1
|
Zhang G, Zhen C, Yang J, Wang J, Wang S, Fang Y, Shang P. Recent advances of nanoparticles on bone tissue engineering and bone cells. NANOSCALE ADVANCES 2024; 6:1957-1973. [PMID: 38633036 PMCID: PMC11019495 DOI: 10.1039/d3na00851g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/05/2024] [Indexed: 04/19/2024]
Abstract
With the development of biotechnology, biomaterials have been rapidly developed and shown great potential in bone regeneration therapy and bone tissue engineering. Nanoparticles have attracted the attention of researches and have applied in various fields especially in the biomedical field as the special physicochemical properties. Nanoparticles were found to regulate bone remodeling depending on their size, shape, composition, and charge. Therefore, in-depth research was necessary to provide the basic support to select the most suitable nanoparticles for bone relate diseases treatment. This article reviews the current development of nanoparticles in bone tissue engineering, focusing on drug delivery, gene delivery, and cell labeling. In addition, the research progress on the interaction of nanoparticles with bone cells, focusing on osteoblasts, osteoclasts, and bone marrow mesenchymal stem cells, and the underlying mechanism were also reviewed. Finally, the current challenges and future research directions are discussed. Thus, detailed study of nanoparticles may reveal new therapeutic strategies to improve the effectiveness of bone regeneration therapy or other bone diseases.
Collapse
Affiliation(s)
- Gejing Zhang
- School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
- Research & Development Institute of Northwestern Polytechnical University Shenzhen 518057 China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Chenxiao Zhen
- School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
- Research & Development Institute of Northwestern Polytechnical University Shenzhen 518057 China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Jiancheng Yang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University Xi'an 710054 China
| | - Jianping Wang
- School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
- Research & Development Institute of Northwestern Polytechnical University Shenzhen 518057 China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Shenghang Wang
- School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
- Department of Spine Surgery, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital) Shenzhen 518109 China
| | - Yanwen Fang
- Heye Health Technology Co., Ltd Huzhou 313300 China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University Shenzhen 518057 China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| |
Collapse
|
2
|
Pamshong SR, Bhatane D, Sarnaik S, Alexander A. Mesoporous silica nanoparticles: An emerging approach in overcoming the challenges with oral delivery of proteins and peptides. Colloids Surf B Biointerfaces 2023; 232:113613. [PMID: 37913702 DOI: 10.1016/j.colsurfb.2023.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Proteins and peptides (PPs), as therapeutics are widely explored in the past few decades, by virtue of their inherent advantages like high specificity and biocompatibility with minimal side effects. However, owing to their macromolecular size, poor membrane permeability, and high enzymatic susceptibility, the effective delivery of PPs is often challenging. Moreover, their subjection to varying environmental conditions, when administered orally, results in PPs denaturation and structural conformation, thereby lowering their bioavailability. Hence, for effective delivery with enhanced bioavailability, protection of PPs using nanoparticle-based delivery system has gained a growing interest. Mesoporous silica nanoparticles (MSNs), with their tailored morphology and pore size, high surface area, easy surface modification, versatile loading capacity, excellent thermal stability, and good biocompatibility, are eligible candidates for the effective delivery of macromolecules to the target site. This review highlights the different barriers hindering the oral absorption of PPs and the various strategies available to overcome them. In addition, the potential benefits of MSNs, along with their diversifying role in controlling the loading of PPs and their release under the influence of specific stimuli, are also discussed in length. Further, the tuning of MSNs for enhanced gene transfection efficacy is also highlighted. Since extensive research is ongoing in this area, this review is concluded with an emphasis on the potential risks of MSNs that need to be addressed prior to their clinical translation.
Collapse
Affiliation(s)
- Sharon Rose Pamshong
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Dhananjay Bhatane
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Santosh Sarnaik
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India.
| |
Collapse
|
3
|
Zhou H, He Y, Xiong W, Jing S, Duan X, Huang Z, Nahal GS, Peng Y, Li M, Zhu Y, Ye Q. MSC based gene delivery methods and strategies improve the therapeutic efficacy of neurological diseases. Bioact Mater 2023; 23:409-437. [PMCID: PMC9713256 DOI: 10.1016/j.bioactmat.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 12/05/2022] Open
|
4
|
Fang L, Zhou H, Cheng L, Wang Y, Liu F, Wang S. The application of mesoporous silica nanoparticles as a drug delivery vehicle in oral disease treatment. Front Cell Infect Microbiol 2023; 13:1124411. [PMID: 36864881 PMCID: PMC9971568 DOI: 10.3389/fcimb.2023.1124411] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023] Open
Abstract
Mesoporous silica nanoparticles (MSNs) hold promise as safer and more effective medication delivery vehicles for treating oral disorders. As the drug's delivery system, MSNs adapt to effectively combine with a variety of medications to get over systemic toxicity and low solubility issues. MSNs, which operate as a common nanoplatform for the co-delivery of several compounds, increase therapy effectiveness and show promise in the fight against antibiotic resistance. MSNs offer a noninvasive and biocompatible platform for delivery that produces long-acting release by responding to minute stimuli in the cellular environmen. MSN-based drug delivery systems for the treatment of periodontitis, cancer, dentin hypersensitivity, and dental cavities have recently been developed as a result of recent unparalleled advancements. The applications of MSNs to be embellished by oral therapeutic agents in stomatology are discussed in this paper.
Collapse
Affiliation(s)
- Lixin Fang
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huoxiang Zhou
- Laboratory of Microbiology and Immunology, Institute of Medical and Pharmaceutical Sciences & the Beijing Genomics Institution (BGI) College, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Long Cheng
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiyi Wang
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei Liu
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Fei Liu, ; Suping Wang,
| | - Suping Wang
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Fei Liu, ; Suping Wang,
| |
Collapse
|
5
|
Vallet-Regí M, Schüth F, Lozano D, Colilla M, Manzano M. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades? Chem Soc Rev 2022; 51:5365-5451. [PMID: 35642539 PMCID: PMC9252171 DOI: 10.1039/d1cs00659b] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 12/12/2022]
Abstract
The present review details a chronological description of the events that took place during the development of mesoporous materials, their different synthetic routes and their use as drug delivery systems. The outstanding textural properties of these materials quickly inspired their translation to the nanoscale dimension leading to mesoporous silica nanoparticles (MSNs). The different aspects of introducing pharmaceutical agents into the pores of these nanocarriers, together with their possible biodistribution and clearance routes, would be described here. The development of smart nanocarriers that are able to release a high local concentration of the therapeutic cargo on-demand after the application of certain stimuli would be reviewed here, together with their ability to deliver the therapeutic cargo to precise locations in the body. The huge progress in the design and development of MSNs for biomedical applications, including the potential treatment of different diseases, during the last 20 years will be collated here, together with the required work that still needs to be done to achieve the clinical translation of these materials. This review was conceived to stand out from past reports since it aims to tell the story of the development of mesoporous materials and their use as drug delivery systems by some of the story makers, who could be considered to be among the pioneers in this area.
Collapse
Affiliation(s)
- María Vallet-Regí
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Ferdi Schüth
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Daniel Lozano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Montserrat Colilla
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Miguel Manzano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| |
Collapse
|
6
|
Heidari R, Khosravian P, Mirzaei SA, Elahian F. siRNA delivery using intelligent chitosan-capped mesoporous silica nanoparticles for overcoming multidrug resistance in malignant carcinoma cells. Sci Rep 2021; 11:20531. [PMID: 34654836 PMCID: PMC8519957 DOI: 10.1038/s41598-021-00085-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Although siRNA is a promising technology for cancer gene therapy, effective cytoplasmic delivery has remained a significant challenge. In this paper, a potent siRNA transfer system with active targeting moieties toward cancer cells and a high loading capacity is introduced to inhibit drug resistance. Mesoporous silica nanoparticles are of great potential for developing targeted gene delivery. Amino-modified MSNs (NH2-MSNs) were synthesized using a modified sol–gel method and characterized by FTIR, BET, TEM, SEM, X-ray diffraction, DLS, and 1H-NMR. MDR1-siRNA was loaded within NH2-MSNs, and the resulting negative surface was capped by functionalized chitosan as a protective layer. Targeting moieties such as TAT and folate were anchored to chitosan via PEG-spacers. The loading capacity of siRNA and the protective effect of chitosan for siRNA were determined by gel retardation assay. MTT assay, flow cytometry, real-time PCR, and western blot were performed to study the cytotoxicity, cellular uptake assay, targeting evaluation, and MDR1 knockdown efficiency. The synthesized NH2-MSNs had a particle size of ≈ 100 nm and pore size of ≈ 5 nm. siRNA was loaded into NH2-MSNs with a high loading capacity of 20% w/w. Chitosan coating on the surface of siRNA-NH2-MSNs significantly improved the siRNA protection against enzyme activity compared to naked siRNA-NH2-MSNs. MSNs and modified MSNs did not exhibit significant cytotoxicity at therapeutic concentrations in the EPG85.257-RDB and HeLa-RDB lines. The folate-conjugated nanoparticles showed a cellular uptake of around two times higher in folate receptor-rich HeLa-RDB than EPG85.257-RDB cells. The chitosan-coated siRNA-NH2-MSNs produced decreased MDR1 transcript and protein levels in HeLa-RDB by 0.20 and 0.48-fold, respectively. The results demonstrated that functionalized chitosan-coated siRNA-MSNs could be a promising carrier for targeted cancer therapy. Folate-targeted nanoparticles were specifically harvested by folate receptor-rich HeLa-RDB and produced a chemosensitized phenotype of the multidrug-resistant cancer cells.
Collapse
Affiliation(s)
- Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Pegah Khosravian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran. .,Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
7
|
Davis C, Savitz SI, Satani N. Mesenchymal Stem Cell Derived Extracellular Vesicles for Repairing the Neurovascular Unit after Ischemic Stroke. Cells 2021; 10:cells10040767. [PMID: 33807314 PMCID: PMC8065444 DOI: 10.3390/cells10040767] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is a debilitating disease and one of the leading causes of long-term disability. During the early phase after ischemic stroke, the blood-brain barrier (BBB) exhibits increased permeability and disruption, leading to an influx of immune cells and inflammatory molecules that exacerbate the damage to the brain tissue. Mesenchymal stem cells have been investigated as a promising therapy to improve the recovery after ischemic stroke. The therapeutic effects imparted by MSCs are mostly paracrine. Recently, the role of extracellular vesicles released by these MSCs have been studied as possible carriers of information to the brain. This review focuses on the potential of MSC derived EVs to repair the components of the neurovascular unit (NVU) controlling the BBB, in order to promote overall recovery from stroke. Here, we review the techniques for increasing the effectiveness of MSC-based therapeutics, such as improved homing capabilities, bioengineering protein expression, modified culture conditions, and customizing the contents of EVs. Combining multiple techniques targeting NVU repair may provide the basis for improved future stroke treatment paradigms.
Collapse
|
8
|
Non-viral delivery systems of DNA into stem cells: Promising and multifarious actions for regenerative medicine. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Salah Z, Abd El Azeem EM, Youssef HF, Gamal-Eldeen AM, Farrag AR, El-Meliegy E, Soliman B, Elhefnawi M. Effect of Tumor Suppressor MiR-34a Loaded on ZSM-5 Nanozeolite in Hepatocellular Carcinoma: In Vitro and In Vivo Approach. Curr Gene Ther 2020; 19:342-354. [PMID: 31701846 DOI: 10.2174/1566523219666191108103739] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/16/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND MicroRNA modulation therapy has shown great promise to treat hepatocellular carcinoma (HCC), however Efficient tissue-specific and safe delivery remains a major challenge. OBJECTIVE We sought to develop an inorganic-organic hybrid vehicle for the systemic delivery of the tumor suppressor miR-34a, and to investigate the efficiency of the delivered miR-34a in the treatment of HCC in vitro and in vivo. METHODS In the present study, pEGP-miR cloning and expression vector, expressing miR-34a, was electrostatically bound to polyethyleneimine (PEI), and then loaded onto ZSM-5 zeolite nanoparticles (ZNP). Qualitative and quantitative assessment of the transfection efficiency of miR-34a construct in HepG2 cells was applied by GFP screening and qRT-PCR, respectively. The expression of miR-34a target genes was investigated by qRT-PCR in vitro and in vivo. RESULTS ZNP/PEI/miR-34a nano-formulation could efficiently deliver into HepG2 cells with low cytotoxicity, indicating good biocompatibility of generated nanozeolite. Furthermore, five injected doses of ZNP/PEI/miR-34a nano-formulation in HCC induced male Balb-c mice, significantly inhibited tumor growth, and demonstrated improved cell structure, in addition to a significant decrease in alphafetoprotein level and liver enzymes activities, as compared to the positive control group. Moreover, injected ZNP/PEI/miR-34a nano-formulation led to a noticeable decrease in the CD44 and c-Myc levels. Results also showed that ZNP/PEI/miR-34a nano-formulation inhibited several target oncogenes including AEG-1, and SOX-9, in vitro and in vivo. CONCLUSION Our results suggested that miR-34a is a powerful candidate in HCC treatment and that AEG-1 and SOX-9 are novel oncotargets of miR-34a in HCC. Results also demonstrated that our nano-formulation may serve as a candidate approach for miR-34a restoration for HCC therapy, and generally for safe gene delivery.
Collapse
Affiliation(s)
- Zeinab Salah
- Biomedical Informatics and Chemo-Informatics Group Leader, Centre of Excellence for Medical Research, Informatics and System Dept, National Research Centre (NRC), Cairo, Egypt
| | - Eman M Abd El Azeem
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hanan F Youssef
- Refractories, Ceramics and Building Materials Department, National Research Centre (NRC), Dokki, Cairo 12622, Egypt
| | - Amira M Gamal-Eldeen
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Al Mutamarat Rd, Al Mathnah, At Taif 26521, Saudi Arabia
| | - Abdel R Farrag
- Pathology Department Medical Division Research, National Research Centre, Cairo, 12622, Dokki, Egypt
| | - Emad El-Meliegy
- Department of Biomaterials, National Research Centre, Cairo, Egypt
| | - Bangly Soliman
- Biomedical Informatics and Chemo-Informatics Group Leader, Centre of Excellence for Medical Research, Informatics and System Dept, National Research Centre (NRC), Cairo, Egypt
| | - Mahmoud Elhefnawi
- Biomedical Informatics and Chemo-Informatics Group Leader, Centre of Excellence for Medical Research, Informatics and System Dept, National Research Centre (NRC), Cairo, Egypt
| |
Collapse
|
10
|
Lee JY, Kim MK, Nguyen TL, Kim J. Hollow Mesoporous Silica Nanoparticles with Extra-Large Mesopores for Enhanced Cancer Vaccine. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34658-34666. [PMID: 32662625 DOI: 10.1021/acsami.0c09484] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Owing to the limitations of conventional cancer therapies, cancer immunotherapy has emerged for the prevention of cancer recurrence. To provoke adaptive immune responses that are antigen-specific, it is important to develop an efficient antigen delivery system that can enhance the activation and maturation of the dendritic cells (DCs) in the human body. In this study, we synthesize hollow mesoporous silica nanoparticles with extra-large mesopores (H-XL-MSNs) based on a single-step synthesis from core-shell mesoporous silica nanoparticles with a core composed of an assembly of iron oxide nanoparticles. The hollow void inside the mesoporous silica nanoparticles with large mesopores allows a high loading efficiency of various model proteins of different sizes. The H-XL-MSNs are coated with a poly(ethyleneimine) (PEI) solution to provide an immune adjuvant and change the surface charge of the particles for loading and slow release of a model antigen. An in vitro study using a cancer vaccine based on the PEI-coated H-XL-MSNs with the loading of the model antigen showed an enhanced activation of the DCs. An in vivo study demonstrated that the resulting cancer vaccine increased the antigen-specific cytotoxic T cells, enhanced the suppression of tumor growth, and improved the survival rate after challenging cancer to mice. These findings suggest that these hollow MSNs with extra-large pores can be used as excellent antigen carriers for immunotherapy.
Collapse
Affiliation(s)
- Jun Yup Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Min Kyung Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Thanh Loc Nguyen
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
11
|
Paris JL, Vallet-Regí M. Mesoporous Silica Nanoparticles for Co-Delivery of Drugs and Nucleic Acids in Oncology: A Review. Pharmaceutics 2020; 12:E526. [PMID: 32521800 PMCID: PMC7356816 DOI: 10.3390/pharmaceutics12060526] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/31/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022] Open
Abstract
Mesoporous silica nanoparticles have attracted much attention in recent years as drug and gene delivery systems for biomedical applications. Among their most beneficial features for biomedicine, we can highlight their biocompatibility and their outstanding textural properties, which provide a great loading capacity for many types of cargos. In the context of cancer nanomedicine, combination therapy and gene transfection/silencing have recently been highlighted as two of its most promising fields. In this review, we aim to provide an overview of the different small molecule drug-nucleic acid co-delivery combinations that have been developed using mesoporous silica nanoparticles as carriers. By carefully selecting the chemotherapeutic drug and nucleic acid cargos to be co-delivered by mesoporous silica nanoparticles, different therapeutic goals can be achieved by overcoming resistance mechanisms, combining different cytotoxic mechanisms, or providing an additional antiangiogenic effect. The examples here presented highlight the great promise of this type of strategies for the development of future therapeutics.
Collapse
Affiliation(s)
- Juan L Paris
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Civil, 29009 Málaga, Spain
- Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Andalusian Center for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas (Unidad Docente de Química Inorgánica y Bioinorgánica), Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain
- Centro de Investigación Biomédicaen Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| |
Collapse
|
12
|
Levingstone TJ, Herbaj S, Redmond J, McCarthy HO, Dunne NJ. Calcium Phosphate Nanoparticles-Based Systems for RNAi Delivery: Applications in Bone Tissue Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E146. [PMID: 31947548 PMCID: PMC7023416 DOI: 10.3390/nano10010146] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/16/2019] [Accepted: 12/21/2019] [Indexed: 12/11/2022]
Abstract
Bone-related injury and disease constitute a significant global burden both socially and economically. Current treatments have many limitations and thus the development of new approaches for bone-related conditions is imperative. Gene therapy is an emerging approach for effective bone repair and regeneration, with notable interest in the use of RNA interference (RNAi) systems to regulate gene expression in the bone microenvironment. Calcium phosphate nanoparticles represent promising materials for use as non-viral vectors for gene therapy in bone tissue engineering applications due to their many favorable properties, including biocompatibility, osteoinductivity, osteoconductivity, and strong affinity for binding to nucleic acids. However, low transfection rates present a significant barrier to their clinical use. This article reviews the benefits of calcium phosphate nanoparticles for RNAi delivery and highlights the role of surface functionalization in increasing calcium phosphate nanoparticles stability, improving cellular uptake and increasing transfection efficiency. Currently, the underlying mechanistic principles relating to these systems and their interplay during in vivo bone formation is not wholly understood. Furthermore, the optimal microRNA targets for particular bone tissue regeneration applications are still unclear. Therefore, further research is required in order to achieve the optimal calcium phosphate nanoparticles-based systems for RNAi delivery for bone tissue regeneration.
Collapse
Affiliation(s)
- Tanya J. Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland; (T.J.L.); (S.H.); (J.R.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, 9 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland
| | - Simona Herbaj
- School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland; (T.J.L.); (S.H.); (J.R.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland
| | - John Redmond
- School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland; (T.J.L.); (S.H.); (J.R.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland
| | - Helen O. McCarthy
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK;
| | - Nicholas J. Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland; (T.J.L.); (S.H.); (J.R.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, 9 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK;
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, 2 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, 2 Dublin, Ireland
| |
Collapse
|
13
|
J Hill M, Qi B, Bayaniahangar R, Araban V, Bakhtiary Z, Doschak M, Goh B, Shokouhimehr M, Vali H, Presley J, Zadpoor A, Harris M, Abadi P, Mahmoudi M. Nanomaterials for bone tissue regeneration: updates and future perspectives. Nanomedicine (Lond) 2019; 14:2987-3006. [DOI: 10.2217/nnm-2018-0445] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Joint replacement and bone reconstructive surgeries are on the rise globally. Current strategies for implants and bone regeneration are associated with poor integration and healing resulting in repeated surgeries. A multidisciplinary approach involving basic biological sciences, tissue engineering, regenerative medicine and clinical research is required to overcome this problem. Considering the nanostructured nature of bone, expertise and resources available through recent advancements in nanobiotechnology enable researchers to design and fabricate devices and drug delivery systems at the nanoscale to be more compatible with the bone tissue environment. The focus of this review is to present the recent progress made in the rationale and design of nanomaterials for tissue engineering and drug delivery relevant to bone regeneration.
Collapse
Affiliation(s)
- Michael J Hill
- Department of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA
| | - Baowen Qi
- Center for Nanomedicine & Department of Anesthesiology, Brigham & Women's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - Rasoul Bayaniahangar
- Department of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA
| | - Vida Araban
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Zahra Bakhtiary
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Doschak
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Brian C Goh
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mohammadreza Shokouhimehr
- Department of Materials Science & Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hojatollah Vali
- Department of Anatomy & Cell Biology & Facility for Electron Microscopy Research, McGill University, Montreal, QC H3A 0G4, Canada
| | - John F Presley
- Department of Anatomy & Cell Biology & Facility for Electron Microscopy Research, McGill University, Montreal, QC H3A 0G4, Canada
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands
| | - Mitchel B Harris
- Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Parisa PSS Abadi
- Department of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA
| | - Morteza Mahmoudi
- Precision Health Program & Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
14
|
Hasany M, Taebnia N, Yaghmaei S, Shahbazi MA, Mehrali M, Dolatshahi-Pirouz A, Arpanaei A. Silica nanoparticle surface chemistry: An important trait affecting cellular biocompatibility in two and three dimensional culture systems. Colloids Surf B Biointerfaces 2019; 182:110353. [PMID: 31336281 DOI: 10.1016/j.colsurfb.2019.110353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/15/2019] [Accepted: 07/06/2019] [Indexed: 02/06/2023]
Abstract
Great advantages bestowed by mesoporous silica nanoparticles (MSNs) including high surface area, tailorable pore diameter and surface chemistry, and large pore volume render them as efficient tools in biomedical applications. Herein, MSNs with different surface chemistries were synthesized and investigated in terms of biocompatibility and their impact on the morphology of bone marrow-derived mesenchymal stem cells both in 2D and 3D culture systems. Bare MSNs (BMSNs) were synthesized by template removing method using tetraethylorthosilicate (TEOS) as a precursor. The as-prepared BMSNs were then used to prepare amine-functionalized (AMSNs), carboxyl-functionalized (CMSNs) and polymeric amine-functionalized (PMSNs) samples, consecutively. These nanoparticles were characterized by scanning electron microscopy, zeta potential measurement, dynamic light scattering, BET (Brunauer, Emmett, Teller) analysis, and FTIR technique. In a 3D culture system, stem cells were encapsulated in alginate hydrogel in which MSNs of different functionalities were incorporated. The results showed good biocompatibility for both BMSNs and AMSNs in 2D and 3D culture systems. For these samples, the viability of about 80% was acquired after 2 weeks of 3D culture. When compared to the control, CMSNs caused higher cell proliferation in the 2D culture; while they showed cytotoxic effects in the 3D culture system. Interestingly, polymeric amine-functionalized silica nanoparticles (PMSNs) resulted in disrupted morphology and very low viability in the 2D cell culture and even less viability in 3D environment in comparison to BMSNs and AMSNs. This significant decrease in cell viability was attributed to the higher uptake values of highly positively charged PMSNs by cells as compared to other MSNs. This up-regulated uptake was evaluated by using an inductively coupled plasma optical emission spectroscopy instrument (ICP-OES). These results uncover different interactions between cell and nanoparticles with various surface chemistries. Building on these results, new windows are opened for employing biocompatible nanoparticles such as BMSNs and AMSNs, even at high concentrations, as potential cargos for carrying required growth and/or differentiation factors for tissue engineering applications.
Collapse
Affiliation(s)
- Masoud Hasany
- Technical University of Denmark, DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Denmark; Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, PO Box: 14965/161, Tehran, Iran; Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Nayere Taebnia
- Technical University of Denmark, DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Denmark
| | - Soheila Yaghmaei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad-Ali Shahbazi
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs, Lyngby, Denmark; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184, Zanjan, Iran
| | - Mehdi Mehrali
- Technical University of Denmark, DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Denmark
| | - Alireza Dolatshahi-Pirouz
- Technical University of Denmark, DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Denmark; Department of Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen, 6525 EX, The Netherlands.
| | - Ayyoob Arpanaei
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, PO Box: 14965/161, Tehran, Iran.
| |
Collapse
|
15
|
Mahmoodi M, Behzad-Behbahani A, Sharifzadeh S, Abolmaali SS, Tamaddon A. Co-condensation synthesis of well-defined mesoporous silica nanoparticles: effect of surface chemical modification on plasmid DNA condensation and transfection. IET Nanobiotechnol 2019; 11:995-1004. [PMID: 29155400 DOI: 10.1049/iet-nbt.2017.0078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chemically modified mesoporous silica nanoparticles (MSNs) are of interest due to their chemical and thermal stability with adjustable morphology and porosity; therefore, it was aimed to develop and compare the MCM-41 MSNs functionalised with imidazole groups (MCM-41-Im) to unmodified (MCM-41-OH) and primary amine functionalised (MCM-41-NH2) MSNs for experimental gene delivery. The results show efficient transfection of the complexes of the plasmid and either MCM-41-NH2 or MCM-41-Im. Furthermore, following transfection of HeLa cells using MCM-41-Im, an enhanced GFP expression was achieved consistent with the noticeable DNase1 protection and endosomal escape properties of MCM-41-Im using carboxyfluorescein tracer.
Collapse
Affiliation(s)
- Mahdokht Mahmoodi
- Department of Medical Biotechnology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Behzad-Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Sadigheh Sharifzadeh
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - AliMohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Liu X, Yang Z, Sun J, Ma T, Hua F, Shen Z. A brief review of cytotoxicity of nanoparticles on mesenchymal stem cells in regenerative medicine. Int J Nanomedicine 2019; 14:3875-3892. [PMID: 31213807 PMCID: PMC6539172 DOI: 10.2147/ijn.s205574] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/21/2019] [Indexed: 12/30/2022] Open
Abstract
Multipotent mesenchymal stem cells have shown great promise for application in regenerative medicine owing to their particular therapeutic effects, such as significant self-renewability, low immunogenicity, and ability to differentiate into a variety of specialized cells. However, there remain certain complicated and unavoidable problems that limit their further development and application. One of the challenges is to noninvasively monitor the delivery and biodistribution of transplanted stem cells during treatment without relying on behavioral endpoints or tissue histology, and it is important to explore the potential mechanisms to clarify how stem cells work in vivo. To solve these problems, various nanoparticles (NPs) and their corresponding imaging methods have been developed recently and have made great progress. In this review, we mainly discuss NPs used to label stem cells and their toxic effects on the latter, the imaging techniques to detect such NPs, and the current existing challenges in this field.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| | - Ziying Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| | - Jiacheng Sun
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| | - Teng Ma
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| | - Fei Hua
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
17
|
Kesse S, Boakye-Yiadom KO, Ochete BO, Opoku-Damoah Y, Akhtar F, Filli MS, Asim Farooq M, Aquib M, Maviah Mily BJ, Murtaza G, Wang B. Mesoporous Silica Nanomaterials: Versatile Nanocarriers for Cancer Theranostics and Drug and Gene Delivery. Pharmaceutics 2019; 11:E77. [PMID: 30781850 PMCID: PMC6410079 DOI: 10.3390/pharmaceutics11020077] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 12/19/2022] Open
Abstract
Mesoporous silica nanomaterials (MSNs) have made remarkable achievements and are being thought of by researchers as materials that can be used to effect great change in cancer therapies, gene delivery, and drug delivery because of their optically transparent properties, flexible size, functional surface, low toxicity profile, and very good drug loading competence. Mesoporous silica nanoparticles (MSNPs) show a very high loading capacity for therapeutic agents. It is well known that cancer is one of the most severe known medical conditions, characterized by cells that grow and spread rapidly. Thus, curtailing cancer is one of the greatest current challenges for scientists. Nanotechnology is an evolving field of study, encompassing medicine, engineering, and science, and it has evolved over the years with respect to cancer therapy. This review outlines the applications of mesoporous nanomaterials in the field of cancer theranostics, as well as drug and gene delivery. MSNs employed as therapeutic agents, as well as their importance and future prospects in the ensuing generation of cancer theranostics and drug and therapeutic gene delivery, are discussed herein. Thus, the use of mesoporous silica nanomaterials can be seen as using one stone to kill three birds.
Collapse
Affiliation(s)
- Samuel Kesse
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Kofi Oti Boakye-Yiadom
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Belynda Owoya Ochete
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Yaw Opoku-Damoah
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| | - Fahad Akhtar
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Mensura Sied Filli
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Muhammad Asim Farooq
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Md Aquib
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Bazezy Joelle Maviah Mily
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus 54600, Pakistan.
| | - Bo Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
18
|
Zhou X, Zhang Q, Chen L, Nie W, Wang W, Wang H, Mo X, He C. Versatile Nanocarrier Based on Functionalized Mesoporous Silica Nanoparticles to Codeliver Osteogenic Gene and Drug for Enhanced Osteodifferentiation. ACS Biomater Sci Eng 2019; 5:710-723. [PMID: 33405833 DOI: 10.1021/acsbiomaterials.8b01110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To achieve enhanced stimulatory effects on the osteogenic differentiation of stem cells, the combination of dual factors with synergistic bioactivity has been regarded as the most effective and powerful strategy. In this study, polylysine-modified polyethylenimine (PEI-PLL) copolymers with various molecular weight PEI blocks were first synthesized and evaluated focusing on their cytotoxicity and gene transfection efficiency, and the results demonstrated that the synthesized copolymer PEI-PLL-25k (synthesized using 25 kDa PEI) exhibited lower cytotoxicity and higher in vitro transfection efficiency than commercial PEI-25k (Mw = 25 kDa). In order to effectively load and deliver plasmid DNA and osteogenic drug dexamethasone (DEX), PEI-PLL-25k copolymer and arginine-glycine-aspartate (RGD) peptide were successively anchored onto the surface of mesoporous silica nanoparticles (MSNs) to construct the dual-factor delivery system, which allows the surface adsorption of DNA and DEX loading in the mesopores of MSNs. The modification of PEI-PLL-25k copolymer and RGD on nanoparticles was successfully characterized by various techniques. The functionalized MSNs with RGD conjugation on the surface showed good cytocompatibility as evidenced by in vitro cell viability assays and cytoskeleton observation. The dual-factor delivery system could quickly release plasmid DNA (pDNA), while releasing DEX in a sustained manner. When cultured with the vector bearing bone morphogenetic protein-2 (BMP-2) pDNA, the transfected bone mesenchymal stem cells (BMSCs) were capable of expressing BMP-2 protein. With the simultaneous delivery of DEX and the BMP-2 gene, this dual-factor delivery system could significantly enhance the level of osteogenic differentiation of BMSCs, as demonstrated by in vitro results of alkaline phosphatase (ALP) activity, expression of osteo-related genes, and calcium deposition. Therefore, the versatile functionalized MSNs nanocarrier for codelivery of osteogenic gene and drug may be considered as a promising dual-delivery system to synergistically enhance the osteogenic outcomes of stem cells.
Collapse
Affiliation(s)
- Xiaojun Zhou
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qianqian Zhang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Liang Chen
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Wei Nie
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Weizhong Wang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Hongsheng Wang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiumei Mo
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Chuanglong He
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
19
|
Abstract
Mesenchymal stromal cell (MSC) therapy has produced very promising results for multiple diseases in animal models, with over 780 clinical trials on going or completed. However, most of the human clinical trials have not been as successful as trials using preclinical models. To improve the therapeutic potential of MSCs, different research groups have used gene transfer vectors to express factors involved in migration, survival, differentiation, and immunomodulation. The ideal gene transfer vector for most applications should achieve long-term, stable (constitutive or inducible) transgene expression in MSCs and their progeny. Given their efficiency and low impact on transduced cells, lentiviral vectors (LVs) are the vectors of choice. In this chapter we will describe a detailed protocol for the generation of genetically modified MSCs using lentiviral vectors (LVs). Although this protocol has been optimized for MSC lentiviral transduction, it can be easily adapted to other stem cells by changing culture conditions while maintaining volumes and incubation times.
Collapse
|
20
|
Jafari S, Derakhshankhah H, Alaei L, Fattahi A, Varnamkhasti BS, Saboury AA. Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed Pharmacother 2018; 109:1100-1111. [PMID: 30551360 DOI: 10.1016/j.biopha.2018.10.167] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022] Open
Abstract
Based on unique intrinsic properties of mesoporous silica nanoparticles (MSNs) such as high surface area, large pore size, good biocompatibility and biodegradability, stable aqueous dispersion, they have received much attention in the recent decades for their applications as a promising platform in the biomedicine field. These porous structures possess a pore size ranging from 2 to 50 nm which make them excellent candidates for various biomedical applications. Herein, at first we described the common approaches of cargo loading and release processes from MSNs. Then, the intracellular uptake, safety and cytotoxicity aspects of MSNs are discussed as well. This review also highlights the most recent advances in the biomedical applications of MSNs, including 1) MSNs-based carriers, 2) MSNs as bioimaging agents, 3) MSNs-based biosensors, 4) MSNs as therapeutic agents (photodynamic therapy), 5) MSN based quantum dots, 6) MSNs as platforms for upconverting nanoparticles, and 6) MSNs in tissue engineering.
Collapse
Affiliation(s)
- Samira Jafari
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Loghman Alaei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Fattahi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
21
|
Biodegradable Polymers Grafted onto Multifunctional Mesoporous Silica Nanoparticles for Gene Delivery. CHEMENGINEERING 2018. [DOI: 10.3390/chemengineering2020024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Cha BG, Jeong JH, Kim J. Extra-Large Pore Mesoporous Silica Nanoparticles Enabling Co-Delivery of High Amounts of Protein Antigen and Toll-like Receptor 9 Agonist for Enhanced Cancer Vaccine Efficacy. ACS CENTRAL SCIENCE 2018; 4:484-492. [PMID: 29721531 PMCID: PMC5920615 DOI: 10.1021/acscentsci.8b00035] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Indexed: 05/15/2023]
Abstract
Cancer vaccine aims to invoke antitumor adaptive immune responses to detect and eliminate tumors. However, the current dendritic cells (DCs)-based cancer vaccines have several limitations that are mostly derived from the ex vivo culture of patient DCs. To circumvent the limitations, direct activation and maturation of host DCs using antigen-carrying materials, without the need for isolation of DCs from patients, are required. In this study, we demonstrate the synthesis of extra-large pore mesoporous silica nanoparticles (XL-MSNs) and their use as a prophylactic cancer vaccine through the delivery of cancer antigen and danger signal to host DCs in the draining lymph nodes. Extra-large pores of approximately 25 nm and additional surface modification of XL-MSNs resulted in significantly higher loading of antigen protein and toll-like receptor 9 (TLR9) agonist compared with conventional small-pore MSNs. In vitro study showed the enhanced activation and antigen presentation of DCs and increased secretion of proinflammatory cytokines. In vivo study demonstrated efficient targeting of XL-MSNs co-delivering antigen and TLR9 agonist to draining lymph nodes, induction of antigen-specific cytotoxic T lymphocytes (CTLs), and suppression of tumor growth after vaccination. Furthermore, significant prevention of tumor growth after tumor rechallenge of the vaccinated tumor-free mice resulted, which was supported by a high level of memory T cells. These findings suggest that mesoporous silica nanoparticles with extra-large pores can be used as an attractive platform for cancer vaccines.
Collapse
Affiliation(s)
- Bong Geun Cha
- School of Chemical Engineering, School of Pharmacy, Department of Health Sciences and Technology,
Samsung Advanced Institute for Health Science & Technology (SAIHST), and Biomedical Institute
for Convergence at SKKU (BICS), Sungkyunkwan
University (SKKU), Suwon 16419, Republic of Korea
| | - Ji Hoon Jeong
- School of Chemical Engineering, School of Pharmacy, Department of Health Sciences and Technology,
Samsung Advanced Institute for Health Science & Technology (SAIHST), and Biomedical Institute
for Convergence at SKKU (BICS), Sungkyunkwan
University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, School of Pharmacy, Department of Health Sciences and Technology,
Samsung Advanced Institute for Health Science & Technology (SAIHST), and Biomedical Institute
for Convergence at SKKU (BICS), Sungkyunkwan
University (SKKU), Suwon 16419, Republic of Korea
- E-mail: . Telephone: +82-31-290-7252. Fax: +82-31-290-7272
| |
Collapse
|
23
|
Zhou Y, Quan G, Wu Q, Zhang X, Niu B, Wu B, Huang Y, Pan X, Wu C. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm Sin B 2018; 8:165-177. [PMID: 29719777 PMCID: PMC5926503 DOI: 10.1016/j.apsb.2018.01.007] [Citation(s) in RCA: 407] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/26/2017] [Accepted: 01/22/2018] [Indexed: 01/05/2023] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are attracting increasing interest for potential biomedical applications. With tailored mesoporous structure, huge surface area and pore volume, selective surface functionality, as well as morphology control, MSNs exhibit high loading capacity for therapeutic agents and controlled release properties if modified with stimuli-responsive groups, polymers or proteins. In this review article, the applications of MSNs in pharmaceutics to improve drug bioavailability, reduce drug toxicity, and deliver with cellular targetability are summarized. Particularly, the exciting progress in the development of MSNs-based effective delivery systems for poorly soluble drugs, anticancer agents, and therapeutic genes are highlighted.
Collapse
Key Words
- AO, acridine orange
- APTES, 3-aminopropyltriethoxysilane
- APTMS, amino propyl trimethoxysilane
- BCL-2, B-cell lymphoma-2
- BCS, Biopharmaceutical Classification System
- Bio-TEM, biological transmission electron microscopy
- C dots, Cornell dots
- CMC, critical micelle concentration
- CPT, camptothecin
- CTAB, cetyltrimethyl ammonium bromide
- Cancer therapy
- EPR, enhanced permeability and retention
- FDA, Food and Drug Administration
- GI, gastrointestinal
- GNRs@mSiO2, mesoporous silica-encapsulated gold nanorods
- Gene delivery
- LHRH, luteinising-hormone releasing hormone
- MDR, multi-drug resistance
- MRP1, multidrug resistance protein 1
- MSN-Dox-G2, Dox-loaded and G2 PAMAM-modified MSNs
- MSNs, mesoporous silica nanoparticles
- MSNs-HA, hyaluronic acid-conjugated MSNs
- MSNs-RGD/TAT, RGD/TAT peptide-modified MSNs
- MSNs-TAT, TAT peptide-modified MSNs
- MSNs@PDA-PEG-FA, poly(ethylene glycol)-folic acid-functionalized polydopamine-modified MSNs
- MTT, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide
- Mesoporous silica nanoparticles
- Multidrug resistance
- NIR, near-infrared
- P-gp, P-glycoprotein
- PAMAM, polyamidoamine
- PDEAEMA, poly (2-(diethylamino)ethylmethacrylate)
- PDMAEMA, poly(2-(dimethylamino)ethylmethacrylate)
- PEG400, polyethylene glycol 400
- PEI, polyethyleneimine
- PLL, poly-l-lysine
- PTX, paclitaxel
- Poorly soluble drug
- Q-MSNs, quercetin encapsulated MSNs
- RGD, arginine-glycine-aspartate
- TAT, trans-activating transcriptor
- TMB, 1,3,5-trimethybenzene
- pDNA, plasmid DNA
Collapse
|
24
|
Moon HJ, Lee JH, Kim JH, Knowles JC, Cho YB, Shin DH, Lee HH, Kim HW. Reformulated mineral trioxide aggregate components and the assessments for use as future dental regenerative cements. J Tissue Eng 2018; 9:2041731418807396. [PMID: 30397430 PMCID: PMC6207958 DOI: 10.1177/2041731418807396] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/26/2018] [Indexed: 11/16/2022] Open
Abstract
Mineral trioxide aggregate, which comprises three major inorganic components, namely, tricalcium silicate (C3S), dicalcium silicate (C2S), and tricalcium aluminate (C3A), is promising regenerative cement for dentistry. While mineral trioxide aggregate has been successfully applied in retrograde filling, the exact role of each component in the mineral trioxide aggregate system is largely unexplored. In this study, we individually synthesized the three components, namely, C3S, C2A, and C3A, and then mixed them to achieve various compositions (a total of 14 compositions including those similar to mineral trioxide aggregate). All powders were fabricated to obtain high purity. The setting reaction of all cement compositions was within 40 min, which is shorter than for commercial mineral trioxide aggregate (~150 min). Over time, the pH of the composed cements initially showed an abrupt increase and then plateaued (pH 10-12), which is a typical behavior of mineral trioxide aggregate. The compression and tensile strength of the composed cements increased (2-4 times the initial values) with time for up to 21 days in an aqueous medium, the degree to which largely depended on the composition. The cell viability test with rat mesenchymal stem cells revealed no toxicity for any composition except C3A, which contained aluminum. To confirm the in vivo biological response, cement was retro-filled into an extracted rat tooth and the complex was re-implanted. Four weeks post-operation, histological assessments revealed that C3A caused significant tissue toxicity, while good tissue compatibility was observed with the other compositions. Taken together, these results reveal that of the three major constituents of mineral trioxide aggregate, C3A generated significant toxicity in vitro and in vivo, although it accelerated setting time. This study highlights the need for careful consideration with regard to the composition of mineral trioxide aggregate, and if possible (when other properties are satisfactory), the C3A component should be avoided, which can be achieved by the mixture of individual components.
Collapse
Affiliation(s)
- Ho-Jin Moon
- Department of Conservative Dentistry, College of Dentistry, Dankook University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
| | - Joong-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Laboratory Animal Center, Osong Medical Innovation Foundation, Cheongju, Republic of Korea
| | - Jonathan C Knowles
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London, UK
- The Discoveries Centre for Regenerative and Precision Medicine, Eastman Dental Institute, University College London, London, UK
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Yong-Bum Cho
- Department of Conservative Dentistry, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Dong-Hoon Shin
- Department of Conservative Dentistry, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
25
|
Gene Delivery Approaches for Mesenchymal Stem Cell Therapy: Strategies to Increase Efficiency and Specificity. Stem Cell Rev Rep 2017; 13:725-740. [DOI: 10.1007/s12015-017-9760-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Keasberry NA, Yapp CW, Idris A. Mesoporous silica nanoparticles as a carrier platform for intracellular delivery of nucleic acids. BIOCHEMISTRY (MOSCOW) 2017; 82:655-662. [DOI: 10.1134/s0006297917060025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Cha W, Fan R, Miao Y, Zhou Y, Qin C, Shan X, Wan X, Li J. Mesoporous Silica Nanoparticles as Carriers for Intracellular Delivery of Nucleic Acids and Subsequent Therapeutic Applications. Molecules 2017; 22:E782. [PMID: 28492505 PMCID: PMC6154527 DOI: 10.3390/molecules22050782] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 01/17/2023] Open
Abstract
Nucleic acids, including DNA, microRNA (miRNA), small interfering RNA (siRNA), and antisense oligonucleotide (ASO), are powerful gene regulators, which have been demonstrated as promising drug candidates for therapeutic treatments. Nevertheless, poor cellular membrane permeability and serum stability have greatly hindered the applications of nucleic acids in biomedicine. To address these issues, associate carriers that can encapsulate and protect nucleic acids are urgently required. Mesoporous silica nanoparticles (MSNs or MSNPs), which are nanomaterials with excellent biocompatibility, large surface area for functionalization, and tunable pore size for encapsulating different cargos, are emerging as novel and ideal biomaterials for different biomedical applications. In this review paper, we focus on the applications of MSNs in nucleic acid delivery and nucleic acid-guided therapeutic treatments. General strategies for the preparation of nucleic acid-MSN complexes will be firstly introduced, followed by a summary of recent applications of MSNs in nucleic acid delivery and nucleic acid-guided therapeutics.
Collapse
Affiliation(s)
- Wenzhang Cha
- Department of General Surgery, Yancheng City No. 1 People's Hospital, Yancheng 224001, China.
| | - Rengen Fan
- Department of General Surgery, Yancheng City No. 1 People's Hospital, Yancheng 224001, China.
| | - Yufeng Miao
- Department of Medical Oncology, Yancheng City No. 1 People's Hospital, Yancheng 224001, China.
| | - Yong Zhou
- Department of General Surgery, Yancheng City No. 1 People's Hospital, Yancheng 224001, China.
| | - Chenglin Qin
- Department of General Surgery, Yancheng City No. 1 People's Hospital, Yancheng 224001, China.
| | - Xiangxiang Shan
- Department of Gerontology, Yancheng City No. 1 People's Hospital, Yancheng 224001, China.
| | - Xinqiang Wan
- Department of Clinical Medicine, Nantong University Xinglin College, Nantong 226000, China.
| | - Jinbo Li
- School of Chemistry and Chemical Engineering, Nanjing Unviersity, Nanjing 210023, China.
| |
Collapse
|
28
|
Vieira S, Vial S, Reis RL, Oliveira JM. Nanoparticles for bone tissue engineering. Biotechnol Prog 2017; 33:590-611. [PMID: 28371447 DOI: 10.1002/btpr.2469] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 03/14/2017] [Indexed: 12/11/2022]
Abstract
Tissue engineering (TE) envisions the creation of functional substitutes for damaged tissues through integrated solutions, where medical, biological, and engineering principles are combined. Bone regeneration is one of the areas in which designing a model that mimics all tissue properties is still a challenge. The hierarchical structure and high vascularization of bone hampers a TE approach, especially in large bone defects. Nanotechnology can open up a new era for TE, allowing the creation of nanostructures that are comparable in size to those appearing in natural bone. Therefore, nanoengineered systems are now able to more closely mimic the structures observed in naturally occurring systems, and it is also possible to combine several approaches - such as drug delivery and cell labeling - within a single system. This review aims to cover the most recent developments on the use of different nanoparticles for bone TE, with emphasis on their application for scaffolds improvement; drug and gene delivery carriers, and labeling techniques. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:590-611, 2017.
Collapse
Affiliation(s)
- Sílvia Vieira
- 3B's Research Group, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Stephanie Vial
- 3B's Research Group, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - J Miguel Oliveira
- 3B's Research Group, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
29
|
Tsekoura EK, K C RB, Uludag H. Biomaterials to Facilitate Delivery of RNA Agents in Bone Regeneration and Repair. ACS Biomater Sci Eng 2016; 3:1195-1206. [PMID: 33440509 DOI: 10.1021/acsbiomaterials.6b00387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bone healing after traumatic injuries or pathological diseases remains an important worldwide problem. In search of safer and more effective approaches to bone regeneration and repair, RNA-based therapeutic agents, specifically microRNAs (miRNAs) and short interfering RNA (siRNA), are beginning to be actively explored. In this review, we summarize current attempts to employ miRNAs and siRNAs in preclinical models of bone repair. We provide a summary of current limitations when attempting to utilize bioactive nucleic acids for therapeutic purposes and position the unique aspects of RNA reagents for clinical bone repair. Delivery strategies for RNA reagents are emphasized and nonviral carriers (biomaterial-based) employed to deliver such reagents are reviewed. Critical features of biomaterial carriers and various delivery technologies centered around nanoparticulate systems are highlighted. We conclude with the authors' perspectives on the future of the field, outlining main critical issues important to address as RNA reagents are explored for clinical applications.
Collapse
Affiliation(s)
- Eleni K Tsekoura
- Department of Chemical & Materials Engineering, Faculty of Engineering, ‡Department of Biomedical Engineering, Faculty of Medicine & Dentistry, and §Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Remant Bahadur K C
- Department of Chemical & Materials Engineering, Faculty of Engineering, Department of Biomedical Engineering, Faculty of Medicine & Dentistry, and §Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Hasan Uludag
- Department of Chemical & Materials Engineering, Faculty of Engineering, Department of Biomedical Engineering, Faculty of Medicine & Dentistry, and Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
30
|
Das J, Choi YJ, Yasuda H, Han JW, Park C, Song H, Bae H, Kim JH. Efficient delivery of C/EBP beta gene into human mesenchymal stem cells via polyethylenimine-coated gold nanoparticles enhances adipogenic differentiation. Sci Rep 2016; 6:33784. [PMID: 27677463 PMCID: PMC5039411 DOI: 10.1038/srep33784] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 09/02/2016] [Indexed: 01/04/2023] Open
Abstract
The controlled differentiation of stem cells via the delivery of specific genes encoding appropriate differentiation factors may provide useful models for regenerative medicine and aid in developing therapies for human patients. However, the majority of non-viral vectors are not efficient enough to manipulate difficult-to-transfect adult human stem cells in vitro. Herein, we report the first use of 25 kDa branched polyethylenimine-entrapped gold nanoparticles (AuPEINPs) and covalently bound polyethylenimine-gold nanoparticles (AuMUAPEINPs) as carriers for efficient gene delivery into human mesenchymal stem cells (hMSCs). We determined a functional application of these nanoparticles by transfecting hMSCs with the C/EBP beta gene, fused to EGFP, to induce adipogenic differentiation. Transfection efficacy with AuPEINPs and AuMUAPEINPs was 52.3% and 40.7%, respectively, which was 2.48 and 1.93 times higher than that by using Lipofectamine 2000. Luciferase assay results also demonstrated improved gene transfection efficiency of AuPEINPs/AuMUAPEINPs over Lipofectamine 2000 and polyethylenimine. Overexpression of exogenous C/EBP beta significantly enhanced adipogenesis in hMSCs as indicated by both of Oil Red O staining and mRNA expression analyses. Nanoparticle/DNA complexes exhibited favorable cytocompatibility in hMSCs. Taken together, AuPEINPs and AuMUAPEINPs potentially represent safe and highly efficient vehicles for gene delivery to control hMSC differentiation and for therapeutic gene delivery applications.
Collapse
Affiliation(s)
- Joydeep Das
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Yun-Jung Choi
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Hideyo Yasuda
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Jae Woong Han
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Chankyu Park
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Hyuk Song
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Hojae Bae
- Dept. of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, South Korea
| | - Jin-Hoi Kim
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| |
Collapse
|
31
|
Kim TH, Singh RK, Kang MS, Kim JH, Kim HW. Gene delivery nanocarriers of bioactive glass with unique potential to load BMP2 plasmid DNA and to internalize into mesenchymal stem cells for osteogenesis and bone regeneration. NANOSCALE 2016; 8:8300-8311. [PMID: 27035682 DOI: 10.1039/c5nr07933k] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The recent development of bioactive glasses with nanoscale morphologies has spurred their specific applications in bone regeneration, for example as drug and gene delivery carriers. Bone engineering with stem cells genetically modified with this unique class of nanocarriers thus holds great promise in this avenue. Here we report the potential of the bioactive glass nanoparticle (BGN) system for the gene delivery of mesenchymal stem cells (MSCs) targeting bone. The composition of 15% Ca-added silica, proven to be bone-bioactive, was formulated into surface aminated mesoporous nanospheres with enlarged pore sizes, to effectively load and deliver bone morphogenetic protein-2 (BMP2) plasmid DNA. The enlarged mesopores were highly effective in loading BMP2-pDNA with an efficiency as high as 3.5 wt% (pDNA w.r.t. BGN), a level more than twice than for small-sized mesopores. The BGN nanocarriers released the genetic molecules in a highly sustained manner (for as long as 2 weeks). The BMP2-pDNA/BGN complexes were effectively internalized to rat MSCs with a cell uptake level of ∼73%, and the majority of cells were transfected to express the BMP2 protein. Subsequent osteogenesis of the transfected MSCs was demonstrated by the expression of bone-related genes, including bone sialoprotein, osteopontin, and osteocalcin. The MSCs transfected with BMP2-pDNA/BGN were locally delivered inside a collagen gel to the target calvarium defects. The results showed significantly improved bone regeneration, as evidenced by the micro-computed tomographic, histomorphometric and immunohistochemical analyses. This study supports the excellent capacity of the BGN system as a pDNA-delivery nanocarrier in MSCs, and the engineered system, BMP2-pDNA/BGN with MSCs, may be considered a new promising candidate to advance the therapeutic potential of stem cells through genetic modification, targeting bone defects and diseases.
Collapse
Affiliation(s)
- Tae-Hyun Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea. and Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 330-714, Republic of Korea
| | - Rajendra K Singh
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea. and Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 330-714, Republic of Korea
| | - Min Sil Kang
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea. and Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 330-714, Republic of Korea
| | - Joong-Hyun Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea. and Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 330-714, Republic of Korea
| | - Hae-Won Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea. and Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 330-714, Republic of Korea and Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714, Republic of Korea
| |
Collapse
|
32
|
An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. Int J Biol Macromol 2016; 93:1338-1353. [PMID: 27012892 DOI: 10.1016/j.ijbiomac.2016.03.041] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/03/2016] [Accepted: 03/20/2016] [Indexed: 01/06/2023]
Abstract
Chitin and chitosan based nanocomposite scaffolds have been widely used for bone tissue engineering. These chitin and chitosan based scaffolds were reinforced with nanocomponents viz Hydroxyapatite (HAp), Bioglass ceramic (BGC), Silicon dioxide (SiO2), Titanium dioxide (TiO2) and Zirconium oxide (ZrO2) to develop nanocomposite scaffolds. Plenty of works have been reported on the applications and characteristics of the nanoceramic composites however, compiling the work done in this field and presenting it in a single article is a thrust area. This review is written with an aim to fill this gap and focus on the preparations and applications of chitin or chitosan/nHAp, chitin or chitosan/nBGC, chitin or chitosan/nSiO2, chitin or chitosan/nTiO2 and chitin or chitosan/nZrO2 in the field of bone tissue engineering in detail. Many reports so far exemplify the importance of ceramics in bone regeneration. The effect of nanoceramics over native ceramics in developing composites, its role in osteogenesis etc. are the gist of this review.
Collapse
|
33
|
Rosenholm JM, Zhang J, Linden M, Sahlgren C. Mesoporous silica nanoparticles in tissue engineering – a perspective. Nanomedicine (Lond) 2016; 11:391-402. [DOI: 10.2217/nnm.15.212] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review, we summarize the latest developments and give a perspective on future applications of mesoporous silica nanoparticles (MSNs) in regenerative medicine. MSNs constitute a flexible platform for controlled delivery of drugs and imaging agents in tissue engineering and stem cell therapy. We highlight the recent advances in applying MSNs for controlled drug delivery and stem cell tracking. We touch upon novel functions of MSNs in real time imaging of drug release and biological function, and as tools to control the chemical and mechanical environment of stem cells. We discuss the need for novel model systems for studying biofunctionality and biocompatibility of MSNs, and how the interdisciplinary activities within the field will advance biotechnology research.
Collapse
Affiliation(s)
- Jessica Maria Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science & Engineering, Åbo Akademi University, Tykistökatu 6A, FIN-20521, Turku, Finland
| | - Jixi Zhang
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Mika Linden
- Inorganic Chemistry II, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Cecilia Sahlgren
- Turku Centre for Biotechnology, University of Turku & Åbo Akademi University, FI-20520 Turku, Finland
- Department of Biomedical Engineering, Technical University of Eindhoven, 5613 DR Eindhoven, The Netherlands
| |
Collapse
|
34
|
|
35
|
Inhibition of osteoclastogenesis through siRNA delivery with tunable mesoporous bioactive nanocarriers. Acta Biomater 2016; 29:352-364. [PMID: 26432439 DOI: 10.1016/j.actbio.2015.09.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/01/2015] [Accepted: 09/28/2015] [Indexed: 11/20/2022]
Abstract
Gene silencing through siRNA delivery has shown great promise for treating diseases and repairing damaged tissues, including bone. This report is the first to develop siRNA delivery system in the inhibition of osteoclastic functions which in turn can help turn-over bone mass increase in the diseases like osteoporosis. For this reason, biocompatible and degradable nanocarriers that can effectively load and deliver genetic molecules to target cells and tissues are being actively sought by researchers. In this study, mesoporous bioactive glass nanospheres (MBG), a novel unique biocompatible degradable inorganic nanocarrier, is introduced. Furthermore, siRNA was designed to function by inhibiting the expression of the receptor activator of nuclear factor kappa B (RANK) in order to suppress osteoclastogenesis. Amine-functionalized MBG were synthesized with tunable mesoporosities, showing a strong complexation with siRNA. An in vitro release profile indicated that the siRNA from the MBG was able to achieve a highly sustainable liberation for up to 4 days, confirming a temporary delivery system can be designed to function for that period of time. The intracellular uptake capacity of the complex siRNA(RANK)-MBG was recorded to be around 70%. Furthermore, the RANK-expressing cell population declined down to 29% due to the delivery of siRNA(RANK)-MBG (vs. 86% in control). The expression of osteoclastogenesis-related genes, including c-fos, cathepsin-K, tartrate-resistant acid phosphatase (TRAP), and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), was substantially down-regulated by the siRNA delivery system. This study reports for the first time on the use of a novel MBG delivery system for siRNA that aims to suppress osteoclastic actions. MBGs may be a potential gene delivery platform for hard tissue repair and disease treatment due to the collective results which indicate a high loading capacity, temporary release kinetics, high intracellular uptake rate, and sufficient gene silencing effects, together with the intrinsic beneficial properties like bone-bioactivity and degradability. STATEMENT OF SIGNIFICANCE This report is the first to develop siRNA delivery system of biocompatible and degradable nanocarriers made from a unique composition, i.e., mesoporous bioactive glass that can effectively load and deliver genetic molecules to osteoclastic cells. We proved through a series of studies that the biocompatible nanocarriers are effective for the delivery of siRNA in the inhibition of osteoclastic functions which thus might be considered as a nanocarrier platform to help turn-over bone mass increase in the diseases like osteoporosis.
Collapse
|
36
|
Nanoparticles-Assisted Stem Cell Therapy for Ischemic Heart Disease. Stem Cells Int 2015; 2016:1384658. [PMID: 26839552 PMCID: PMC4709699 DOI: 10.1155/2016/1384658] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/04/2015] [Accepted: 10/08/2015] [Indexed: 01/15/2023] Open
Abstract
Stem cell therapy has attracted increasing attention as a promising treatment strategy for cardiac repair in ischemic heart disease. Nanoparticles (NPs), with their superior physical and chemical properties, have been widely utilized to assist stem cell therapy. With the help of NPs, stem cells can be genetically engineered for enhanced paracrine profile. To further understand the fate and behaviors of stem cells in ischemic myocardium, imaging NPs can label stem cells and be tracked in vivo under multiple modalities. Besides that, NPs can also be used to enhance stem cell retention in myocardium. These facts have raised efforts on the development of more intelligent and multifunctional NPs for cellular application. Herein, an overview of the applications of NPs-assisted stem cell therapy is given. Key issues and future prospects are also critically addressed.
Collapse
|
37
|
Qu H, Bhattacharyya S, Ducheyne P. Silicon oxide based materials for controlled release in orthopedic procedures. Adv Drug Deliv Rev 2015; 94:96-115. [PMID: 26032046 DOI: 10.1016/j.addr.2015.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 12/14/2022]
Abstract
By virtue of excellent tissue responses in bone tissue, silicon oxide (silica) based materials have been used for bone tissue engineering. Creating nanoscale porosity within silica based materials expands their applications into the realm of controlled release area. This additional benefit of silica based materials widens their application in the orthopedic fields in a major way. This review discusses the various chemical and physical forms of silica based controlled release materials, the release mechanisms, the applications in orthopedic procedures and their overall biocompatibility.
Collapse
|
38
|
Xu Y, Claiden P, Zhu Y, Morita H, Hanagata N. Effect of amino groups of mesoporous silica nanoparticles on CpG oligodexynucleotide delivery. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2015; 16:045006. [PMID: 27877826 PMCID: PMC5090185 DOI: 10.1088/1468-6996/16/4/045006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 05/27/2023]
Abstract
In this study, we proposed to modify mesoporous silica nanoparticles (MSNs) with 3-aminopropyltriethoxysilane (NH2-TES), aminoethylaminopropyltriethoxysilane (2NH2-TES) and 3-[2-(2-aminoethylamino)ethylamino] propyl-trimethoxysilane (3NH2-TES) for binding of cytosine-phosphate-guanosine oligodexynucleotides (CpG ODN), and investigated the effect of different amino groups of MSNs on the CpG ODN delivery. Serum stability, in vitro cytotoxicity, and cytokine interleukin-6 (IL-6) induction by MSN-NH2/CpG, MSN-2NH2/CpG and MSN-3NH2/CpG complexes were investigated in detail. The results showed that three kinds of aminated-MSN-based CpG ODN delivery systems had no cytotoxicity to RAW264.7 cells, and binding of CpG ODN to MSN-NH2, MSN-2NH2 and MSN-3NH2 nanoparticles enhanced the serum stability of CpG ODN due to protection by the nanoparticles. However, three aminated MSN-based CpG ODN delivery systems exhibited different CpG ODN delivery efficiency, and MSN-NH2/CpG complexes had the highest ability to induce IL-6 secretion.
Collapse
Affiliation(s)
- Yi Xu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, People’s Republic of China
| | - Peter Claiden
- School of Engineering, Sino-British College (USST), 1195 Fuxing Zhong Road, Shanghai 200031, People’s Republic of China
| | - Yufang Zhu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, People’s Republic of China
| | - Hiromi Morita
- Nanotechnology Innovation Station, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Nobutaka Hanagata
- Nanotechnology Innovation Station, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| |
Collapse
|
39
|
Luo Z, Deng Y, Zhang R, Wang M, Bai Y, Zhao Q, Lyu Y, Wei J, Wei S. Peptide-laden mesoporous silica nanoparticles with promoted bioactivity and osteo-differentiation ability for bone tissue engineering. Colloids Surf B Biointerfaces 2015; 131:73-82. [DOI: 10.1016/j.colsurfb.2015.04.043] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 01/12/2023]
|
40
|
Levina AS, Repkova MN, Ismagilov ZR, Shikina NV, Mazurkova NA, Zarytova VF. [Eficient inhibition of human influenza A virus by oligonucleotides electrostatically fixed on polylysine-containing TiO2 nanoparticles]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 40:196-202. [PMID: 25895339 DOI: 10.1134/s1068162014020095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Antiviral activity of TiO2 * PL * DNA nanobiocomposites was studied on the MDCK cell culture infected with influenza A virus (subtype H3N2). DNA fragments in the nanocomposites are electrostatically bound to titanium dioxide nanoparticles pre-covered with polylysine. It was shown that TiO2 * PL * DNA(v3') nanocomposite bearing the DNA(v3') fragment targeted to the 3'-end of the noncoding region of segment 5 of viral RNA specifically inhibited the virus reproduction with the efficiency of 99.8 and 99.9% (or by factors of~400 and 1000) at a low concentration of DNA(v3') in nanocomposite (0.1 and 0.2 µM, respectively). The TiO2 * PL * DNA(r) nanocomposite containing oligonucleotide noncomplementary to viral RNA or the oligonucleotide unbound to the nanoparticles show very low antiviral activity (inhibition by factors of~3.5 and 1.3, respectively).
Collapse
|
41
|
Li KC, Hu YC. Cartilage tissue engineering: recent advances and perspectives from gene regulation/therapy. Adv Healthc Mater 2015; 4:948-68. [PMID: 25656682 DOI: 10.1002/adhm.201400773] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/10/2015] [Indexed: 12/16/2022]
Abstract
Diseases in articular cartilages affect millions of people. Despite the relatively simple biochemical and cellular composition of articular cartilages, the self-repair ability of cartilage is limited. Successful cartilage tissue engineering requires intricately coordinated interactions between matrerials, cells, biological factors, and phycial/mechanical factors, and still faces a multitude of challenges. This article presents an overview of the cartilage biology, current treatments, recent advances in the materials, biological factors, and cells used in cartilage tissue engineering/regeneration, with strong emphasis on the perspectives of gene regulation (e.g., microRNA) and gene therapy.
Collapse
Affiliation(s)
- Kuei-Chang Li
- Department of Chemical Engineering; National Tsing Hua University; Hsinchu Taiwan 300
| | - Yu-Chen Hu
- Department of Chemical Engineering; National Tsing Hua University; Hsinchu Taiwan 300
| |
Collapse
|
42
|
Bone Regeneration Using Bone Morphogenetic Proteins and Various Biomaterial Carriers. MATERIALS 2015; 8:1778-1816. [PMID: 28788032 PMCID: PMC5507058 DOI: 10.3390/ma8041778] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/24/2015] [Accepted: 03/27/2015] [Indexed: 01/28/2023]
Abstract
Trauma and disease frequently result in fractures or critical sized bone defects and their management at times necessitates bone grafting. The process of bone healing or regeneration involves intricate network of molecules including bone morphogenetic proteins (BMPs). BMPs belong to a larger superfamily of proteins and are very promising and intensively studied for in the enhancement of bone healing. More than 20 types of BMPs have been identified but only a subset of BMPs can induce de novo bone formation. Many research groups have shown that BMPs can induce differentiation of mesenchymal stem cells and stem cells into osteogenic cells which are capable of producing bone. This review introduces BMPs and discusses current advances in preclinical and clinical application of utilizing various biomaterial carriers for local delivery of BMPs to enhance bone regeneration.
Collapse
|
43
|
Vashist SK, Lam E, Hrapovic S, Male KB, Luong JHT. Immobilization of Antibodies and Enzymes on 3-Aminopropyltriethoxysilane-Functionalized Bioanalytical Platforms for Biosensors and Diagnostics. Chem Rev 2014; 114:11083-130. [DOI: 10.1021/cr5000943] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sandeep Kumar Vashist
- HSG-IMIT - Institut für Mikro- und Informationstechnik, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Laboratory for MEMS Applications, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Edmond Lam
- National Research Council Canada, Montreal, Quebec H4P 2R2, Canada
| | | | - Keith B. Male
- National Research Council Canada, Montreal, Quebec H4P 2R2, Canada
| | - John H. T. Luong
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Department of Chemistry and Analytical, Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland
| |
Collapse
|
44
|
Tao C, Zhu Y, Li X, Hanagata N. Magnetic mesoporous silica nanoparticles for CpG delivery to enhance cytokine induction via toll-like receptor 9. RSC Adv 2014. [DOI: 10.1039/c4ra08003c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A potential cytosine–phosphate–guanosine oligodeoxynucleotides (CpG ODN) delivery system based on magnetic mesoporous silica (MMS) nanoparticles has been developed to enhance cytokine induction via toll-like receptor 9.
Collapse
Affiliation(s)
- Cuilian Tao
- School of Medical Instrument and Food Engineering
- University of Shanghai for Science and Technology
- Shanghai, China
| | - Yufang Zhu
- School of Materials Science and Engineering
- University of Shanghai for Science and Technology
- Shanghai, China
| | - Xianglan Li
- Nanotechnology Innovation Station
- National Institute for Materials Science
- Tsukuba, Japan
| | - Nobutaka Hanagata
- Nanotechnology Innovation Station
- National Institute for Materials Science
- Tsukuba, Japan
| |
Collapse
|
45
|
Seo SJ, Kim TH, Choi SJ, Park JH, Wall IB, Kim HW. Gene delivery techniques for adult stem cell-based regenerative therapy. Nanomedicine (Lond) 2013; 8:1875-91. [DOI: 10.2217/nnm.13.165] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Over the past decade, stem cells have been considered to be a promising resource to cure and regenerate damaged or diseased tissues with research extending from basic studies to clinical application. Furthermore, genetically modified stem cells have the potential to reduce tumorigenic risks and achieve safe tissue formation. Recent advances in genetic modification of stem cells have rendered these cells more accessible and stable. The successful genetic modification of stem cells relies heavily on designing vector systems, either viral or nonviral vectors, which can efficiently deliver therapeutic genes to the cells with minimum toxicity. Currently, viral vectors showing high transfection efficiencies still raise safety issues, whereas safer nonviral vectors exhibit extremely poor transfection in stem cells. Here, we attempt to review and discuss the main factors raising concern in previous reports, and devise strategies to solve the issues in gene delivery systems for successful stem cell-targeting regenerative therapy.
Collapse
Affiliation(s)
- Seog-Jin Seo
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 330–714, South Korea
| | - Tae-Hyun Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 330–714, South Korea
- Department of Nanobiomedical Science & BK21 plus NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330–714, South Korea
| | - Seong-Jun Choi
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 330–714, South Korea
| | - Jeong-Hui Park
- Department of Nanobiomedical Science & BK21 plus NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330–714, South Korea
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Ivan B Wall
- Department of Nanobiomedical Science & BK21 plus NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330–714, South Korea
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Hae-Won Kim
- Department of Biomaterials Science, College of Dentistry, Dankook University Cheonan 330–714, South Korea
| |
Collapse
|