
2
|
Miar S, Gonzales G, Dion G, Ong JL, Malka R, Bizios R, Branski RC, Guda T. Electrospun composite-coated endotracheal tubes with controlled siRNA and drug delivery to lubricate and minimize upper airway injury. Biomaterials 2024; 309:122602. [PMID: 38768544 DOI: 10.1016/j.biomaterials.2024.122602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Endotracheal Tubes (ETTs) maintain and secure a patent airway; however, prolonged intubation often results in unintended injury to the mucosal epithelium and inflammatory sequelae which complicate recovery. ETT design and materials used have yet to adapt to address intubation associated complications. In this study, a composite coating of electrospun polycaprolactone (PCL) fibers embedded in a four-arm polyethylene glycol acrylate matrix (4APEGA) is developed to transform the ETT from a mechanical device to a dual-purpose device capable of delivering multiple therapeutics while preserving coating integrity. Further, the composite coating system (PCL-4APEGA) is capable of sustained delivery of dexamethasone from the PCL phase and small interfering RNA (siRNA) containing polyplexes from the 4APEGA phase. The siRNA is released rapidly and targets smad3 for immediate reduction in pro-fibrotic transforming growth factor-beta 1 (TGFϐ1) signaling in the upper airway mucosa as well as suppressing long-term sequelae in inflammation from prolonged intubation. A bioreactor was used to study mucosal adhesion to the composite PCL-4APEGA coated ETTs and investigate continued mucus secretory function in ex vivo epithelial samples. The addition of the 4APEGA coating and siRNA delivery to the dexamethasone delivery was then evaluated in a swine model of intubation injury and observed to restore mechanical function of the vocal folds and maintain epithelial thickness when observed over 14 days of intubation. This study demonstrated that increase in surface lubrication paired with surface stiffness reduction significantly decreased fibrotic behavior while reducing epithelial adhesion and abrasion.
Collapse
Affiliation(s)
- Solaleh Miar
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, USA; Department of Civil, Environmental, and Biomedical Engineering, University of Hartford, West Hartford, CT, USA.
| | - Gabriela Gonzales
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, USA.
| | - Gregory Dion
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Joo L Ong
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, USA.
| | - Ronit Malka
- Department of Otolaryngology - Head and Neck Surgery, Brooke Army Medical Center, JBSA, Fort Sam Houston, TX, 78234, USA.
| | - Rena Bizios
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, USA.
| | - Ryan C Branski
- Departments of Rehabilitation Medicine and Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, NY, USA.
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
3
|
Smith AM, Inocencio DG, Pardi BM, Gopinath A, Andresen Eguiluz RC. Facile Determination of the Poisson's Ratio and Young's Modulus of Polyacrylamide Gels and Polydimethylsiloxane. ACS APPLIED POLYMER MATERIALS 2024; 6:2405-2416. [PMID: 38420286 PMCID: PMC10897882 DOI: 10.1021/acsapm.3c03154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 03/02/2024]
Abstract
Polyacrylamide hydrogels (PAH gel) and polydimethylsiloxane (PDMS, an elastomer) are two soft materials often used in cell mechanics and mechanobiology, in manufacturing lab-on-a-chip applications, among others. This is partly due to the ability to tune their elasticity with ease in addition to various chemical modifications. For affine polymeric networks, two (of three) elastic constants, Young's modulus (E), the shear modulus (G), and Poisson's ratio (ν), describe the purely elastic response to external forces. However, the literature addressing the experimental determination of ν for PAH (sometimes called PAA gels in the literature) and the PDMS elastomer is surprisingly limited when compared to the literature that reports values of the elastic moduli, E and G. Here, we present a facile method to obtain the Poisson's ratio and Young's modulus for PAH gel and PDMS elastomer based on static tensile tests. The value of ν obtained from the deformation of the sample is compared to the value determined by comparing E and G via a second independent method that utilizes small amplitude shear rheology. We show that the Poisson's ratio may vary significantly from the value for incompressible materials (ν = 0.5), often assumed in the literature even for soft compressible hydrogels. Surprisingly, we find a high degree of agreement between elastic constants obtained by shear rheology and macroscopic static tension test data for polyacrylamide hydrogels but not for elastomeric PDMS.
Collapse
Affiliation(s)
- Ariell Marie Smith
- Department of Materials Science and Engineering, School of Engineering, University of California, Merced, 5200 North Lake Road, Merced, California 95344, United States
| | - Dominique Gabriele Inocencio
- Department of Materials Science and Engineering, School of Engineering, University of California, Merced, 5200 North Lake Road, Merced, California 95344, United States
| | - Brandon Michael Pardi
- Department of Materials Science and Engineering, School of Engineering, University of California, Merced, 5200 North Lake Road, Merced, California 95344, United States
| | - Arvind Gopinath
- Department of Bioengineering, School of Engineering, University of California, Merced, 5200 North Lake Road, Merced, California 95344, United States
- Health Sciences Research Institute, University of California Merced, Merced, 5200 North Lake Road, Merced, California 95344, United States
| | - Roberto Carlos Andresen Eguiluz
- Department of Materials Science and Engineering, School of Engineering, University of California, Merced, 5200 North Lake Road, Merced, California 95344, United States
- Health Sciences Research Institute, University of California Merced, Merced, 5200 North Lake Road, Merced, California 95344, United States
| |
Collapse
|
4
|
Chen W, Xu B, Tang Q, Qian S, Bian D, Li H. Preparation and Properties of PDMS Surface Coating for Ultra-Low Friction Characteristics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14605-14615. [PMID: 37788007 DOI: 10.1021/acs.langmuir.3c01846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Polydimethylsiloxane (PDMS) has excellent physical-chemical properties and good biocompatibility. Thus, PDMS has been widely applied in biomedical applications. However, the low surface free energy and surface hydrophobicity of PDMS can easily lead to adverse symptoms, such as tissue damage and ulceration, during medical treatment. Therefore, the construction of a hydrophilic low-friction surface on the PDMS surface could be helpful for alleviating patient discomfort and would be of great significance for broadening the application of PDMS in the field of interventional medical catheters. Existing surface modification methods such as hydrogel coatings and chemical grafting suffer from several deficiencies including uncontrollable thickness, surface fragility, and low surface strength. In this study, a hydrophilic surface with ultra-low friction properties was prepared on the surface of PDMS by an ultraviolet light (UV) curing method. The monomer acrylamide (AM) was induced by a photoinitiator to form a coating on the surface of the silicone rubber by in situ polymerization. The surface roughness of the as-prepared coatings was regulated by adding different concentrations of 2-acrylamido-2-methylpropanesulfonic acid (AMPS) to the monomer solution, and the coating properties were systematically characterized. The results indicated that the roughness and thickness of the as-prepared coatings decreased with increasing AMPS concentration and the as-prepared coatings had good hydrophilicity and low-friction properties. The Coefficient of Friction (CoF) was as low as 0.0075 in the deionized water solution, which was 99.7% lower than that of the unmodified PDMS surface. Moreover, the coating with a lower surface roughness exhibited better low-friction properties. The results reported herein provide new insight into the preparation of hydrophilic, low-friction coatings on polymer surfaces.
Collapse
Affiliation(s)
- Weiwei Chen
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bo Xu
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qichen Tang
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shanhua Qian
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Da Bian
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hui Li
- Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou 450001, China
| |
Collapse
|
5
|
Li K, Liu X, Fan Y, Feng S, Chen D. Preventive effect of surface charge on encrustation of biodegradable ureteral stents. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:258-275. [PMID: 35984741 DOI: 10.1080/09205063.2022.2115760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prevention of encrustation on the surface has always been the biggest challenge for urological implants. In the field of ureteral stent design, biodegradability has attracted much attention in recent years, because biodegradable ureteral stents not only avoid secondary intervention, but also prevent encrustation due to surface renewal by degradation process. Furthermore, researches have focus on some surface parameters to provide guidance for the development of stent materials, such as hydrophilicity or surface charge. In this work, we synthesized two types of poly(ester-carbonate)s, poly(L-lactide-co-5-amino-1,3-dioxan-2-one) (P(LA-co-AC)) containing amino, and poly (L-lactide-co-5-methyl-5-carboxyl-1,3-dioxan-2-one) (P(LA-co-MCC)) containing carboxyl. Blending P(LA-co-AC) and P(LA-co-MCC) with poly(L-lactide-co-Ɛ-caprolactone) (PLACL) respectively, two types of ureteral stent materials were prepared. Due to the influence of ions formed by the dissociation of amino and carboxyl, two types of materials show differences in surface charge analyses. We further developed a dynamic urinary extracorporeal circulation (DUEC) system to assess in vitro encrustation of materials with different surface charges. The results of this comparative study identified that the materials with strong negative surface charge were most favorable for use as ureteral stent, and provided a new approach to surmount the problems faced by urological surgery which complied with the future trend of biodegradable ureteral stent design.
Collapse
Affiliation(s)
- Kaiqi Li
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Xiliang Liu
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Youkun Fan
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Shaomin Feng
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Dongliang Chen
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, PR China
| |
Collapse
|
6
|
Wang T, Ugurlu H, Yan Y, Li M, Li M, Wild AM, Yildiz E, Schneider M, Sheehan D, Hu W, Sitti M. Adaptive wireless millirobotic locomotion into distal vasculature. Nat Commun 2022; 13:4465. [PMID: 35915075 PMCID: PMC9343456 DOI: 10.1038/s41467-022-32059-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Microcatheters have enabled diverse minimally invasive endovascular operations and notable health benefits compared with open surgeries. However, with tortuous routes far from the arterial puncture site, the distal vascular regions remain challenging for safe catheter access. Therefore, we propose a wireless stent-shaped magnetic soft robot to be deployed, actively navigated, used for medical functions, and retrieved in the example M4 segment of the middle cerebral artery. We investigate shape-adaptively controlled locomotion in phantoms emulating the physiological conditions here, where the lumen diameter shrinks from 1.5 mm to 1 mm, the radius of curvature of the tortuous lumen gets as small as 3 mm, the lumen bifurcation angle goes up to 120°, and the pulsatile flow speed reaches up to 26 cm/s. The robot can also withstand the flow when the magnetic actuation is turned off. These locomotion capabilities are confirmed in porcine arteries ex vivo. Furthermore, variants of the robot could release the tissue plasminogen activator on-demand locally for thrombolysis and function as flow diverters, initiating promising therapies towards acute ischemic stroke, aneurysm, arteriovenous malformation, dural arteriovenous fistulas, and brain tumors. These functions should facilitate the robot's usage in new distal endovascular operations.
Collapse
Affiliation(s)
- Tianlu Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Department of Information Technology and Electrical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Halim Ugurlu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Clinic for Neuroradiology, Klinikum Stuttgart, 70174, Stuttgart, Germany
- Department of Biophysics, Aydın Adnan Menderes University, Graduate School of Health Sciences, 09010, Aydın, Turkey
| | - Yingbo Yan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Mingtong Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Meng Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Anna-Maria Wild
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Erdost Yildiz
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Martina Schneider
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Devin Sheehan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Wenqi Hu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.
- Department of Information Technology and Electrical Engineering, ETH Zurich, 8092, Zurich, Switzerland.
- School of Medicine and College of Engineering, Koç University, 34450, Istanbul, Turkey.
| |
Collapse
|
7
|
Moon HH, Choi EJ, Yun SH, Kim YC, Premkumar T, Song C. Aqueous lubrication and wear properties of nonionic bottle-brush polymers. RSC Adv 2022; 12:17740-17746. [PMID: 35765345 PMCID: PMC9199083 DOI: 10.1039/d2ra02711a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
The usage of aqueous lubricants in eco-friendly bio-medical friction systems has attracted significant attention. Several bottle-brush polymers with generally ionic functional groups have been developed based on the structure of biological lubricant lubricin. However, hydrophilic nonionic brush polymers have attracted less attention, especially in terms of wear properties. We developed bottle-brush polymers (BP) using hydrophilic 2-hydroxyethyl methacrylate (HEMA), a highly biocompatible yet nonionic molecule. The lubrication properties of polymer films were analyzed in an aqueous state using a ball-on-disk, which revealed that BPHEMA showed a lower aqueous friction coefficient than linear poly(HEMA), even lower than hyaluronic acid (HA) and polyvinyl alcohol (PVA), which are widely used as lubricating polymers. Significantly, we discovered that the combination of HA, PVA, and BPHEMA is demonstrated to be essential in influencing the surface wear properties; the ratio of 1 : 2 (HA : BPHEMA) had the maximum wear resistance, despite a slight increase in the aqueous friction coefficient.
Collapse
Affiliation(s)
- Hwi Hyun Moon
- Department of Chemistry, Sungkyunkwan University Suwon Gyeonggi 16419 Republic of Korea
| | - Eun Jung Choi
- Department of Chemistry, Sungkyunkwan University Suwon Gyeonggi 16419 Republic of Korea
| | - Sang Ho Yun
- Department of Chemistry, Sungkyunkwan University Suwon Gyeonggi 16419 Republic of Korea
| | - Youn Chul Kim
- Department of Chemical Engineering, Sungkyunkwan University Suwon Gyeonggi 16419 Republic of Korea
| | - Thathan Premkumar
- Department of Chemistry, Sungkyunkwan University Suwon Gyeonggi 16419 Republic of Korea
- The University College, Sungkyunkwan University Suwon Gyeonggi 16419 Republic of Korea
| | - Changsik Song
- Department of Chemistry, Sungkyunkwan University Suwon Gyeonggi 16419 Republic of Korea
| |
Collapse
|
8
|
Affiliation(s)
- Youbing Mu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Qian Sun
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Bowen Li
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Xiaobo Wan
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| |
Collapse
|
9
|
Boundary lubrication with aqueous solutions of silicone-based amphiphilic block copolymer aggregates: effect of concentration. Polym J 2021. [DOI: 10.1038/s41428-021-00515-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Martin J, Desfoux A, Martinez J, Amblard M, Mehdi A, Vezenkov L, Subra G. Bottom-up strategies for the synthesis of peptide-based polymers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Wang M, Ghosh SK, Stafford CM, Blevins AK, Huang S, Martinez J, Long R, Bowman CN, Killgore JP, Zou M, Ding Y. Snakeskin-Inspired Elastomers with Extremely Low Coefficient of Friction under Dry Conditions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57450-57460. [PMID: 33306352 DOI: 10.1021/acsami.0c18316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Soft elastomers are critical to a broad range of existing and emerging technologies. One major limitation of soft elastomers is the large friction of coefficient (COF) due to inherently large adhesion and internal loss. In applications where lubrication is not applicable, such as soft robotics, wearable electronics, and biomedical devices, elastomers with inherently low dry COF are required. Inspired by the low COF of snakeskins atop soft bodies, this study reports the development of elastomers with low dry COF by growing a hybrid skin layer with a strong interface with a large stiffness gradient. Using a solid-liquid interfacial polymerization (SLIP) process, hybrid skin layers are imparted onto elastomers, which reduces the COF of the elastomers from 1.6 to 0.1, without sacrificing the bulk compliance and ductility of elastomer. Compared with existing surface modification methods, the SLIP process offers spatial control and ability to modify flat, prepatterned, curved, and inner surfaces, which is essential to engineer multifunctional skin layers for emerging applications.
Collapse
Affiliation(s)
- Mengyuan Wang
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Sujan K Ghosh
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Christopher M Stafford
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Adrienne K Blevins
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Sijia Huang
- Department of Chemical and Biochemical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Jaylene Martinez
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Rong Long
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Christopher N Bowman
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
- Department of Chemical and Biochemical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Jason P Killgore
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Min Zou
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Yifu Ding
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
12
|
Modi A, Verma SK, Bellare J. Surface-Functionalized Poly(Ether Sulfone) Composite Hollow Fiber Membranes with Improved Biocompatibility and Uremic Toxins Clearance for Bioartificial Kidney Application. ACS APPLIED BIO MATERIALS 2020; 3:1589-1597. [DOI: 10.1021/acsabm.9b01183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Akshay Modi
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Surendra Kumar Verma
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Jayesh Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
- Centre for Research in Nanotechnology & Sciences, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
- Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra400076, India
| |
Collapse
|
13
|
Miyamoto T, Yamazaki N, Watanabe S, Yamada S. Aqueous Lubrication with the Molecularly Confined Films of Silicone-Based Amphiphilic Block Copolymer Aggregates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15784-15794. [PMID: 31656076 DOI: 10.1021/acs.langmuir.9b03212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The confined film structures and tribological properties of the dilute aqueous solution of a silicone-based amphiphilic block copolymer, bis-isobutyl poly(ethylene glycol) (PEG)-14/amodimethicone (BIPA) copolymer, between mica surfaces were investigated. The BIPA copolymer existed as positively charged water-soluble aggregates in the solution. The adsorption behavior of the BIPA copolymer aggregates on a mica surface from solution was studied using an atomic force microscope (AFM); the result showed the immediate formation of a uniform adsorbed BIPA copolymer layer, followed by the gradual deposition of BIPA aggregates on the top of the adsorbed layer. Friction measurements were carried out using the surface forces apparatus (SFA) for the confined films of BIPA copolymer solution between mica surfaces, which revealed two different sliding film structures depending on the elapsed time after surface preparation. The sliding film consisting of two adsorbed BIPA copolymer layers was obtained for a relatively short elapsed time (not longer than 3 h), which had an extremely low friction coefficient μ (of the order of 10-5). The sliding film on the following day (elapsed time of approximately 24 h) had the structure of a deposited/kinetically trapped BIPA aggregate layer confined between the opposing adsorbed layers, and the μ values were within the range from 10-4 to 10-3. Our results suggest that the different elapsed time ranges and resulting absence or presence of the intervening layer of trapped aggregates between the absorbed layers determine the tribological properties of the confined films. Molecular friction mechanisms are discussed for the two sliding structures, which give insight into using amphiphilic block copolymer aggregates for a new class of aqueous lubrication system to design extremely low friction interfaces.
Collapse
Affiliation(s)
- Takumi Miyamoto
- R&D - Analytical Science Research , Kao Corporation , 1334 Minato , Wakayama , Wakayama 640-8580 , Japan
| | - Naoyuki Yamazaki
- R&D - Hair Care Products Research , Kao Corporation , 2-1-3 Bunka , Sumida-ku , Tokyo 131-8501 , Japan
| | - Shunichi Watanabe
- R&D - Hair Care Products Research , Kao Corporation , 2-1-3 Bunka , Sumida-ku , Tokyo 131-8501 , Japan
| | - Shinji Yamada
- R&D - Analytical Science Research , Kao Corporation , 1334 Minato , Wakayama , Wakayama 640-8580 , Japan
| |
Collapse
|
14
|
Silicone grafted bioactive peptides and their applications. Curr Opin Chem Biol 2019; 52:125-135. [DOI: 10.1016/j.cbpa.2019.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 11/17/2022]
|
15
|
Wei Q, Liu X, Yue Q, Ma S, Zhou F. Mussel-Inspired One-Step Fabrication of Ultralow-Friction Coatings on Diverse Biomaterial Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8068-8075. [PMID: 31132281 DOI: 10.1021/acs.langmuir.9b00421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Low-friction and hydrophilic surfaces have critical applications in biomedical devices and implants. Existing methods to achieve such surfaces, for example, grafting polymer brushes, usually suffer from tedious steps and harsh reaction conditions, which limit practical applications. In this work, we propose a set of versatile ultralow-friction coatings applicable for diverse biomaterial surfaces via a one-step simple codeposition strategy with dopamine and hydrophilic monomers. The polymer coatings show ultralow-friction performance together with hydrophilic feature and antifouling property. The coefficient of friction of the as-prepared coating can be as low as 0.003 in pure water. The coating also provides superior and stable lubrication in biological fluids due to antifouling capability. Furthermore, the versatility of this strategy allows fabrication of multiple lubricious polymer coatings with different hydrophilic monomers and on diverse material surfaces. The typical application of this low-friction coating on a medical catheter was further demonstrated, which dramatically improved surface wettability and reduced friction of the outer surface of the catheter. In view of the versatility and remarkable lubrication ability, the multifunctional coatings may find important applications in biomedical devices and implants.
Collapse
Affiliation(s)
- Qiangbing Wei
- Key Laboratory of Eco-Environmental-Related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , China
| | - Xiaoqian Liu
- Key Laboratory of Eco-Environmental-Related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , China
| | - Qinyu Yue
- Key Laboratory of Eco-Environmental-Related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000 , China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000 , China
| |
Collapse
|
16
|
Yamada S, Fujihara A, Yusa SI, Tanabe T, Kurihara K. Confined film structure and friction properties of triblock copolymer additives in oil-based lubrication. Polym J 2018. [DOI: 10.1038/s41428-018-0114-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Furniturewalla A, Chan M, Sui J, Ahuja K, Javanmard M. Fully integrated wearable impedance cytometry platform on flexible circuit board with online smartphone readout. MICROSYSTEMS & NANOENGINEERING 2018; 4:20. [PMID: 31057908 PMCID: PMC6220260 DOI: 10.1038/s41378-018-0019-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/27/2018] [Accepted: 05/09/2018] [Indexed: 05/07/2023]
Abstract
We present a wearable microfluidic impedance cytometer implemented on a flexible circuit wristband with on-line smartphone readout for portable biomarker counting and analysis. The platform contains a standard polydimethylsiloxane (PDMS) microfluidic channel integrated on a wristband, and the circuitry on the wristband is composed of a custom analog lock-in amplification system, a microcontroller with an 8-bit analog-to-digital converter (ADC), and a Bluetooth module wirelessly paired with a smartphone. The lock-in amplification (LIA) system is implemented with a novel architecture which consists of the lock-in amplifier followed by a high-pass filter stage with DC offset subtraction, and a post-subtraction high gain stage enabling detection of particles as small as 2.8 μm using the 8-bit ADC. The Android smartphone application was used to initiate the system and for offline data-plotting and peak counting, and supports online data readout, analysis, and file management. The data is exportable to researchers and medical professionals for in-depth analysis and remote health monitoring. The system, including the microfluidic sensor, microcontroller, and Bluetooth module all fit on the wristband with a footprint of less than 80 cm2. We demonstrate the ability of the system to obtain generalized blood cell counts; however the system can be applied to a wide variety of biomarkers by interchanging the standard microfluidic channel with microfluidic channels designed for biomarker isolation.
Collapse
Affiliation(s)
- Abbas Furniturewalla
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, New Brunswick, USA
| | - Matthew Chan
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, New Brunswick, USA
| | - Jianye Sui
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, New Brunswick, USA
| | - Karan Ahuja
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, New Brunswick, USA
| | - Mehdi Javanmard
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, New Brunswick, USA
| |
Collapse
|
18
|
Dehghani ES, Ramakrishna SN, Spencer ND, Benetti EM. Engineering Lubricious, Biopassive Polymer Brushes by Surface-Initiated, Controlled Radical Polymerization. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ella S. Dehghani
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Shivaprakash N. Ramakrishna
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Nicholas D. Spencer
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Edmondo M. Benetti
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| |
Collapse
|
19
|
Gurkov A, Sadovoy A, Shchapova E, Teh C, Meglinski I, Timofeyev M. Microencapsulated fluorescent pH probe as implantable sensor for monitoring the physiological state of fish embryos. PLoS One 2017; 12:e0186548. [PMID: 29045437 PMCID: PMC5646854 DOI: 10.1371/journal.pone.0186548] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/03/2017] [Indexed: 11/29/2022] Open
Abstract
In vivo physiological measurement is a major challenge in modern science and technology, as is environment conservation at the global scale. Proper toxicological testing of widely produced mixtures of chemicals is a necessary step in the development of new products, allowing us to minimize the human impact on aquatic ecosystems. However, currently available bioassay-based techniques utilizing small aquatic organisms such as fish embryos for toxicity testing do not allow assessing in time the changes in physiological parameters in the same individual. In this study, we introduce microencapsulated fluorescent probes as a promising tool for in vivo monitoring of internal pH variation in zebrafish embryos. The pH alteration identified under stress conditions demonstrates the applicability of the microencapsulated fluorescent probes for the repeated analysis of the embryo’s physiological state. The proposed approach has strong potential to simultaneously measure a range of physiological characteristics using a set of specific fluorescent probes and to finally bring toxicological bioassays and related research fields to a new level of effectiveness and sensitivity.
Collapse
Affiliation(s)
- Anton Gurkov
- Institute of Biology, Irkutsk State University, Irkutsk, Russia
- Baikal Research Centre, Irkutsk, Russia
| | - Anton Sadovoy
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore
- * E-mail: (MT); (IM); (AS)
| | | | - Cathleen Teh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Igor Meglinski
- Institute of Biology, Irkutsk State University, Irkutsk, Russia
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, Oulu, Finland
- * E-mail: (MT); (IM); (AS)
| | - Maxim Timofeyev
- Institute of Biology, Irkutsk State University, Irkutsk, Russia
- * E-mail: (MT); (IM); (AS)
| |
Collapse
|
20
|
Andresen Eguiluz RC, Cook SG, Tan M, Brown CN, Pacifici NJ, Samak MS, Bonassar LJ, Putnam D, Gourdon D. Synergistic Interactions of a Synthetic Lubricin-Mimetic with Fibronectin for Enhanced Wear Protection. Front Bioeng Biotechnol 2017; 5:36. [PMID: 28702455 PMCID: PMC5487421 DOI: 10.3389/fbioe.2017.00036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/02/2017] [Indexed: 11/25/2022] Open
Abstract
Lubricin (LUB), a major mucinous glycoprotein of mammalian synovial fluids, is believed to provide excellent lubrication to cartilage surfaces. Consequently, when joint disease or replacement leads to increased friction and surface damage in the joint, robust synthetic LUB alternatives that could be used therapeutically to improve lubrication and surface protection are needed. Here, we report the characterization of a lubricating multiblock bottlebrush polymer whose architecture was inspired by LUB, and we investigate the role of fibronectin (FN), a glycoprotein found in the superficial zone of cartilage, in mediating the tribological properties of the polymer upon shear between mica surfaces. Our surface forces apparatus (SFA) normal force measurements indicate that the lubricin-mimetic (mimLUB) could be kept anchored between mica surfaces, even under high contact pressures, when an intermediate layer of FN was present. Additional SFA friction measurements show that FN would also extend the wearless friction regime of the polymer up to pressures of 3.4 MPa while ensuring stable friction coefficients (μ ≈ 0.28). These results demonstrate synergistic interactions between mimLUB and FN in assisting the lubrication and wear protection of ideal (mica) substrates upon shear. Collectively, these findings suggest that our proposed mimLUB might be a promising alternative to LUB, as similar mechanisms could potentially facilitate the interaction between the polymer and cartilage surfaces in articular joints and prosthetic implants in vivo.
Collapse
Affiliation(s)
| | - Sierra G Cook
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States
| | - Mingchee Tan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Cory N Brown
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States
| | - Noah J Pacifici
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States
| | - Mihir S Samak
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - David Putnam
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Delphine Gourdon
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States.,Department of Physics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
21
|
Bussi Y, Holtzman L, Shagan A, Segal E, Mizrahi B. Light-triggered antifouling coatings for porous silicon optical transducers. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.3989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yonit Bussi
- Department of Biotechnology and Food Engineering; Technion - Israel Institute of Technology; Haifa 32000 Israel
- Russell Berrie Nanotechnology Institute; Technion - Israel Institute of Technology; Haifa 32000 Israel
| | - Liran Holtzman
- Department of Biotechnology and Food Engineering; Technion - Israel Institute of Technology; Haifa 32000 Israel
| | - Alona Shagan
- Department of Biotechnology and Food Engineering; Technion - Israel Institute of Technology; Haifa 32000 Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering; Technion - Israel Institute of Technology; Haifa 32000 Israel
- Russell Berrie Nanotechnology Institute; Technion - Israel Institute of Technology; Haifa 32000 Israel
| | - Boaz Mizrahi
- Department of Biotechnology and Food Engineering; Technion - Israel Institute of Technology; Haifa 32000 Israel
| |
Collapse
|
22
|
Dundua A, Franzka S, Ulbricht M. Improved Antifouling Properties of Polydimethylsiloxane Films via Formation of Polysiloxane/Polyzwitterion Interpenetrating Networks. Macromol Rapid Commun 2016; 37:2030-2036. [PMID: 27778416 DOI: 10.1002/marc.201600473] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/20/2016] [Indexed: 11/09/2022]
Abstract
Nonspecific adsorption of proteins is a challenging problem for the development of biocompatible materials, as well as for antifouling and fouling-release coatings, for instance for the marine industry. The concept of preparing amphiphilic systems based on low surface energy hydrophobic materials via their hydrophilic modification is being widely pursued. This work describes a novel two-step route for the preparation of interpenetrating polymer networks of otherwise incompatible poly(dimethylsiloxane) and zwitterionic polymers. Changes in surface hydrophilicity as well as surface charge at different pH values are investigated. Characterization using atomic force microscopy provides thorough insight into surface changes upon hydrophilic modification. Protein fouling of the materials is assessed using fibrinogen as a model protein.
Collapse
Affiliation(s)
- Alexander Dundua
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Universitätsstraße 7, 45141, Essen, Germany
| | - Steffen Franzka
- Interdisciplinary Center for Analytics on the Nanoscale (ICAN), Universität Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Universitätsstraße 7, 45141, Essen, Germany
| |
Collapse
|
23
|
Yang W, Sundaram HS, Ella JR, He N, Jiang S. Low-fouling electrospun PLLA films modified with zwitterionic poly(sulfobetaine methacrylate)-catechol conjugates. Acta Biomater 2016; 40:92-99. [PMID: 27265149 DOI: 10.1016/j.actbio.2016.05.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/21/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED In this work, we modified a hydrophobic electrospun poly (l-lactic) acid (PLLA) film with poly (sulfobetaine methacrylate) (pSBMA)-catechol conjugates of different molecular weights to improve the biocompatibility of the film. These conjugates were synthesized via atom transfer radical polymerization. They consist of an ultra-low fouling pSBMA zwitterionic polymer with a surface-adhesive catechol moiety. X-ray photoelectron spectroscopy, contact angle and scanning electron microscopy experiments were performed to characterize films before and after modification with pSBMA-catechol conjugates. Enzyme-linked immunosorbent and fluorescently-labeled bovine serum albumin were used to study the interactions of proteins with these films. Results showed that low molecular weight zwitterionic pSBMA-catechol conjugates greatly discouraged protein adsorption as shown by use of single protein solutions on PLLA films when the modification was performed in ethanolic Tris-HCl solution. This work offers a convenient and effective method to modify electrospun PLLA films for biomedical applications. STATEMENT OF SIGNIFICANCE In this work, we report a convenient and effective method to modify electrospun PLLA films using pSBMA-catechol conjugates via "graft-to" for biomedical applications. After pSBMA modification, the PLLA surface becomes hydrophilic with low contact angle and protein adsorption. Results showed that lower molecular weight zwitterionic pSBMA-catechol conjugate led to lower contact angles and better nonfouling properties on PLLA films when the coating was performed in a solution containing ethanol.
Collapse
|
24
|
Yang D, Ruan M, Huang S, Wu Y, Li S, Wang H, Ao X, Liang Y, Guo W, Zhang L. Dopamine and silane functionalized barium titanate with improved electromechanical properties for silicone dielectric elastomers. RSC Adv 2016. [DOI: 10.1039/c6ra19210f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A combination of bio-inspired poly(dopamine) deposition and silane grafting is proposed to functionalize bariumtitanate to improve the electromechanical properties of silicone dielectric elastomers.
Collapse
|
25
|
Van De Walle E, Van Nieuwenhove I, Vanderleyden E, Declercq H, Gellynck K, Schaubroeck D, Ottevaere H, Thienpont H, De Vos WH, Cornelissen M, Van Vlierberghe S, Dubruel P. Polydopamine-Gelatin as Universal Cell-Interactive Coating for Methacrylate-Based Medical Device Packaging Materials: When Surface Chemistry Overrules Substrate Bulk Properties. Biomacromolecules 2015; 17:56-68. [PMID: 26568299 DOI: 10.1021/acs.biomac.5b01094] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Despite its widespread application in the fields of ophthalmology, orthopedics, and dentistry and the stringent need for polymer packagings that induce in vivo tissue integration, the full potential of poly(methyl methacrylate) (PMMA) and its derivatives as medical device packaging material has not been explored yet. We therefore elaborated on the development of a universal coating for methacrylate-based materials that ideally should reveal cell-interactivity irrespective of the polymer substrate bulk properties. Within this perspective, the present work reports on the UV-induced synthesis of PMMA and its more flexible poly(ethylene glycol) (PEG)-based derivative (PMMAPEG) and its subsequent surface decoration using polydopamine (PDA) as well as PDA combined with gelatin B (Gel B). Successful application of both layers was confirmed by multiple surface characterization techniques. The cell interactivity of the materials was studied by performing live-dead assays and immunostainings of the cytoskeletal components of fibroblasts. It can be concluded that only the combination of PDA and Gel B yields materials possessing similar cell interactivities, irrespective of the physicochemical properties of the underlying substrate. The proposed coating outperforms both the PDA functionalized and the pristine polymer surfaces. A universal cell-interactive coating for methacrylate-based medical device packaging materials has thus been realized.
Collapse
Affiliation(s)
- Elke Van De Walle
- Polymer Chemistry & Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University , Krijgslaan 281 S4Bis, Ghent B-9000, Belgium
| | - Ine Van Nieuwenhove
- Polymer Chemistry & Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University , Krijgslaan 281 S4Bis, Ghent B-9000, Belgium
| | - Els Vanderleyden
- Polymer Chemistry & Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University , Krijgslaan 281 S4Bis, Ghent B-9000, Belgium
| | - Heidi Declercq
- Tissue Engineering Group, Department of Basic Medical Sciences, Ghent University , De Pintelaan 185 6B3, Ghent B-9000, Belgium
| | - Karolien Gellynck
- Tissue Engineering Group, Department of Basic Medical Sciences, Ghent University , De Pintelaan 185 6B3, Ghent B-9000, Belgium
| | - David Schaubroeck
- Center for Microsystems Technology (CMST), Imec and Ghent University , Technologiepark 914A, B-9052 Ghent, Belgium
| | - Heidi Ottevaere
- B-PHOT Brussels Photonics Team, Department of Applied Physics and Photonics, Vrije Universiteit Brussels , Pleinlaan 2, 1050 Brussels, Belgium
| | - Hugo Thienpont
- B-PHOT Brussels Photonics Team, Department of Applied Physics and Photonics, Vrije Universiteit Brussels , Pleinlaan 2, 1050 Brussels, Belgium
| | - Winnok H De Vos
- Department of Molecular Biotechnology, Ghent University , Coupure links 653, 9000 Ghent, Belgium.,Department of Veterinary Sciences, Antwerp University , Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Maria Cornelissen
- Tissue Engineering Group, Department of Basic Medical Sciences, Ghent University , De Pintelaan 185 6B3, Ghent B-9000, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University , Krijgslaan 281 S4Bis, Ghent B-9000, Belgium.,B-PHOT Brussels Photonics Team, Department of Applied Physics and Photonics, Vrije Universiteit Brussels , Pleinlaan 2, 1050 Brussels, Belgium.,Department of Chemistry, University of Antwerp , Universiteitsplein 1, BE-2610 Wilrijk-Antwerp, Belgium
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University , Krijgslaan 281 S4Bis, Ghent B-9000, Belgium
| |
Collapse
|
26
|
Vuoriluoto M, Orelma H, Johansson LS, Zhu B, Poutanen M, Walther A, Laine J, Rojas OJ. Effect of Molecular Architecture of PDMAEMA–POEGMA Random and Block Copolymers on Their Adsorption on Regenerated and Anionic Nanocelluloses and Evidence of Interfacial Water Expulsion. J Phys Chem B 2015; 119:15275-86. [DOI: 10.1021/acs.jpcb.5b07628] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Maija Vuoriluoto
- Biobased
Colloids and Materials group (BiCMat), Department of Forest Products
Technology, School of Chemical Technology, Aalto University, FI-00076, Espoo, Finland
| | - Hannes Orelma
- Biobased
Colloids and Materials group (BiCMat), Department of Forest Products
Technology, School of Chemical Technology, Aalto University, FI-00076, Espoo, Finland
- VTT, Technical Research Centre of Finland, Biologinkuja 7, P.O. Box 1000, FIN-02044 VTT, Finland
| | - Leena-Sisko Johansson
- Biobased
Colloids and Materials group (BiCMat), Department of Forest Products
Technology, School of Chemical Technology, Aalto University, FI-00076, Espoo, Finland
| | - Baolei Zhu
- DWI − Leibniz-Institute for Interactive Materials Research, Forckenbeckstr. 50, D-52056 Aachen, Germany
| | - Mikko Poutanen
- Department
of Applied Physics, School of Science, Aalto University, FI-00076, Espoo, Finland
| | - Andreas Walther
- DWI − Leibniz-Institute for Interactive Materials Research, Forckenbeckstr. 50, D-52056 Aachen, Germany
| | - Janne Laine
- Biobased
Colloids and Materials group (BiCMat), Department of Forest Products
Technology, School of Chemical Technology, Aalto University, FI-00076, Espoo, Finland
| | - Orlando J. Rojas
- Biobased
Colloids and Materials group (BiCMat), Department of Forest Products
Technology, School of Chemical Technology, Aalto University, FI-00076, Espoo, Finland
| |
Collapse
|
27
|
Yamada S, Fujihara A, Yusa SI, Tanabe T, Kurihara K. Low-Friction Adsorbed Layers of a Triblock Copolymer Additive in Oil-Based Lubrication. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:12140-12147. [PMID: 26479685 DOI: 10.1021/acs.langmuir.5b03620] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The tribological properties of the dilute solution of an ABA triblock copolymer, poly(11-acrylamidoundecanoic acid)-block-poly(stearyl methacrylate)-block-poly(11-acrylamidoundecanoic acid (A5S992A5), in poly(α-olefin) (PAO) confined between mica surfaces were investigated using the surface forces apparatus (SFA). Friction force was measured as a function of applied load and sliding velocity, and the film thickness and contact geometry during sliding were analyzed using the fringes of equal chromatic order (FECO) in the SFA. The results were contrasted with those of confined PAO films; the effects of the addition of A5S992A5 on the tribological properties were discussed. The thickness of the A5S992A5/PAO system varied with time after surface preparation and with repetitive sliding motions. The thickness was within the range from 40 to 70 nm 1 day after preparation (the Day1 film), and was about 20 nm on the following day (the Day2 film). The thickness of the confined PAO film was thinner than 1.4 nm, indicating that the A5S992A5/PAO system formed thick adsorbed layers on mica surfaces. The friction coefficient was about 0.03 to 0.04 for the Day1 film and well below 0.01 for the Day2 film, which were 1 or 2 orders of magnitude lower than the values for the confined PAO films. The time dependent changes of the adsorbed layer thickness and friction properties should be caused by the relatively low solubility of A5S992A5 in PAO. The detailed analysis of the contact geometry and friction behaviors implies that the particularly low friction of the Day2 film originates from the following factors: (i) shrinkage of the A5S992A5 molecules (mainly the poly(stearyl methacrylate) blocks) that leads to a viscoelastic properties of the adsorbed layers; and (ii) the intervening PAO layer between the adsorbed polymer layers that constitutes a high-fluidity sliding interface. Our results suggest that the block copolymer having relatively low solubility in a lubricant base oil is effective at forming low-friction adsorbed layers in oil-based lubrication.
Collapse
Affiliation(s)
- Shinji Yamada
- New Industry Creation Hatchery Center, Tohoku University , 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Ami Fujihara
- Graduate School of Engineering, University of Hyogo , 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Shin-ichi Yusa
- Graduate School of Engineering, University of Hyogo , 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | | | | |
Collapse
|
28
|
van Bochove B, Rongen JJ, Hannink G, van Tienen TG, Buma P, Grijpma DW. Grafting a lubricious coating onto photo-crosslinked poly(trimethylene carbonate). POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bas van Bochove
- Department of Biomaterials Science and Technology; MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente; Enschede The Netherlands
| | - Jan J. Rongen
- Orthopaedic Research Lab; Radboud Institute for Molecular Life Sciences, Radboud University,; Nijmegen The Netherlands
| | - Gerjon Hannink
- Orthopaedic Research Lab; Radboud Institute for Molecular Life Sciences, Radboud University,; Nijmegen The Netherlands
| | - Tony G. van Tienen
- Orthopaedic Research Lab; Radboud Institute for Molecular Life Sciences, Radboud University,; Nijmegen The Netherlands
- Department of Orthopaedic Surgery; ViaSana Clinic; Mill The Netherlands
| | - Pieter Buma
- Orthopaedic Research Lab; Radboud Institute for Molecular Life Sciences, Radboud University,; Nijmegen The Netherlands
| | - Dirk W. Grijpma
- Department of Biomaterials Science and Technology; MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente; Enschede The Netherlands
- Department of Biomedical Engineering; W.J. Kolff Institute, UMC Groningen; Groningen The Netherlands
| |
Collapse
|
29
|
Shen W, Karumbaiah L, Liu X, Saxena T, Chen S, Patkar R, Bellamkonda RV, Allen MG. Extracellular matrix-based intracortical microelectrodes: Toward a microfabricated neural interface based on natural materials. MICROSYSTEMS & NANOENGINEERING 2015; 1:15010. [PMID: 30498620 PMCID: PMC6258041 DOI: 10.1038/micronano.2015.10] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/10/2015] [Accepted: 05/15/2015] [Indexed: 05/16/2023]
Abstract
Extracellular matrix (ECM)-based implantable neural electrodes (NEs) were achieved using a microfabrication strategy on natural-substrate-based organic materials. The ECM-based design minimized the introduction of non-natural products into the brain. Further, it rendered the implants sufficiently rigid for penetration into the target brain region and allowed them subsequently to soften to match the elastic modulus of brain tissue upon exposure to physiological conditions, thereby reducing inflammatory strain fields in the tissue. Preliminary studies suggested that ECM-NEs produce a reduced inflammatory response compared with inorganic rigid and flexible approaches. In vivo intracortical recordings from the rat motor cortex illustrate one mode of use for these ECM-NEs.
Collapse
Affiliation(s)
- Wen Shen
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Krishna P. Singh Center for Nanotechnology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lohitash Karumbaiah
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory School of Medicine, Atlanta, GA 30332, USA
| | - Xi Liu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tarun Saxena
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory School of Medicine, Atlanta, GA 30332, USA
| | - Shuodan Chen
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Radhika Patkar
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory School of Medicine, Atlanta, GA 30332, USA
| | - Ravi V. Bellamkonda
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory School of Medicine, Atlanta, GA 30332, USA
| | - Mark G. Allen
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Krishna P. Singh Center for Nanotechnology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
30
|
Ceseracciu L, Heredia-Guerrero JA, Dante S, Athanassiou A, Bayer IS. Robust and biodegradable elastomers based on corn starch and polydimethylsiloxane (PDMS). ACS APPLIED MATERIALS & INTERFACES 2015; 7:3742-3753. [PMID: 25622232 DOI: 10.1021/am508515z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Designing starch-based biopolymers and biodegradable composites with durable mechanical properties and good resistance to water is still a challenging task. Although thermoplastic (destructured) starch has emerged as an alternative to petroleum-based polymers, its poor dimensional stability under humid and dry conditions extensively hinders its use as the biopolymer of choice in many applications. Unmodified starch granules, on the other hand, suffer from incompatibility, poor dispersion, and phase separation issues when compounded into other thermoplastics above a concentration level of 5%. Herein, we present a facile biodegradable elastomer preparation method by incorporating large amounts of unmodified corn starch, exceeding 80% by volume, in acetoxy-polyorganosiloxane thermosets to produce mechanically robust, hydrophobic bioelastomers. The naturally adsorbed moisture on the surface of starch enables autocatalytic rapid hydrolysis of polyorganosiloxane to form Si-O-Si networks. Depending on the amount of starch granules, the mechanical properties of the bioelastomers can be easily tuned with high elastic recovery rates. Moreover, starch granules considerably lowered the surface friction coefficient of the polyorganosiloxane network. Stress relaxation measurements indicated that the bioelastomers have strain energy dissipation factors that are lower than those of conventional rubbers, rendering them as promising green substitutes for plastic mechanical energy dampeners. Corn starch granules also have excellent compatibility with addition-cured polysiloxane chemistry that is used extensively in microfabrication. Regardless of the starch concentration, all of the developed bioelastomers have hydrophobic surfaces with lower friction coefficients and much less water uptake capacity than those of thermoplastic starch. The bioelastomers are biocompatible and are estimated to biodegrade in Mediterranean seawater within three to six years.
Collapse
Affiliation(s)
- Luca Ceseracciu
- Smart Materials and ‡Nanophysics, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genova, Italy
| | | | | | | | | |
Collapse
|
31
|
Nikogeorgos N, Efler P, Kayitmazer AB, Lee S. "Bio-glues" to enhance slipperiness of mucins: improved lubricity and wear resistance of porcine gastric mucin (PGM) layers assisted by mucoadhesion with chitosan. SOFT MATTER 2015; 11:489-498. [PMID: 25413148 DOI: 10.1039/c4sm02021a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A synergetic lubricating effect between porcine gastric mucin (PGM) and chitosan based on their mucoadhesive interaction is reported at a hydrophobic interface comprised of self-mated polydimethylsiloxane (PDMS) surfaces. In acidic solution (pH 3.2) and low concentrations (0.1 mg mL(-1)), the interaction of PGM with chitosan led to surface recharge and size shrinkage of their aggregates. This resulted in higher mass adsorption on the PDMS surface with an increasing weight ratio of [chitosan]/[PGM + chitosan] up to 0.50. While neither PGM nor chitosan exhibited slippery characteristics, the coefficient of friction being close to 1, their mixture improved considerably the lubricating efficiency (the coefficient of friction is 0.011 at an optimum mixing ratio) and wear resistance of the adsorbed layers. These findings are explained by the role of chitosan as a physical crosslinker within the adsorbed PGM layers, resulting in higher cohesion and lower interlayer chain interpenetration and bridging.
Collapse
Affiliation(s)
- Nikolaos Nikogeorgos
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | | | | | | |
Collapse
|
32
|
Wang X, Partlow B, Liu J, Zheng Z, Su B, Wang Y, Kaplan DL. Injectable silk-polyethylene glycol hydrogels. Acta Biomater 2015; 12:51-61. [PMID: 25449912 DOI: 10.1016/j.actbio.2014.10.027] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/14/2014] [Accepted: 10/20/2014] [Indexed: 11/19/2022]
Abstract
Silk hydrogels for tissue repair are usually pre-formed via chemical or physical treatments from silk solutions. For many medical applications, it is desirable to utilize injectable silk hydrogels at high concentrations (>8%) to avoid surgical implantation and to achieve slow in vivo degradation of the gel. In the present study, injectable silk solutions that formed hydrogels in situ were generated by mixing silk with low-molecular-weight polyethylene glycol (PEG), especially PEG300 and 400 (molecular weight 300 and 400g mol(-1)). Gelation time was dependent on the concentration and molecular weight of PEG. When the concentration of PEG in the gel reached 40-45%, gelation time was less than 30min, as revealed by measurements of optical density and rheological studies, with kinetics of PEG400 faster than PEG300. Gelation was accompanied by structural changes in silk, leading to the conversion from random coil in solution to crystalline β-sheets in the gels, based on circular dichroism, attenuated total reflection Fourier transform infrared spectroscopy and X-ray diffraction. The modulus (127.5kPa) and yield strength (11.5kPa) determined were comparable to those of sonication-induced hydrogels at the same concentrations of silk. The time-dependent injectability of 15% PEG-silk hydrogel through 27G needles showed a gradual increase of compression forces from ∼10 to 50N within 60min. The growth of human mesenchymal stem cells on the PEG-silk hydrogels was hindered, likely due to the presence of PEG, which grew after a 5 day delay, presumably while the PEG solubilized away from the gel. When 5% PEG-silk hydrogel was subcutaneously injected in rats, significant degradation and tissue in-growth took place after 20 days, as revealed by ultrasound imaging and histological analysis. No significant inflammation around the gel was observed. The features of injectability, slow degradation and low initial cell attachment suggests that these PEG-silk hydrogels are of interest for many biomedical applications, such as anti-fouling and anti-adhesion.
Collapse
Affiliation(s)
- Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China; Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| | - Benjamin Partlow
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China; Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Jian Liu
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Bo Su
- Department of Spine Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yansong Wang
- Department of Spine Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - David L Kaplan
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China; Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
33
|
MacCallum N, Howell C, Kim P, Sun D, Friedlander R, Ranisau J, Ahanotu O, Lin JJ, Vena A, Hatton B, Wong TS, Aizenberg J. Liquid-Infused Silicone As a Biofouling-Free Medical Material. ACS Biomater Sci Eng 2014; 1:43-51. [DOI: 10.1021/ab5000578] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Noah MacCallum
- Wyss Institute for
Biologically Inspired Engineering, ‡School of Engineering
and Applied Sciences, and §Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States
| | - Caitlin Howell
- Wyss Institute for
Biologically Inspired Engineering, ‡School of Engineering
and Applied Sciences, and §Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States
| | - Philseok Kim
- Wyss Institute for
Biologically Inspired Engineering, ‡School of Engineering
and Applied Sciences, and §Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States
| | - Derek Sun
- Wyss Institute for
Biologically Inspired Engineering, ‡School of Engineering
and Applied Sciences, and §Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States
| | - Ronn Friedlander
- Wyss Institute for
Biologically Inspired Engineering, ‡School of Engineering
and Applied Sciences, and §Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States
| | - Jonathan Ranisau
- Wyss Institute for
Biologically Inspired Engineering, ‡School of Engineering
and Applied Sciences, and §Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States
| | - Onye Ahanotu
- Wyss Institute for
Biologically Inspired Engineering, ‡School of Engineering
and Applied Sciences, and §Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States
| | - Jennifer J. Lin
- Wyss Institute for
Biologically Inspired Engineering, ‡School of Engineering
and Applied Sciences, and §Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States
| | - Alex Vena
- Wyss Institute for
Biologically Inspired Engineering, ‡School of Engineering
and Applied Sciences, and §Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States
| | - Benjamin Hatton
- Wyss Institute for
Biologically Inspired Engineering, ‡School of Engineering
and Applied Sciences, and §Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States
| | - Tak-Sing Wong
- Wyss Institute for
Biologically Inspired Engineering, ‡School of Engineering
and Applied Sciences, and §Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States
| | - Joanna Aizenberg
- Wyss Institute for
Biologically Inspired Engineering, ‡School of Engineering
and Applied Sciences, and §Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
34
|
Gajowy J, Bolikal D, Kohn J, Fray ME. Synthesis and characterization of Fatty acid/amino Acid self-assemblies. J Funct Biomater 2014; 5:211-31. [PMID: 25347356 PMCID: PMC4285403 DOI: 10.3390/jfb5040211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 09/19/2014] [Accepted: 09/26/2014] [Indexed: 11/16/2022] Open
Abstract
In this paper, we discuss the synthesis and self-assembling behavior of new copolymers derived from fatty acid/amino acid components, namely dimers of linoleic acid (DLA) and tyrosine derived diphenols containing alkyl ester pendent chains, designated as "R" (DTR). Specific pendent chains were ethyl (E) and hexyl (H). These poly(aliphatic/aromatic-ester-amide)s were further reacted with poly(ethylene glycol) (PEG) and poly(ethylene glycol methyl ether) of different molecular masses, thus resulting in ABA type (hydrophilic-hydrophobic-hydrophilic) triblock copolymers. We used Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies to evaluate the chemical structure of the final materials. The molecular masses were estimated by gel permeation chromatography (GPC) measurements. The self-organization of these new polymeric systems into micellar/nanospheric structures in aqueous environment was evaluated using ultraviolet/visible (UV-VIS) spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM). The polymers were found to spontaneously self-assemble into nanoparticles with sizes in the range 196-239 nm and critical micelle concentration (CMC) of 0.125-0.250 mg/mL. The results are quite promising and these materials are capable of self-organizing into well-defined micelles/nanospheres encapsulating bioactive molecules, e.g., vitamins or antibacterial peptides for antibacterial coatings on medical devices.
Collapse
Affiliation(s)
- Joanna Gajowy
- Department of Biomaterials and Microbiological Technologies, The West Pomeranian University of Technology, Szczecin, Al. Piastow 45, 70-311 Szczecin, Poland.
| | - Durgadas Bolikal
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA.
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA.
| | - Miroslawa El Fray
- Department of Biomaterials and Microbiological Technologies, The West Pomeranian University of Technology, Szczecin, Al. Piastow 45, 70-311 Szczecin, Poland.
| |
Collapse
|
35
|
|
36
|
Surface forces and friction between non-polar surfaces coated by temperature-responsive methylcellulose. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2013.10.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Røn T, Javakhishvili I, Jankova K, Hvilsted S, Lee S. Adsorption and aqueous lubricating properties of charged and neutral amphiphilic diblock copolymers at a compliant, hydrophobic interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:7782-7792. [PMID: 23725290 DOI: 10.1021/la400827h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We have investigated the adsorption and lubricating properties of neutral and charged amphiphilic diblock copolymers at a hydrophobic polydimethylsiloxane (PDMS) interface in an aqueous environment. The diblock copolymers consist of a hydrophilic block of either neutral poly(ethylene glycol) (PEG) or negatively charged poly(acrylic acid) (PAA) and of a hydrophobic block of polystyrene (PS) or poly(2-methoxyethyl acrylate) (PMEA), thus generating PEG-b-X or PAA-b-X, where X block is either PS or PMEA. The molecular weight ratios were roughly 1:1 with each block ca. 5 kDa. Comparing the neutral PEG and charged PAA buoyant blocks with all other conditions identical, the former showed superior adsorption onto nonpolar, hydrophobic PDMS surfaces from a neutral aqueous solution. PEG-based copolymers showed substantial adsorption for both PS and PMEA as the anchoring block, whereas PAA-based copolymers showed effective adsorption only when PMEA was employed as the anchoring block. For PAA-b-PS, the poor adsorption properties are chiefly attributed to micellization due to the high interfacial tension between the PS core and water. The poor lubricating properties of PAA-b-PS diblock copolymer for a PDMS-PDMS sliding contact was well correlated with the poor adsorption properties. PAA-b-PMEA copolymers, despite their sizable amount of adsorbed mass, showed insignificant lubricating effects. When the charges of the PAA-b-PMEA diblock copolymers were screened by either adding NaCl to the aqueous solution or by lowering the pH, both the adsorption and lubricity improved. We ascribe the poor adsorption and inferior aqueous lubricating properties of the PAA-based diblock copolymers compared to their PEG-based counterparts mainly to the electrostatic repulsion between charged PAA blocks, hindering the facile formation of the lubricating layer under cyclic tribological stress at the sliding PDMS-PDMS interface.
Collapse
Affiliation(s)
- Troels Røn
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | | | | | | | | |
Collapse
|
38
|
Muthiah M, Park IK, Cho CS. Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting. Biotechnol Adv 2013; 31:1224-36. [PMID: 23528431 DOI: 10.1016/j.biotechadv.2013.03.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/19/2013] [Accepted: 03/11/2013] [Indexed: 11/25/2022]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are excellent MR contrast agents when coated with biocompatible polymers such as hydrophilic synthetic polymers, proteins, polysaccharides, and lipids, which improve their stability and biocompatibility and reduce their aggregation. Various biocompatible materials, coated or conjugated with targeting moieties such as galactose, mannose, folic acid, antibodies and RGD, have been applied to SPION surfaces to provide tissue specificity to hepatocytes, macrophages, and tumor regions in order to reduce non-specific uptake and improve biocompatibility. This review discusses the recent progress in the development of biocompatible and hydrophilic polymers for improving stability of SPIONs and describes the carbohydrates based biocompatible materials that are providing SPIONs with cell/tissue specificity as ligands.
Collapse
Affiliation(s)
- Muthunarayanan Muthiah
- Department of Biomedical Sciences and Center for Biomedical Human Resources (BK-21 project), Chonnam National University Medical School, Gwangju 501-757, South Korea; Clinical Vaccine R&D Center, Chonnam National University Hwasun Hospital, Jeonnam 519-763, South Korea
| | | | | |
Collapse
|
39
|
Ueda E, Levkin PA. Emerging applications of superhydrophilic-superhydrophobic micropatterns. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:1234-47. [PMID: 23345109 DOI: 10.1002/adma.201204120] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/05/2012] [Indexed: 05/24/2023]
Abstract
Water on superhydrophilic surfaces spreads or is absorbed very quickly, and exhibits water contact angles close to zero. We encounter superhydrophilic materials in our daily life (e.g., paper, sponges, textiles) and they are also ubiquitous in nature (e.g., plant and tree leaves, Nepenthes pitcher plant). On the other hand, water on completely non-wettable, superhydrophobic surfaces forms spherical droplets and rolls off the surface easily. One of the most well-known examples of a superhydrophobic surface is the lotus leaf. Creating novel superhydrophobic surfaces has led to exciting new properties such as complete water repellency, self-cleaning, separation of oil and water, and antibiofouling. However, combining these two extreme states of superhydrophilicity and superhydrophobicity on the same surface in precise two-dimensional micropatterns opens exciting new functionalities and possibilities in a wide variety of applications from cell, droplet, and hydrogel microarrays for screening to surface tension confined microchannels for separation and diagnostic devices. In this Progress Report, we briefly describe the methods for fabricating superhydrophilic-superhydrophobic patterns and highlight some of the newer and emerging applications of these patterned substrates that are currently being explored. We also give an outlook on current and future applications that would benefit from using such superhydrophilic-superhydrophobic micropatterns.
Collapse
Affiliation(s)
- Erica Ueda
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
| | | |
Collapse
|
40
|
Javakhishvili I, Jankova K, Hvilsted S. Neutral, anionic, cationic, and zwitterionic diblock copolymers featuring poly(2-methoxyethyl acrylate) “hydrophobic” segments. Polym Chem 2013. [DOI: 10.1039/c2py20694c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Kim K, Ryu JH, Lee DY, Lee H. Bio-inspired catechol conjugation converts water-insoluble chitosan into a highly water-soluble, adhesive chitosan derivative for hydrogels and LbL assembly. Biomater Sci 2013; 1:783-790. [DOI: 10.1039/c3bm00004d] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Matos-Pérez CR, Wilker JJ. Ambivalent Adhesives: Combining Biomimetic Cross-Linking With Antiadhesive Oligo(ethylene glycol). Macromolecules 2012; 45:6634-6639. [PMID: 23293396 PMCID: PMC3534954 DOI: 10.1021/ma300962d] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oligo(ethylene glycol) (OEG) and poly(ethylene glycol) (PEG) exhibit several desirable properties including biocompatibility and resistance to fouling by protein adsorption. Still needed are surgical glues and orthopedic cements, among several other materials, that display similar traits. However the very lack of interactions with other molecules that prevents toxicity and fouling also makes adhesion elusive. In work described here the cross-linking chemistry of marine mussel adhesive is combined with OEG to make a family of terpolymers. The effect of polymer composition upon bulk adhesion was examined. High strength bonding was found with a subset of the polymers containing appreciable OEG content. These structure-property insights may help the design of new materials for which the properties of OEG and high strength adhesion are both being sought.
Collapse
Affiliation(s)
| | - Jonathan J. Wilker
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907
- School of Materials Engineering, Purdue University, Neil Armstrong Hall of Engineering, 701 West Stadium Avenue, West Lafayette, IN 47907
| |
Collapse
|
43
|
Matos-Pérez CR, White JD, Wilker JJ. Polymer composition and substrate influences on the adhesive bonding of a biomimetic, cross-linking polymer. J Am Chem Soc 2012; 134:9498-505. [PMID: 22582754 DOI: 10.1021/ja303369p] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hierarchical biological materials such as bone, sea shells, and marine bioadhesives are providing inspiration for the assembly of synthetic molecules into complex structures. The adhesive system of marine mussels has been the focus of much attention in recent years. Several catechol-containing polymers are being developed to mimic the cross-linking of proteins containing 3,4-dihydroxyphenylalanine (DOPA) used by shellfish for sticking to rocks. Many of these biomimetic polymer systems have been shown to form surface coatings or hydrogels; however, bulk adhesion is demonstrated less often. Developing adhesives requires addressing design issues including finding a good balance between cohesive and adhesive bonding interactions. Despite the growing number of mussel-mimicking polymers, there has been little effort to generate structure-property relations and gain insights on what chemical traits give rise to the best glues. In this report, we examine the simplest of these biomimetic polymers, poly[(3,4-dihydroxystyrene)-co-styrene]. Pendant catechol groups (i.e., 3,4-dihydroxystyrene) are distributed throughout a polystyrene backbone. Several polymer derivatives were prepared, each with a different 3,4-dihyroxystyrene content. Bulk adhesion testing showed where the optimal middle ground of cohesive and adhesive bonding resides. Adhesive performance was benchmarked against commercial glues as well as the genuine material produced by live mussels. In the best case, bonding was similar to that obtained with cyanoacrylate "Krazy Glue". Performance was also examined using low- (e.g., plastics) and high-energy (e.g., metals, wood) surfaces. The adhesive bonding of poly[(3,4-dihydroxystyrene)-co-styrene] may be the strongest of reported mussel protein mimics. These insights should help us to design future biomimetic systems, thereby bringing us closer to development of bone cements, dental composites, and surgical glues.
Collapse
Affiliation(s)
- Cristina R Matos-Pérez
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | | | | |
Collapse
|
44
|
Cai L, Lu J, Sheen V, Wang S. Lubricated biodegradable polymer networks for regulating nerve cell behavior and fabricating nerve conduits with a compositional gradient. Biomacromolecules 2012; 13:358-68. [PMID: 22206477 PMCID: PMC3544368 DOI: 10.1021/bm201372u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We present a method of tuning surface chemistry and nerve cell behavior by photo-cross-linking methoxy poly(ethylene glycol) monoacrylate (mPEGA) with hydrophobic, semicrystalline poly(ε-caprolactone) diacrylate (PCLDA) at various weight compositions of mPEGA (ø(m)) from 2 to 30%. Improved surface wettability is achieved with corresponding decreases in friction, water contact angle, and capability of adsorbing proteins from cell culture media because of repulsive PEG chains tethered in the network. The responses of rat Schwann cell precursor line (SpL201), rat pheochromocytoma (PC12), and E14 mouse neural progenitor cells (NPCs) to the modified surfaces are evaluated. Nonmonotonic or parabolic dependence of cell attachment, spreading, proliferation, and differentiation on ø(m) is identified for these cell types with maximal values at ø(m) of 5-7%. In addition, NPCs demonstrate enhanced neuronal differentiated lineages on the mPEGA/PCLDA network at ø(m) of 5% with intermediate wettability and surface energy. This approach lays the foundation for fabricating heterogeneous nerve conduits with a compositional gradient along the wall thickness, which are able to promote nerve cell functions within the conduit while inhibiting cell attachment on the outer wall to prevent potential fibrous tissue formation following implantation.
Collapse
Affiliation(s)
- Lei Cai
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996
| | - Jie Lu
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Volney Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Shanfeng Wang
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| |
Collapse
|
45
|
Ding Y, Jiao ZS, Guo DJ, Xiao SJ, Tan W, Dai ZD. Tunable cohesion and water lubrication of PEG-g-PMHS-c-PMVS copolymer membranes. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2011.12.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
46
|
Thornton PD, Brannigan R, Podporska J, Quilty B, Heise A. The generation of hydrophilic polypeptide-siloxane conjugates via n-carboxyanhydride polymerisation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:37-45. [PMID: 22127402 DOI: 10.1007/s10856-011-4503-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/11/2011] [Indexed: 05/31/2023]
Abstract
A novel methodology to create covalently linked polypeptide-siloxane hybrid materials by controlled n-carboxyanhydride ring opening polymerisation is disclosed. Poly-L-glutamic acid and poly-L-lysine conjugated products were formed that possessed excellent surface wettability. In addition, the poly-L-lysine-siloxane hybrids formed demonstrated bactericidal attributes against gram-positive Staphylococcus aureus and gram-negative Escherichia coli. It is anticipated that these materials may be of significance for the generation of hydrophilic siloxane-containing polymers that are commonly employed in contemporary medical devices.
Collapse
Affiliation(s)
- Paul D Thornton
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
| | | | | | | | | |
Collapse
|
47
|
Hakala TJ, Laaksonen P, Saikko V, Ahlroos T, Helle A, Mahlberg R, Hähl H, Jacobs K, Kuosmanen P, Linder MB, Holmberg K. Adhesion and tribological properties of hydrophobin proteins in aqueous lubrication on stainless steel surfaces. RSC Adv 2012. [DOI: 10.1039/c2ra21018e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
48
|
He Y, Shao Q, Chen S, Jiang S. Chaotrope vs. kosmotrope: Which one has lower friction? J Chem Phys 2011; 135:154702. [DOI: 10.1063/1.3646949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
Microwave irradiated click reactions on silicon surfaces via derivertization of covalently grafted poly(PEGMA) brushes. J Colloid Interface Sci 2011; 358:116-22. [DOI: 10.1016/j.jcis.2011.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/02/2011] [Accepted: 03/04/2011] [Indexed: 11/22/2022]
|
50
|
Chawla K, Ham H, Nguyen T, Messersmith P. Molecular resurfacing of cartilage with proteoglycan 4. Acta Biomater 2010; 6:3388-94. [PMID: 20338268 DOI: 10.1016/j.actbio.2010.03.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/11/2010] [Accepted: 03/17/2010] [Indexed: 10/19/2022]
Abstract
Early loss of proteoglycan 4 (PRG4), a lubricating glycoprotein implicated in boundary lubrication, from the cartilage surface has been associated with degeneration of cartilage and early onset of osteoarthritis. Viscosupplementation with hyaluronic acid and other macromolecules has been proposed as a treatment of osteoarthritis. However, the efficacy of viscosupplementation is variable and may be influenced by the short residence time of lubricant in the knee joint after injection. Recent studies have demonstrated the use of aldehyde (CHO) modified extracellular matrix proteins for targeted adherence to a biological tissue surface. It is hypothesized that CHO could be exploited to enhance the binding of lubricating proteoglycans to the surface of PRG4-depleted cartilage. The objective of this study was to determine the feasibility of molecular resurfacing of cartilage with CHO-modified PRG4. PRG4 was chemically functionalized with aldehyde (PRG4-CHO) and aldehyde plus Oregon Green (OG) fluorophore (PRG4-OG-CHO) to allow for differentiation of endogenous and exogenous PRG4. Cartilage disks depleted of native PRG4 were then treated with solutions of PRG4, PRG4-CHO, or PRG4-OG-CHO and then assayed for the presence of PRG4 by immunohistochemistry, ELISA, and fluorescence imaging. Repletion of cartilage surfaces was significantly enhanced with the inclusion of CHO compared with repletion with unmodified PRG4. These findings suggest a generalized approach which may be used for molecular resurfacing of tissue surfaces with PRG4 and other lubricating biomolecules, perhaps leading in the future to a convenient method for overcoming loss of lubrication during the early stages of osteoarthritis.
Collapse
|