1
|
Sumam P, Kumar P R A, Parameswaran R. Aligned Fibroporous Matrix Generated from a Silver Ion and Graphene Oxide-Incorporated Ethylene Vinyl Alcohol Copolymer as a Potential Biomaterial for Peripheral Nerve Repair. ACS APPLIED BIO MATERIALS 2024; 7:6617-6630. [PMID: 39295150 DOI: 10.1021/acsabm.4c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Developing an ideal nerve conduit for proper nerve regeneration still faces several challenges. The attempts to fabricate aligned substrates for neuronal growth have enhanced the hope of successful nerve regeneration. In this wok, we have attempted to generate an electrospun matrix with aligned fibers from a silver and graphene oxide-incorporated ethylene vinyl alcohol copolymer (EVAL). The presence of silver was analyzed using UV-visible spectra, XPS spectra, and ICP. Raman spectra and FTIR spectra confirmed the presence of GO. The complexation of Ag+ with - OH of EVAL enabled the generation of aligned fibers. The fiber diameter (>1 μm) provided sufficient space for forming focal adhesion by the neurites and filopodia of N2a and C6 cells, respectively. The fiber diameter enabled the neurites and filopodia of the cells to align on the fibers. The incorporation of GO has contributed to the cell-material interactions. The morphological and mechanical properties of fibers obtained in the study ensure that the EVAL-Ag-GO-0.01 matrix is a potential substrate for developing a nerve guidance conduit/nerve wrap (NGC/W).
Collapse
Affiliation(s)
- Prima Sumam
- Division of Polymeric Medical Devices, Department of Medical Devices Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, 695 012 Kerala, India
| | - Anil Kumar P R
- Division of Tissue Culture, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, 695 012 Kerala, India
| | - Ramesh Parameswaran
- Division of Polymeric Medical Devices, Department of Medical Devices Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, 695 012 Kerala, India
| |
Collapse
|
2
|
Dawson C, Xu F, Hoare T. Reactive Cell Electrospinning of Anisotropically Aligned and Bilayer Hydrogel Nanofiber Networks. ACS Biomater Sci Eng 2023; 9:6490-6503. [PMID: 37870742 DOI: 10.1021/acsbiomaterials.3c01013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Structured hydrogels that incorporate aligned nanofibrous morphologies have been demonstrated to better replicate the structures of native extracellular matrices and thus their function in guiding cell responses. However, current techniques for nanofiber fabrication are limited in their ability to create hydrogel scaffolds with tunable directional alignments and cell types/densities, as required to reproduce more complex native tissue structures. Herein, we leverage a reactive cell electrospinning technique based on the dynamic covalent cross-linking of poly(ethylene glycol methacrylate (POEGMA) precursor polymers to fabricate aligned hydrogel nanofibers that can be directly loaded with cells during the electrospinning process. The scaffolds were found to support high C2C12 myoblast viabilities greater than 85% over 14 days, with changes in the electrospinning collector allowing for the single-step fabrication of nonaligned, aligned, or cross-aligned nanofibrous networks. Cell aspect ratios on aligned scaffolds were found on average to be 27% higher compared to those on nonaligned scaffolds; furthermore, cell-loaded bilayer scaffolds with perpendicular fiber alignments showed evidence of enabling localized directional cell responses to individual layer fiber directions while avoiding delamination between the layers. This fabrication approach thus offers potential for better mimicking the structure and thus function of aligned and multilayered tissues (e.g., smooth muscle, neural, or tendon tissues).
Collapse
Affiliation(s)
- Chloe Dawson
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada L8S 4L7
| | - Fei Xu
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada L8S 4L7
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada L8S 4L7
| |
Collapse
|
3
|
New PCL/PEC Blends: In Vitro Cell Response of Preosteoblasts and Human Mesenchymal Stem Cells. BIOLOGY 2022; 11:biology11081201. [PMID: 36009827 PMCID: PMC9404747 DOI: 10.3390/biology11081201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022]
Abstract
In this study, new blends of PCL/PEC have been prepared in an easy manner by casting with the objective of obtaining new biomaterials to apply to tissue engineering and bone regeneration. The PCL/PEC blends obtained, together with neat polymer blends, were characterized by infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). This full characterization is the key to disentangle the miscibility, which means good compatibility, of the polymer blends used in this work. The addition of increasing amounts of PEC, has shown in the new biomaterials obtained, a remarkable improvement in relation with the mechanical properties (manageable materials) and above all, in terms of an increase in their hydrophilic character with respect to the PCL neat polymer. The improvement of all these properties is reflected in their biological properties. With these thoughts in mind, the blends obtained were tested through the assessment of several biological parameters such as cell viability, proliferation, and differentiation of both the MC3T3-E1 osteoblastic cell line and hMSCs to evaluate their cell response to different polymer membranes aimed at bone tissue regeneration. “In vitro” biocompatibility methods have been chosen rather than in vivo studies due to their lower cost, faster procedure time, and minimum ethical concerns, and because it was the first time that the biological effects of these blends were studied. The results show that the PCL/PEC blends obtained, with tunable properties in terms of hydrophilic character and hydrolytic degradation, may be regarded as good candidates to perform “in vivo” tests and check their real-life applicability for bone regeneration. The polymer acronym (the weight percentage in the sub index) is PCLx/PECy as noted in table one with the summary of compositions.
Collapse
|
4
|
Munawar MA, Schubert DW. Thermal-Induced Percolation Phenomena and Elasticity of Highly Oriented Electrospun Conductive Nanofibrous Biocomposites for Tissue Engineering. Int J Mol Sci 2022; 23:ijms23158451. [PMID: 35955588 PMCID: PMC9369359 DOI: 10.3390/ijms23158451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Highly oriented electrospun conductive nanofibrous biocomposites (CNBs) of polylactic acid (PLA) and polyaniline (PANi) are fabricated using electrospinning. At the percolation threshold (φc), the growth of continuous paths between PANi particles leads to a steep increase in the electrical conductivity of fibers, and the McLachlan equation is fitted to identify φc. Annealing generates additional conductive channels, which lead to higher conductivity for dynamic percolation. For the first time, dynamic percolation is investigated for revealing time-temperature superposition in oriented conductive nanofibrous biocomposites. The crystallinity (χc) displays a linear dependence on annealing temperature within the confined fiber of CNBs. The increase in crystallinity due to annealing also increases the Young’s modulus E of CNBs. The present study outlines a reliable approach to determining the conductivity and elasticity of nanofibers that are highly desirable for a wide range of biological tissue applications.
Collapse
Affiliation(s)
- Muhammad A. Munawar
- Institute of Polymer Materials, Department of Material Science, Faculty of Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
- KeyLab Advanced Fiber Technology, Bavarian Polymer Institute, Dr.-Mack-Strasse 77, 90762 Fürth, Germany
- Correspondence: (M.A.M.); (D.W.S.)
| | - Dirk W. Schubert
- Institute of Polymer Materials, Department of Material Science, Faculty of Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
- KeyLab Advanced Fiber Technology, Bavarian Polymer Institute, Dr.-Mack-Strasse 77, 90762 Fürth, Germany
- Correspondence: (M.A.M.); (D.W.S.)
| |
Collapse
|
5
|
Tien ND, Geng T, Heyward CA, Reseland JE, Lyngstadaas SP, Blaker JJ, Haugen HJ. Solution blow spinning of highly deacetylated chitosan nanofiber scaffolds for dermal wound healing. BIOMATERIALS ADVANCES 2022; 137:212871. [PMID: 35929246 DOI: 10.1016/j.bioadv.2022.212871] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Biocompatible fibrous scaffolds based on highly deacetylated chitosan were fabricated using high-throughput solution blow spinning. Scanning electron microscopy analysis revealed that the chitosan nanofiber scaffolds had ultrafine and continuous fibers (300-1200 nm) with highly interconnected porous structures (30-75% porosity), mimicking some aspects of the native extracellular matrix in skin tissue. Post-treatment of as-spun nanofibers with aqueous potassium carbonate solution resulted in a fibrous scaffold with a high chitosan content that retained its fibrous structural integrity for cell culture. Analysis of the mechanical properties of the chitosan nanofiber scaffolds in both dry and wet conditions showed that their strength and durability were sufficient for wound dressing applications. Significantly, the wet scaffold underwent remarkable elastic deformation during stretch such that the elongation at break dramatically increased to up to 44% of its original length, showing wavy fiber morphology near the break site. The culture of normal human dermal fibroblast cells onto scaffolds for 1-14 days demonstrated that the scaffolds were highly compatible and a suitable platform for cell adhesion, viability, and proliferation. Secretion profiles of wound healing-related proteins to the cell culture medium demonstrated that chitosan fibers were a promising scaffold for wound healing applications. Overall, the dense fibrous network with high porosity of the chitosan nanofiber scaffold and their mechanical properties indicate that they could be used to design and fabricate new materials that mimic the epidermis layer of natural skin.
Collapse
Affiliation(s)
- Nguyen D Tien
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| | - Tianxiang Geng
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| | - Catherine A Heyward
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| | - Janne E Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| | - S Petter Lyngstadaas
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| | - Jonny J Blaker
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway; Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, United Kingdom.
| | - Håvard J Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway.
| |
Collapse
|
6
|
Atila D, Hasirci V, Tezcaner A. Coaxial electrospinning of composite mats comprised of core/shell poly(methyl methacrylate)/silk fibroin fibers for tissue engineering applications. J Mech Behav Biomed Mater 2022; 128:105105. [DOI: 10.1016/j.jmbbm.2022.105105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 01/01/2023]
|
7
|
The diameter factor of aligned membranes facilitates wound healing by promoting epithelialization in an immune way. Bioact Mater 2021; 11:206-217. [PMID: 34938924 PMCID: PMC8665262 DOI: 10.1016/j.bioactmat.2021.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/01/2021] [Accepted: 09/16/2021] [Indexed: 02/05/2023] Open
Abstract
Topographical properties, such as pattern and diameter, of biomaterials play important roles in influencing cell activities and manipulating the related immune response during wound healing. We prepared aligned electrospinning membranes with different fiber diameters, including 319 ± 100 nm (A300), 588 ± 132 nm (A600), and 1048 ± 130 nm (A1000), by adjusting the distance from the tip to the collector, the injection rate, and the concentration of the solution. The A300 membranes significantly improved cell proliferation and spreading and facilitated wound healing (epithelization and vascularization) with the regeneration of immature hair follicles compared to the other membranes. Transcriptomics revealed the underlying molecular mechanism that A300 could promote immune-related processes towards a pro-healing direction, significantly promoting keratinocyte migration and skin wound healing. All the results indicated that wound healing requires the active participation of the immune process, and that A300 was a potential candidate for guided skin regeneration applications. It is still unclear which diameter interval of aligned membranes is most suitable for tissue regeneration. Outstanding performances in the wound healing process was presented by the A300 membranes. The transcriptome revealed that A300 could promote immune related processes towards a pro-healing direction. A300 promoted keratinocytes migration and final wound healing partially through MMP12.
Collapse
|
8
|
Woodley JP, Lambert DW, Asencio IO. Understanding Fibroblast Behavior in 3D Biomaterials. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:569-578. [PMID: 34102862 DOI: 10.1089/ten.teb.2021.0010] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Traditional monolayer culture fails to fully recapitulate the in vivo environment of connective tissue cells such as the fibroblast. When cultured on stiff two-dimensional (2D) plastic, fibroblasts become highly proliferative forming broad lamellipodia and stress fibers. Conversely, in different three-dimensional (3D) culture systems, fibroblasts have displayed a diverse array of features; from an "activated" phenotype like that observed in 2D cultures and by myofibroblasts, to a quiescent state that likely better represents in vivo fibroblasts at rest. Today, a plethora of microfabrication techniques have made 3D culture commonplace, for both tissue engineering purposes and in the study of basic biological interactions. However, establishing the in vivo mimetic credentials of different biomimetic materials is not always straightforward, particularly in the context of fibroblast responses. Fibroblast behavior is governed by the complex interplay of biological features such as integrin binding sites, material mechanical properties that influence cellular mechanotransduction, and microarchitectural features like pore and fiber size, as well as chemical cues. Furthermore, fibroblasts are a heterogeneous group of cells with specific phenotypic traits dependent on their tissue of origin. These features have made understanding the influence of biomaterials on fibroblast behavior a challenging task. In this study, we present a review of the strategies used to investigate fibroblast behavior with a focus on the material properties that influence fibroblast activation, a process that becomes pathological in fibrotic diseases and certain cancers.
Collapse
Affiliation(s)
- Joe P Woodley
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Daniel W Lambert
- Integrated Bioscience Group, The School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Ilida Ortega Asencio
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
9
|
Ramos-Rodriguez DH, MacNeil S, Claeyssens F, Ortega Asencio I. Fabrication of Topographically Controlled Electrospun Scaffolds to Mimic the Stem Cell Microenvironment in the Dermal-Epidermal Junction. ACS Biomater Sci Eng 2021; 7:2803-2813. [PMID: 33905240 DOI: 10.1021/acsbiomaterials.0c01775] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of microfabrication techniques for the development of innovative constructs for tissue regeneration is a growing area of research. This area comprises both manufacturing and biological approaches for the development of smart materials aiming to control and direct cell behavior to enhance tissue healing. Many groups have focused their efforts on introducing complexity within these innovative constructs via the inclusion of nano- and microtopographical cues mimicking physical and biological aspects of the native stem cell niche. Specifically, in the area of skin tissue engineering, seminal work has reported replicating the microenvironments located in the dermal-epithelial junction, which are known as rete ridges. The rete ridges are key for both stem cell control and the physiological performance of the skin. In this work, we have introduced complexity within electrospun membranes to mimic the morphology of the rete ridges in the skin. We designed and tested three different patterns, characterized them, and explored their performance in vitro, using 3D skin models. One of the studied patterns (pattern B) was shown to aid in the development of an in vitro rite-ridgelike skin model that resulted in the expression of relevant epithelial markers such as collagen IV and integrin β1. In summary, we have developed a new skin model including synthetic rete-ridgelike structures that replicate both morphology and function of the native dermal-epidermal junction and that offer new insights for the development of smart skin tissue engineering constructs.
Collapse
Affiliation(s)
- David H Ramos-Rodriguez
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, U.K
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, U.K
| | - Sheila MacNeil
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, U.K
| | - Frederik Claeyssens
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, U.K
| | - Ilida Ortega Asencio
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, U.K
| |
Collapse
|
10
|
Prieto EI, Mojares EBA, Cortez JJM, Vasquez MR. Electrospun nanofiber scaffolds for the propagation and analysis of breast cancer stem cells in vitro. Biomed Mater 2021; 16:035004. [PMID: 33634797 DOI: 10.1088/1748-605x/abc3dd] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite advances in cancer treatment, breast cancer remains the second foremost cause of cancer mortality among women, with a high rate of relapse after initial treatment success. A subpopulation of highly malignant cancer cells, known as cancer stem cells (CSCs), is suspected to be linked to metastasis and relapse. Targeting of CSCs may therefore provide a means of addressing cancer-related mortality. However, due to their low population in vivo and a lack of proper culture platform for their propagation, much of the CSC biology remains unknown. Since maintenance of CSCs is heavily influenced by the tumor microenvironment, this study developed a 3D culture platform that mimics the metastatic tumor extracellular matrix (ECM) to effectively increase CSC population in vitro and allow CSC analysis. Through electrospinning, nanofibers that were aligned, porous, and collagen-coated were fabricated from polycaprolactone to recreate the metastatic tumor ECM assemblage. Breast cancer cells seeded onto the nanofiber scaffolds exhibited gross morphology and cytoskeletal phenotype similar to invasive cancer cells. Moreover, the population of breast cancer stem cells increased in nanofiber scaffolds. Analysis of breast cancer cells grown on the nanofiber scaffolds demonstrated an upregulation of mesenchymal markers and an increase in cell invasiveness suggesting the cells have undergone epithelial-mesenchymal transition. These results indicate that the fabricated nanofiber scaffolds effectively mimicked the tumor microenvironment that maintains the cancer stem cell population, offering a platform to enrich and analyze CSCs in vitro.
Collapse
Affiliation(s)
- E I Prieto
- National Institute of Molecular Biology and Biotechnology, College of Science, National Science Complex, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - E B A Mojares
- National Institute of Molecular Biology and Biotechnology, College of Science, National Science Complex, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - J J M Cortez
- National Institute of Molecular Biology and Biotechnology, College of Science, National Science Complex, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - M R Vasquez
- Department of Mining, Metallurgical, and Materials Engineering, College of Engineering, University of the Philippines, Diliman, Quezon City 1101, Philippines
| |
Collapse
|
11
|
Baldwin MJ, Mimpen JY, Cribbs AP, Stace E, Philpott M, Dakin SG, Carr AJ, Snelling SJB. Electrospun Scaffold Micro-Architecture Induces an Activated Transcriptional Phenotype within Tendon Fibroblasts. Front Bioeng Biotechnol 2021; 9:795748. [PMID: 35096791 PMCID: PMC8790033 DOI: 10.3389/fbioe.2021.795748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Biomaterial augmentation of surgically repaired rotator cuff tendon tears aims to improve the high failure rates (∼40%) of traditional repairs. Biomaterials that can alter cellular phenotypes through the provision of microscale topographical cues are now under development. We aimed to systematically evaluate the effect of topographic architecture on the cellular phenotype of fibroblasts from healthy and diseased tendons. Electrospun polydioxanone scaffolds with fiber diameters ranging from 300 to 4000 nm, in either a highly aligned or random configuration, were produced. Healthy tendon fibroblasts cultured for 7 days on scaffolds with highly aligned fibers demonstrated a distinctive elongated morphology, whilst those cultured on randomly configured fibers demonstrated a flattened and spread morphology. The effect of scaffold micro-architecture on the transcriptome of both healthy and diseased tendon fibroblasts was assessed with bulk RNA-seq. Both healthy (n = 3) and diseased tendon cells (n = 3) demonstrated a similar transcriptional response to architectural variants. Gene set enrichment analysis revealed that large diameter (≥2000 nm) aligned scaffolds induced an upregulation of genes involved in cellular replication and a downregulation of genes defining inflammatory responses and cell adhesion. Similarly, PDPN and CD248, markers of inflammatory or "activated" fibroblasts, were downregulated during culture of both healthy and diseased fibroblasts on aligned scaffolds with large (≥2000 nm) fiber diameters. In conclusion scaffold architectures resembling that of disordered type III collagen, typically present during the earlier phases of wound healing, resulted in tendon fibroblast activation. Conversely, scaffolds mimicking aligned diameter collagen I fibrils, present during tissue remodelling, did not activate tendon derived fibroblasts. This has implications for the design of scaffolds used during rotator cuff repair augmentation.
Collapse
|
12
|
Tang H, Yi B, Wang X, Shen Y, Zhang Y. Understanding the cellular responses based on low-density electrospun fiber networks. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111470. [PMID: 33321594 DOI: 10.1016/j.msec.2020.111470] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 01/12/2023]
Abstract
Fibers produced from electrospinning are well-known to be extremely fine with diameters ranging from tens of nanometers to a few microns. Such ultrafine fibers not only allow for engineering scaffolds resembling the ultrastructure of the native extracellular matrix, but also offer possibility to explore the remodeling behavior of cells in vitro, due to their mechanically 'adequate' softness endowed by their ultrafine fineness. However, the remodeling effect of cells on the biomimicking fibrous substrates remains to be understood, because the crisscrossing and entangling among nanofibers in those tightly packed fibrous mats ultimately lead to merely a topological phenomenon, similar to that of the nanofiber-like topography embossed on the surface of a solid matter. In this study, the effect of nanofiber density on cellular response behavior was investigated by reducing the density of electrospun fiber networks. Using polycaprolactone (PCL) as a model polymer, randomly oriented fiber networks with various densities, namely, 37.7 ± 16.3 μg/cm2 (D1), 103.8 ± 16.3 μg/cm2 (D2), 198.2 ± 40.0 μg/cm2 (D3), and 471.8 ± 32.7 μg/cm2 (D4), were prepared by electrospinning for varied collection durations (10 s, 50 s, 100 s, and 10 min, respectively). By examining the responsive behavior of the human induced pluripotent stem cell-derived mesenchymal stem cells (hiPS-MSCs) cultured on these nanofibrous networks, we showed that the fiber network with a moderate density (D2) is beneficial to the cell attachment, spreading, actin polymerization, contractility and migration. There also showed an increased tendency in nuclear localization of the Yes-associated protein (YAP) and subsequent activation of YAP responsive gene transcription, and cell proliferation and collagen synthesis were also enhanced on the D2. However, further increasing the fiber density (D3, D4) gave rise to weakened induction effect of fibers on the cellular responses. These results enrich our understanding on the effect of fiber density on cell behavior, and disclose the dependence of cellular responses on fiber density. This study paves the way to precisely design biomimetic fibrous scaffolds for achieving enhanced cell-scaffold interactions and tissue regeneration.
Collapse
Affiliation(s)
- Han Tang
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Bingcheng Yi
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Xianliu Wang
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Yanbing Shen
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Yanzhong Zhang
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China; Key Lab of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China; Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China.
| |
Collapse
|
13
|
Murphy R, Turcott A, Banuelos L, Dowey E, Goodwin B, Cardinal KO. SIMPoly: A Matlab-Based Image Analysis Tool to Measure Electrospun Polymer Scaffold Fiber Diameter. Tissue Eng Part C Methods 2020; 26:628-636. [PMID: 33256558 PMCID: PMC7768983 DOI: 10.1089/ten.tec.2020.0304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Quantifying fiber diameter is important for characterizing electrospun polymer scaffolds. Many researchers use manual measurement methods, which can be time-consuming and variable. Semi-automated tools exist, but there is room for improvement. The current work used Matlab to develop an image analysis program to quickly and consistently measure fiber diameter in scanning electron micrographs. The new Matlab method, termed “SIMPoly” (Semiautomated Image Measurements of Polymers) was validated by using synthetic images with known fiber size and was found to be accurate. The Matlab method was also applied by three different researchers to scanning electron microscopy (SEM) images of electrospun poly(lactic-co-glycolic acid) (PLGA). Results were compared with the semi-automated DiameterJ method and a manual ImageJ measurement approach, and it was found that the Matlab-based SIMPoly method provided measurements in the expected range and with the least variability between researchers. In conclusion, this work provides and describes SIMPoly, a Matlab-based image analysis method that can simply and accurately measure polymer fiber diameters in SEM images with minimal variation between users.
Collapse
Affiliation(s)
- Ryan Murphy
- Biomedical Engineering Department, Cal Poly, San Luis Obispo, California, USA
| | - Ashley Turcott
- Biomedical Engineering Department, Cal Poly, San Luis Obispo, California, USA
| | - Leo Banuelos
- Biomedical Engineering Department, Cal Poly, San Luis Obispo, California, USA
| | - Evan Dowey
- Biomedical Engineering Department, Cal Poly, San Luis Obispo, California, USA
| | - Benjamin Goodwin
- Biomedical Engineering Department, Cal Poly, San Luis Obispo, California, USA
| | | |
Collapse
|
14
|
Chen YH, Lin DC, Chern E, Huang YY. The use of micro-needle arrays to deliver cells for cellular therapies. Biomed Microdevices 2020; 22:63. [PMID: 32889555 DOI: 10.1007/s10544-020-00518-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cell therapy is used to treat various diseases and to repair injuries. Cell delivery is a crucial process that delivers cells to target sites. Cells must be precisely delivered to a target site and the cells that are delivered must be localized to the target site to repair damaged tissue. For stem cell therapy, the most convenient method of cell delivery involves directly injecting cells into damaged tissue. Other strategies use carriers to transplant stem cells into damaged tissue. These are termed, stem cell delivery systems (SCDSs). Micro-needle arrays are minimally invasive transdermal delivery systems. The devices can pass through the stratum corneum barrier and deliver macromolecules into the skin. They can also access the microcirculation system in the skin. This study fabricates PMMA micro-needle using a two-stage micro-molding method. Cells are seeded on the micro-needle arrays and then transferred into the target tissue. Collagen hydrogel is used as a model biomimetic tissue. Cells are efficiently delivered to regions of interest, collagen hydrogel, by using this system. The delivery rate is about 83.2%. This demonstrates that micro-needle arrays allow very efficient delivery of cells.
Collapse
Affiliation(s)
- Ying-Hou Chen
- Department of Biomedical Engineering, College of Engineering, College of Medicine, National Taiwan University, No.1, Sec.1, Jen-Ai Road, Taipei, Taiwan
| | - Dai-Chi Lin
- Department of Biomedical Engineering, College of Engineering, College of Medicine, National Taiwan University, No.1, Sec.1, Jen-Ai Road, Taipei, Taiwan
| | - Edward Chern
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-You Huang
- Department of Biomedical Engineering, College of Engineering, College of Medicine, National Taiwan University, No.1, Sec.1, Jen-Ai Road, Taipei, Taiwan.
- Department of Biomedical Engineering, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
15
|
Meng D, Li W, Ura K, Takagi Y. Effects of phosphate ion concentration on in-vitro fibrillogenesis of sturgeon type I collagen. Int J Biol Macromol 2020; 148:182-191. [PMID: 31953179 DOI: 10.1016/j.ijbiomac.2020.01.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 01/25/2023]
Abstract
Nonmammalian collagens have attracted significant attention owing to their potential for use as a source of cell scaffolds for tissue engineering. Since the morphology of collagen fibrils controls cell proliferation and differentiation, its regulation is essential for fabricating scaffolds with desirable characteristics. In this study, we evaluated the effects of the phosphate ion (Pi) concentration on the characteristics of fibrils formed from swim bladder type I collagen (SBC) and skin type I collagen (SC) from the Bester sturgeon. An increase in the Pi concentration decreased the fibril formation rate, promoted the formation of thick fibrils, and increased the thermal stability of the fibrils for both SBC and SC. However, the SBC and SC fibrils exhibited different fibril formation rates, degrees of fibrillogenesis, morphologies, and denaturation temperatures for the same reaction conditions. Finally, by regulating the Pi concentration, various types of SBC and SC fibrils could be coated on cell culture wells, and fibroblasts could be cultured on them. The results showed that thin fibrils enhance fibroblast extension and proliferation, whereas thick fibrils restrain fibroblast extension but orient them in the same direction. The results of this study suggest that SBC fibrils, which exhibit diverse morphologies, are suitable for use as a novel scaffold material, whose characteristics can be tailored readily by varying the Pi concentration.
Collapse
Affiliation(s)
- Dawei Meng
- Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China; Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan.
| | - Wen Li
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan
| | - Kazuhiro Ura
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan.
| | - Yasuaki Takagi
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
16
|
Lin W, Lan W, Wu Y, Zhao D, Wang Y, He X, Li J, Li Z, Luo F, Tan H, Fu Q. Aligned 3D porous polyurethane scaffolds for biological anisotropic tissue regeneration. Regen Biomater 2020; 7:19-27. [PMID: 32440358 PMCID: PMC7233617 DOI: 10.1093/rb/rbz031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/18/2019] [Accepted: 08/26/2019] [Indexed: 02/05/2023] Open
Abstract
A green fabrication process (organic solvent-free) of artificial scaffolds is required in tissue engineering field. In this work, a series of aligned three-dimensional (3D) scaffolds are made from biodegradable waterborne polyurethane (PU) emulsion via directional freeze-drying method to ensure no organic byproducts. After optimizing the concentration of polymer in the emulsion and investigating different freezing temperatures, an aligned PUs scaffold (PU14) generated from 14 wt% polymer content and processed at -196°C was selected based on the desired oriented porous structure (pore size of 32.5 ± 9.3 μm, porosity of 92%) and balanced mechanical properties both in the horizontal direction (strength of 41.3 kPa, modulus of 72.3 kPa) and in the vertical direction (strength of 45.5 kPa, modulus of 139.3 kPa). The response of L929 cells and the regeneration of muscle tissue demonstrated that such pure material-based aligned 3D scaffold can facilitate the development of orientated cells and anisotropic tissue regeneration both in vitro and in vivo. Thus, these pure material-based scaffolds with ordered architecture have great potentials in tissue engineering for biological anisotropic tissue regeneration, such as muscle, nerve, spinal cord and so on.
Collapse
Affiliation(s)
- Weiwei Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wanling Lan
- Sichuan Institute for Food and Drug Control, Chengdu 611731, China
| | - Yingke Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Daiguo Zhao
- Sichuan Institute for Food and Drug Control, Chengdu 611731, China
| | - Yanchao Wang
- Department of Neurosurgery West China Hospital, Sichuan University, Chengdu 610065, China
| | - Xueling He
- Laboratory Animal Center of Sichuan University, Chengdu 610041, China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
17
|
Shen Y, Tu T, Yi B, Wang X, Tang H, Liu W, Zhang Y. Electrospun acid-neutralizing fibers for the amelioration of inflammatory response. Acta Biomater 2019; 97:200-215. [PMID: 31400522 DOI: 10.1016/j.actbio.2019.08.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022]
Abstract
Biodegradable aliphatic polyesters, especially polylactide (PLA), polyglycolide (PGA), and their copolymer poly(lactide-co-glycolide) (PLGA), are the most representative and widely used synthetic polymers in the field of tissue engineering and regenerative medicine. However, these polyesters often give rise to aseptic inflammation because of their acidic degradation products after implantation. Here, unidirectional shell-core structured fibers of chitosan/poly(lactide-co-glycolide) (i.e., CTS/PLGA) with acid-neutralizing capability were developed for addressing the noted issue by coating the PLGA fiber surfaces with a layer of the alkaline chitosan by coaxial electrospinning. Our results showed that during a period of 8-week degradation, the shell-layer of chitosan with its unique alkaline nature for acid-neutralization obviously hindered the pH decrease as a result of the degradation of PLGA-core. In a mocked acidic environment testing of the human dermal fibroblasts, chitosan-enabled acidity neutralization could significantly reduce in vitro the secretion of inflammatory factors and downregulate the expression of related inflammatory genes. Thereafter, biocompatibility assessment in vitro showed that the CTS/PLGA fibers had poorer cell adhesion capacity than the PLGA fibers but were cytocompatible and promoted cell migration and secretion of collagen. Moreover, subcutaneous embedding for two and four weeks in vivo revealed that the CTS/PLGA fibers significantly reduced the recruitment of inflammatory cells and the formation of foreign body giant cells (FBGCs). This study thereby demonstrated the evident acid-neutralizing effect of the chitosan-coating layer on alleviating the inflammatory responses caused by the acidic degradation products of the PLGA-core. Our highly aligned CTS/PLGA fibers, as a kind of quasi "pH-neutral fibers" with the acid-neutralizing capability, could be potentially applied for engineering those architecturally anisotropic tissues (e.g., tendon/ligament) toward improved efficacy of regeneration. STATEMENT OF SIGNIFICANCE: It is well known that acidic degradation products from representative aliphatic polyesters (e.g., PLA, PGA, and PLGA) give rise to the problem of aseptic inflammation. Various alkaline components acting as neutralizing agents have been used to address the noted issue. However, rather less attention has been paid to engineer these polyesters into a fibrous form with acid-neutralizing functionality. The present study proposes the concept of "pH-neutral fibers" and develops shell-core structured unidirectional fibers of chitosan/poly(lactide-co-glycolide) with acid-neutralizing capability for ameliorating inflammatory responses caused by the acidic degradation products of PLGA. It provides a comprehensive study encompassing fiber characterization and in vitro and in vivo evaluation, which would pave the way for developing sophisticated pH-neutral fibers for functional tissue regeneration.
Collapse
Affiliation(s)
- Yanbing Shen
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Tian Tu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Tissue Engineering Center of China, Shanghai 201100, China
| | - Bingcheng Yi
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Xianliu Wang
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Han Tang
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Tissue Engineering Center of China, Shanghai 201100, China.
| | - Yanzhong Zhang
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China; Key Lab of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China; China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China.
| |
Collapse
|
18
|
Lizarraga‐Valderrama LR, Taylor CS, Claeyssens F, Haycock JW, Knowles JC, Roy I. Unidirectional neuronal cell growth and differentiation on aligned polyhydroxyalkanoate blend microfibres with varying diameters. J Tissue Eng Regen Med 2019; 13:1581-1594. [PMID: 31185133 PMCID: PMC6790610 DOI: 10.1002/term.2911] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 01/26/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are a family of prokaryotic-derived biodegradable and biocompatible natural polymers known to exhibit neuroregenerative properties. In this work, poly(3-hydroxybutyrate), P(3HB), and poly(3-hydroxyoctanoate), P(3HO), have been combined to form blend fibres for directional guidance of neuronal cell growth and differentiation. A 25:75 P(3HO)/P(3HB) blend (PHA blend) was used for the manufacturing of electrospun fibres as resorbable scaffolds to be used as internal guidance lumen structures in nerve conduits. The biocompatibility of these fibres was studied using neuronal and Schwann cells. Highly aligned and uniform fibres with varying diameters were fabricated by controlling electrospinning parameters. The resulting fibre diameters were 2.4 ± 0.3, 3.7 ± 0.3, and 13.5 ± 2.3 μm for small, medium, and large diameter fibres, respectively. The cell response to these electrospun fibres was investigated with respect to growth and differentiation. Cell migration observed on the electrospun fibres showed topographical guidance in accordance with the direction of the fibres. The correlation between fibre diameter and neuronal growth under two conditions, individually and in coculture with Schwann cells, was evaluated. Results obtained from both assays revealed that all PHA blend fibre groups were able to support growth and guide aligned distribution of neuronal cells, and there was a direct correlation between the fibre diameter and neuronal growth and differentiation. This work has led to the development of a family of unique biodegradable and highly biocompatible 3D substrates capable of guiding and facilitating the growth, proliferation, and differentiation of neuronal cells as internal structures within nerve conduits.
Collapse
Affiliation(s)
- Lorena R. Lizarraga‐Valderrama
- Applied Biotechnology Research Group, School of Life Sciences, College of Liberal Arts and SciencesUniversity of WestminsterLondonUK
| | - Caroline S. Taylor
- Department of Materials Science and EngineeringUniversity of SheffieldSheffieldUK
| | - Frederik Claeyssens
- Department of Materials Science and EngineeringUniversity of SheffieldSheffieldUK
| | - John W. Haycock
- Department of Materials Science and EngineeringUniversity of SheffieldSheffieldUK
| | - Jonathan C. Knowles
- Division of Biomaterials and Tissue EngineeringUCL Eastman Dental InstituteLondonUK
- Department of Nanobiomedical Science and BK21 Plus NBM, Global Research Center for Regenerative MedicineDankook UniversityCheonanSouth Korea
- The Discoveries Centre for Regenerative and Precision MedicineUCL CampusLondonUK
- UCL Eastman‐Korea Dental Medicine Innovation CentreDankook UniversityCheonanSouth Korea
| | - Ipsita Roy
- Applied Biotechnology Research Group, School of Life Sciences, College of Liberal Arts and SciencesUniversity of WestminsterLondonUK
| |
Collapse
|
19
|
Topographical cues control the morphology and dynamics of migrating cortical interneurons. Biomaterials 2019; 214:119194. [DOI: 10.1016/j.biomaterials.2019.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/04/2019] [Indexed: 12/30/2022]
|
20
|
Ura DP, Karbowniczek JE, Szewczyk PK, Metwally S, Kopyściański M, Stachewicz U. Cell Integration with Electrospun PMMA Nanofibers, Microfibers, Ribbons, and Films: A Microscopy Study. Bioengineering (Basel) 2019; 6:E41. [PMID: 31075876 PMCID: PMC6630608 DOI: 10.3390/bioengineering6020041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 01/25/2023] Open
Abstract
Tissue engineering requires properly selected geometry and surface properties of the scaffold, to promote in vitro tissue growth. In this study, we obtained three types of electrospun poly(methyl methacrylate) (PMMA) scaffolds-nanofibers, microfibers, and ribbons, as well as spin-coated films. Their morphology was imaged by scanning electron microscopy (SEM) and characterized by average surface roughness and water contact angle. PMMA films had a smooth surface with roughness, Ra below 0.3 µm and hydrophilic properties, whereas for the fibers and the ribbons, we observed increased hydrophobicity, with higher surface roughness and fiber diameter. For microfibers, we obtained the highest roughness of 7 µm, therefore, the contact angle was 140°. All PMMA samples were used for the in vitro cell culture study, to verify the cells integration with various designs of scaffolds. The detailed microscopy study revealed that higher surface roughness enhanced cells' attachment and their filopodia length. The 3D structure of PMMA microfibers with an average fiber diameter above 3.5 µm, exhibited the most favorable geometry for cells' ingrowth, whereas, for other structures we observed cells growth only on the surface. The study showed that electrospinning of various scaffolds geometry is able to control cells development that can be adjusted according to the tissue needs in the regeneration processes.
Collapse
Affiliation(s)
- Daniel P Ura
- International Centre of Electron Microscopy for Materials Science, Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland.
| | - Joanna E Karbowniczek
- International Centre of Electron Microscopy for Materials Science, Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland.
| | - Piotr K Szewczyk
- International Centre of Electron Microscopy for Materials Science, Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland.
| | - Sara Metwally
- International Centre of Electron Microscopy for Materials Science, Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland.
| | - Mateusz Kopyściański
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland.
| | - Urszula Stachewicz
- International Centre of Electron Microscopy for Materials Science, Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland.
| |
Collapse
|
21
|
Chen H, Lui YS, Tan ZW, Lee JYH, Tan NS, Tan LP. Migration and Phenotype Control of Human Dermal Fibroblasts by Electrospun Fibrous Substrates. Adv Healthc Mater 2019; 8:e1801378. [PMID: 30901162 DOI: 10.1002/adhm.201801378] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/26/2019] [Indexed: 12/26/2022]
Abstract
Electrospun fibrous matrices, mimicking extracellular matrix (ECM) hierarchical structures, are potential scaffolds for wound healing. To design functional scaffolds, it is important to explore the interactions between scaffold topographic features and cellular responses, especially directional migration and phenotypic changes, which are critical functional aspects during wound healing. Here, accelerated and persistent migration of human dermal fibroblasts (HDFs) is observed on fibers with aligned orientation. Furthermore, aligned fibers can induce fibroblast-to-myofibroblast differentiation of HDFs. During wound healing, the presence of myofibroblasts advances wound repair by rendering contractile force and ECM deposition within the early and middle courses, but its continuous persistence in the later event may not be desired due to the contribution in pathological scarring. To tune the balance, it is noted in this work that the introduction of matricellular protein angiopoietin-like 4 (ANGPTL4) is capable of reversing the phenotypic alteration induced by aligned fibers, in a time-dependent manner. These results indicate fibrous matrices with oriented configuration are functional in mediating directional cell migration and phenotypic change. The discoveries further suggest that tissue-engineered fibrous grafts with precise alignment modulation and ANGPTL4 releasing properties may thus be promising to promote wound repair with minimizing scar formation.
Collapse
Affiliation(s)
- Huizhi Chen
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
- Interdisciplinary Graduate SchoolNanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Yuan Siang Lui
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Zhen Wei Tan
- School of Biological SciencesNanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| | - Justin Yin Hao Lee
- School of Biological SciencesNanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| | - Nguan Soon Tan
- School of Biological SciencesNanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
- Lee Kong Chian School of MedicineNanyang Technological University 59 Nanyang Drive Singapore 636921 Singapore
| | - Lay Poh Tan
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| |
Collapse
|
22
|
Gluais M, Clouet J, Fusellier M, Decante C, Moraru C, Dutilleul M, Veziers J, Lesoeur J, Dumas D, Abadie J, Hamel A, Bord E, Chew SY, Guicheux J, Le Visage C. In vitro and in vivo evaluation of an electrospun-aligned microfibrous implant for Annulus fibrosus repair. Biomaterials 2019; 205:81-93. [PMID: 30909111 DOI: 10.1016/j.biomaterials.2019.03.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/21/2019] [Accepted: 03/11/2019] [Indexed: 12/29/2022]
Abstract
Annulus fibrosus (AF) impairment is associated with reherniation, discogenic pain, and disc degeneration after surgical partial discectomy. Due to a limited intrinsic healing capacity, defects in the AF persist over time and it is hence necessary to adopt an appropriate strategy to close and repair the damaged AF. In this study, a cell-free biodegradable scaffold made of polycaprolactone (PCL), electrospun, aligned microfibers exhibited high levels of cell colonization, alignment, and AF-like extracellular matrix deposition when evaluated in an explant culture model. The biomimetic multilayer fibrous scaffold was then assessed in an ovine model of AF impairment. After 4 weeks, no dislocation of the implants was detected, and only one sample out of six showed a partial delamination. Histological and immunohistochemical analyses revealed integration of the implant with the surrounding tissue as well as homogeneously aligned collagen fiber organization within each lamella compared to the disorganized and scarcer fibrous tissue in a randomly organized control fibrous scaffold. In conclusion, this biomimetic electrospun implant exhibited promising properties in terms of AF defect closure, with AF-like neotissue formation that fully integrated with the surrounding ovine tissue.
Collapse
Affiliation(s)
- Maude Gluais
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France
| | - Johann Clouet
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; CHU Nantes, Pharmacie Centrale, PHU 11, Nantes, F-44093, France; Université de Nantes, UFR Sciences Biologiques et Pharmaceutiques, Nantes, F-44035, France
| | - Marion Fusellier
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Department of Diagnostic Imaging, CRIP, ONIRIS, College of Veterinary Medicine, Food Science and Engineering, Nantes, F-44307, France
| | - Cyrille Decante
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; CHU Nantes, Service de Chirurgie Infantile, PHU5, Nantes, F-44093, France
| | - Constantin Moraru
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; CHU Nantes, Service de Neurotraumatologie, PHU4 OTONN, Nantes, F-44093, France
| | - Maeva Dutilleul
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; INSERM, UMS 016, CNRS 3556, Structure Fédérative de Recherche François Bonamy, SC3M Facility, CHU Nantes, Université de Nantes, Nantes, F-44042, France
| | - Joëlle Veziers
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; INSERM, UMS 016, CNRS 3556, Structure Fédérative de Recherche François Bonamy, SC3M Facility, CHU Nantes, Université de Nantes, Nantes, F-44042, France; CHU Nantes, PHU4 OTONN, Nantes, F-44093, France
| | - Julie Lesoeur
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; INSERM, UMS 016, CNRS 3556, Structure Fédérative de Recherche François Bonamy, SC3M Facility, CHU Nantes, Université de Nantes, Nantes, F-44042, France
| | - Dominique Dumas
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS - Université de Lorraine, Vandœuvre-lès-Nancy, F54505, France; UMS2008 IBSLor - CNRS-UL-INSERM Plateforme d'Imagerie et de Biophysique Cellulaire PTIBC-IBISA, Vandœuvre-lès-Nancy, F54505, France
| | - Jérôme Abadie
- Animal Cancers as Models for Research in Comparative Oncology (AMaROC), ONIRIS, College of Veterinary Medicine, Food Science and Engineering, Nantes, F-44307, France
| | - Antoine Hamel
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; CHU Nantes, Service de Chirurgie Infantile, PHU5, Nantes, F-44093, France
| | - Eric Bord
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; CHU Nantes, Service de Neurotraumatologie, PHU4 OTONN, Nantes, F-44093, France
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | - Jérôme Guicheux
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; CHU Nantes, PHU4 OTONN, Nantes, F-44093, France
| | - Catherine Le Visage
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France.
| |
Collapse
|
23
|
Omidinia-Anarkoli A, Rimal R, Chandorkar Y, Gehlen DB, Rose JC, Rahimi K, Haraszti T, De Laporte L. Solvent-Induced Nanotopographies of Single Microfibers Regulate Cell Mechanotransduction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7671-7685. [PMID: 30694648 DOI: 10.1021/acsami.8b17955] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The extracellular matrix (ECM) is a dynamic three-dimensional (3D) fibrous network, surrounding all cells in vivo. Fiber manufacturing techniques are employed to mimic the ECM but still lack the knowledge and methodology to produce single fibers approximating cell size with different surface topographies to study cell-material interactions. Using solvent-assisted spinning (SAS), the potential to continuously produce single microscale fibers with unlimited length, precise diameter, and specific surface topographies was demonstrated. By applying solvents with different solubilities and volatilities, fibers with smooth, grooved, and porous surface morphologies are produced. Due to their hierarchical structures, the porous fibers are the most hydrophobic, followed by the grooved and the smooth fibers. The fiber diameter is increased by increasing the polymer concentration or decreasing the collector rotational speed. Moreover, SAS offers the advantage to control the interfiber distance and angle to fabricate multilayered 3D constructs. This report shows for the first time that the micro- and nanoscale topographies of single fibers mechanically regulate cell behavior. Fibroblasts, grown on fibers with grooved topographical features, stretch and elongate more compared to smooth and porous fibers, whereas both porous and grooved fibers induce nuclear translocation of yes-associated protein. The presented technique, therefore, provides a unique platform to study the interaction between cells and single ECM-like fibers in a precise and reproducible manner, which is of great importance for new material developments in the field of tissue engineering.
Collapse
Affiliation(s)
| | - Rahul Rimal
- DWI-Leibniz Institute for Interactive Materials , Aachen 52074 , Germany
| | - Yashoda Chandorkar
- DWI-Leibniz Institute for Interactive Materials , Aachen 52074 , Germany
| | - David B Gehlen
- DWI-Leibniz Institute for Interactive Materials , Aachen 52074 , Germany
| | - Jonas C Rose
- DWI-Leibniz Institute for Interactive Materials , Aachen 52074 , Germany
| | - Khosrow Rahimi
- DWI-Leibniz Institute for Interactive Materials , Aachen 52074 , Germany
| | - Tamás Haraszti
- DWI-Leibniz Institute for Interactive Materials , Aachen 52074 , Germany
| | - Laura De Laporte
- DWI-Leibniz Institute for Interactive Materials , Aachen 52074 , Germany
- ITMC-Institute of Technical and Macromolecular Chemistry , RWTH Aachen University , Aachen 52074 , Germany
| |
Collapse
|
24
|
Khalsi Y, Heim F, Lee JT, Tazibt A. N 2
supercritical jet to modify the characteristics of polymer material surfaces: Influence of the process parameters on the surface topography. POLYM ENG SCI 2018. [DOI: 10.1002/pen.24977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yosri Khalsi
- CRITT Techniques Jet Fluide et Usinage (TJFU); Bar-Le-Duc France
- Laboratoire de Physique et Mécanique Textiles (LPMT, EA4365); ENSISA, Mulhouse France
| | - Frederic Heim
- Laboratoire de Physique et Mécanique Textiles (LPMT, EA4365); ENSISA, Mulhouse France
| | - Jason T. Lee
- Division of Vascular Surgery; Stanford University Medical Center; Stanford California
| | - Abdel Tazibt
- CRITT Techniques Jet Fluide et Usinage (TJFU); Bar-Le-Duc France
| |
Collapse
|
25
|
Branco M, Caseiro AR, Silva DM, Amorim I, Rêma A, Pedrosa SS, Branquinho MV, Gomes PS, Fernandes MH, Santos JD, Mauricio AC, Sencadas V. Processing, Characterization, and in Vivo Evaluation of Poly(l-lactic acid)-Fish Gelatin Electrospun Membranes for Biomedical Applications. ACS APPLIED BIO MATERIALS 2018; 1:226-236. [DOI: 10.1021/acsabm.8b00023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mariana Branco
- Faculdade de Engenharia, U. Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana R. Caseiro
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- REQUIMTE/LAQV − Universidade do Porto, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | | | - Irina Amorim
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal
| | - Alexandra Rêma
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Sílvia S. Pedrosa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Mariana V. Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Pedro S. Gomes
- REQUIMTE/LAQV − Universidade do Porto, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- Faculdade de Medicina Dentária, Universidade Do Porto (FMDUP), 4200-393 Porto, Portugal
| | - Maria H. Fernandes
- REQUIMTE/LAQV − Universidade do Porto, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- Faculdade de Medicina Dentária, Universidade Do Porto (FMDUP), 4200-393 Porto, Portugal
| | - José D. Santos
- Faculdade de Engenharia, U. Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- REQUIMTE/LAQV − Universidade do Porto, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Ana C. Mauricio
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | | |
Collapse
|
26
|
Wan S, Fu X, Ji Y, Li M, Shi X, Wang Y. FAK- and YAP/TAZ dependent mechanotransduction pathways are required for enhanced immunomodulatory properties of adipose-derived mesenchymal stem cells induced by aligned fibrous scaffolds. Biomaterials 2018; 171:107-117. [DOI: 10.1016/j.biomaterials.2018.04.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/15/2018] [Indexed: 01/14/2023]
|
27
|
Wang K, Liu L, Xie J, Shen L, Tao J, Zhu J. Facile Strategy to Generate Aligned Polymer Nanofibers: Effects on Cell Adhesion. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1566-1574. [PMID: 29280611 DOI: 10.1021/acsami.7b16057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Structure of polymer fiber membranes plays a vital role in controlling cell responses as applied to immobilize targets for specific cell interactions. Electrospinning is a simple and powerful method to prepare polymer fiber membranes with scales from nano- to micrometers. In this report, a facile yet versatile strategy has been developed for fabricating polymer nanofiber membranes with well-aligned structures using a glass sheet between the needle and a static drum as the collector. Effects of solution concentration, polymer molecular weight, applied voltage, and collection distance on the morphologies of the formed fibers were systematically studied. Adhesion of cells (e.g., mouse melanoma cells B16-F10 and fibroblast cells NIH-3T3) on the fiber membrane has been further investigated. Our results show that cell morphologies varied from elongated to spherical on the random fiber membrane when the pore area of membrane decreased. In contrast, on the membrane with aligned morphology, when decreasing the gap width of fiber membrane, cell is found to keep elongated state and spread along the alignment direction. This work provides a facile yet effective strategy to engineer surface structures of the fiber membranes for controlling cell adhesion.
Collapse
Affiliation(s)
- Kui Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST), Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) , Wuhan 430074, China
| | - Liping Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST), Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) , Wuhan 430074, China
- Shenzhen Research Institute of HUST , Shenzhen 51800, China
| | - Jun Xie
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST), Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) , Wuhan 430074, China
| | - Lei Shen
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology , Wuhan 430070, China
| | - Juan Tao
- Department of Dermatology, Affiliated Union Hospital, Tongji Medical College, HUST , Wuhan 430022, China
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST), Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) , Wuhan 430074, China
- Shenzhen Research Institute of HUST , Shenzhen 51800, China
| |
Collapse
|
28
|
Velasco-Barraza RD, Vera-Graziano R, López-Maldonado EA, Oropeza-Guzmán MT, Dastager SG, Álvarez-Andrade A, Iglesias AL, Villarreal-Gómez LJ. Study of nanofiber scaffolds of PAA, PAA/CS, and PAA/ALG for its potential use in biotechnological applications. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1378887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rodolfo Daniel Velasco-Barraza
- Escuela de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| | - Ricardo Vera-Graziano
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Distrito Federal, México
| | | | | | - Syed G. Dastager
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Adriana Álvarez-Andrade
- Escuela de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| | - Ana Leticia Iglesias
- Escuela de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| | - Luis Jesús Villarreal-Gómez
- Escuela de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| |
Collapse
|
29
|
Skin Tissue Engineering: Biological Performance of Electrospun Polymer Scaffolds and Translational Challenges. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0035-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Munj HR, Tomasko DL. Polycaprolactone-polymethyl methacrylate electrospun blends for biomedical applications. POLYMER SCIENCE SERIES A 2017. [DOI: 10.1134/s0965545x17050121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Kennedy KM, Bhaw-Luximon A, Jhurry D. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance. Acta Biomater 2017; 50:41-55. [PMID: 28011142 DOI: 10.1016/j.actbio.2016.12.034] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/10/2016] [Accepted: 12/15/2016] [Indexed: 12/24/2022]
Abstract
Engineered scaffolds produced by electrospinning of biodegradable polymers offer a 3D, nanofibrous environment with controllable structural, chemical, and mechanical properties that mimic the extracellular matrix of native tissues and have shown promise for a number of tissue engineering applications. The microscale mechanical interactions between cells and electrospun matrices drive cell behaviors including migration and differentiation that are critical to promote tissue regeneration. Recent developments in understanding these mechanical interactions in electrospun environments are reviewed, with emphasis on how fiber geometry and polymer structure impact on the local mechanical properties of scaffolds, how altering the micromechanics cues cell behaviors, and how, in turn, cellular and extrinsic forces exerted on the matrix mechanically remodel an electrospun scaffold throughout tissue development. Techniques used to measure and visualize these mechanical interactions are described. We provide a critical outlook on technological gaps that must be overcome to advance the ability to design, assess, and manipulate the mechanical environment in electrospun scaffolds toward constructs that may be successfully applied in tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE Tissue engineering requires design of scaffolds that interact with cells to promote tissue development. Electrospinning is a promising technique for fabricating fibrous, biomimetic scaffolds. Effects of electrospun matrix microstructure and biochemical properties on cell behavior have been extensively reviewed previously; here, we consider cell-matrix interaction from a mechanical perspective. Micromechanical properties as a driver of cell behavior has been well established in planar substrates, but more recently, many studies have provided new insights into mechanical interaction in fibrillar, electrospun environments. This review provides readers with an overview of how electrospun scaffold mechanics and cell behavior work in a dynamic feedback loop to drive tissue development, and discusses opportunities for improved design of mechanical environments that are conducive to tissue development.
Collapse
|
32
|
Di Cio S, Bøggild TML, Connelly J, Sutherland DS, Gautrot JE. Differential integrin expression regulates cell sensing of the matrix nanoscale geometry. Acta Biomater 2017; 50:280-292. [PMID: 27940195 DOI: 10.1016/j.actbio.2016.11.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/28/2022]
Abstract
The nanoscale geometry and topography of the extra-cellular matrix (ECM) is an important parameter controlling cell adhesion and phenotype. Similarly, integrin expression and the geometrical maturation of adhesions they regulate have been correlated with important changes in cell spreading and phenotype. However, how integrin expression controls the nanoscale sensing of the ECM geometry is not clearly understood. Here we develop a new nanopatterning technique, electrospun nanofiber lithography (ENL), which allows the production of a quasi-2D fibrous nanopattern with controlled dimensions (250-1000nm) and densities. ENL relies on electrospun fibres to act as a mask for the controlled growth of protein-resistant polymer brushes. SEM, AFM and immunofluorescence imaging were used to characterise the resulting patterns and the adsorption of the extra-cellular matrix protein fibronectin to the patterned fibres. The control of adhesion formation was studied, as well as the remodelling and deposition of novel matrix. Cell spreading was found to be regulated by the size of fibres, similarly to previous observations made on circular nanopatterns. However, cell shape and polarity were more significantly affected. These changes correlated with important cytoskeleton reorganisation, with a gradual decrease in stress fibre formation as the pattern dimensions decrease. Finally, the differential expression of αvβ3 and α5β1 integrins in engineered cell lines was found to be an important mediator of cell sensing of the nanoscale geometry of the ECM. STATEMENT OF SIGNIFICANCE The novel nanofiber patterns developed in this study, via ENL, mimic the geometry and continuity of natural matrices found in the stroma of tissues, whilst preserving a quasi-2D character (to facilitate imaging and for comparison with other 2D systems such as micropatterned monolayers and circular nanopatches generated by colloidal lithography). These results demonstrate that the nanoscale geometry of the ECM plays an important role in regulating cell adhesion and that this is modulated by integrin expression. This is an important finding as it implies that the knowledge of the biochemical context underlying the integrin-mediated adhesive machinery of specific cell types should allow better design of biomaterials and biointerfaces. Indeed, changes in integrin expression are often associated with the control of cell proliferation and differentiation.
Collapse
Affiliation(s)
- Stefania Di Cio
- Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London E1 4NS, UK; School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - Thea M L Bøggild
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
| | - John Connelly
- Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London E1 4NS, UK; Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, 4 Newark Street, London E1 2AT, UK
| | | | - Julien E Gautrot
- Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London E1 4NS, UK; School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
33
|
Li Y, Xiao Y, Liu C. The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering. Chem Rev 2017; 117:4376-4421. [PMID: 28221776 DOI: 10.1021/acs.chemrev.6b00654] [Citation(s) in RCA: 356] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the biological functions of cell and tissue can be regulated by biochemical factors (e.g., growth factors, hormones), the biophysical effects of materials on the regulation of biological activity are receiving more attention. In this Review, we systematically summarize the recent progress on how biomaterials with controllable properties (e.g., compositional/degradable dynamics, mechanical properties, 2D topography, and 3D geometry) can regulate cell behaviors (e.g., cell adhesion, spreading, proliferation, cell alignment, and the differentiation or self-maintenance of stem cells) and tissue/organ functions. How the biophysical features of materials influence tissue/organ regeneration have been elucidated. Current challenges and a perspective on the development of novel materials that can modulate specific biological functions are discussed. The interdependent relationship between biomaterials and biology leads us to propose the concept of "materiobiology", which is a scientific discipline that studies the biological effects of the properties of biomaterials on biological functions at cell, tissue, organ, and the whole organism levels. This Review highlights that it is more important to develop ECM-mimicking biomaterials having a self-regenerative capacity to stimulate tissue regeneration, instead of attempting to recreate the complexity of living tissues or tissue constructs ex vivo. The principles of materiobiology may benefit the development of novel biomaterials providing combinative bioactive cues to activate the migration of stem cells from endogenous reservoirs (i.e., cell niches), stimulate robust and scalable self-healing mechanisms, and unlock the body's innate powers of regeneration.
Collapse
Affiliation(s)
- Yulin Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| |
Collapse
|
34
|
Accelerated Wound Closure - Differently Organized Nanofibers Affect Cell Migration and Hence the Closure of Artificial Wounds in a Cell Based In Vitro Model. PLoS One 2017; 12:e0169419. [PMID: 28060880 PMCID: PMC5218412 DOI: 10.1371/journal.pone.0169419] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/17/2016] [Indexed: 02/07/2023] Open
Abstract
Nanofiber meshes holds great promise in wound healing applications by mimicking the topography of extracellular matrix, hence providing guidance for crucial cells involved in the regenerative processes. Here we explored the influence of nanofiber alignment on fibroblast behavior in a novel in vitro wound model. The model included electrospun poly-ε-caprolactone scaffolds with different nanofiber orientation. Fibroblasts were cultured to confluency for 24h before custom-made inserts were removed, creating cell-free zones serving as artificial wounds. Cell migration into these wounds was evaluated at 0-, 48- and 96h. Cell morphological analysis was performed using nuclei- and cytoskeleton stainings. Cell viability was assessed using a biochemical assay. This study demonstrates a novel in vitro wound assay, for exploring of the impact of nanofibers on wound healing. Additionally we show that it’s possible to affect the process of wound closure in a spatial manner using nanotopographies, resulting in faster closure on aligned fiber substrates.
Collapse
|
35
|
Li J, Yu Y, Myungwoong K, Li K, Mikhail J, Zhang L, Chang CC, Gersappe D, Simon M, Ober C, Rafailovich M. Manipulation of cell adhesion and dynamics using RGD functionalized polymers. J Mater Chem B 2017; 5:6307-6316. [DOI: 10.1039/c7tb01209h] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An ABA tri-block co-polymer with RGD peptide sequences inserted were synthesized. Cell adhesion can be controlled by polymer configuration changing via electrical field.
Collapse
Affiliation(s)
- Juyi Li
- Department of Materials Science & Chemical Engineering
- Stony Brook University
- Stony Brook
- USA
| | - Yingjie Yu
- Department of Materials Science & Chemical Engineering
- Stony Brook University
- Stony Brook
- USA
| | - Kim Myungwoong
- Department of Materials Science & Engineering
- Cornell University
- Ithaca
- USA
| | - Kao Li
- Department of Materials Science & Chemical Engineering
- Stony Brook University
- Stony Brook
- USA
| | - John Mikhail
- Department of Materials Science & Chemical Engineering
- Stony Brook University
- Stony Brook
- USA
| | - Linxi Zhang
- Department of Materials Science & Chemical Engineering
- Stony Brook University
- Stony Brook
- USA
| | | | - Dilip Gersappe
- Department of Materials Science & Chemical Engineering
- Stony Brook University
- Stony Brook
- USA
| | - Marcia Simon
- Department of Medicine
- Stony Brook University School of Medicine
- Stony Brook
- USA
| | - Christopher Ober
- Department of Materials Science & Engineering
- Cornell University
- Ithaca
- USA
| | - Miriam Rafailovich
- Department of Materials Science & Chemical Engineering
- Stony Brook University
- Stony Brook
- USA
| |
Collapse
|
36
|
Chen H, Qian Y, Xia Y, Chen G, Dai Y, Li N, Zhang F, Gu N. Enhanced Osteogenesis of ADSCs by the Synergistic Effect of Aligned Fibers Containing Collagen I. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29289-29297. [PMID: 27735181 DOI: 10.1021/acsami.6b08791] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The topographical features and material composition of scaffolds have a powerful influence on cell behaviors such as proliferation and differentiation. Here, scaffolds consisting of aligned fibers with incorporated bioactive collagen I were tested for their ability to enhance osteogenesis in vitro. Rat adipose-derived mesenchymal stem cells (ADSCs) were seeded on the scaffolds and their morphology, proliferation, and osteogenic differentiation were examined. Aligned scaffolds with collagen I showed the best osteogenic properties. Also, adhesion-related genes showed the higher expression on aligned scaffolds with collagen I. Our findings indicate that fiber alignment combined with incorporation of collagen I increases the capacity of electrospun scaffolds to induce enhanced and directed osteogenesis. Such scaffolds may, therefore, have potential for improving guided oral bone regeneration.
Collapse
Affiliation(s)
- Hanbang Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University , Nanjing 210029, China
| | - Yunzhu Qian
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University , Nanjing 210029, China
- Center of Stomatology, The Second Affiliated Hospital of Soochow University , Suzhou 215004, China
| | - Yang Xia
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University , Nanjing 210029, China
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210009, China
| | - Gang Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University , Nanjing 210029, China
| | - Yun Dai
- Department of Prosthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University , Nanjing 210008, China
| | - Na Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University , Nanjing 210029, China
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University , Nanjing 210029, China
- Suzhou Key Laboratory of Biomaterials and Technologies & Collaborative Innovation Center, Suzhou Nano Science and Technology , Suzhou 215123, China
| | - Ning Gu
- Suzhou Key Laboratory of Biomaterials and Technologies & Collaborative Innovation Center, Suzhou Nano Science and Technology , Suzhou 215123, China
| |
Collapse
|
37
|
Gugutkov D, Gustavsson J, Cantini M, Salmeron-Sánchez M, Altankov G. Electrospun fibrinogen-PLA nanofibres for vascular tissue engineering. J Tissue Eng Regen Med 2016; 11:2774-2784. [DOI: 10.1002/term.2172] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 01/22/2016] [Accepted: 02/15/2016] [Indexed: 01/04/2023]
Affiliation(s)
- D. Gugutkov
- Institute for Bioengineering of Catalonia (IBEC); Barcelona Spain
| | - J. Gustavsson
- Institute for Bioengineering of Catalonia (IBEC); Barcelona Spain
| | - M. Cantini
- Division of Biomedical Engineering; School of Engineering, University of Glasgow; UK
| | - M. Salmeron-Sánchez
- Division of Biomedical Engineering; School of Engineering, University of Glasgow; UK
| | - G. Altankov
- Institute for Bioengineering of Catalonia (IBEC); Barcelona Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Zaragoza Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA); Barcelona Spain
| |
Collapse
|
38
|
Hua K, Rocha I, Zhang P, Gustafsson S, Ning Y, Strømme M, Mihranyan A, Ferraz N. Transition from Bioinert to Bioactive Material by Tailoring the Biological Cell Response to Carboxylated Nanocellulose. Biomacromolecules 2016; 17:1224-33. [PMID: 26886265 DOI: 10.1021/acs.biomac.6b00053] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work presents an insight into the relationship between cell response and physicochemical properties of Cladophora cellulose (CC) by investigating the effect of CC functional group density on the response of model cell lines. CC was carboxylated by electrochemical TEMPO-mediated oxidation. By varying the amount of charge passed through the electrolysis setup, CC materials with different degrees of oxidation were obtained. The effect of carboxyl group density on the material's physicochemical properties was investigated together with the response of human dermal fibroblasts (hDF) and human osteoblastic cells (Saos-2) to the carboxylated CC films. The introduction of carboxyl groups resulted in CC films with decreased specific surface area and smaller total pore volume compared with the unmodified CC (u-CC). While u-CC films presented a porous network of randomly oriented fibers, a compact and aligned fiber pattern was depicted for the carboxylated-CC films. The decrease in surface area and total pore volume, and the orientation and aggregation of the fibers tended to augment parallel to the increase in the carboxyl group density. hDF and Saos-2 cells presented poor cell adhesion and spreading on u-CC, which gradually increased for the carboxylated CC as the degree of oxidation increased. It was found that a threshold value in carboxyl group density needs be reached to obtain a carboxylated-CC film with cytocompatibility comparable to commercial tissue culture material. Hence, this study demonstrates that a normally bioinert nanomaterial can be rendered bioactive by carefully tuning the density of charged groups on the material surface, a finding that not only may contribute to the fundamental understanding of biointerface phenomena, but also to the development of bioinert/bioactive materials.
Collapse
Affiliation(s)
- Kai Hua
- Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University , Box 534, 75121, Uppsala, Sweden
| | - Igor Rocha
- Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University , Box 534, 75121, Uppsala, Sweden.,CAPES Foundation, Ministry of Education of Brazil, Brasília - DF 70040-020, Brazil
| | - Peng Zhang
- Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University , Box 534, 75121, Uppsala, Sweden
| | - Simon Gustafsson
- Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University , Box 534, 75121, Uppsala, Sweden
| | - Yi Ning
- Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University , Box 534, 75121, Uppsala, Sweden
| | - Maria Strømme
- Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University , Box 534, 75121, Uppsala, Sweden
| | - Albert Mihranyan
- Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University , Box 534, 75121, Uppsala, Sweden
| | - Natalia Ferraz
- Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University , Box 534, 75121, Uppsala, Sweden
| |
Collapse
|
39
|
Qin S, Clark RAF, Rafailovich MH. Establishing correlations in the en-mass migration of dermal fibroblasts on oriented fibrillar scaffolds. Acta Biomater 2015; 25:230-9. [PMID: 26117312 DOI: 10.1016/j.actbio.2015.06.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 06/14/2015] [Accepted: 06/23/2015] [Indexed: 01/11/2023]
Abstract
Wound healing proceeds via fibroblast migration along three dimensional fibrillar substrates with multiple angles between fibers. We have developed a technique for preparation of three dimensional fibrillar scaffolds with where the fiber diameters and the angles between adjacent fiber layers could be precisely controlled. Using the agarose droplet method we were able to make accurate determinations of the dependence of the migration speed, focal adhesion distribution, and nuclear deformation on the fiber diameter, fiber spacing, and angle between adjacent fiber layers. We found that on oriented single fiber layers, whose diameters exceeded 1 μm, large focal adhesion complexes formed in a linear arrangement along the fiber axis and cell motion was highly correlated. On multi layered scaffolds most of the focal adhesion sites reformed at the junction points and the migration speed was determined by the angle between adjacent fiber layers, which followed a parabolic function with a minimum at 30°. On these surfaces we observed a 25% increase in the number of focal adhesion points and a similar decrease in the degree of nuclear deformation, both phenomena associated with decreased mobility. These results underscore the importance of substrate morphology on the en-mass migration dynamics. STATEMENT OF SIGNIFICANCE En-mass fibroblast migration is an essential component of the wound healing process which can determine rate and scar formation. Yet, most publications on this topic have focused on single cell functions. Here we describe a new apparatus where we designed three dimensional fibrillar scaffolds with well controlled angles between junction points and highly oriented fiber geometries. We show that the motion of fibroblasts undergoing en-mass migration on these scaffolds can be controlled by the substrate topography. Significant differences in cell morphology and focal adhesions was found to exist between cells migrating on flat versus fibrillar scaffolds where the migration speed was found to be a function of the angle between fibers, the fiber diameter, and the distance between fibers.
Collapse
Affiliation(s)
- Sisi Qin
- Materials Sciences and Engineering Department, Stony Brook University, Stony Brook, NY, USA
| | - Richard A F Clark
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Miriam H Rafailovich
- Materials Sciences and Engineering Department, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
40
|
Schaub NJ, Le Beux C, Miao J, Linhardt RJ, Alauzun JG, Laurencin D, Gilbert RJ. The Effect of Surface Modification of Aligned Poly-L-Lactic Acid Electrospun Fibers on Fiber Degradation and Neurite Extension. PLoS One 2015; 10:e0136780. [PMID: 26340351 PMCID: PMC4560380 DOI: 10.1371/journal.pone.0136780] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/07/2015] [Indexed: 11/18/2022] Open
Abstract
The surface of aligned, electrospun poly-L-lactic acid (PLLA) fibers was chemically modified to determine if surface chemistry and hydrophilicity could improve neurite extension from chick dorsal root ganglia. Specifically, diethylenetriamine (DTA, for amine functionalization), 2-(2-aminoethoxy)ethanol (AEO, for alcohol functionalization), or GRGDS (cell adhesion peptide) were covalently attached to the surface of electrospun fibers. Water contact angle measurements revealed that surface modification of electrospun fibers significantly improved fiber hydrophilicity compared to unmodified fibers (p < 0.05). Scanning electron microscopy (SEM) of fibers revealed that surface modification changed fiber topography modestly, with DTA modified fibers displaying the roughest surface structure. Degradation of chemically modified fibers revealed no change in fiber diameter in any group over a period of seven days. Unexpectedly, neurites from chick DRG were longest on fibers without surface modification (1651 ± 488 μm) and fibers containing GRGDS (1560 ± 107 μm). Fibers modified with oxygen plasma (1240 ± 143 μm) or DTA (1118 ± 82 μm) produced shorter neurites than the GRGDS or unmodified fibers, but were not statistically shorter than unmodified and GRGDS modified fibers. Fibers modified with AEO (844 ± 151 μm) were significantly shorter than unmodified and GRGDS modified fibers (p<0.05). Based on these results, we conclude that fiber hydrophilic enhancement alone on electrospun PLLA fibers does not enhance neurite outgrowth. Further work must be conducted to better understand why neurite extension was not improved on more hydrophilic fibers, but the results presented here do not recommend hydrophilic surface modification for the purpose of improving neurite extension unless a bioactive ligand is used.
Collapse
Affiliation(s)
- Nicholas J. Schaub
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180–3590, United States of America
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180–3590, United States of America
| | - Clémentine Le Beux
- Institut Charles Gerhardt de Montpellier, UMR 5253, CNRS-UM-ENSCM, Université de Montpellier, CC 1701, Place E. Bataillon, F-34095 Montpellier cedex 05, France
| | - Jianjun Miao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180–3590, United States of America
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY, 12180–3590, United States of America
| | - Robert J. Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180–3590, United States of America
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180–3590, United States of America
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY, 12180–3590, United States of America
- Department of Biology, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY, 12180–3590, United States of America
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180–3590, United States of America
| | - Johan G. Alauzun
- Institut Charles Gerhardt de Montpellier, UMR 5253, CNRS-UM-ENSCM, Université de Montpellier, CC 1701, Place E. Bataillon, F-34095 Montpellier cedex 05, France
| | - Danielle Laurencin
- Institut Charles Gerhardt de Montpellier, UMR 5253, CNRS-UM-ENSCM, Université de Montpellier, CC 1701, Place E. Bataillon, F-34095 Montpellier cedex 05, France
| | - Ryan J. Gilbert
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180–3590, United States of America
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180–3590, United States of America
| |
Collapse
|
41
|
Pelipenko J, Kocbek P, Kristl J. Critical attributes of nanofibers: Preparation, drug loading, and tissue regeneration. Int J Pharm 2015; 484:57-74. [DOI: 10.1016/j.ijpharm.2015.02.043] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/16/2015] [Accepted: 02/16/2015] [Indexed: 12/13/2022]
|
42
|
Cardwell RD, Dahlgren LA, Goldstein AS. Electrospun fibre diameter, not alignment, affects mesenchymal stem cell differentiation into the tendon/ligament lineage. J Tissue Eng Regen Med 2014; 8:937-45. [PMID: 23038413 DOI: 10.1002/term.1589] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/13/2012] [Accepted: 07/05/2012] [Indexed: 12/30/2022]
Abstract
Efforts to develop engineered tendons and ligaments have focused on the use of a biomaterial scaffold and a stem cell source. However, the ideal scaffold microenvironment to promote stem cell differentiation and development of organized extracellular matrix is unknown. Through electrospinning, fibre scaffolds can be designed with tailorable architectures to mimic the intended tissue. In this study, the effects of fibre diameter and orientation were examined by electrospinning thin mats, consisting of small (< 1 µm), medium (1-2 µm) or large (> 2 µm) diameter fibres with either random or aligned fibre orientation. C3H10T1/2 model stem cells were cultured on the six different electrospun mats, as well as smooth spin-coated films, and the morphology, growth and expression of tendon/ligament genes were evaluated. The results demonstrated that fibre diameter affects cellular behaviour more significantly than fibre alignment. Initially, cell density was greater on the small fibre diameter mats, but similar cell densities were found on all mats after an additional week in culture. After 2 weeks, gene expression of collagen 1α1 and decorin was increased on all mats compared to films. Expression of the tendon/ligament transcription factor scleraxis was suppressed on all electrospun mats relative to spin-coated films, but expression on the large-diameter fibre mats was consistently greater than on the medium-diameter fibre mats. These results suggest that larger-diameter fibres (e.g. > 2 µm) may be more suitable for in vitro development of a tendon/ligament tissue.
Collapse
Affiliation(s)
- Robyn D Cardwell
- School of Biomedical Engineering and Sciences and Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | | |
Collapse
|
43
|
Mechanical boundary conditions bias fibroblast invasion in a collagen-fibrin wound model. Biophys J 2014; 106:932-43. [PMID: 24559996 DOI: 10.1016/j.bpj.2013.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/17/2013] [Accepted: 12/02/2013] [Indexed: 11/22/2022] Open
Abstract
Because fibroblasts deposit the collagen matrix that determines the mechanical integrity of scar tissue, altering fibroblast invasion could alter wound healing outcomes. Anisotropic mechanical boundary conditions (restraint, stretch, or tension) could affect the rate of fibroblast invasion, but their importance relative to the prototypical drivers of fibroblast infiltration during wound healing--cell and chemokine concentration gradients--is unknown. We tested whether anisotropic mechanical boundary conditions affected the directionality and speed of fibroblasts migrating into a three-dimensional model wound, which could simultaneously expose fibroblasts to mechanical, structural, steric, and chemical guidance cues. We created fibrin-filled slits in fibroblast-populated collagen gels and applied uniaxial mechanical restraint along the short or long axis of the fibrin wounds. Anisotropic mechanical conditions increased the efficiency of fibroblast invasion by guiding fibroblasts without increasing their migration speed. The migration behavior could be modeled as a biased random walk, where the bias due to multiple guidance cues was accounted for in the shape of a displacement orientation probability distribution. Taken together, modeling and experiments suggested an effect of strain anisotropy, rather than strain-induced fiber alignment, on fibroblast invasion.
Collapse
|
44
|
McMurtrey RJ. Patterned and functionalized nanofiber scaffolds in three-dimensional hydrogel constructs enhance neurite outgrowth and directional control. J Neural Eng 2014; 11:066009. [PMID: 25358624 DOI: 10.1088/1741-2560/11/6/066009] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Neural tissue engineering holds incredible potential to restore functional capabilities to damaged neural tissue. It was hypothesized that patterned and functionalized nanofiber scaffolds could control neurite direction and enhance neurite outgrowth. APPROACH A method of creating aligned electrospun nanofibers was implemented and fiber characteristics were analyzed using environmental scanning electron microscopy. Nanofibers were composed of polycaprolactone (PCL) polymer, PCL mixed with gelatin, or PCL with a laminin coating. Three-dimensional hydrogels were then integrated with embedded aligned nanofibers to support neuronal cell cultures. Microscopic images were captured at high-resolution in single and multi-focal planes with eGFP-expressing neuronal SH-SY5Y cells in a fluorescent channel and nanofiber scaffolding in another channel. Neuronal morphology and neurite tracking of nanofibers were then analyzed in detail. MAIN RESULTS Aligned nanofibers were shown to enable significant control over the direction of neurite outgrowth in both two-dimensional (2D) and three-dimensional (3D) neuronal cultures. Laminin-functionalized nanofibers in 3D hyaluronic acid (HA) hydrogels enabled significant alignment of neurites with nanofibers, enabled significant neurite tracking of nanofibers, and significantly increased the distance over which neurites could extend. Specifically, the average length of neurites per cell in 3D HA constructs with laminin-functionalized nanofibers increased by 66% compared to the same laminin fibers on 2D laminin surfaces, increased by 59% compared to 2D laminin-coated surface without fibers, and increased by 1052% compared to HA constructs without fibers. Laminin functionalization of fibers also doubled average neurite length over plain PCL fibers in the same 3D HA constructs. In addition, neurites also demonstrated tracking directly along the fibers, with 66% of neurite lengths directly tracking laminin-coated fibers in 3D HA constructs, which was a 65% relative increase in neurite tracking compared to plain PCL fibers in the same 3D HA constructs and a 213% relative increase over laminin-coated fibers on 2D laminin-coated surfaces. SIGNIFICANCE This work demonstrates the ability to create unique 3D neural tissue constructs using a combined system of hydrogel and nanofiber scaffolding. Importantly, patterned and biofunctionalized nanofiber scaffolds that can control direction and increase length of neurite outgrowth in three-dimensions hold much potential for neural tissue engineering. This approach offers advancements in the development of implantable neural tissue constructs that enable control of neural development and reproduction of neuroanatomical pathways, with the ultimate goal being the achievement of functional neural regeneration.
Collapse
Affiliation(s)
- Richard J McMurtrey
- Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK. Institute of Neural Regeneration and Tissue Engineering, Highland, UT 84003, US
| |
Collapse
|
45
|
Delaine-Smith RM, Green NH, Matcher SJ, MacNeil S, Reilly GC. Monitoring fibrous scaffold guidance of three-dimensional collagen organisation using minimally-invasive second harmonic generation. PLoS One 2014; 9:e89761. [PMID: 24587017 PMCID: PMC3938545 DOI: 10.1371/journal.pone.0089761] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 01/24/2014] [Indexed: 11/19/2022] Open
Abstract
The biological and mechanical function of connective tissues is largely determined by controlled cellular alignment and therefore it seems appropriate that tissue-engineered constructs should be architecturally similar to the in vivo tissue targeted for repair or replacement. Collagen organisation dictates the tensile properties of most tissues and so monitoring the deposition of cell-secreted collagen as the construct develops is essential for understanding tissue formation. In this study, electrospun fibres with a random or high degree of orientation, mimicking two types of tissue architecture found in the body, were used to culture human fibroblasts for controlling cell alignment. The minimally-invasive technique of second harmonic generation was used with the aim of monitoring and profiling the deposition and organisation of collagen at different construct depths over time while construct mechanical properties were also determined over the culture period. It was seen that scaffold fibre organisation affected cell migration and orientation up to 21 days which in turn had an effect on collagen organisation. Collagen in random fibrous constructs was deposited in alternating configurations at different depths however a high degree of organisation was observed throughout aligned fibrous constructs orientated in the scaffold fibre direction. Three-dimensional second harmonic generation images showed that deposited collagen was more uniformly distributed in random constructs but aligned constructs were more organised and had higher intensities. The tensile properties of all constructs increased with increasing collagen deposition and were ultimately dictated by collagen organisation. This study highlights the importance of scaffold architecture for controlling the development of well-organised tissue engineered constructs and the usefulness of second harmonic generation imaging for monitoring collagen maturation in a minimally invasive manner.
Collapse
Affiliation(s)
- Robin M. Delaine-Smith
- Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Nicola H. Green
- Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Stephen J. Matcher
- Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Sheila MacNeil
- Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Gwendolen C. Reilly
- Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
- INSIGNEO Institute for in silico Medicine, Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
46
|
Blackstone BN, Palmer AF, Rilo HR, Powell HM. Scaffold architecture controls insulinoma clustering, viability, and insulin production. Tissue Eng Part A 2014; 20:1784-93. [PMID: 24410263 DOI: 10.1089/ten.tea.2013.0107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recently, in vitro diagnostic tools have shifted focus toward personalized medicine by incorporating patient cells into traditional test beds. These cell-based platforms commonly utilize two-dimensional substrates that lack the ability to support three-dimensional cell structures seen in vivo. As monolayer cell cultures have previously been shown to function differently than cells in vivo, the results of such in vitro tests may not accurately reflect cell response in vivo. It is therefore of interest to determine the relationships between substrate architecture, cell structure, and cell function in 3D cell-based platforms. To investigate the effect of substrate architecture on insulinoma organization and function, insulinomas were seeded onto 2D gelatin substrates and 3D fibrous gelatin scaffolds with three distinct fiber diameters and fiber densities. Cell viability and clustering was assessed at culture days 3, 5, and 7 with baseline insulin secretion and glucose-stimulated insulin production measured at day 7. Small, closely spaced gelatin fibers promoted the formation of large, rounded insulinoma clusters, whereas monolayer organization and large fibers prevented cell clustering and reduced glucose-stimulated insulin production. Taken together, these data show that scaffold properties can be used to control the organization and function of insulin-producing cells and may be useful as a 3D test bed for diabetes drug development.
Collapse
Affiliation(s)
- Britani N Blackstone
- 1 Department of Biomedical Engineering, The Ohio State University , Columbus, Ohio
| | | | | | | |
Collapse
|
47
|
Li L, Li R, Li M, Rong Z, Fang T. Theoretical selection of solvent for production of electrospun PMMA fibers with wrinkled surfaces. RSC Adv 2014. [DOI: 10.1039/c4ra03657c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
48
|
Hua K, Carlsson DO, Ålander E, Lindström T, Strømme M, Mihranyan A, Ferraz N. Translational study between structure and biological response of nanocellulose from wood and green algae. RSC Adv 2014. [DOI: 10.1039/c3ra45553j] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
49
|
Schaub NJ, Britton T, Rajachar R, Gilbert RJ. Engineered nanotopography on electrospun PLLA microfibers modifies RAW 264.7 cell response. ACS APPLIED MATERIALS & INTERFACES 2013; 5:10173-10184. [PMID: 24063250 DOI: 10.1021/am402827g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this study, we created a new method of electrospinning capable of controlling the surface structure of individual fibers (fiber nanotopography). The nanotopographical features were created by a phase separation in the fibers as they formed. To control the phase separation, a nonsolvent (a chemical insoluble with the polymer) was added to an electrospinning solution containing poly-l-lactic acid (PLLA) and chloroform. The nanotopography of electrospun fibers in the PLLA/chloroform solution was smooth. However, adding a small weight (<2% of total solution) of a single nonsolvent (water, ethanol, or dimethyl sulfoxide) generated nanoscale depressions on the surface of the fibers unique to the nonsolvent added. Additionally, nanoscale depressions on electrospun fibers were observed to change with dimethyl sulfoxide (DMSO) concentration in the PLLA/chloroform solution. A nonlinear relationship was found between the concentration of DMSO and the number and size of nanotopographical features. The surface depressions did not alter the hydrophobicity of the scaffold or degradation of the scaffold over a two-day period. To determine if fiber nanotopography altered cell behavior, macrophages (RAW 264.7 cells) were cultured on fibers with a smooth nanotopography or fibers with nanoscale depressions. RAW 264.7 cells spread less on fibers with nanoscale depressions than fibers with a smooth topography (p<0.05), but there were no differences between groups with regard to cell metabolism or the number of adherent cells. The results of this study demonstrate the necessity to consider the nanotopography of individual fibers as these features may affect cellular behavior. More importantly, we demonstrate a versatile method of controlling electrospun fiber nanotopography.
Collapse
Affiliation(s)
- Nicholas J Schaub
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180-3590, United States
| | | | | | | |
Collapse
|
50
|
Ingavle GC, Leach JK. Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:277-93. [PMID: 24004443 DOI: 10.1089/ten.teb.2013.0276] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polymeric nanofibers have potential as tissue engineering scaffolds, as they mimic the nanoscale properties and structural characteristics of native extracellular matrix (ECM). Nanofibers composed of natural and synthetic polymers, biomimetic composites, ceramics, and metals have been fabricated by electrospinning for various tissue engineering applications. The inherent advantages of electrospinning nanofibers include the generation of substrata with high surface area-to-volume ratios, the capacity to precisely control material and mechanical properties, and a tendency for cellular in-growth due to interconnectivity within the pores. Furthermore, the electrospinning process affords the opportunity to engineer scaffolds with micro- to nanoscale topography similar to the natural ECM. This review describes the fundamental aspects of the electrospinning process when applied to spinnable natural and synthetic polymers; particularly, those parameters that influence fiber geometry, morphology, mesh porosity, and scaffold mechanical properties. We describe cellular responses to fiber morphology achieved by varying processing parameters and highlight successful applications of electrospun nanofibrous scaffolds when used to tissue engineer bone, skin, and vascular grafts.
Collapse
Affiliation(s)
- Ganesh C Ingavle
- 1 Department of Biomedical Engineering, University of California Davis , Davis, California
| | | |
Collapse
|