1
|
Cardoso BD, Fernandes DEM, Amorim CO, Amaral VS, Coutinho PJG, Rodrigues ARO, Castanheira EMS. Magnetoliposomes with Calcium-Doped Magnesium Ferrites Anchored in the Lipid Surface for Enhanced DOX Release. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2597. [PMID: 37764626 PMCID: PMC10535675 DOI: 10.3390/nano13182597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Nanotechnology has provided a new insight into cancer treatment by enabling the development of nanocarriers for the encapsulation, transport, and controlled release of antitumor drugs at the target site. Among these nanocarriers, magnetic nanosystems have gained prominence. This work presents the design, development, and characterization of magnetoliposomes (MLs), wherein superparamagnetic nanoparticles are coupled to the lipid surface. For this purpose, dimercaptosuccinic acid (DMSA)-functionalized Ca0.25Mg0.75Fe2O4 superparamagnetic nanoparticles were prepared for the first time. The magnetic nanoparticles demonstrated a cubic shape with an average size of 13.36 nm. Furthermore, their potential for photothermal hyperthermia was evaluated using 4 mg/mL, 2 mg/mL, and 1 mg/mL concentrations of NPs@DMSA, which demonstrated a maximum temperature variation of 20.4 °C, 11.4 °C, and 7.3 °C, respectively, during a 30 min NIR-laser irradiation. Subsequently, these nanoparticles were coupled to the lipid surface of DPPC/DSPC/CHEMS and DPPC/DSPC/CHEMS/DSPE-PEG-based MLs using a new synthesis methodology, exhibiting average sizes of 153 ± 8 nm and 136 ± 2 nm, respectively. Doxorubicin (DOX) was encapsulated with high efficiency, achieving 96% ± 2% encapsulation in non-PEGylated MLs and 98.0% ± 0.6% in stealth MLs. Finally, drug release assays of the DOX-loaded DPPC/DSPC/CHEMS MLs were performed under different conditions of temperature (37 °C and 42 °C) and pH (5.5 and 7.4), simulating physiological and therapeutic conditions. The results revealed a higher release rate at 42 °C and acidic pH. Release rates significantly increased when introducing the stimulus of laser-induced photothermal hyperthermia at 808 nm (1 W/cm2) for 5 min. After 48 h of testing, at pH 5.5, 67.5% ± 0.5% of DOX was released, while at pH 7.4, only a modest release of 27.0% ± 0.1% was achieved. The results demonstrate the potential of the MLs developed in this work to the controlled release of DOX under NIR-laser stimulation and acidic environments and to maintain a sustained and reduced release profile in physiological environments with pH 7.4.
Collapse
Affiliation(s)
- Beatriz D. Cardoso
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, 4710-057 Braga, Portugal (D.E.M.F.)
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
- CMEMS—UMinho, Universidade do Minho, DEI, 4800-058 Guimarães, Portugal
- LABBELS—Associate Laboratory, 4800-058 Guimarães, Portugal
| | - Diana E. M. Fernandes
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, 4710-057 Braga, Portugal (D.E.M.F.)
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
| | - Carlos O. Amorim
- Physics Department and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Vítor S. Amaral
- Physics Department and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Paulo J. G. Coutinho
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, 4710-057 Braga, Portugal (D.E.M.F.)
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
| | - Ana Rita O. Rodrigues
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, 4710-057 Braga, Portugal (D.E.M.F.)
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
| | - Elisabete M. S. Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, 4710-057 Braga, Portugal (D.E.M.F.)
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
| |
Collapse
|
2
|
Healy S, Bakuzis AF, Goodwill PW, Attaluri A, Bulte JWM, Ivkov R. Clinical magnetic hyperthermia requires integrated magnetic particle imaging. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1779. [PMID: 35238181 PMCID: PMC9107505 DOI: 10.1002/wnan.1779] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/29/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022]
Abstract
Magnetic nanomaterials that respond to clinical magnetic devices have significant potential as cancer nanotheranostics. The complexities of their physics, however, introduce challenges for these applications. Hyperthermia is a heat‐based cancer therapy that improves treatment outcomes and patient survival when controlled energy delivery is combined with accurate thermometry. To date, few technologies have achieved the needed evolution for the demands of the clinic. Magnetic fluid hyperthermia (MFH) offers this potential, but to be successful it requires particle‐imaging technology that provides real‐time thermometry. Presently, the only technology having the potential to meet these requirements is magnetic particle imaging (MPI), for which a proof‐of‐principle demonstration with MFH has been achieved. Successful clinical translation and adoption of integrated MPI/MFH technology will depend on successful resolution of the technological challenges discussed. This article is categorized under:Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging
Collapse
Affiliation(s)
- Sean Healy
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andris F Bakuzis
- Instituto de Física and CNanoMed, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Anilchandra Attaluri
- Department of Mechanical Engineering, Pennsylvania State University, Harrisburg, Harrisburg, Pennsylvania, USA
| | - Jeff W M Bulte
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Harvell-Smith S, Tung LD, Thanh NTK. Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality. NANOSCALE 2022; 14:3658-3697. [PMID: 35080544 DOI: 10.1039/d1nr05670k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging tracer-based modality that enables real-time three-dimensional imaging of the non-linear magnetisation produced by superparamagnetic iron oxide nanoparticles (SPIONs), in the presence of an external oscillating magnetic field. As a technique, it produces highly sensitive radiation-free tomographic images with absolute quantitation. Coupled with a high contrast, as well as zero signal attenuation at-depth, there are essentially no limitations to where that can be imaged within the body. These characteristics enable various biomedical applications of clinical interest. In the opening sections of this review, the principles of image generation are introduced, along with a detailed comparison of the fundamental properties of this technique with other common imaging modalities. The main feature is a presentation on the up-to-date literature for the development of SPIONs tailored for improved imaging performance, and developments in the current and promising biomedical applications of this emerging technique, with a specific focus on theranostics, cell tracking and perfusion imaging. Finally, we will discuss recent progress in the clinical translation of MPI. As signal detection in MPI is almost entirely dependent on the properties of the SPION employed, this work emphasises the importance of tailoring the synthetic process to produce SPIONs demonstrating specific properties and how this impacts imaging in particular applications and MPI's overall performance.
Collapse
Affiliation(s)
- Stanley Harvell-Smith
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Le Duc Tung
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| |
Collapse
|
4
|
Kafash Hoshiar A, Dadras Javan S, Le TA, Hairi Yazdi MR, Yoon J. Studies on Aggregated Nanoparticles Steering during Deep Brain Membrane Crossing. NANOMATERIALS 2021; 11:nano11102754. [PMID: 34685194 PMCID: PMC8538819 DOI: 10.3390/nano11102754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
Many central nervous system (CNS) diseases, such as Alzheimer's disease (AD), affect the deep brain region, which hinders their effective treatment. The hippocampus, a deep brain area critical for learning and memory, is especially vulnerable to damage during early stages of AD. Magnetic drug targeting has shown high potential in delivering drugs to a targeted disease site effectively by applying a strong electromagnetic force. This study illustrates a nanotechnology-based scheme for delivering magnetic nanoparticles (MNP) to the deep brain region. First, we developed a mathematical model and a molecular dynamic simulation to analyze membrane crossing, and to study the effects of particle size, aggregation, and crossing velocities. Then, using in vitro experiments, we studied effective parameters in aggregation. We have also studied the process and environmental parameters. We have demonstrated that aggregation size can be controlled when particles are subjected to external electromagnetic fields. Our simulations and experimental studies can be used for capturing MNPs in brain, the transport of particles across the intact BBB and deep region targeting. These results are in line with previous in vivo studies and establish an effective strategy for deep brain region targeting with drug loaded MNPs through the application of an external electromagnetic field.
Collapse
Affiliation(s)
- Ali Kafash Hoshiar
- School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK
- Correspondence: (A.K.H.); (J.Y.); Tel.: +44-12-0687-2060 (A.K.H.); +82-62-715-5332 (J.Y.)
| | - Shahriar Dadras Javan
- School of Mechanical Engineering, University of Tehran, Tehran 1439955961, Iran; (S.D.J.); (M.R.H.Y.)
| | - Tuan-Anh Le
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea;
| | - Mohammad Reza Hairi Yazdi
- School of Mechanical Engineering, University of Tehran, Tehran 1439955961, Iran; (S.D.J.); (M.R.H.Y.)
| | - Jungwon Yoon
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea;
- Correspondence: (A.K.H.); (J.Y.); Tel.: +44-12-0687-2060 (A.K.H.); +82-62-715-5332 (J.Y.)
| |
Collapse
|
5
|
Fernández-Álvarez F, Caro C, García-García G, García-Martín ML, Arias JL. Engineering of stealth (maghemite/PLGA)/chitosan (core/shell)/shell nanocomposites with potential applications for combined MRI and hyperthermia against cancer. J Mater Chem B 2021; 9:4963-4980. [PMID: 34114575 DOI: 10.1039/d1tb00354b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
(Maghemite/poly(d,l-lactide-co-glycolide))/chitosan (core/shell)/shell nanoparticles have been prepared reproducibly by nanoprecipitation solvent evaporation plus coacervation (production performance ≈ 45%, average size ≈ 325 nm). Transmission electron microscopy, energy dispersive X-ray spectroscopy, electrophoretic determinations, and X-ray diffraction patterns demonstrated the satisfactory embedment of iron oxide nanocores within the solid polymer matrix and the formation of an external shell of chitosan in the nanostructure. The adequate magnetic responsiveness of the nanocomposites was characterized in vitro by hysteresis cycle determinations and by visualization of the nanosystem under the influence of a 0.4 T permanent magnet. Safety and biocompatibility of the (core/shell)/shell particles were based on in vitro haemocompatibility studies and cytotoxicity tests against HFF-1 human foreskin fibroblasts and on ex vivo toxicity assessments on tissue samples from Balb/c mice. Transversal relaxivities, determined in vitro at a low magnetic field of 1.44 T, demonstrated their capability as T2 contrast agents for magnetic resonance imaging, being comparable to that of some iron oxide-based contrast agents. Heating properties were evaluated in a high frequency alternating electromagnetic gradient: a constant maximum temperature of ≈46 °C was generated within ≈50 min, while antitumour hyperthermia tests on T-84 colonic adenocarcinoma cells proved the relevant decrease in cell viability (to ≈ 39%) when treated with the nanosystem under the influence of that electromagnetic field. Finally, in vivo magnetic resonance imaging studies and ex vivo histology determinations of iron deposits postulated the efficacy of chitosan to provide long-circulating capabilities to the nanocomposites, retarding nanoparticle recognition by the mononuclear phagocyte system. To our knowledge, this is the first study describing such a type of biocompatible and long-circulating nanoplatform with promising theranostic applications (biomedical imaging and hyperthermia) against cancer.
Collapse
Affiliation(s)
- Fátima Fernández-Álvarez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain.
| | | | | | | | | |
Collapse
|
6
|
Shasha C, Krishnan KM. Nonequilibrium Dynamics of Magnetic Nanoparticles with Applications in Biomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e1904131. [PMID: 32557879 PMCID: PMC7746587 DOI: 10.1002/adma.201904131] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/10/2019] [Accepted: 02/24/2020] [Indexed: 05/02/2023]
Abstract
Magnetic nanoparticles are currently the focus of investigation for a wide range of biomedical applications that fall into the categories of imaging, sensing, and therapeutics. A deep understanding of nanoparticle magnetization dynamics is fundamental to optimization and further development of these applications. Here, a summary of theoretical models of nanoparticle dynamics is presented, and computational nonequilibrium models are outlined, which currently represent the most sophisticated methods for modeling nanoparticle dynamics. Nanoparticle magnetization response is explored in depth; the effect of applied field amplitude, as well as nanoparticle size, on the resulting rotation mechanism and timescale is investigated. Two applications in biomedicine, magnetic particle imaging and magnetic fluid hyperthermia, are highlighted.
Collapse
Affiliation(s)
- Carolyn Shasha
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Kannan M Krishnan
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
- Department of Materials Sciences & Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
7
|
Nguyen LH, Phong PT, Nam PH, Manh DH, Thanh NTK, Tung LD, Phuc NX. The Role of Anisotropy in Distinguishing Domination of Néel or Brownian Relaxation Contribution to Magnetic Inductive Heating: Orientations for Biomedical Applications. MATERIALS 2021; 14:ma14081875. [PMID: 33918815 PMCID: PMC8070233 DOI: 10.3390/ma14081875] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 11/18/2022]
Abstract
Magnetic inductive heating (MIH) has been a topic of great interest because of its potential applications, especially in biomedicine. In this paper, the parameters characteristic for magnetic inductive heating power including maximum specific loss power (SLPmax), optimal nanoparticle diameter (Dc) and its width (ΔDc) are considered as being dependent on magnetic nanoparticle anisotropy (K). The calculated results suggest 3 different Néel-domination (N), overlapped Néel/Brownian (NB), and Brownian-domination (B) regions. The transition from NB- to B-region changes abruptly around critical anisotropy Kc. For magnetic nanoparticles with low K (K < Kc), the feature of SLP peaks is determined by a high value of Dc and small ΔDc while those of the high K (K > Kc) are opposite. The decreases of the SLPmax when increasing polydispersity and viscosity are characterized by different rates of d(SLPmax)/dσ and d(SLPmax)/dη depending on each domination region. The critical anisotropy Kc varies with the frequency of an alternating magnetic field. A possibility to improve heating power via increasing anisotropy is analyzed and deduced for Fe3O4 magnetic nanoparticles. For MIH application, the monodispersity requirement for magnetic nanoparticles in the B-region is less stringent, while materials in the N- and/or NB-regions are much more favorable in high viscous media. Experimental results on viscosity dependence of SLP for CoFe2O4 and MnFe2O4 ferrofluids are in good agreement with the calculations. These results indicated that magnetic nanoparticles in the N- and/or NB-regions are in general better for application in elevated viscosity media.
Collapse
Affiliation(s)
- Luu Huu Nguyen
- Laboratory of Magnetism and Magnetic Materials, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Correspondence: (L.H.N.); (N.T.K.T.); (L.D.T.)
| | - Pham Thanh Phong
- Laboratory of Magnetism and Magnetic Materials, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Pham Hong Nam
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Ha Noi 100000, Vietnam; (P.H.N.); (D.H.M.)
- Graduate University of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Ha Noi 100000, Vietnam
| | - Do Hung Manh
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Ha Noi 100000, Vietnam; (P.H.N.); (D.H.M.)
- Graduate University of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Ha Noi 100000, Vietnam
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
- Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
- Correspondence: (L.H.N.); (N.T.K.T.); (L.D.T.)
| | - Le Duc Tung
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
- Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
- Correspondence: (L.H.N.); (N.T.K.T.); (L.D.T.)
| | - Nguyen Xuan Phuc
- Duy Tan University, K7/25 Quang Trung Street, Da Nang City 550000, Vietnam;
| |
Collapse
|
8
|
Shalaby T, Gawish A, Hamad H. A Promising Platform of Magnetic Nanofluid and Ultrasonic Treatment for Cancer Hyperthermia Therapy: In Vitro and in Vivo Study. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:651-665. [PMID: 33353784 DOI: 10.1016/j.ultrasmedbio.2020.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 05/27/2023]
Abstract
Localized hyperthermia is a very promising cancer therapy approach especially when stimulated by the exceptional properties of iron oxide magnetic nanoparticles (MNPs). This approach is a highly site-specific method for localized heating of bodily tissue without any harmful side effects that could revolutionize the practice of cancer therapy. The main objective of this study was to evaluate the cancer cell-destroying capability of MNPs in combination with ultrasound treatment as an innovative sonomagnetic cancer therapy. Magnetic nanofluids (MNFs) were synthesized by co-precipitation/sonochemical techniques in an aqueous medium without any surfactant and/or capping agent. The physicochemical characteristics of the prepared MNFs were investigated with scanning electron microscopy, transmission electron microscopy, X-ray diffractometry, Fourier transform infrared and vibrating sample magnetometry. The MNFs was used as a mediator and sonosensitizer to destroy tumor tissue when irradiated by ultrasound waves. The antitumor efficiency of MNFs in combination with pulsed ultrasound (1.5 W/cm2, 1 MHz) was evaluated in vitro and in vivo. In vitro efficacy was estimated by determining the cell viability of Ehrlich ascites carcinoma cells. For in vivo experiments, female mice were inoculated subcutaneously with Ehrlich carcinoma cells to establish solid Ehrlich carcinoma. The cytotoxic concentration of MNFs (400 µg/mL) was injected intratumorally and exposed to pulsed ultrasound (1.5 W/cm2, 1 MHz). The cytotoxic effect was determined in terms of tumor growth rate, apoptosis and necrosis. Our results revealed that MNFs in the presence of pulsed ultrasound cause a significant increase in the cytotoxicity effect on tumor cells. This study illustrates the high efficiency of cancer therapy as assisted by both ultrasound and magnetic nanofluid.
Collapse
Affiliation(s)
- Thanaa Shalaby
- Medical Biophysics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt; Training Nanotechnology Center, Alexandria University, Alexandria, Egypt
| | - Ahmed Gawish
- Radiation Oncology Department, University Hospital Essen, Essen, Germany
| | - Hesham Hamad
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt.
| |
Collapse
|
9
|
Lu Y, Rivera-Rodriguez A, Tay ZW, Hensley D, Fung KLB, Colson C, Saayujya C, Huynh Q, Kabuli L, Fellows B, Chandrasekharan P, Rinaldi C, Conolly S. Combining magnetic particle imaging and magnetic fluid hyperthermia for localized and image-guided treatment. Int J Hyperthermia 2021; 37:141-154. [PMID: 33426994 DOI: 10.1080/02656736.2020.1853252] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Magnetic fluid hyperthermia (MFH) has been widely investigated as a treatment tool for cancer and other diseases. However, focusing traditional MFH to a tumor deep in the body is not feasible because the in vivo wavelength of 300 kHz very low frequency (VLF) excitation fields is longer than 100 m. Recently we demonstrated that millimeter-precision localized heating can be achieved by combining magnetic particle imaging (MPI) with MFH. In principle, real-time MPI imaging can also guide the location and dosing of MFH treatments. Hence, the combination of MPI imaging plus real time localized MPI-MFH could soon permit closed-loop high-resolution hyperthermia treatment. In this review, we will discuss the fundamentals of localized MFH (e.g. physics and biosafety limitations), hardware implementation, MPI real-time guidance, and new research directions on MPI-MFH. We will also discuss how the scale up to human-sized MPI-MFH scanners could proceed.
Collapse
Affiliation(s)
- Yao Lu
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Angelie Rivera-Rodriguez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Zhi Wei Tay
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | | | - K L Barry Fung
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Caylin Colson
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Chinmoy Saayujya
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Quincy Huynh
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Leyla Kabuli
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Benjamin Fellows
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | | | - Carlos Rinaldi
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.,Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Steven Conolly
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA.,Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| |
Collapse
|
10
|
Baki A, Löwa N, Remmo A, Wiekhorst F, Bleul R. Micromixer Synthesis Platform for a Tuneable Production of Magnetic Single-Core Iron Oxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1845. [PMID: 32942715 PMCID: PMC7560047 DOI: 10.3390/nano10091845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 01/11/2023]
Abstract
Micromixer technology is a novel approach to manufacture magnetic single-core iron oxide nanoparticles that offer huge potential for biomedical applications. This platform allows a continuous, scalable, and highly controllable synthesis of magnetic nanoparticles with biocompatible educts via aqueous synthesis route. Since each biomedical application requires specific physical and chemical properties, a comprehensive understanding of the synthesis mechanisms is not only mandatory to control the size and shape of desired nanoparticle systems but, above all, to obtain the envisaged magnetic particle characteristics. The accurate process control of the micromixer technology can be maintained by adjusting two parameters: the synthesis temperature and the residence time. To this end, we performed a systematic variation of these two control parameters synthesizing magnetic nanoparticle systems, which were analyzed afterward by structural (transmission electron microscopy and differential sedimentation centrifugation) and, especially, magnetic characterization methods (magnetic particle spectroscopy and AC susceptibility). Furthermore, we investigated the reproducibility of the microtechnological nanoparticle manufacturing process compared to batch preparation. Our characterization demonstrated the high magnetic quality of single-core iron oxide nanoparticles with core diameters in the range of 20 nm to 40 nm synthesized by micromixer technology. Moreover, we demonstrated the high capability of a newly developed benchtop magnetic particle spectroscopy device that directly monitored the magnetic properties of the magnetic nanoparticles with the highest sensitivity and millisecond temporal resolution during continuous micromixer synthesis.
Collapse
Affiliation(s)
- Abdulkader Baki
- Devision Energy and Chemical Technology, Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany
| | - Norbert Löwa
- Physikalisch-Technische Bundesanstalt, 8.2 Biosignals, Abbestraße 2-12, 10587 Berlin, Germany
| | - Amani Remmo
- Physikalisch-Technische Bundesanstalt, 8.2 Biosignals, Abbestraße 2-12, 10587 Berlin, Germany
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt, 8.2 Biosignals, Abbestraße 2-12, 10587 Berlin, Germany
| | - Regina Bleul
- Devision Energy and Chemical Technology, Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany
| |
Collapse
|
11
|
Vilas-Boas V, Carvalho F, Espiña B. Magnetic Hyperthermia for Cancer Treatment: Main Parameters Affecting the Outcome of In Vitro and In Vivo Studies. Molecules 2020; 25:E2874. [PMID: 32580417 PMCID: PMC7362219 DOI: 10.3390/molecules25122874] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/22/2022] Open
Abstract
Magnetic hyperthermia (MHT) is being investigated as a cancer treatment since the 1950s. Recent advancements in the field of nanotechnology have resulted in a notable increase in the number of MHT studies. Most of these studies explore MHT as a stand-alone treatment or as an adjuvant therapy in a preclinical context. However, despite all the scientific effort, only a minority of the MHT-devoted nanomaterials and approaches made it to clinical context. The outcome of an MHT experiment is largely influenced by a number of variables that should be considered when setting up new MHT studies. This review highlights and discusses the main parameters affecting the outcome of preclinical MHT, aiming to provide adequate assistance in the design of new, more efficient MHT studies.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (V.V.-B.); (F.C.)
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (V.V.-B.); (F.C.)
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
12
|
Ferreira M, Sousa J, Pais A, Vitorino C. The Role of Magnetic Nanoparticles in Cancer Nanotheranostics. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E266. [PMID: 31936128 PMCID: PMC7014348 DOI: 10.3390/ma13020266] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
Technological development is in constant progress in the oncological field. The search for new concepts and strategies for improving cancer diagnosis, treatment and outcomes constitutes a necessary and continuous process, aiming at more specificity, efficiency, safety and better quality of life of the patients throughout the treatment. Nanotechnology embraces these purposes, offering a wide armamentarium of nanosized systems with the potential to incorporate both diagnosis and therapeutic features, towards real-time monitoring of cancer treatment. Within the nanotechnology field, magnetic nanosystems stand out as complex and promising nanoparticles with magnetic properties, that enable the use of these constructs for magnetic resonance imaging and thermal therapy purposes. Additionally, magnetic nanoparticles can be tailored for increased specificity and reduced toxicity, and functionalized with contrast, targeting and therapeutic agents, revealing great potential as multifunctional nanoplatforms for application in cancer theranostics. This review aims at providing a comprehensive description of the current designs, characterization techniques, synthesis methods, and the role of magnetic nanoparticles as promising nanotheranostic agents. A critical appraisal of the impact, potentialities and challenges associated with each technology is also presented.
Collapse
Affiliation(s)
- Maria Ferreira
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (M.F.); (J.S.)
| | - João Sousa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (M.F.); (J.S.)
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Alberto Pais
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (M.F.); (J.S.)
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
- Centre for Neurosciences and Cell Biology (CNC), Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
13
|
Kotoulas A, Dendrinou-Samara C, Angelakeris M, Kalogirou O. The Effect of Polyol Composition on the Structural and Magnetic Properties of Magnetite Nanoparticles for Magnetic Particle Hyperthermia. MATERIALS 2019; 12:ma12172663. [PMID: 31438616 PMCID: PMC6747565 DOI: 10.3390/ma12172663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022]
Abstract
A study of the influence of polyols, with or without an additional reducing agent, on crystallites’ size and magnetic features in Fe3O4 nanoparticles and on their performance in magnetic particle hyperthermia is presented. Three different samples were synthesized by thermal decomposition of an iron precursor in the presence of NaBH4 in a polyol. So far, triethylene glycol (TrEG) and polyethylene glycol (PEG 1000 and PEG 8000) that exhibit different physical and chemical properties have been used in order to investigate the influence of the polyols on the composition and the size of the NPs. Additionally, the presence of a different reducing agent such as hydrazine, has been tested for comparison reasons in case of TrEG. Three more samples were prepared solvothermally by using the same polyols, which led to different crystallite sizes. The magnetic core of the nanoparticles was characterized, while the presence of the surfactant was studied qualitatively and quantitatively. Concerning the magnetic features, all samples present magnetic hysteresis including remanence and coercivity revealing that they are thermally blocked at room temperature. Finally, a study on the influence of the MNPs heating efficiency from their size and the field amplitude was accomplished. In our polyol process the main idea was to control the specific loss power (SLP) values by the nanoparticles’ size and consequently by the polyol itself.
Collapse
Affiliation(s)
- Anastasios Kotoulas
- Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | | | - Orestis Kalogirou
- Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
14
|
Tracking the Growth of Superparamagnetic Nanoparticles with an In-Situ Magnetic Particle Spectrometer (INSPECT). Sci Rep 2019; 9:10538. [PMID: 31332261 PMCID: PMC6646392 DOI: 10.1038/s41598-019-46882-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 07/02/2019] [Indexed: 12/03/2022] Open
Abstract
Magnetic Particle Spectroscopy (MPS) is a measurement technique to determine the magnetic properties of superparamagnetic iron oxide nanoparticles (SPIONs) in an oscillating magnetic field as applied in Magnetic Particle Imaging (MPI). State of the art MPS devices are solely capable of measuring the magnetization response of the SPIONs to an oscillatory magnetic excitation retrospectively, i.e. after the synthesis process. In this contribution, a novel in-situ magnetic particle spectrometer (INSPECT) is presented, which can be used to monitor the entire synthesis process from particle genesis via growth to the stable colloidal suspension of the nanoparticles in real time. The device is suitable for the use in a biochemistry environment. It has a chamber size of 72 mm such that a 100 ml reaction flask can be used for synthesis. For an alkaline-based precipitation, the change of magnetic properties of SPIONs during the nucleation and growth phase of the synthesis is demonstrated. The device is able to record the changes in the amplitude and phase spectra, and, in turn, the hysteresis. Hence, it is a powerful tool for an in-depth understanding of the nanoparticle formation dynamics during the synthesis process.
Collapse
|
15
|
Khanna L, Gupta G, Tripathi SK. Effect of size and silica coating on structural, magnetic as well as cytotoxicity properties of copper ferrite nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:552-566. [PMID: 30678942 DOI: 10.1016/j.msec.2018.12.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 09/05/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
Copper ferrite nanoparticles, synthesized by conventional sol-gel method were calcined at different temperatures. The magnetic, structural, morphological and cytotoxicity analyses of the uncalcined and calcined nanoparticles (NPs) were investigated and compared. Formation of tetragonal structure of CuFe2O4 NPs was observed in XRD patterns. On increasing the temperature, better crystallinity and increased crystallite size were also observed. In the FTIR spectra, bonds corresponding to CH, OH and carboxylate groups gradually disappeared with increasing temperature, while peak corresponding to FeO existed more prominently. NPs calcined at 300 °C (Cu3) exhibited the highest magnetic saturation and lowest retentivity, thereby indicating its superparamagnetic behaviour. Concentration-dependent cytotoxicity values were obtained by invitro MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a tetrazole) assay, Cell Titer assay and Cell Flow Cytometry with Propidium Iodide. NPs calcined at 300 °C, 500 °C and 700 °C exhibited non-toxicity at all the concentrations. Based on magnetic and biocompatibility analyses, Cu3 NPs were found to be the most suitable one to investigate the influence of silica coating on its surface. Presence of silica was confirmed by XRD pattern, FTIR spectrum, SEM and HRTEM micrographs as well as SAED pattern. In M-H curve, superparamagnetic behaviour of the CuFe2O4 core was retained but with reduced magnetic saturation due to magnetically dead layer of silica. An increase in cellular viability was witnessed in case of silica coated CuFe2O4 NPs as compared to uncoated NPs, thus reflecting on its enhanced biocompatibility. Nanosized, superparamagnetic and highly biocompatible characteristics make silica coated CuFe2O4 NPs a potential claimant for biomedical applications.
Collapse
Affiliation(s)
- Lavanya Khanna
- Department of Physics, Panjab University, Chandigarh 160014, India
| | - Garima Gupta
- Department of Physics, Panjab University, Chandigarh 160014, India
| | - S K Tripathi
- Department of Physics, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
16
|
Chen X, Cheng L, Li H, Barhoum A, Zhang Y, He X, Yang W, Bubakir MM, Chen H. Magnetic Nanofibers: Unique Properties, Fabrication Techniques, and Emerging Applications. ChemistrySelect 2018. [DOI: 10.1002/slct.201702480] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaoqing Chen
- College of Mechanical and Electrical Engineering; Beijing University of Chemical Technology; Beisanhuan East Road 15 Beijing 100029 P.R China Beijing
| | - Lisheng Cheng
- College of Mechanical and Electrical Engineering; Beijing University of Chemical Technology; Beisanhuan East Road 15 Beijing 100029 P.R China Beijing
- State Key Laboratory of Organic-Inorganic Composites; Beisanhuan East Road 15 Beijing 100029 P.R China
| | - Haoyi Li
- College of Mechanical and Electrical Engineering; Beijing University of Chemical Technology; Beisanhuan East Road 15 Beijing 100029 P.R China Beijing
- State Key Laboratory of Organic-Inorganic Composites; Beisanhuan East Road 15 Beijing 100029 P.R China
| | - Ahmed Barhoum
- Department of Materials and Chemistry; Vrije Universiteit Brussel; B-1050 Brussels Belgium
| | - Youchen Zhang
- College of Mechanical and Electrical Engineering; Beijing University of Chemical Technology; Beisanhuan East Road 15 Beijing 100029 P.R China Beijing
| | - Xuetao He
- College of Mechanical and Electrical Engineering; Beijing University of Chemical Technology; Beisanhuan East Road 15 Beijing 100029 P.R China Beijing
| | - Weinmin Yang
- College of Mechanical and Electrical Engineering; Beijing University of Chemical Technology; Beisanhuan East Road 15 Beijing 100029 P.R China Beijing
- State Key Laboratory of Organic-Inorganic Composites; Beisanhuan East Road 15 Beijing 100029 P.R China
| | - Mahmoud M Bubakir
- College of Mechanical and Electrical Engineering; Beijing University of Chemical Technology; Beisanhuan East Road 15 Beijing 100029 P.R China Beijing
| | - Hongbo Chen
- College of Mechanical and Electrical Engineering; Qingdao University of Science and Technology; No.99 Songling Rd,Qingdao,Shandong,P.R. China
| |
Collapse
|
17
|
Systematic investigations on heating effects of carboxyl-amine functionalized superparamagnetic iron oxide nanoparticles (SPIONs) based ferrofluids for in vitro cancer hyperthermia therapy. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.02.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Nam PH, Lu LT, Linh PH, Manh DH, Thanh Tam LT, Phuc NX, Phong PT, Lee IJ. Polymer-coated cobalt ferrite nanoparticles: synthesis, characterization, and toxicity for hyperthermia applications. NEW J CHEM 2018. [DOI: 10.1039/c8nj01701h] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OA and OLA coated CoFe2O4 nanoparticles encapsulated with PMAO through hydrophobic interactions were developed for hyperthermia applications.
Collapse
Affiliation(s)
- P. H. Nam
- Institute of Materials Science
- Vietnam Academy of Science and Technology
- Hanoi
- Vietnam
- Graduate University of Science and Technology
| | - L. T. Lu
- Graduate University of Science and Technology
- Vietnam Academy of Science and Technology
- Hanoi
- Vietnam
- Institute for Tropical Technology
| | - P. H. Linh
- Institute of Materials Science
- Vietnam Academy of Science and Technology
- Hanoi
- Vietnam
| | - D. H. Manh
- Institute of Materials Science
- Vietnam Academy of Science and Technology
- Hanoi
- Vietnam
| | - Le Thi Thanh Tam
- Graduate University of Science and Technology
- Vietnam Academy of Science and Technology
- Hanoi
- Vietnam
| | | | - P. T. Phong
- Theoretical Physics Research Group
- Advanced Institute of Materials Science
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
| | - In-Ja Lee
- Department of Advanced Materials Chemistry
- Dongguk University-Gyeongju
- Gyeongju-Si
- South Korea
| |
Collapse
|
19
|
Mehta R. Synthesis of magnetic nanoparticles and their dispersions with special reference to applications in biomedicine and biotechnology. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.135] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Park HS, Kim J, Cho MY, Lee H, Nam SH, Suh YD, Hong KS. Convenient and effective ICGylation of magnetic nanoparticles for biomedical applications. Sci Rep 2017; 7:8831. [PMID: 28821875 PMCID: PMC5562755 DOI: 10.1038/s41598-017-09627-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/27/2017] [Indexed: 01/25/2023] Open
Abstract
Nanoprobes used for biomedical applications usually require surface modifications with amphiphilic surfactants or inorganic coating materials to enhance their biocompatibility. We proposed a facile synthetic approach for the phase transfer of hydrophobic magnetic nanoparticles by the direct adherence of fluorescent probes, without any chemical modifications, for use as a magnetic resonance (MR)/near-infrared (NIR) fluorescence bimodal imaging contrast agent. Indocyanine green (ICG) was used not only as an optical component for NIR imaging, but also as a surfactant for phase transfer with no superfluous moiety: we therefore called the process "ICGylation". Cell labeling and tracking in vivo with ICGylated magnetic nanoparticles were successfully performed by MR/NIR dual-mode imaging for three days, which showed remarkable biostability without any additional surface functionalization. We expect that this novel MR/NIR contrast agent demonstrating sensitive detection and simultaneous imaging capability can be used in diverse fields, such as the imaging and tracking of immune cells to confirm immunotherapeutic efficacy. The approach used could also be applied to other kinds of nanoparticles, and it would promote the development of advanced functional multimodal nanobioprobes.
Collapse
Affiliation(s)
- Hye Sun Park
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju, 28119, Korea
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Jongwoo Kim
- Laboratory for Advanced Molecular Probing (LAMP), Research Center for Convergence NanoRaman Technology, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Mi Young Cho
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju, 28119, Korea
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Hyunseung Lee
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju, 28119, Korea
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Sang Hwan Nam
- Laboratory for Advanced Molecular Probing (LAMP), Research Center for Convergence NanoRaman Technology, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Yung Doug Suh
- Laboratory for Advanced Molecular Probing (LAMP), Research Center for Convergence NanoRaman Technology, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea.
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Korea.
| | - Kwan Soo Hong
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju, 28119, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea.
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Korea.
| |
Collapse
|
21
|
Yang Y, Wang F, Zheng K, Deng L, Yang L, Zhang N, Xu C, Ran H, Wang Z, Wang Z, Zheng Y. Injectable PLGA/Fe3O4 implants carrying cisplatin for synergistic magnetic hyperthermal ablation of rabbit VX2 tumor. PLoS One 2017; 12:e0177049. [PMID: 28472102 PMCID: PMC5417648 DOI: 10.1371/journal.pone.0177049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/23/2017] [Indexed: 11/30/2022] Open
Abstract
Magnetic hyperthermia ablation has attracted wide attention in tumor therapy for its minimal invasion. Although the chemo-hyperthermal synergism has been proven to be effective in subcutaneously xenografted tumors of nude mice in our previous experiment, the occurrence of residual tumors due to incomplete ablation is more common in relatively larger and deeper-seated tumors in anti-tumor therapy. Thus, a larger tumor and larger animal model are needed for further study of the therapeutic efficacy. In this study, we tested the efficiency of this newly developed technique using a rabbit tumor model. Furthermore, we chose cisplatin (DDP), which has been confirmed with high efficiency in enhancing hyperthermia therapy as the chemotherapeutic drug for the synergistic magnetic hyperthermal ablation therapy of tumors. In vitro studies demonstrated that developed DDP-loaded magnetic implants (DDP/PLGA-Fe3O4) have great heating efficacy and the drug release can be significantly boosted by an external alternating magnetic field (AMF). In vivo studies showed that the phase-transitional DDP/PLGA-Fe3O4 materials that are ultrasound (US) and computerized tomography (CT) visible can be well confined in the tumor tissues after injection. When exposed to AMF, efficient hyperthermia was induced, which led to the cancer cells’ coagulative necrosis and accelerating release of the drug to kill residual tumors. Furthermore, an activated anti-tumor immune system can promote apoptosis of tumor cells. In conclusion, the DDP/PLGA-Fe3O4 implants can be used efficiently for the combined chemotherapy and magnetic-hyperthermia ablation of rabbit tumors.
Collapse
Affiliation(s)
- Yang Yang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fengjuan Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kaiyuan Zheng
- Department of Nephrology, Chongqing People’s Hospital, Chongqing, China
| | - Liming Deng
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Yang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nan Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunyan Xu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhaoxia Wang
- Department of Ultrasound, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanyi Zheng
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University affiliated Shanghai Sixth People's Hospital, Shanghai, China
- * E-mail:
| |
Collapse
|
22
|
Hensley D, Tay ZW, Dhavalikar R, Zheng B, Goodwill P, Rinaldi C, Conolly S. Combining magnetic particle imaging and magnetic fluid hyperthermia in a theranostic platform. Phys Med Biol 2016; 62:3483-3500. [PMID: 28032621 DOI: 10.1088/1361-6560/aa5601] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Magnetic particle imaging (MPI) is a rapidly developing molecular and cellular imaging modality. Magnetic fluid hyperthermia (MFH) is a promising therapeutic approach where magnetic nanoparticles are used as a conduit for targeted energy deposition, such as in hyperthermia induction and drug delivery. The physics germane to and exploited by MPI and MFH are similar, and the same particles can be used effectively for both. Consequently, the method of signal localization through the use of gradient fields in MPI can also be used to spatially localize MFH, allowing for spatially selective heating deep in the body and generally providing greater control and flexibility in MFH. Furthermore, MPI and MFH may be integrated together in a single device for simultaneous MPI-MFH and seamless switching between imaging and therapeutic modes. Here we show simulation and experimental work quantifying the extent of spatial localization of MFH using MPI systems: we report the first combined MPI-MFH system and demonstrate on-demand selective heating of nanoparticle samples separated by only 3 mm (up to 0.4 °C s-1 heating rates and 150 W g-1 SAR deposition). We also show experimental data for MPI performed at a typical MFH frequency and show preliminary simultaneous MPI-MFH experimental data.
Collapse
Affiliation(s)
- Daniel Hensley
- Department of Bioengineering, University of California, Berkeley, CA, United States of America
| | | | | | | | | | | | | |
Collapse
|
23
|
Kafrouni L, Savadogo O. Recent progress on magnetic nanoparticles for magnetic hyperthermia. Prog Biomater 2016; 5:147-160. [PMID: 27995583 PMCID: PMC5304434 DOI: 10.1007/s40204-016-0054-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/19/2016] [Indexed: 01/06/2023] Open
Abstract
Recent advances in nanomaterials science contributed to develop new micro- and nano-devices as potential diagnostic and therapeutic tools in the field of oncology. The synthesis of superparamagnetic nanoparticles (SPMNPs) has been intensively studied, and the use of these particles in magnetic hyperthermia therapy has demonstrated successes in treatment of cancer. However, some physical limitations have been found to impact the heating efficiency required to kill cancer cells. Moreover, the bio-safety of NPs remains largely unexplored. The primary goals of this review are to summarize the recent progress in the development of magnetic nanoparticles (MNPs) for hyperthermia, and discuss the limitations and advances in the synthesis of these particles. Based on this knowledge, new perspectives on development of new biocompatible and biofunctional nanomaterials for magnetic hyperthermia are discussed.
Collapse
Affiliation(s)
- Lina Kafrouni
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succursale Centre-ville, Montreal, QC, H3C 3A7, Canada
- Laboratory of New Materials for Energy and Electrochemistry Systems (LaNoMat), Montreal, Canada
| | - Oumarou Savadogo
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succursale Centre-ville, Montreal, QC, H3C 3A7, Canada.
- Laboratory of New Materials for Energy and Electrochemistry Systems (LaNoMat), Montreal, Canada.
| |
Collapse
|
24
|
Shah SA, Aslam Khan M, Arshad M, Awan S, Hashmi M, Ahmad N. Doxorubicin-loaded photosensitive magnetic liposomes for multi-modal cancer therapy. Colloids Surf B Biointerfaces 2016; 148:157-164. [DOI: 10.1016/j.colsurfb.2016.08.055] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/05/2016] [Accepted: 08/30/2016] [Indexed: 11/28/2022]
|
25
|
Arriortua OK, Garaio E, Herrero de la Parte B, Insausti M, Lezama L, Plazaola F, García JA, Aizpurua JM, Sagartzazu M, Irazola M, Etxebarria N, García-Alonso I, Saiz-López A, Echevarria-Uraga JJ. Antitumor magnetic hyperthermia induced by RGD-functionalized Fe 3O 4 nanoparticles, in an experimental model of colorectal liver metastases. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:1532-1542. [PMID: 28144504 PMCID: PMC5238624 DOI: 10.3762/bjnano.7.147] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/07/2016] [Indexed: 06/02/2023]
Abstract
This work reports important advances in the study of magnetic nanoparticles (MNPs) related to their application in different research fields such as magnetic hyperthermia. Nanotherapy based on targeted nanoparticles could become an attractive alternative to conventional oncologic treatments as it allows a local heating in tumoral surroundings without damage to healthy tissue. RGD-peptide-conjugated MNPs have been designed to specifically target αVβ3 receptor-expressing cancer cells, being bound the RGD peptides by "click chemistry" due to its selectivity and applicability. The thermal decomposition of iron metallo-organic precursors yield homogeneous Fe3O4 nanoparticles that have been properly functionalized with RGD peptides, and the preparation of magnetic fluids has been achieved. The nanoparticles were characterized by transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), electron magnetic resonance (EMR) spectroscopy and magnetic hyperthermia. The nanoparticles present superparamagnetic behavior with very high magnetization values, which yield hyperthermia values above 500 W/g for magnetic fluids. These fluids have been administrated to rats, but instead of injecting MNP fluid directly into liver tumors, intravascular administration of MNPs in animals with induced colorectal tumors has been performed. Afterwards the animals were exposed to an alternating magnetic field in order to achieve hyperthermia. The evolution of an in vivo model has been described, resulting in a significant reduction in tumor viability.
Collapse
Affiliation(s)
- Oihane K Arriortua
- Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48080, Bilbao, Spain
| | - Eneko Garaio
- Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48080, Bilbao, Spain
| | - Borja Herrero de la Parte
- Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, P.O. Box 644, 48080, Bilbao, Spain
| | - Maite Insausti
- Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48080, Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48160, Derio, Spain
| | - Luis Lezama
- Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48080, Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48160, Derio, Spain
| | - Fernando Plazaola
- Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48080, Bilbao, Spain
| | - Jose Angel García
- Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48080, Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48160, Derio, Spain
| | - Jesús M Aizpurua
- José Mari Korta Center, University of the Basque Country, UPV/EHU, 20018 Donostia, Spain
| | - Maialen Sagartzazu
- José Mari Korta Center, University of the Basque Country, UPV/EHU, 20018 Donostia, Spain
| | - Mireia Irazola
- Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48080, Bilbao, Spain
| | - Nestor Etxebarria
- Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48080, Bilbao, Spain
| | - Ignacio García-Alonso
- Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, P.O. Box 644, 48080, Bilbao, Spain
| | | | | |
Collapse
|
26
|
Reeves DB, Shi Y, Weaver JB. Generalized Scaling and the Master Variable for Brownian Magnetic Nanoparticle Dynamics. PLoS One 2016; 11:e0150856. [PMID: 26959493 PMCID: PMC4784917 DOI: 10.1371/journal.pone.0150856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/19/2016] [Indexed: 11/19/2022] Open
Abstract
Understanding the dynamics of magnetic particles can help to advance several biomedical nanotechnologies. Previously, scaling relationships have been used in magnetic spectroscopy of nanoparticle Brownian motion (MSB) to measure biologically relevant properties (e.g., temperature, viscosity, bound state) surrounding nanoparticles in vivo. Those scaling relationships can be generalized with the introduction of a master variable found from non-dimensionalizing the dynamical Langevin equation. The variable encapsulates the dynamical variables of the surroundings and additionally includes the particles' size distribution and moment and the applied field's amplitude and frequency. From an applied perspective, the master variable allows tuning to an optimal MSB biosensing sensitivity range by manipulating both frequency and field amplitude. Calculation of magnetization harmonics in an oscillating applied field is also possible with an approximate closed-form solution in terms of the master variable and a single free parameter.
Collapse
Affiliation(s)
- Daniel B. Reeves
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH, 03755 United States of America
- * E-mail:
| | - Yipeng Shi
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH, 03755 United States of America
| | - John B. Weaver
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH, 03755 United States of America
- Department of Radiology, Geisel School of Medicine, Hanover, NH, 03755 United States of America
| |
Collapse
|
27
|
Magnetic solid lipid nanoparticles in hyperthermia against colon cancer. Int J Pharm 2016; 504:11-9. [PMID: 26969080 DOI: 10.1016/j.ijpharm.2016.03.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/04/2016] [Accepted: 03/05/2016] [Indexed: 02/07/2023]
Abstract
A reproducible double emulsion/solvent evaporation procedure is developed to formulate magnetic solid lipid nanoparticles (average size≈180 nm) made of iron oxide cores embedded within a glyceryl trimyristate solid matrix. The physicochemical characterization of the nanocomposites ascertained the efficacy of the preparation conditions in their production, i.e. surface properties (electrokinetic and thermodynamic data) were almost indistinguishable from those of the solid lipid nanomatrix, while electron microscopy characterizations and X-ray diffraction patterns confirmed the satisfactory coverage of the magnetite nuclei. Hemocompatibility of the particles was established in vitro. Hysteresis cycle determinations defined the appropriate magnetic responsiveness of the nanocomposites, and their heating characteristics were investigated in a high frequency alternating gradient of magnetic field: a constant maximum temperature of 46 °C was obtained within 40 min. Finally, in vitro tests performed on human HT29 colon adenocarcinoma cells demonstrated a promising decrease in cell viability after treatment with the nanocomposites and exposure to that alternating electromagnetic field. To the best of our knowledge, this is the first time that such type of nanoformulation with very promising hyperthermia characteristics has been developed for therapeutic aims.
Collapse
|
28
|
Superparamagnetic iron-oxide nanoparticles mPEG350- and mPEG2000-coated: cell uptake and biocompatibility evaluation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:909-919. [PMID: 26767515 DOI: 10.1016/j.nano.2015.12.371] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 11/22/2022]
Abstract
UNLABELLED Superparamagnetic iron oxide nanoparticles (SPIONS) were synthesized by thermal decomposition of an organometallic precursor at high temperature and coated with a bi-layer composed of oleic acid and methoxy-polyethylene glycol-phospholipid. The formulations were named SPION-PEG350 and SPION-PEG2000. Transmission electron microscopy, X-ray diffraction and magnetic measurements show that the SPIONs are near-spherical, well-crystalline, and have high saturation magnetization and susceptibility. FTIR spectroscopy identifies the presence of oleic acid and of the conjugates mPEG for each sample. In vitro biocompatibility of SPIONS was investigated using three cell lines; up to 100μg/ml SPION-PEG350 showed non-toxicity, while SPION-PEG2000 showed no signal of toxicity even up to 200μg/ml. The uptake of SPIONS was detected using magnetization measurement, confocal and atomic force microscopy. SPION-PEG2000 presented the highest internalization capacity, which should be correlated with the mPEG chain size. The in vivo results suggested that SPION-PEG2000 administration in mice triggered liver and kidney injury. FROM THE CLINICAL EDITOR The potential use of superparamagnetic iron oxide nanoparticles (SPIONS) in the clinical setting have been studied by many researchers. The authors synthesized two types of SPIONS here and investigated the physical properties and biological compatibility. The findings should provide more data on the design of SPIONS for clinical application in the future.
Collapse
|
29
|
Kemp SJ, Ferguson RM, Khandhar AP, Krishnan KM. Monodisperse magnetite nanoparticles with nearly ideal saturation magnetization. RSC Adv 2016. [DOI: 10.1039/c6ra12072e] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We present a scalable thermolysis and high temperature oxidation procedure for synthesizing monodisperse magnetite nanoparticles with saturation magnetization of up to 80 emu g−1 (412 kA m−1), 92% of bulk magnetite.
Collapse
Affiliation(s)
| | | | | | - Kannan M. Krishnan
- LodeSpin Labs
- 225 Fluke Hall
- Seattle
- USA
- Department of Materials Sciences & Engineering
| |
Collapse
|
30
|
Vasconcelos Braz S, Monge-Fuentes V, Rodrigues da Silva J, Tomaz C, Tavares MC, Pereira Garcia M, Nair Báo S, Paulino Lozzi S, Bentes de Azevedo R. Morphological Analysis of Reticuloendothelial System in Capuchin Monkeys (Sapajus spp.) after Meso-2,3-Dimercaptosuccinic Acid (DMSA) Coated Magnetic Nanoparticles Administration. PLoS One 2015; 10:e0140233. [PMID: 26559061 PMCID: PMC4641670 DOI: 10.1371/journal.pone.0140233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/23/2015] [Indexed: 11/18/2022] Open
Abstract
Magnetic nanoparticles can be used for numerous in vitro and in vivo applications. However, since uptake by the reticuloendothelial system represents an obstacle for the achievement of nanoparticle diagnostic and therapeutic goals, the aim of the present study was to evaluate the uptake of dimercaptosuccinic acid coated magnetic nanoparticles by reticuloendothelial system phagocytic cells present in lymph nodes, spleen, and liver tissue and how the presence of these particles could have an impact on the morphology of these organs in capuchin monkeys (Sapajus spp.). Animals were intravenously injected with dimercaptosuccinic acid coated magnetic nanoparticles and euthanized 12 hours and 90 days post-injection. Organs were processed by transmission electron microscopy and histological techniques. Samples of spleen and lymph nodes showed no morphological changes. Nevertheless, liver samples collected 90 days post-administration showed slight morphological alteration in space of Disse. Moreover, morphometrical analysis of hepatic mitochondria was performed, suggesting a clear positive correlation between mitochondrial area and dimercaptosuccinic acid coated magnetic nanoparticles administration time. The present results are directly relevant to current safety considerations in clinical diagnostic and therapeutic uses of magnetic nanoparticles.
Collapse
Affiliation(s)
- Shélida Vasconcelos Braz
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, 70910–900 Brasília-DF, Brazil
| | - Victoria Monge-Fuentes
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, 70910–900 Brasília-DF, Brazil
| | - Jaqueline Rodrigues da Silva
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, 70910–900 Brasília-DF, Brazil
| | - Carlos Tomaz
- Primate Center and Laboratory of Neurosciences and Behavior, Department of Physiological Sciences, Institute of Biology, University of Brasília, 70910–900 Brasília, DF, Brazil
- Neurocience Graduate Program, University CEUMA, São Luis, MA, Brazil
| | - Maria Clotilde Tavares
- Primate Center and Laboratory of Neurosciences and Behavior, Department of Physiological Sciences, Institute of Biology, University of Brasília, 70910–900 Brasília, DF, Brazil
| | - Monica Pereira Garcia
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, 70910–900 Brasília-DF, Brazil
| | - Sônia Nair Báo
- Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, 70919–970 -Brasília, DF, Brazil
| | - Silene Paulino Lozzi
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, 70910–900 Brasília-DF, Brazil
| | - Ricardo Bentes de Azevedo
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, 70910–900 Brasília-DF, Brazil
- * E-mail:
| |
Collapse
|
31
|
Tomitaka A, Arami H, Gandhi S, Krishnan KM. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging. NANOSCALE 2015; 7:16890-8. [PMID: 26412614 PMCID: PMC4626448 DOI: 10.1039/c5nr02831k] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Magnetic Particle Imaging (MPI) is a new real-time imaging modality, which promises high tracer mass sensitivity and spatial resolution directly generated from iron oxide nanoparticles. In this study, monodisperse iron oxide nanoparticles with median core diameters ranging from 14 to 26 nm were synthesized and their surface was conjugated with lactoferrin to convert them into brain glioma targeting agents. The conjugation was confirmed with the increase of the hydrodynamic diameters, change of zeta potential, and Bradford assay. Magnetic particle spectrometry (MPS), performed to evaluate the MPI performance of these nanoparticles, showed no change in signal after lactoferrin conjugation to nanoparticles for all core diameters, suggesting that the MPI signal is dominated by Néel relaxation and thus independent of hydrodynamic size difference or presence of coating molecules before and after conjugations. For this range of core sizes (14-26 nm), both MPS signal intensity and spatial resolution improved with increasing core diameter of nanoparticles. The lactoferrin conjugated iron oxide nanoparticles (Lf-IONPs) showed specific cellular internalization into C6 cells with a 5-fold increase in MPS signal compared to IONPs without lactoferrin, both after 24 h incubation. These results suggest that Lf-IONPs can be used as tracers for targeted brain glioma imaging using MPI.
Collapse
Affiliation(s)
- Asahi Tomitaka
- Materials Science & Engineering Department, University of Washington, Seattle, WA 98195-2120, USA.
| | | | | | | |
Collapse
|
32
|
Golovin YI, Gribanovsky SL, Golovin DY, Klyachko NL, Majouga AG, Master АM, Sokolsky M, Kabanov AV. Towards nanomedicines of the future: Remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields. J Control Release 2015; 219:43-60. [PMID: 26407671 DOI: 10.1016/j.jconrel.2015.09.038] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/19/2015] [Indexed: 11/12/2022]
Abstract
The paper describes the concept of magneto-mechanical actuation of single-domain magnetic nanoparticles (MNPs) in super-low and low frequency alternating magnetic fields (AMFs) and its possible use for remote control of nanomedicines and drug delivery systems. The applications of this approach for remote actuation of drug release as well as effects on biomacromolecules, biomembranes, subcellular structures and cells are discussed in comparison to conventional strategies employing magnetic hyperthermia in a radio frequency (RF) AMF. Several quantitative models describing interaction of functionalized MNPs with single macromolecules, lipid membranes, and proteins (e.g. cell membrane receptors, ion channels) are presented. The optimal characteristics of the MNPs and an AMF for effective magneto-mechanical actuation of single molecule responses in biological and bio-inspired systems are discussed. Altogether, the described studies and phenomena offer opportunities for the development of novel therapeutics both alone and in combination with magnetic hyperthermia.
Collapse
Affiliation(s)
- Yuri I Golovin
- Nanocenter, G. R. Derzhavin Tambov State University, Tambov 392000, Russian Federation; Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M. V. Lomonosov Moscow State University, Moscow, 117234, Russian Federation
| | - Sergey L Gribanovsky
- Nanocenter, G. R. Derzhavin Tambov State University, Tambov 392000, Russian Federation
| | - Dmitry Y Golovin
- Nanocenter, G. R. Derzhavin Tambov State University, Tambov 392000, Russian Federation
| | - Natalia L Klyachko
- Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M. V. Lomonosov Moscow State University, Moscow, 117234, Russian Federation; Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Alexander G Majouga
- Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M. V. Lomonosov Moscow State University, Moscow, 117234, Russian Federation; National University of Science and Technology MISiS, Leninskiy pr., 9, Moscow 119049, Russian Federation
| | - Аlyssa M Master
- Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Marina Sokolsky
- Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Alexander V Kabanov
- Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M. V. Lomonosov Moscow State University, Moscow, 117234, Russian Federation; Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|
33
|
Shah RR, Davis TP, Glover AL, Nikles DE, Brazel CS. Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 2015; 387:96-106. [PMID: 25960599 PMCID: PMC4422114 DOI: 10.1016/j.jmmm.2015.03.085] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Heating of nanoparticles (NPs) using an AC magnetic field depends on several factors, and optimization of these parameters can improve the efficiency of heat generation for effective cancer therapy while administering a low NP treatment dose. This study investigated magnetic field strength and frequency, NP size, NP concentration, and solution viscosity as important parameters that impact the heating efficiency of iron oxide NPs with magnetite (Fe3O4) and maghemite (γ-Fe2O3) crystal structures. Heating efficiencies were determined for each experimental setting, with specific absorption rates (SARs) ranging from 3.7 to 325.9 W/g Fe. Magnetic heating was conducted on iron oxide NPs synthesized in our laboratories (with average core sizes of 8, 11, 13, and 18 nm), as well as commercially-available iron oxides (with average core sizes of 8, 9, and 16 nm). The experimental magnetic coil system made it possible to isolate the effect of magnetic field parameters and independently study the effect on heat generation. The highest SAR values were found for the 18 nm synthesized particles and the maghemite nanopowder. Magnetic field strengths were applied in the range of 15.1 to 47.7 kA/m, with field frequencies ranging from 123 to 430 kHz. The best heating was observed for the highest field strengths and frequencies tested, with results following trends predicted by the Rosensweig equation. An increase in solution viscosity led to lower heating rates in nanoparticle solutions, which can have significant implications for the application of magnetic fluid hyperthermia in vivo.
Collapse
Affiliation(s)
- Rhythm R. Shah
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL
| | - Todd P. Davis
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL
| | - Amanda L. Glover
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL
| | - David E. Nikles
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL
| | - Christopher S. Brazel
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL
| |
Collapse
|
34
|
Hufschmid R, Arami H, Ferguson RM, Gonzales M, Teeman E, Brush LN, Browning ND, Krishnan KM. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. NANOSCALE 2015; 7:11142-54. [PMID: 26059262 PMCID: PMC5198837 DOI: 10.1039/c5nr01651g] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are used for a wide range of biomedical applications requiring precise control over their physical and magnetic properties, which are dependent on their size and crystallographic phase. Here we present a comprehensive template for the design and synthesis of iron oxide nanoparticles with control over size, size distribution, phase, and resulting magnetic properties. We investigate critical parameters for synthesis of monodisperse SPIONs by organic thermal decomposition. Three different, commonly used, iron containing precursors (iron oleate, iron pentacarbonyl, and iron oxyhydroxide) are evaluated under a variety of synthetic conditions. We compare the suitability of these three kinetically controlled synthesis protocols, which have in common the use of iron oleate as a starting precursor or reaction intermediate, for producing nanoparticles with specific size and magnetic properties. Monodisperse particles were produced over a tunable range of sizes from approximately 2-30 nm. Reaction parameters such as precursor concentration, addition of surfactant, temperature, ramp rate, and time were adjusted to kinetically control size and size-distribution, phase, and magnetic properties. In particular, large quantities of excess surfactant (up to 25 : 1 molar ratio) alter reaction kinetics and result in larger particles with uniform size; however, there is often a trade-off between large particles and a narrow size distribution. Iron oxide phase, in addition to nanoparticle size and shape, is critical for establishing magnetic properties such as differential susceptibility (dm/dH) and anisotropy. As an example, we show the importance of obtaining the required size and iron oxide phase for application to Magnetic Particle Imaging (MPI), and describe how phase purity can be controlled. These results provide much of the information necessary to determine which iron oxide synthesis protocol is best suited to a particular application.
Collapse
Affiliation(s)
- Ryan Hufschmid
- Department of Materials Science & Engineering, University of Washington, Box 352120, Seattle, Washington 98195-2120, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ferguson RM, Khandhar AP, Kemp SJ, Arami H, Saritas EU, Croft LR, Konkle J, Goodwill PW, Halkola A, Rahmer J, Borgert J, Conolly SM, Krishnan KM. Magnetic particle imaging with tailored iron oxide nanoparticle tracers. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:1077-84. [PMID: 25438306 PMCID: PMC4428902 DOI: 10.1109/tmi.2014.2375065] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Magnetic particle imaging (MPI) shows promise for medical imaging, particularly in angiography of patients with chronic kidney disease. As the first biomedical imaging technique that truly depends on nanoscale materials properties, MPI requires highly optimized magnetic nanoparticle tracers to generate quality images. Until now, researchers have relied on tracers optimized for MRI T2(∗) -weighted imaging that are sub-optimal for MPI. Here, we describe new tracers tailored to MPI's unique physics, synthesized using an organic-phase process and functionalized to ensure biocompatibility and adequate in vivo circulation time. Tailored tracers showed up to 3 × greater signal-to-noise ratio and better spatial resolution than existing commercial tracers in MPI images of phantoms.
Collapse
Affiliation(s)
| | | | | | - Hamed Arami
- Department of Materials Science, Roberts Hall, University of Washington, Seattle, WA 98195 USA
| | - Emine U. Saritas
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA. S. M. Conolly is also with the EECS, Berkeley, CA 94720 USA
| | - Laura R. Croft
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA. S. M. Conolly is also with the EECS, Berkeley, CA 94720 USA
| | - Justin Konkle
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA. S. M. Conolly is also with the EECS, Berkeley, CA 94720 USA
| | - Patrick W. Goodwill
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA. S. M. Conolly is also with the EECS, Berkeley, CA 94720 USA
| | - Aleksi Halkola
- Institute of Medical Engineering, University of Lübeck, Lübeck, Germany
| | - Jürgen Rahmer
- Philips Technologie, GmbH, Research Laboratories, Hamburg, Germany
| | - Jörn Borgert
- Philips Technologie, GmbH, Research Laboratories, Hamburg, Germany
| | - Steven M. Conolly
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA. S. M. Conolly is also with the EECS, Berkeley, CA 94720 USA
| | | |
Collapse
|
36
|
Smith BE, Roder PB, Zhou X, Pauzauskie PJ. Nanoscale materials for hyperthermal theranostics. NANOSCALE 2015; 7:7115-26. [PMID: 25816102 PMCID: PMC4830465 DOI: 10.1039/c4nr06164k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Recently, the use of nanoscale materials has attracted considerable attention with the aim of designing personalized therapeutic approaches that can enhance both spatial and temporal control over drug release, permeability, and uptake. Potential benefits to patients include the reduction of overall drug dosages, enabling the parallel delivery of different pharmaceuticals, and the possibility of enabling additional functionalities such as hyperthermia or deep-tissue imaging (LIF, PET, etc.) that complement and extend the efficacy of traditional chemotherapy and surgery. This mini-review is focused on an emerging class of nanometer-scale materials that can be used both to heat malignant tissue to reduce angiogenesis and DNA-repair while simultaneously offering complementary imaging capabilities based on radioemission, optical fluorescence, magnetic resonance, and photoacoustic methods.
Collapse
Affiliation(s)
- Bennett E. Smith
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Paden B. Roder
- Material Science & Engineering Department, University of Washington, Seattle, Washington
| | - Xuezhe Zhou
- Material Science & Engineering Department, University of Washington, Seattle, Washington
| | - Peter J. Pauzauskie
- Material Science & Engineering Department, University of Washington, Seattle, Washington
- Fundamental & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington
| |
Collapse
|
37
|
Smolkova IS, Kazantseva NE, Makoveckaya KN, Smolka P, Saha P, Granov AM. Maghemite based silicone composite for arterial embolization hyperthermia. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 48:632-41. [DOI: 10.1016/j.msec.2014.12.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/13/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
|
38
|
Arami H, Khandhar AP, Tomitaka A, Yu E, Goodwill PW, Conolly SM, Krishnan KM. In vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents. Biomaterials 2015; 52:251-61. [PMID: 25818431 DOI: 10.1016/j.biomaterials.2015.02.040] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/30/2015] [Accepted: 02/06/2015] [Indexed: 12/31/2022]
Abstract
Magnetic Particle Imaging (MPI) is a novel non-invasive biomedical imaging modality that uses safe magnetite nanoparticles as tracers. Controlled synthesis of iron oxide nanoparticles (NPs) with tuned size-dependent magnetic relaxation properties is critical for the development of MPI. Additional functionalization of these NPs for other imaging modalities (e.g. MRI and fluorescent imaging) would accelerate screening of the MPI tracers based on their in vitro and in vivo performance in pre-clinical trials. Here, we conjugated two different types of poly-ethylene-glycols (NH2-PEG-NH2 and NH2-PEG-FMOC) to monodisperse carboxylated 19.7 nm NPs by amide bonding. Further, we labeled these NPs with Cy5.5 near infra-red fluorescent (NIRF) molecules. Bi-functional PEG (NH2-PEG-NH2) resulted in larger hydrodynamic size (∼98 nm vs. ∼43 nm) of the tracers, due to inter-particle crosslinking. Formation of such clusters impacted the multimodal imaging performance and pharmacokinetics of these tracers. We found that MPI signal intensity of the tracers in blood depends on their plasmatic clearance pharmacokinetics. Whole body mice MPI/MRI/NIRF, used to study the biodistribution of the injected NPs, showed primary distribution in liver and spleen. Biodistribution of tracers and their clearance pathway was further confirmed by MPI and NIRF signals from the excised organs where the Cy5.5 labeling enabled detailed anatomical mapping of the tracers.in tissue sections. These multimodal MPI tracers, combining the strengths of each imaging modality (e.g. resolution, tracer sensitivity and clinical use feasibility) pave the way for various in vitro and in vivo MPI applications.
Collapse
Affiliation(s)
- Hamed Arami
- Department of Materials Science, University of Washington, Seattle, WA, 98195, USA
| | | | - Asahi Tomitaka
- Department of Materials Science, University of Washington, Seattle, WA, 98195, USA
| | - Elaine Yu
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Patrick W Goodwill
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Steven M Conolly
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Kannan M Krishnan
- Department of Materials Science, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
39
|
Tomitaka A, Ferguson RM, Khandhar AP, Kemp SJ, Ota S, Nakamura K, Takemura Y, Krishnan KM. Variation of Magnetic Particle Imaging Tracer Performance With Amplitude and Frequency of the Applied Magnetic Field. IEEE TRANSACTIONS ON MAGNETICS 2015; 51:6100504. [PMID: 26023242 PMCID: PMC4443712 DOI: 10.1109/tmag.2014.2341570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The magnetic response of magnetic particle imaging (MPI) tracers varies with the slew rate of the applied magnetic field, as well as with the tracer's average magnetic core size. Currently, 25 kHz and 20 mT/μ0 drive fields are common in MPI, but lower field amplitudes may be necessary for patient safety in future designs. We studied how several different sizes of monodisperse MPI tracers behaved under different drive field amplitude and frequency, using magnetic particle spectrometry and ac hysteresis for drive field conditions at 16, 26, and 40 kHz, with field amplitudes from 5 to 40 mT/μ0. We observed that both field amplitude and frequency can influence the tracer behavior, but that the magnetic behavior is consistent when the slew rate (the product of field amplitude and frequency) is consistent. However, smaller amplitudes provide a correspondingly smaller field of view, sometimes resulting in excitation of a minor hysteresis loop.
Collapse
Affiliation(s)
- Asahi Tomitaka
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195 USA
| | | | | | | | - Satoshi Ota
- Department of Electrical and Computer Engineering, Yokohama National University, Yokohama 240-8501, Japan
| | - Kosuke Nakamura
- Department of Electrical and Computer Engineering, Yokohama National University, Yokohama 240-8501, Japan
| | - Yasushi Takemura
- Department of Electrical and Computer Engineering, Yokohama National University, Yokohama 240-8501, Japan
| | - Kannan M Krishnan
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
40
|
Khandhar AP, Ferguson RM, Arami H, Kemp SJ, Krishnan KM. Tuning surface coatings of optimized magnetite nanoparticle tracers for in vivo Magnetic Particle Imaging. IEEE TRANSACTIONS ON MAGNETICS 2015; 51:5300304. [PMID: 25904816 PMCID: PMC4403869 DOI: 10.1109/tmag.2014.2321096] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Surface coatings are important components of Magnetic Particle Imaging (MPI) tracers - they preserve their key properties responsible for optimum tracer performance in physiological environments. In vivo, surface coatings form a physical barrier between the hydrophobic SPION cores and the physiological environment, and their design dictates the blood half-life and biodistribution of MPI tracers. Here we show the effect of tuning poly(ethylene glycol) (PEG)-based surface coatings on both in vitro and in vivo (mouse model) MPI performance of SPIONs. Our results showed that varying PEG molecular weight had a profound impact on colloidal stability, characterized using Dynamic Light Scattering (DLS), and the m'(H) response of SPIONs, measured in a 25 kHz/20 mTμ0-1max Magnetic Particle Spectrometer (MPS). Increasing PEG molecular weight from 5 kDa to 20 kDa preserved colloidal stability and m'(H) response of ~25 nm SPIONs - the optimum core diameter for MPI - in serum-rich cell culture medium for up to 24 hours. Furthermore, we compared the in vivo circulation time of SPIONs as a function of hydrodynamic diameter and showed that clustered SPIONs can adversely affect blood half-life; critically, SPIONs with clusters had 5 times shorter blood half-life than individually coated SPIONs. We anticipate that the development of MPI SPION tracers with long blood half-lives have potential not only in vascular imaging applications, but also enable opportunities in molecular targeting and imaging - a critical step towards early cancer detection using the new MPI modality.
Collapse
Affiliation(s)
- Amit P. Khandhar
- Lodespin Labs, PO Box 95632, Seattle WA 98145
- Materials Science & Engineering, University of Washington, Seattle WA 98195
| | | | - Hamed Arami
- Materials Science & Engineering, University of Washington, Seattle WA 98195
| | | | - Kannan M. Krishnan
- Materials Science & Engineering, University of Washington, Seattle WA 98195
| |
Collapse
|
41
|
Takeno Y, Murakami Y, Sato T, Tanigaki T, Park HS, Shindo D, Ferguson RM, Krishnan KM. Morphology and magnetic flux distribution in superparamagnetic, single-crystalline Fe 3O 4 nanoparticle rings. APPLIED PHYSICS LETTERS 2014; 105:183102. [PMID: 25422526 PMCID: PMC4224681 DOI: 10.1063/1.4901008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/22/2014] [Indexed: 06/04/2023]
Abstract
This study reports on the correlation between crystal orientation and magnetic flux distribution of Fe3O4 nanoparticles in the form of self-assembled rings. High-resolution transmission electron microscopy demonstrated that the nanoparticles were single-crystalline, highly monodispersed, (25 nm average diameter), and showed no appreciable lattice imperfections such as twins or stacking faults. Electron holography studies of these superparamagnetic nanoparticle rings indicated significant fluctuations in the magnetic flux lines, consistent with variations in the magnetocrystalline anisotropy of the nanoparticles. The observations provide useful information for a deeper understanding of the micromagnetics of ultrasmall nanoparticles, where the magnetic dipolar interaction competes with the magnetic anisotropy.
Collapse
Affiliation(s)
- Yumu Takeno
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University , Sendai 980-8577, Japan
| | | | - Takeshi Sato
- Hitachi High-Technologies Corporation , 1040 Ichige, Hitachinaka-shi, Ibaraki 312-0033, Japan
| | | | | | | | | | - Kannan M Krishnan
- Department of Materials Science and Engineering, University of Washington , Seattle, Washington 98195-2120, USA
| |
Collapse
|
42
|
Shah SA, Ferguson RM, Krishnan KM. Slew-rate dependence of tracer magnetization response in magnetic particle imaging. JOURNAL OF APPLIED PHYSICS 2014; 116:163910. [PMID: 25422528 PMCID: PMC4224682 DOI: 10.1063/1.4900605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 10/16/2014] [Indexed: 05/14/2023]
Abstract
Magnetic Particle Imaging (MPI) is a new biomedical imaging technique that produces real-time, high-resolution tomographic images of superparamagnetic iron oxide nanoparticle tracers. Currently, 25 kHz and 20 mT/μ0 excitation fields are common in MPI, but lower field amplitudes may be necessary for patient safety in future designs. Here, we address fundamental questions about MPI tracer magnetization dynamics and predict tracer performance in future scanners that employ new combinations of excitation field amplitude (Ho ) and frequency (ω). Using an optimized, monodisperse MPI tracer, we studied how several combinations of drive field frequencies and amplitudes affect the tracer's response, using Magnetic Particle Spectrometry and AC hysteresis, for drive field conditions at 15.5, 26, and 40.2 kHz, with field amplitudes ranging from 7 to 52 mT/μ0. For both fluid and immobilized nanoparticle samples, we determined that magnetic response was dominated by Néel reversal. Furthermore, we observed that the peak slew-rate (ωHo) determined the tracer magnetic response. Smaller amplitudes provided correspondingly smaller field of view, sometimes resulting in excitation of minor hysteresis loops. Changing the drive field conditions but keeping the peak slew-rate constant kept the tracer response almost the same. Higher peak slew-rates led to reduced maximum signal intensity and greater coercivity in the tracer response. Our experimental results were in reasonable agreement with Stoner-Wohlfarth model based theories.
Collapse
Affiliation(s)
- Saqlain A Shah
- Materials Science and Engineering, University of Washington , Seattle, Washington 98195, USA
| | - R M Ferguson
- LodeSpin Labs , P.O. Box 95632, Seattle, Washington 98145, USA
| | - K M Krishnan
- Materials Science and Engineering, University of Washington , Seattle, Washington 98195, USA
| |
Collapse
|
43
|
Castellanos-Rubio I, Insausti M, Garaio E, Gil de Muro I, Plazaola F, Rojo T, Lezama L. Fe3O4 nanoparticles prepared by the seeded-growth route for hyperthermia: electron magnetic resonance as a key tool to evaluate size distribution in magnetic nanoparticles. NANOSCALE 2014; 6:7542-52. [PMID: 24890223 DOI: 10.1039/c4nr00646a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Monodispersed Fe3O4 nanoparticles have been synthesized by a thermal decomposition method based on the seeded-growth technique, achieving size tunable nanoparticles with high crystallinity and high saturation magnetization. EMR spectroscopy becomes a very efficient complementary tool to determine the fine details of size distributions of MNPs and even to estimate directly the size in a system composed of a given type of magnetic nanoparticles. The size and size dispersity affect directly the efficiency of MNPs for hyperthermia and EMR provides a direct evaluation of these characteristics almost exactly in the same preparation and with the same concentration as used in hyperthermia experiments. The correlation observed between the Specific Absorption Rate (SAR) and the effective gyromagnetic factor (geff) is extremely remarkable and renders a way to assess directly the heating capacity of a MNP system.
Collapse
Affiliation(s)
- Idoia Castellanos-Rubio
- Dpto. de Química Inorgánica, Universidad del País Vasco UPV/EHU, P.O. Box. 644, E-48080, Bilbao, Spain.
| | | | | | | | | | | | | |
Collapse
|
44
|
Ludwig F, Remmer H, Kuhlmann C, Wawrzik T, Arami H, Ferguson RM, Krishnan KM. Self-consistent magnetic properties of magnetite tracers optimized for magnetic particle imaging measured by ac susceptometry, magnetorelaxometry and magnetic particle spectroscopy. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 2014; 360:169-173. [PMID: 25729125 PMCID: PMC4338913 DOI: 10.1016/j.jmmm.2014.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Sensitivity and spatial resolution in Magnetic Particle Imaging are affected by magnetic properties of the nanoparticle tracers used during imaging. Here, we have carried out a comprehensive magnetic characterization of single-core iron oxide nanoparticles that were designed for MPI. We used ac susceptometry, fluxgate magnetorelaxometry, and magnetic particle spectroscopy to evaluate the tracer's magnetic core size, hydrodynamic size, and magnetic anisotropy. Our results present a self-consistent set of magnetic and structural parameters for the tracers that is consistent with direct measurements of size using transmission electron microscopy and dynamic light scattering and that can be used to better understand their MPI performance.
Collapse
Affiliation(s)
- Frank Ludwig
- Institute of Electrical Measurement and Fundamental Electrical Engineering, TU, Braunschweig, Hans-Sommer-Str. 66, D-38106 Braunschweig, Germany
| | - Hilke Remmer
- Institute of Electrical Measurement and Fundamental Electrical Engineering, TU, Braunschweig, Hans-Sommer-Str. 66, D-38106 Braunschweig, Germany
| | - Christian Kuhlmann
- Institute of Electrical Measurement and Fundamental Electrical Engineering, TU, Braunschweig, Hans-Sommer-Str. 66, D-38106 Braunschweig, Germany
| | - Thilo Wawrzik
- Institute of Electrical Measurement and Fundamental Electrical Engineering, TU, Braunschweig, Hans-Sommer-Str. 66, D-38106 Braunschweig, Germany
| | - Hamed Arami
- Department of Materials Science & Engineering, Box 352120, University of Washington, Seattle, WA98195, USA
| | - R. Mathew Ferguson
- Department of Materials Science & Engineering, Box 352120, University of Washington, Seattle, WA98195, USA
| | - Kannan M. Krishnan
- Department of Materials Science & Engineering, Box 352120, University of Washington, Seattle, WA98195, USA
- Corresponding author:
| |
Collapse
|
45
|
Ferguson RM, Khandhar AP, Arami H, Hua L, Hovorka O, Krishnan KM. Tailoring the magnetic and pharmacokinetic properties of iron oxide magnetic particle imaging tracers. ACTA ACUST UNITED AC 2014; 58:493-507. [PMID: 23787461 DOI: 10.1515/bmt-2012-0058] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/13/2013] [Indexed: 01/04/2023]
Abstract
Magnetic particle imaging (MPI) is an attractive new modality for imaging distributions of iron oxide nanoparticle tracers in vivo. With exceptional contrast, high sensitivity, and good spatial resolution, MPI shows promise for clinical imaging in angiography and oncology. Critically, MPI requires high-quality iron oxide nanoparticle tracers with tailored magnetic and surface properties to achieve its full potential. In this review, we discuss optimizing iron oxide nanoparticles' physical, magnetic, and pharmacokinetic properties for MPI, highlighting results from our recent work in which we demonstrated tailored, biocompatible iron oxide nanoparticle tracers that provided two times better linear spatial resolution and five times better signal-to-noise ratio than Resovist.
Collapse
|
46
|
Singh D, McMillan JM, Kabanov AV, Sokolsky-Papkov M, Gendelman HE. Bench-to-bedside translation of magnetic nanoparticles. Nanomedicine (Lond) 2014; 9:501-16. [PMID: 24910878 PMCID: PMC4150086 DOI: 10.2217/nnm.14.5] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Magnetic nanoparticles (MNPs) are a new and promising addition to the spectrum of biomedicines. Their promise revolves around the broad versatility and biocompatibility of the MNPs and their unique physicochemical properties. Guided by applied external magnetic fields, MNPs represent a cutting-edge tool designed to improve diagnosis and therapy of a broad range of inflammatory, infectious, genetic and degenerative diseases. Magnetic hyperthermia, targeted drug and gene delivery, cell tracking, protein bioseparation and tissue engineering are but a few applications being developed for MNPs. MNPs toxicities linked to shape, size and surface chemistry are real and must be addressed before clinical use is realized. This article presents both the promise and perils of this new nanotechnology, with an eye towards opportunity in translational medical science.
Collapse
Affiliation(s)
- Dhirender Singh
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - JoEllyn M McMillan
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marina Sokolsky-Papkov
- Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Howard E Gendelman
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| |
Collapse
|
47
|
Singh D, McMillan JM, Kabanov AV, Sokolsky-Papkov M, Gendelman HE. Bench-to-bedside translation of magnetic nanoparticles. Nanomedicine (Lond) 2014; 9:501-16. [PMID: 24910878 PMCID: PMC4150086 DOI: 10.2217/nmm.14.5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Magnetic nanoparticles (MNPs) are a new and promising addition to the spectrum of biomedicines. Their promise revolves around the broad versatility and biocompatibility of the MNPs and their unique physicochemical properties. Guided by applied external magnetic fields, MNPs represent a cutting-edge tool designed to improve diagnosis and therapy of a broad range of inflammatory, infectious, genetic and degenerative diseases. Magnetic hyperthermia, targeted drug and gene delivery, cell tracking, protein bioseparation and tissue engineering are but a few applications being developed for MNPs. MNPs toxicities linked to shape, size and surface chemistry are real and must be addressed before clinical use is realized. This article presents both the promise and perils of this new nanotechnology, with an eye towards opportunity in translational medical science.
Collapse
Affiliation(s)
- Dhirender Singh
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - JoEllyn M McMillan
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marina Sokolsky-Papkov
- Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Howard E Gendelman
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| |
Collapse
|
48
|
Canfarotta F, Piletsky SA. Engineered magnetic nanoparticles for biomedical applications. Adv Healthc Mater 2014; 3:160-75. [PMID: 24497448 DOI: 10.1002/adhm.201300141] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Indexed: 12/11/2022]
Abstract
In the past decades, magnetic nanoparticles (MNPs) have been used in wide range of diverse applications, ranging from separation to sensing. Here, synthesis and applications of functionalized MNPs in the biomedical field are discussed, in particular in drug delivery, imaging, and cancer therapy, highlighting also recent progresses in the development of multifunctional and stimuli-responsive MNPs. The role of their size, composition, and surface functionalization is analyzed, together with their biocompatibility issues.
Collapse
|
49
|
Arami H, Ferguson RM, Khandhar AP, Krishnan KM. Size-dependent ferrohydrodynamic relaxometry of magnetic particle imaging tracers in different environments. Med Phys 2014; 40:071904. [PMID: 23822441 DOI: 10.1118/1.4810962] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Magnetic particle imaging (MPI) is a recently developed imaging technique that seeks to provide ultrahigh resolution and tracer sensitivity with positive contrast directly originated from superparamagnetic iron oxide nanoparticles (NPs). MPI signals can be generated from a combination of Néel relaxation, Brownian rotational diffusion, and hysteretic reversal mechanisms of NPs in response to applied magnetic fields. When specific targeting of organs, such as carcinoma and endothelial cardiovascular cells, is needed, different behavior may be expected in immobilized NPs, due to complete or partial elimination of the Brownian motion. Here, the authors present an experimental investigation of the MPI spatial resolution and signal intensities as a function of a wide range of median core sizes of NPs under four representative conditions, including after immobilization in a tissue equivalent medium. METHODS Monodisperse hydrophobic NPs with median core diameters (d0) ranging from 7 to 22 nm were synthesized in organic media and subsequently dispersed in aqueous solution after a facile surface modification. Morphology, median size, size distribution, and magnetic properties of the NPs were investigated. Hydrophobic and hydrophilic NPs with various core sizes were immobilized in trioctyl phosphine oxide and agarose gel, respectively. Their size-dependent performance as MPI tracers for system matrix and x-space image reconstruction was evaluated using magnetic particle spectrometry (MPS) and compared with the free rotating counterparts. RESULTS Immobilized NPs with core diameters smaller than ≈ 20 nm have similar spatial resolution, but lower signal intensities when compared with their free rotating counterparts. Compared to their performance in solution, spatial resolution was improved, but signal intensity was lower, when larger NPs with core size of 22 nm were immobilized in agarose. Same trends were observed in signal intensities, when considering either system matrix or x-space approaches. The harmonic and dm/dH signal intensities changed linearly and the spatial resolution did not change with decreasing NP concentration up to 15 μg/ml. CONCLUSIONS The results show that the MPI signal is very sensitive to both NP size and environment. The authors' calculations show that Brownian rotational diffusion is slower than the field switching cycle and, therefore, it has minimal influence on MPS signals. dm/dH analyses show that Néel relaxation is the dominant mechanism determining MPI response in smaller NPs (d0 < ≈ 20 nm). Larger NPs show hysteretic reversal when the applied field amplitude is large enough to overcome the coercivity. Linear variation of the MPS signal intensity with iron concentration but with uniform spatial resolution enables quantitative imaging for a range of applications, from high-concentration bolus chase imaging to low-concentration molecular imaging (while the authors' instrument is noise-limited to ≈ millimolar iron concentrations, nanomolar sensitivity is expected for MPI, theoretically). These results pave the way for future application of the authors' synthesized tracers for immobilized or in vivo targeted MPI of tissues.
Collapse
Affiliation(s)
- Hamed Arami
- Department of Materials Science and Engineering, University of Washington, P.O. Box 352120, Seattle, Washington 98195-2120, USA
| | | | | | | |
Collapse
|
50
|
Gebreel D, Shalaby T, Yousef Y, Mohamed M, Badawy H. Magnetic fluid based on Fe3O4nanoparticles: Preparation and hyperthermia application. ACTA ACUST UNITED AC 2014. [DOI: 10.4103/2348-0734.131792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|