1
|
Zhang M, Mi M, Hu Z, Li L, Chen Z, Gao X, Liu D, Xu B, Liu Y. Polydopamine-Based Biomaterials in Orthopedic Therapeutics: Properties, Applications, and Future Perspectives. Drug Des Devel Ther 2024; 18:3765-3790. [PMID: 39219693 PMCID: PMC11363944 DOI: 10.2147/dddt.s473007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Polydopamine is a versatile and modifiable polymer, known for its excellent biocompatibility and adhesiveness. It can also be engineered into a variety of nanoparticles and biomaterials for drug delivery, functional modification, making it an excellent choice to enhance the prevention and treatment of orthopedic diseases. Currently, the application of polydopamine biomaterials in orthopedic disease prevention and treatment is in its early stages, despite some initial achievements. This article aims to review these applications to encourage further development of polydopamine for orthopedic therapeutic needs. We detail the properties of polydopamine and its biomaterial types, highlighting its superior performance in functional modification on nanoparticles and materials. Additionally, we also explore the challenges and future prospects in developing optimal polydopamine biomaterials for clinical use in orthopedic disease prevention and treatment.
Collapse
Affiliation(s)
- Min Zhang
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Man Mi
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zilong Hu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Lixian Li
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zhiping Chen
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Di Liu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Bilian Xu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Yanzhi Liu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| |
Collapse
|
2
|
Li Y, Huang X, Fu W, Zhang Z, Xiao K, Lv H. Preparation of PDA-GO/CS composite scaffold and its effects on the biological properties of human dental pulp stem cells. BMC Oral Health 2024; 24:157. [PMID: 38297260 PMCID: PMC10832331 DOI: 10.1186/s12903-023-03849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/31/2023] [Indexed: 02/02/2024] Open
Abstract
Reduced graphene oxide (rGO) is an graphene oxide (GO) derivative of graphene, which has a large specific surface area and exhibited satisfactory physicochemical characteristics. In this experiment, GO was reduced by PDA to generate PDA-GO complex, and then PDA-GO was combined with Chitosan (CS) to synthesize PDA-GO/CS composite scaffold. PDA-GO was added to CS to improve the degradation rate of CS, and it was hoped that PDA-GO/CS composite scaffolds could be used in bone tissue engineering. Physicochemical and antimicrobial properties of the different composite scaffolds were examined to find the optimal mass fraction. Besides, we examined the scaffold's biocompatibility by Phalloidin staining and Live and Dead fluorescent staining.Finally, we applied ALP staining, RT-qPCR, and Alizarin red S staining to detect the effect of PDA-GO/CS on the osteogenic differentiation of human dental pulp stem cells (hDPSCs). The results showed that PDA-GO composite was successfully prepared and PDA-GO/CS composite scaffold was synthesized by combining PDA-GO with CS. Among them, 0.3%PDA-GO/CS scaffolds improves the antibacterial activity and hydrophilicity of CS, while reducing the degradation rate. In vitro, PDA-GO/CS has superior biocompatibility and enhances the early proliferation, migration and osteogenic differentiation of hDPSCs. In conclusion, PDA-GO/CS is a new scaffold materialsuitable for cell culture and has promising application prospect as scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Yaoyao Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Xinhui Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Weihao Fu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Zonghao Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Kuancheng Xiao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Hongbing Lv
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.
| |
Collapse
|
3
|
Casella G, Carlotto S, Lanero F, Mozzon M, Sgarbossa P, Bertani R. Cyclo- and Polyphosphazenes for Biomedical Applications. Molecules 2022; 27:8117. [PMID: 36500209 PMCID: PMC9736570 DOI: 10.3390/molecules27238117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclic and polyphosphazenes are extremely interesting and versatile substrates characterized by the presence of -P=N- repeating units. The chlorine atoms on the P atoms in the starting materials can be easily substituted with a variety of organic substituents, thus giving rise to a huge number of new materials for industrial applications. Their properties can be designed considering the number of repetitive units and the nature of the substituent groups, opening up to a number of peculiar properties, including the ability to give rise to supramolecular arrangements. We focused our attention on the extensive scientific literature concerning their biomedical applications: as antimicrobial agents in drug delivery, as immunoadjuvants in tissue engineering, in innovative anticancer therapies, and treatments for cardiovascular diseases. The promising perspectives for their biomedical use rise from the opportunity to combine the benefits of the inorganic backbone and the wide variety of organic side groups that can lead to the formation of nanoparticles, polymersomes, or scaffolds for cell proliferation. In this review, some aspects of the preparation of phosphazene-based systems and their characterization, together with some of the most relevant chemical strategies to obtain biomaterials, have been described.
Collapse
Affiliation(s)
- Girolamo Casella
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Via Archirafi 22, 90123 Palermo, Italy
| | - Silvia Carlotto
- Department of Chemical Sciences (DiSC), University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council (CNR), c/o Department of Chemical Sciences (DiSC), University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Francesco Lanero
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Mirto Mozzon
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Paolo Sgarbossa
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Roberta Bertani
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
4
|
Shabanloo R, Akbari S, Mirsalehi M. Hybrid electrospun scaffolds based on polylactic acid/ PAMAM dendrimer/gemini surfactant for enhancement of synergistic antibacterial ability for biomedical application. Biomed Mater 2022; 17. [PMID: 35487203 DOI: 10.1088/1748-605x/ac6bd7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/29/2022] [Indexed: 11/11/2022]
Abstract
Hybrid electrospun scaffolds based on poly (L-lactic acid) (PLLA) / poly (amidoamine) (PAMAM-G2) dendrimer / gemini surfactant were fabricated for the enhancement of synergistic antibacterial activities. The second generation of poly (amidoamine) (PAMAM-G2) and cationic gemini surfactant were utilized to functionalize the optimum electrospun scaffolds. The gelatination process was utilized to improve the wettability of PLLA scaffolds to extend cell attachment and cell proliferation. PLLA nanofibrous scaffolds were characterized by energy dispersion X-ray (EDX), Scanning electron microscopy (SEM) images, mechanical properties, water contact angle, Fourier transform infrared (FTIR) spectroscopy, zeta potential and antibacterial assessment. In vitro cell biocompatibility was evaluated by MTT assay and morphology of PC-12 cells cultured on hybrid nanofibrous scaffolds and gelatinized ones. The results indicated that the optimum scaffolds could successfully modify the characteristics of PLLA scaffolds leading to much more appropriate physical and chemical properties. In addition, gelatinized nanofibrous scaffolds reveal more wettability enhancing cell attachment and proliferation. Furthermore, using poly (amidoamine) (PAMAM-G2) and gemini surfactant reveals synergetic antibacterial activity due to the competition between both cationic groups of PAMAM and gemini surfactant. Finally, improved cell adhesion and cell viability on modified scaffolds were confirmed. These favorable properties give a chance for these scaffolds to be used in a wide variety of biomedical applications.
Collapse
Affiliation(s)
- Rasool Shabanloo
- Textile engineering, Amirkabir University of Technology, No. 350, Hafez Ave, Valiasr Square, Tehran, Iran 1591634311, Tehran, 1591634311, Iran (the Islamic Republic of)
| | - Somaye Akbari
- Department of Textile Engineering, Amirkabir University of Technology, No. 350, Hafez Ave, Valiasr Square, Tehran, Iran 1591634311, Tehran, Tehran, 1591634311, Iran (the Islamic Republic of)
| | - Marjan Mirsalehi
- Iran University of Medical Sciences, Iran University of Medical Sciences Shahid Hemmat Highway Tehran 14496-14535, IRAN, Tehran, Tehran, 1449614535, Iran (the Islamic Republic of)
| |
Collapse
|
5
|
Yang Z, Xie L, Zhang B, Zhang G, Huo F, Zhou C, Liang X, Fan Y, Tian W, Tan Y. Preparation of BMP-2/PDA-BCP Bioceramic Scaffold by DLP 3D Printing and its Ability for Inducing Continuous Bone Formation. Front Bioeng Biotechnol 2022; 10:854693. [PMID: 35464724 PMCID: PMC9019734 DOI: 10.3389/fbioe.2022.854693] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
Digital light processing (DLP)-based 3D printing is suitable to fabricate bone scaffolds with small size and high precision. However, the published literature mainly deals with the fabrication procedure and parameters of DLP printed bioceramic scaffold, but lacks the subsequent systematic biological evaluations for bone regeneration application. In this work, a biphasic calcium phosphate (BCP) macroporous scaffold was constructed by DLP-based 3D printing technique. Furthermore, bone morphogenetic protein-2 (BMP-2) was facilely incorporated into this scaffold through a facile polydopamine (PDA) modification process. The resultant scaffold presents an interconnected porous structure with pore size of ∼570 μm, compressive strength (∼3.6 MPa), and the self-assembly Ca-P/PDA nanocoating exhibited excellent sustained-release property for BMP-2. Notably, this BMP-2/PDA-BCP scaffold presents favorable effects on the adhesion, proliferation, osteogenic differentiation, and mineralization of bone marrow stromal cells (BMSCs). Furthermore, in vivo experiments conducted on rats demonstrated that the scaffolds could induce cell layer aggregation adjacent to the scaffolds and continuous new bone generation within the scaffold. Collectively, this work demonstrated that the BMP-2/PDA-BCP scaffold is of immense potential to treat small craniofacial bone defects in demand of high accuracy.
Collapse
Affiliation(s)
- Ziyang Yang
- Department of Stomatology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Xie
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boqing Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Gang Zhang
- Department of Stomatology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Fangjun Huo
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Xi Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yinghui Tan
- Department of Stomatology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
6
|
Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv Drug Deliv Rev 2021; 174:504-534. [PMID: 33991588 DOI: 10.1016/j.addr.2021.05.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Bone regenerative engineering provides a great platform for bone tissue regeneration covering cells, growth factors and other dynamic forces for fabricating scaffolds. Diversified biomaterials and their fabrication methods have emerged for fabricating patient specific bioactive scaffolds with controlled microstructures for bridging complex bone defects. The goal of this review is to summarize the points of scaffold design as well as applications for bone regeneration based on both electrospinning and 3D bioprinting. It first briefly introduces biological characteristics of bone regeneration and summarizes the applications of different types of material and the considerations for bone regeneration including polymers, ceramics, metals and composites. We then discuss electrospinning nanofibrous scaffold applied for the bone regenerative engineering with various properties, components and structures. Meanwhile, diverse design in the 3D bioprinting scaffolds for osteogenesis especially in the role of drug and bioactive factors delivery are assembled. Finally, we discuss challenges and future prospects in the development of electrospinning and 3D bioprinting for osteogenesis and prominent strategies and directions in future.
Collapse
|
7
|
Zia Q, Tabassum M, Meng J, Xin Z, Gong H, Li J. Polydopamine-assisted grafting of chitosan on porous poly (L-lactic acid) electrospun membranes for adsorption of heavy metal ions. Int J Biol Macromol 2020; 167:1479-1490. [PMID: 33221270 DOI: 10.1016/j.ijbiomac.2020.11.101] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
In this study, a versatile method for the manufacturing of chitosan-grafted porous poly (L-lactic acid) (P-PLLA) nanofibrous membrane by using polydopamine (PDA) as an intermediate layer has been developed. P-PLLA fibres were electrospun and collected as nano/micro fibrous membranes. Highly porous fibres could serve as a substrate for chitosan to adsorb heavy metal ions. Moreover, PDA was used to modify P-PLLA surface to increase the coating uniformity and stability of chitosan. Due to the very high surface area of P-PLLA membranes and abundant amine groups of both PDA and chitosan, the fabricated membranes were utilized as adsorbent for removal of copper (Cu2+) ions from the wastewater. The adsorption capability of Cu2+ ions was examined with respect to the PDA polymerization times, pH, initial metal ion concentration and time. Finally, the equilibrium adsorption data of chitosan-grafted membranes fitted well with the Langmuir isotherm with the maximum adsorption capacity of 270.27 mg/g.
Collapse
Affiliation(s)
- Qasim Zia
- Department of Materials, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Madeeha Tabassum
- School of Engineering & Materials Science, Queen Mary University of London, Mile End Road E1 4NS, United Kingdom
| | - Jinmin Meng
- Department of Materials, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Zhiying Xin
- Department of Materials, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Hugh Gong
- Department of Materials, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Jiashen Li
- Department of Materials, The University of Manchester, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
8
|
Caldas M, Santos AC, Rebelo R, Pereira I, Veiga F, Reis RL, Correlo VM. Electro-responsive controlled drug delivery from melanin nanoparticles. Int J Pharm 2020; 588:119773. [PMID: 32805382 DOI: 10.1016/j.ijpharm.2020.119773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 01/18/2023]
Abstract
Electro-responsive controlled drug delivery has been receiving an increasing interest as one of the on-demand drug delivery systems, aiming the improvement of the therapeutics efficacy by controlling the amount of drug release at a specific time and target site. Herein, we report a simple method to develop an electro-responsive controlled drug delivery system using functionalized melanin nanoparticles (FMNPs) with polydopamine and polypyrrole to precisely control the release of dexamethasone (Dex). Optimized FMNPs showed 376.77 ± 62.05 nm of particle size, a polydispersity index of 0.26 ± 0.09 and a zeta-potential (ZP) of -32.59 ± 3.61 mV. FMNPs evidenced a spherical shape, which was confirmed by scanning electron microscopy. Fourier-transform infrared spectrometry analysis confirmed the deposition of the polymers on the FMNPs' surface. The incorporation efficiency of the optimized Dex-loaded FMNPs was 94.45 ± 0.63% and the increase of ZP to -40.34 ± 4.65 mV was attributed to the anionic nature of Dex. In vitro Dex release studies without stimuli revealed a maximum Dex release below 10%. Applying electrical stimulation, Dex release was augmented, with a maximum of ca. 32% after 24 h. The designed FMNPs provide a powerful biomaterial-based technological tool for electro-responsive controlled drug delivery, capable of surpassing the associated lack of efficiency and stability of current carriers.
Collapse
Affiliation(s)
- Mariana Caldas
- I3B's Research Institute on Biomaterials Biodegradables and Biomimetics, Universidade do Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associated Laboratory, Braga, Guimarães, Portugal
| | - Ana Cláudia Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| | - Rita Rebelo
- I3B's Research Institute on Biomaterials Biodegradables and Biomimetics, Universidade do Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associated Laboratory, Braga, Guimarães, Portugal
| | - Irina Pereira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Rui L Reis
- I3B's Research Institute on Biomaterials Biodegradables and Biomimetics, Universidade do Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associated Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Barco, Guimarães, Portugal
| | - Vitor M Correlo
- I3B's Research Institute on Biomaterials Biodegradables and Biomimetics, Universidade do Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associated Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Barco, Guimarães, Portugal
| |
Collapse
|
9
|
Kopeć K, Wojasiński M, Ciach T. Superhydrophilic Polyurethane/Polydopamine Nanofibrous Materials Enhancing Cell Adhesion for Application in Tissue Engineering. Int J Mol Sci 2020; 21:ijms21186798. [PMID: 32947971 PMCID: PMC7555238 DOI: 10.3390/ijms21186798] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
The use of nanofibrous materials in the field of tissue engineering requires a fast, efficient, scalable production method and excellent wettability of the obtained materials, leading to enhanced cell adhesion. We proposed the production method of superhydrophilic nanofibrous materials in a two-step process. The process is designed to increase the wettability of resulting scaffolds and to enhance the rate of fibroblast cell adhesion. Polyurethane (PU) nanofibrous material was produced in the solution blow spinning process. Then the PU fibers surface was modified by dopamine polymerization in water solution. Two variants of the modification were examined: dopamine polymerization under atmospheric oxygen (V-I) and using sodium periodate as an oxidative agent (V-II). Hydrophobic PU materials after the treatment became highly hydrophilic, regardless of the modification variant. This effect originates from polydopamine (PDA) coating properties and nanoscale surface structures. The modification improved the mechanical properties of the materials. Materials obtained in the V-II process exhibit superior properties over those from the V-I, and require shorter modification time (less than 30 min). Modifications significantly improved fibroblasts adhesion. The cells spread after 2 h on both PDA-modified PU nanofibrous materials, which was not observed for unmodified PU. Proposed technology could be beneficial in applications like scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Kamil Kopeć
- Faculty of Chemical and Process Engineering, Biomedical Engineering Laboratory, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland; (M.W.); (T.C.)
- Correspondence: ; Tel.: +48-790-829-799
| | - Michał Wojasiński
- Faculty of Chemical and Process Engineering, Biomedical Engineering Laboratory, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland; (M.W.); (T.C.)
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Biomedical Engineering Laboratory, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland; (M.W.); (T.C.)
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
10
|
Lin J, Wang W, Cheng J, Cui Z, Si J, Wang Q, Chen W. Modification of thermoplastic polyurethane nanofiber membranes by in situ polydopamine coating for tissue engineering. J Appl Polym Sci 2020. [DOI: 10.1002/app.49252] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jixin Lin
- School of Materials Science and Engineering Fujian University of Technology Fujian China
- Fujian Provincial Engineering Research Center of Die and Mold Fujian University of Technology Fujian China
- Mould Technology Development Base of Fujian Province Fujian University of Technology Fujian China
| | - Weiwen Wang
- School of Materials Science and Engineering Fujian University of Technology Fujian China
- Fujian Provincial Engineering Research Center of Die and Mold Fujian University of Technology Fujian China
- Mould Technology Development Base of Fujian Province Fujian University of Technology Fujian China
| | - Jiaqi Cheng
- School of Materials Science and Engineering Fujian University of Technology Fujian China
- Fujian Provincial Engineering Research Center of Die and Mold Fujian University of Technology Fujian China
- Mould Technology Development Base of Fujian Province Fujian University of Technology Fujian China
| | - Zhixiang Cui
- School of Materials Science and Engineering Fujian University of Technology Fujian China
- Fujian Provincial Engineering Research Center of Die and Mold Fujian University of Technology Fujian China
- Mould Technology Development Base of Fujian Province Fujian University of Technology Fujian China
| | - Junhui Si
- School of Materials Science and Engineering Fujian University of Technology Fujian China
- Fujian Provincial Engineering Research Center of Die and Mold Fujian University of Technology Fujian China
- Mould Technology Development Base of Fujian Province Fujian University of Technology Fujian China
| | - Qianting Wang
- School of Materials Science and Engineering Fujian University of Technology Fujian China
- Fujian Provincial Engineering Research Center of Die and Mold Fujian University of Technology Fujian China
- Mould Technology Development Base of Fujian Province Fujian University of Technology Fujian China
| | - Wenzhe Chen
- School of Materials Science and Engineering Fujian University of Technology Fujian China
- Fujian Provincial Engineering Research Center of Die and Mold Fujian University of Technology Fujian China
- Mould Technology Development Base of Fujian Province Fujian University of Technology Fujian China
| |
Collapse
|
11
|
Hu S, Wu J, Cui Z, Si J, Wang Q, Peng X. Study on the mechanical and thermal properties of polylactic acid/hydroxyapatite@polydopamine composite nanofibers for tissue engineering. J Appl Polym Sci 2020. [DOI: 10.1002/app.49077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shengyu Hu
- School of Materials Science and EngineeringFujian University of Technology Fujian China
- Key Laboratory of Polymer Materials and Products of Universities in FujianFujian University of Technology Fujian China
| | - Jiahui Wu
- School of Materials Science and EngineeringFujian University of Technology Fujian China
- Key Laboratory of Polymer Materials and Products of Universities in FujianFujian University of Technology Fujian China
| | - Zhixiang Cui
- School of Materials Science and EngineeringFujian University of Technology Fujian China
- Key Laboratory of Polymer Materials and Products of Universities in FujianFujian University of Technology Fujian China
| | - Junhui Si
- School of Materials Science and EngineeringFujian University of Technology Fujian China
- Key Laboratory of Polymer Materials and Products of Universities in FujianFujian University of Technology Fujian China
| | - Qianting Wang
- School of Materials Science and EngineeringFujian University of Technology Fujian China
- Key Laboratory of Polymer Materials and Products of Universities in FujianFujian University of Technology Fujian China
| | - Xiangfang Peng
- School of Materials Science and EngineeringFujian University of Technology Fujian China
- Key Laboratory of Polymer Materials and Products of Universities in FujianFujian University of Technology Fujian China
| |
Collapse
|
12
|
Guo Q, Chen J, Wang J, Zeng H, Yu J. Recent progress in synthesis and application of mussel-inspired adhesives. NANOSCALE 2020; 12:1307-1324. [PMID: 31907498 DOI: 10.1039/c9nr09780e] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The rapid and robust adhesion of marine mussels to diverse solid surfaces in wet environments is mediated by the secreted mussel adhesive proteins which are abundant in a catecholic amino acid, l-3,4-dihydroxyphenylalanine (Dopa). Over the last two decades, enormous efforts have been devoted to the development of synthetic mussel-inspired adhesives with water-resistant adhesion and cohesion properties by modifying polymer systems with Dopa and its analogues. In the present review, an overview of the unique features of various mussel foot proteins is provided in combination with an up-to-date understanding of catechol chemistry, which contributes to the strong interfacial binding via balancing a variety of covalent and noncovalent interactions including oxidative cross-linking, electrostatic interaction, metal-catechol coordination, hydrogen bonding, hydrophobic interactions and π-π/cation-π interactions. The recent developments of novel Dopa-containing adhesives with on-demand mechanical properties and other functionalities are then summarized under four broad categories: viscous coacervated adhesives, soft adhesive hydrogels, smart adhesives, and stiff adhesive polyesters, where their emerging applications in engineering, biological and biomedical fields are discussed. Limitations of the developed adhesives are identified and future research perspectives in this field are proposed.
Collapse
Affiliation(s)
- Qi Guo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore.
| | | | | | | | | |
Collapse
|
13
|
Cui Z, Lin J, Zhan C, Wu J, Shen S, Si J, Wang Q. Biomimetic composite scaffolds based on surface modification of polydopamine on ultrasonication induced cellulose nanofibrils (CNF) adsorbing onto electrospun thermoplastic polyurethane (TPU) nanofibers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:561-577. [DOI: 10.1080/09205063.2019.1705534] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Zhixiang Cui
- School of Materials Science and Engineering, Fujian University of Technology, Fujian, China
- Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fujian, China
- Fujian Provincial Engineering Research Center of Die & Mold, Fujian University of Technology, Fujian, China
| | - Jixin Lin
- School of Materials Science and Engineering, Fujian University of Technology, Fujian, China
- Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fujian, China
- Fujian Provincial Engineering Research Center of Die & Mold, Fujian University of Technology, Fujian, China
| | - Conghua Zhan
- School of Materials Science and Engineering, Fujian University of Technology, Fujian, China
- Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fujian, China
- Fujian Provincial Engineering Research Center of Die & Mold, Fujian University of Technology, Fujian, China
| | - Jiahui Wu
- School of Materials Science and Engineering, Fujian University of Technology, Fujian, China
- Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fujian, China
- Fujian Provincial Engineering Research Center of Die & Mold, Fujian University of Technology, Fujian, China
| | - Shuai Shen
- School of Materials Science and Engineering, Fujian University of Technology, Fujian, China
- Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fujian, China
- Fujian Provincial Engineering Research Center of Die & Mold, Fujian University of Technology, Fujian, China
| | - Junhui Si
- School of Materials Science and Engineering, Fujian University of Technology, Fujian, China
- Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fujian, China
- Fujian Provincial Engineering Research Center of Die & Mold, Fujian University of Technology, Fujian, China
| | - Qianting Wang
- School of Materials Science and Engineering, Fujian University of Technology, Fujian, China
- Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fujian, China
- Fujian Provincial Engineering Research Center of Die & Mold, Fujian University of Technology, Fujian, China
| |
Collapse
|
14
|
Yang M, Guo Z, Li T, Li J, Chen L, Wang J, Wu J, Wu Z. Synergetic effect of chemical and topological signals of gingival regeneration scaffold on the behavior of human gingival fibroblasts. J Biomed Mater Res A 2019; 107:1875-1885. [PMID: 31034755 DOI: 10.1002/jbm.a.36708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/13/2019] [Accepted: 04/24/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Moyang Yang
- Key Laboratory of Oral MedicineGuangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University Guangzhou China
| | - Zhenzhao Guo
- Department of OrthopedicThe First Affiliated Hospital, Jinan University Guangzhou China
| | - Tong Li
- Department of ProsthodonticsHospital of Stomatology, Jilin University Changchun China
| | - Jing Li
- Department of ProsthodonticsHospital of Stomatology, Jilin University Changchun China
| | - Liyu Chen
- Key Laboratory of Oral MedicineGuangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University Guangzhou China
| | - Junmei Wang
- Key Laboratory of Oral MedicineGuangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University Guangzhou China
| | - Jincheng Wu
- Key Laboratory of Oral MedicineGuangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University Guangzhou China
| | - Zhe Wu
- Key Laboratory of Oral MedicineGuangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University Guangzhou China
| |
Collapse
|
15
|
Zhao J, Han F, Zhang W, Yang Y, You D, Li L. Toward improved wound dressings: effects of polydopamine-decorated poly(lactic-co-glycolic acid) electrospinning incorporating basic fibroblast growth factor and ponericin G1. RSC Adv 2019; 9:33038-33051. [PMID: 35529160 PMCID: PMC9073204 DOI: 10.1039/c9ra05030b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/01/2019] [Indexed: 01/29/2023] Open
Abstract
Artificial dressings composed of degradable polymer materials have a wide range of applications in skin repair. The structure and properties, in particular, the antibacterial properties, of the material surface are crucial for biological processes such as cell adhesion, proliferation, and skin regeneration. In this study, we aimed to prepare poly(lactic-co-glycolic acid) (PLGA) nanofiber scaffolds modified by polydopamine using electrospinning technology in order to produce polydopamine-modified degradable PLGA nanocomposites. The polydopamine-PLGA scaffold was endowed with excellent protein adhesion ability through the cross-linking of two biologically active factors, basic fibroblast growth factor (bFGF) and ponericin G1, significantly improving skin repair ability. The electrospun nanofiber scaffold was shown to have a structure similar to that of the natural cell matrix and created a more favorable microenvironment for cell growth. Surface modification by polydopamine dramatically improved the hydrophilicity of the nanofiber scaffold, increasing its ability to absorb active factors and its biocompatibility. The bFGF and ponericin G1 loaded onto the scaffold surface (PDA-PLGA/bFGF/ponericin G1 nanofiber scaffold) strongly promoted the antibacterial and cell proliferation-promoting properties and greatly enhanced the adhesion and proliferation of cells on the scaffold surface. The nanofiber scaffold also promoted wound healing and tissue collagen production in a rat wound healing model. Together, these findings indicate that the polydopamine-PLGA/bFGF/ponericin G1 nanofiber scaffold exhibits good biocompatibility and antibacterial properties, suggesting that it possesses potential value for skin tissue regeneration applications. Artificial dressings composed of degradable polymer materials have a wide range of applications in skin repair.![]()
Collapse
Affiliation(s)
- Jia Zhao
- Department of Anesthesia
- China-Japan Union Hospital of Jilin University
- Changchun 130033
- China
| | - Fanglei Han
- Department of Anesthesia
- China-Japan Union Hospital of Jilin University
- Changchun 130033
- China
| | - Wenjing Zhang
- Department of Anesthesia
- China-Japan Union Hospital of Jilin University
- Changchun 130033
- China
| | - Yang Yang
- Department of Anesthesia
- China-Japan Union Hospital of Jilin University
- Changchun 130033
- China
| | - Di You
- Department of Anesthesia
- China-Japan Union Hospital of Jilin University
- Changchun 130033
- China
| | - Longyun Li
- Department of Anesthesia
- China-Japan Union Hospital of Jilin University
- Changchun 130033
- China
| |
Collapse
|
16
|
Chen L, Shao L, Wang F, Huang Y, Gao F. Enhancement in sustained release of antimicrobial peptide and BMP-2 from degradable three dimensional-printed PLGA scaffold for bone regeneration. RSC Adv 2019; 9:10494-10507. [PMID: 35515290 PMCID: PMC9062520 DOI: 10.1039/c8ra08788a] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/26/2019] [Indexed: 11/24/2022] Open
Abstract
One of the goals of bone tissue engineering is to create scaffolds with well-defined, inter-connected pores, excellent biocompatibility and osteoinductive ability. Three-dimensional (3D)-printed polymer scaffold coated with bioactive peptide are an effective approach to fabricating ideal bone tissue engineering scaffolds for bone defect repair. However, the current strategy of adding bioactive peptides generally cause degradation to the polymer materials or damage the bioactivity of the biomolecules. Thus, in this study, we used a biomimetic process via poly(dopamine) coating to prepare functional 3D PLGA porous scaffolds with immobilized BMP-2 and ponericin G1 that efficiently regulate the osteogenic differentiation of preosteoblasts (MC3T3-E1) and simultaneously inhibit of pathogenic microbes, thereby enhancing biological activity. In this study, we analysed a 3D PLGA porous scaffold by scanning electron microscopy, water contact angle measurements, and materials testing. Subsequently, we examined the adsorption, release and in vitro antimicrobial activity of the 3D PLGA. Surface characterization showed that poly(dopamine) surface modification could more efficiently mediate the immobilization of BMP-2 and ponericin G1 onto the scaffold surfaces than physical adsorption, and that ponericin G1-immobilized 3D PLGA scaffolds were able to maintain long-term antibacterial activity. We evaluated the influence on cell adhesion, proliferation and differentiation by culturing MC3T3-E1 cells on different modified 3D PLGA scaffolds in vitro. The biological results indicate that MC3T3-E1 cell attachment and proliferation on BMP-2/ponericin G1-immobilized 3D PLGA scaffolds were much higher than those on other groups. Calcium deposition, and gene expression results showed that the osteogenic differentiation of cells was effectively improved by loading the 3D PLGA scaffold with BMP-2 and ponericin G1. In summary, our findings indicated that the polydopamine-assisted surface modification method can be a useful tool for grafting biomolecules onto biodegradable implants, and the dual release of BMP-2 and ponericin G1 can enhance the osteointegration of bone implants and simultaneously inhibit of pathogenic microbes. Therefore, we conclude that the BMP-2/ponericin G1-loaded PLGA 3D scaffolds are versatile and biocompatible scaffolds for bone tissue engineering. One of the goals of bone tissue engineering is to create scaffolds with well-defined, inter-connected pores, excellent biocompatibility and osteoinductive ability.![]()
Collapse
Affiliation(s)
- Lei Chen
- Department of Joints and Sports Medicine
- The First Hospital of Jilin University
- Changchun
- PR China
| | - Liping Shao
- Department of Joints and Sports Medicine
- The First Hospital of Jilin University
- Changchun
- PR China
| | - Fengping Wang
- Department of Joints and Sports Medicine
- The First Hospital of Jilin University
- Changchun
- PR China
| | - Yifan Huang
- Department of Joints Surgery
- The First Hospital of Jilin University
- Changchun
- PR China
| | - Fenghui Gao
- Department of Orthopedic
- The First Hospital of Jilin University
- Changchun
- PR China
| |
Collapse
|
17
|
Effect of Intercalation Structure of Organo-Modified Montmorillonite/Polylactic Acid on Wheat Straw Fiber/Polylactic Acid Composites. Polymers (Basel) 2018; 10:polym10080896. [PMID: 30960821 PMCID: PMC6403946 DOI: 10.3390/polym10080896] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 01/11/2023] Open
Abstract
In this work, an easy way to prepare the polylactic acid (PLA)/wheat straw fiber (WSF) composite was proposed. The method involved uses either the dopamine-treated WSF or the two-step montmorillonite (MMT)-modified WSF as the filler material. In order to achieve the dispersibility and exfoliation of MMT, it was modified by 12-aminododecanoic acid using a two-step route. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were performed to characterize the modified MMT and the coated WSF. As for the properties of PLA/WSF composites, some thermal (using Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis) and mechanical properties (flexural, tensile, and impact) were analyzed. The results showed that the dopamine was successfully coated onto the WSF. Furthermore, Na-MMT was successfully transformed to organo-montmorillonite (OMMT) and formed an exfoliated structure. In addition, a better dispersion of MMT was obtained using the two-step treatment. The interlayer spacing of modified MMT was 4.06 nm, which was 123% higher than that of the unmodified MMT. Additionally, FT-IR analysis suggested that OMMT diffused into the PLA matrix. The thermogravimetric analysis (TGA) showed that a higher thermal stability of PLA/WSF composites was obtained for the modified MMT and dopamine. The results also showed that both the dopamine treated WSF and the two-step-treated MMT exhibited a positive influence on the mechanical properties of PLA/WSF composites, especially on the tensile strength, which increased by 367% compared to the unmodified precursors. This route offers researchers a potential scheme to improve the thermal and mechanical properties of PLA/WSF composites in a low-cost way.
Collapse
|
18
|
Khan RU, Wang L, Yu H, Zain-ul-Abdin, Akram M, Wu J, Haroon M, Ullah RS, Deng Z, Xia X. Recent progress in the synthesis of poly(organo)phosphazenes and their applications in tissue engineering and drug delivery. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Xu Q, Li Y, Zhu Y, Zhao K, Gu R, Zhu Q. Recombinant human BMP-7 grafted poly(lactide-co-glycolide)/hydroxyapatite scaffolds via polydopamine for enhanced calvarial repair. RSC Adv 2018; 8:27191-27200. [PMID: 35539987 PMCID: PMC9083550 DOI: 10.1039/c8ra05606d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023] Open
Abstract
Polydopamine-assisted rhBMP-7 immobilization on PLGA/hydroxyapatite scaffold via phase inversion for enhanced calvarial repair in vivo.
Collapse
Affiliation(s)
- Qinli Xu
- Department of Orthopedics
- China-Japan Union Hospital
- Jilin University
- Changchun
- PR China
| | - Ye Li
- Department of Orthopedics
- China-Japan Union Hospital
- Jilin University
- Changchun
- PR China
| | - Yuhang Zhu
- Department of Orthopedics
- China-Japan Union Hospital
- Jilin University
- Changchun
- PR China
| | - Kunchi Zhao
- Department of Orthopedics
- China-Japan Union Hospital
- Jilin University
- Changchun
- PR China
| | - Rui Gu
- Department of Orthopedics
- China-Japan Union Hospital
- Jilin University
- Changchun
- PR China
| | - Qingsan Zhu
- Department of Orthopedics
- China-Japan Union Hospital
- Jilin University
- Changchun
- PR China
| |
Collapse
|
20
|
Zhang YG, Zhu YJ, Chen F, Lu BQ. Dopamine-modified highly porous hydroxyapatite microtube networks with efficient near-infrared photothermal effect, enhanced protein adsorption and mineralization performance. Colloids Surf B Biointerfaces 2017; 159:337-348. [DOI: 10.1016/j.colsurfb.2017.07.093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/27/2017] [Accepted: 07/31/2017] [Indexed: 11/26/2022]
|
21
|
Zhao X, Han Y, Li J, Cai B, Gao H, Feng W, Li S, Liu J, Li D. BMP-2 immobilized PLGA/hydroxyapatite fibrous scaffold via polydopamine stimulates osteoblast growth. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:658-666. [DOI: 10.1016/j.msec.2017.03.186] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/30/2016] [Accepted: 03/21/2017] [Indexed: 12/19/2022]
|
22
|
Zhu S, Sun H, Geng H, Liu D, Zhang X, Cai Q, Yang X. Dual functional polylactide–hydroxyapatite nanocomposites for bone regeneration with nano-silver being loaded via reductive polydopamine. RSC Adv 2016. [DOI: 10.1039/c6ra12100d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In bone tissue engineering, scaffolding materials with antibacterial function are required to avoid failure in treating infected bone defects, and poly(l-lactide) - hydroxyapatite nanocomposites containing silver nanoparticles are good choices for the purpose.
Collapse
Affiliation(s)
- Siqi Zhu
- State Key Laboratory of Organic-Inorganic Composites
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Hongyang Sun
- State Key Laboratory of Organic-Inorganic Composites
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Hongjuan Geng
- School and Hospital of Stomatology
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Deping Liu
- Department of Cardiology
- Beijing Hospital
- Beijing 100730
- P. R. China
| | - Xu Zhang
- School and Hospital of Stomatology
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| |
Collapse
|
23
|
Yi M, Sun H, Zhang H, Deng X, Cai Q, Yang X. Flexible fiber-reinforced composites with improved interfacial adhesion by mussel-inspired polydopamine and poly(methyl methacrylate) coating. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:742-9. [DOI: 10.1016/j.msec.2015.09.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/25/2015] [Accepted: 09/07/2015] [Indexed: 11/16/2022]
|
24
|
Prajatelistia E, Lim C, Oh DX, Jun SH, Hwang DS. Chitosan and hydroxyapatite composite cross-linked by dopamine has improved anisotropic hydroxyapatite growth and wet mechanical properties. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Ekavianty Prajatelistia
- School of Interdisciplinary Bioscience and Bioengineering; Pohang University of Science and Technology; Pohang Korea
| | - Chanoong Lim
- School of Interdisciplinary Bioscience and Bioengineering; Pohang University of Science and Technology; Pohang Korea
| | - Dongyeop X. Oh
- POSTECH Ocean Science and Technology Institute; Pohang University of Science and Technology; Pohang Korea
| | - Sang Ho Jun
- Division of Oral and Maxillofacial Surgery; Department of Dentistry; Korea University Anam Hospital; Seoul Korea
| | - Dong Soo Hwang
- School of Interdisciplinary Bioscience and Bioengineering; Pohang University of Science and Technology; Pohang Korea
- POSTECH Ocean Science and Technology Institute; Pohang University of Science and Technology; Pohang Korea
- Integrative Bioscience and Bioengineering; Pohang University of Science and Technology; Pohang Korea
- School of Environmental Science and Engineering; Pohang University of Science and Technology; Pohang Korea
| |
Collapse
|
25
|
Sun H, Ai M, Zhu S, Jia X, Cai Q, Yang X. Polylactide–hydroxyapatite nanocomposites with highly improved interfacial adhesion via mussel-inspired polydopamine surface modification. RSC Adv 2015. [DOI: 10.1039/c5ra21010k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The interfacial bonding between inorganic hydroxyapatite and organic polylactide could be significantly improved by introducing polydopamine surface coating on hydroxyapatite.
Collapse
Affiliation(s)
- Hongyang Sun
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Miao Ai
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Siqi Zhu
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Xiaolong Jia
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
- Beijing Laboratory of Biomedical Materials
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
- Beijing Laboratory of Biomedical Materials
| |
Collapse
|
26
|
Xu M, Li H, Zhai D, Chang J, Chen S, Wu C. Hierarchically porous nagelschmidtite bioceramic–silk scaffolds for bone tissue engineering. J Mater Chem B 2015; 3:3799-3809. [DOI: 10.1039/c5tb00435g] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hierarchically bioceramic–silk scaffolds are composed of first-level pores (~1 mm) of bioceramic and second-level pores (∼50–100 μm) of silk matrix, showing improved in vitro and in vivo bioactivity.
Collapse
Affiliation(s)
- Mengchi Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- People's Republic of China
| | - Hong Li
- Department of Sports Medicine
- Huashan Hospital
- Shanghai 200040
- People's Republic of China
| | - Dong Zhai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- People's Republic of China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- People's Republic of China
| | - Shiyi Chen
- Department of Sports Medicine
- Huashan Hospital
- Shanghai 200040
- People's Republic of China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- People's Republic of China
| |
Collapse
|
27
|
Biodegradable polyphosphazene biomaterials for tissue engineering and delivery of therapeutics. BIOMED RESEARCH INTERNATIONAL 2014; 2014:761373. [PMID: 24883323 PMCID: PMC4022062 DOI: 10.1155/2014/761373] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 03/29/2014] [Indexed: 12/22/2022]
Abstract
Degradable biomaterials continue to play a major role in tissue engineering and regenerative medicine as well as for delivering therapeutic agents. Although the chemistry of polyphosphazenes has been studied extensively, a systematic review of their applications for a wide range of biomedical applications is lacking. Polyphosphazenes are synthesized through a relatively well-known two-step reaction scheme which involves the substitution of the initial linear precursor with a wide range of nucleophiles. The ease of substitution has led to the development of a broad class of materials that have been studied for numerous biomedical applications including as scaffold materials for tissue engineering and regenerative medicine. The objective of this review is to discuss the suitability of poly(amino acid ester)phosphazene biomaterials in regard to their unique stimuli responsive properties, tunable degradation rates and mechanical properties, as well as in vitro and in vivo biocompatibility. The application of these materials in areas such as tissue engineering and drug delivery is discussed systematically. Lastly, the utility of polyphosphazenes is further extended as they are being employed in blend materials for new applications and as another method of tailoring material properties.
Collapse
|