1
|
Yan X, An N, Zhang Z, Qiu Q, Yang D, Wei P, Zhang X, Qiu L, Guo J. Graphene Oxide Quantum Dots-Preactivated Dental Pulp Stem Cells/GelMA Facilitates Mitophagy-Regulated Bone Regeneration. Int J Nanomedicine 2024; 19:10107-10128. [PMID: 39381026 PMCID: PMC11460356 DOI: 10.2147/ijn.s480979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024] Open
Abstract
Background In bone tissue engineering (BTE), cell-laden scaffolds offer a promising strategy for repairing bone defects, particularly when host cell regeneration is insufficient due to age or disease. Exogenous stem cell-based BTE requires bioactive factors to activate these cells. Graphene oxide quantum dots (GOQDs), zero-dimensional derivatives of graphene oxide, have emerged as potential osteogenic nanomedicines. However, constructing biological scaffolds with GOQDs and elucidating their biological mechanisms remain critical challenges. Methods We utilized GOQDs with a particle size of 10 nm, characterized by a surface rich in C-O-H and C-O-C functional groups. We developed a gelatin methacryloyl (GelMA) hydrogel incorporated with GOQDs-treated dental pulp stem cells (DPSCs). These constructs were transplanted into rat calvarial bone defects to estimate the effectiveness of GOQDs-induced DPSCs in repairing bone defects while also investigating the molecular mechanism underlying GOQDs-induced osteogenesis in DPSCs. Results GOQDs at 5 μg/mL significantly enhanced the osteogenic differentiation of DPSCs without toxicity. The GOQDs-induced DPSCs showed active osteogenic potential in three-dimensional cell culture system. In vivo, transplantation of GOQDs-preactivated DPSCs/GelMA composite effectively facilitated calvarial bone regeneration. Mechanistically, GOQDs stimulated mitophagy flux through the phosphatase-and-tensin homolog-induced putative kinase 1 (PINK1)/Parkin E3 ubiquitin ligase (PRKN) pathway. Notably, inhibiting mitophagy with cyclosporin A prevented the osteogenic activity of GOQDs. Conclusion This research presents a well-designed bionic GOQDs/DPSCs/GelMA composite scaffold and demonstrated its ability to promote bone regeneration by enhancing mitophagy. These findings highlight the significant potential of this composite for application in BTE and underscore the crucial role of mitophagy in promoting the osteogenic differentiation of GOQDs-induced stem cells.
Collapse
Affiliation(s)
- Xiaoyuan Yan
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, People’s Republic of China
| | - Na An
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, People’s Republic of China
| | - Zeying Zhang
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, People’s Republic of China
| | - Qiujing Qiu
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, People’s Republic of China
| | - Di Yang
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, People’s Republic of China
| | - Penggong Wei
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, People’s Republic of China
| | - Xiyue Zhang
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, People’s Republic of China
| | - Lihong Qiu
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, People’s Republic of China
| | - Jiajie Guo
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, People’s Republic of China
| |
Collapse
|
2
|
Govindarajan D, Saravanan S, Sudhakar S, Vimalraj S. Graphene: A Multifaceted Carbon-Based Material for Bone Tissue Engineering Applications. ACS OMEGA 2024; 9:67-80. [PMID: 38222554 PMCID: PMC10785094 DOI: 10.1021/acsomega.3c07062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Abstract
Tissue engineering is an emerging technological field that aims to restore and replace human tissues. A significant number of individuals require bone replacement annually as a result of skeletal abnormalities or accidents. In recent decades, notable progress has been made in the field of biomedical research, specifically in the realm of sophisticated and biocompatible materials. The purpose of these biomaterials is to facilitate bone tissue regeneration. Carbon nanomaterial-based scaffolds are particularly notable due to their accessibility, mechanical durability, and biofunctionality. The scaffolds exhibit the capacity to enhance cellular proliferation, mitigate cell damage, induce bone tissue growth, and maintain biological compatibility. Therefore, they play a crucial role in the development of the bone matrix and the necessary cellular interactions required for bone tissue restoration. The attachment, growth, and specialization of osteogenic stem cells on biomaterial scaffolds play critical roles in bone tissue engineering. The optimal biomaterial should facilitate the development of bone tissue in a manner that closely resembles that of human bone. This comprehensive review encompasses the examination of graphene oxide (GO), carbon nanotubes (CNTs), fullerenes, carbon dots (CDs), nanodiamonds, and their respective derivatives. The biomaterial frameworks possess the ability to replicate the intricate characteristics of the bone microenvironment, thereby rendering them suitable for utilization in tissue engineering endeavors.
Collapse
Affiliation(s)
- Dharunya Govindarajan
- Department
of Biotechnology, Stem Cell and Molecular Biology Laboratory, Bhupat
& Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| | - Sekaran Saravanan
- Department
of Prosthodontics, Saveetha Dental College and Hospital, Saveetha
Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Swathi Sudhakar
- Department
of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| | - Selvaraj Vimalraj
- Department
of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
3
|
Moeinzadeh A, Ashtari B, Garcia H, Koruji M, Velazquez CA, Bagher Z, Barati M, Shabani R, Davachi SM. The Effect of Chitosan/Alginate/Graphene Oxide Nanocomposites on Proliferation of Mouse Spermatogonial Stem Cells. J Funct Biomater 2023; 14:556. [PMID: 38132810 PMCID: PMC10744091 DOI: 10.3390/jfb14120556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Male survivors of childhood cancer have been known to be afflicted with azoospermia. To combat this, the isolation and purification of spermatogonial stem cells (SSCs) are crucial. Implementing scaffolds that emulate the extracellular matrix environment is vital for promoting the regeneration and proliferation of SSCs. This research aimed to evaluate the efficiency of nanocomposite scaffolds based on alginate, chitosan, and graphene oxide (GO) in facilitating SSCs proliferation. To analyze the cytotoxicity of the scaffolds, an MTT assay was conducted at 1, 3, and 7 days, and the sample containing 30 µg/mL of GO (ALGCS/GO30) exhibited the most favorable results, indicating its optimal performance. The identity of the cells was confirmed using flow cytometry with C-Kit and GFRα1 markers. The scaffolds were subjected to various analyses to characterize their properties. FTIR was employed to assess the chemical structure, XRD to examine crystallinity, and SEM to visualize the morphology of the scaffolds. To evaluate the proliferation of SSCs, qRT-PCR was used. The study's results demonstrated that the ALGCS/GO30 nanocomposite scaffold exhibited biocompatibility and facilitated the attachment and proliferation of SSCs. Notably, the scaffold displayed a significant increase in proliferation markers compared to the control group, indicating its ability to support SSC growth. The expression level of the PLZF protein was assessed using the Immunocytochemistry method. The observations confirmed the qRT-PCR results, which indicated that the nanocomposite scaffolds had higher levels of PLZF protein expression than scaffolds without GO. The biocompatible ALGCS/GO30 is a promising alternative for promoting SSC proliferation in in vitro applications.
Collapse
Affiliation(s)
- Alaa Moeinzadeh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Ashtari
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Heriberto Garcia
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX 78041, USA
| | - Morteza Koruji
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Carlo Alberto Velazquez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX 78041, USA
| | - Zohreh Bagher
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- ENT and Head & Neck Research Center and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Reproductive Sciences and Technology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Davachi
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX 78041, USA
| |
Collapse
|
4
|
Mohammadalipour M, Behzad T, Karbasi S, Babaei Khorzoghi M, Mohammadalipour Z. Osteogenic potential of PHB-lignin/cellulose nanofiber electrospun scaffold as a novel bone regeneration construct. Int J Biol Macromol 2023; 250:126076. [PMID: 37532195 DOI: 10.1016/j.ijbiomac.2023.126076] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
The electrospun scaffolds could mimic the highly hierarchical structure of extracellular matrix (ECM). Modern tissue engineering focuses on the properties of these microstructures, influencing the biological responses. This research investigates the variation of morphology, crystallinity, bioactivity, mechanical properties, contact angle, mass loss rate, roughness, cell behavior, biomineralization, and the efficacy of polyhydroxybutyrate (PHB)-based nanocomposite. Hence, 6 wt% lignin and 3 wt% cellulose nanofiber were added to the 9 wt% of PHB to prepare a novel electrospun nanocomposite structure (PLC). The outputs indicated more symmetrical circular fibers for PLC mat, higher surface roughness (326 to 389 nm), better hydrophilicity (120 to 60°), smaller crystal size (24 to 16 nm), and more reasonable biodegradability compared to PHB. These changes lead to the improvement of mechanical properties (toughness factor from 300 to 1100), cell behavior (viability from 60 to 100 %), bioactivity (from Ca/P ratio of 0.77 and 1.67), and higher level of alizarin red, and ALP enzyme secretion. Eventually, the osteopontin and alkaline phosphatase expression was also enhanced from ≃2.35 ± 0.15 and 2.1 ± 0.1 folds on the 1st day to ≃12.05 ± 0.35 and 7.95 ± 0.35 folds on 2nd week in PLCs. Accordingly, this newly developed structure could enhance biological responses and promote osteogenesis compared to PHB.
Collapse
Affiliation(s)
| | - Tayebeh Behzad
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mojtaba Babaei Khorzoghi
- Sport Injuries and Corrective Exercises, Center of Physical Education, Isfahan University of Technology, Isfahan, Iran
| | - Zahra Mohammadalipour
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
5
|
Han J, Ma Q, An Y, Wu F, Zhao Y, Wu G, Wang J. The current status of stimuli-responsive nanotechnologies on orthopedic titanium implant surfaces. J Nanobiotechnology 2023; 21:277. [PMID: 37596638 PMCID: PMC10439657 DOI: 10.1186/s12951-023-02017-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/21/2023] [Indexed: 08/20/2023] Open
Abstract
With the continuous innovation and breakthrough of nanomedical technology, stimuli-responsive nanotechnology has been gradually applied to the surface modification of titanium implants to achieve brilliant antibacterial activity and promoted osteogenesis. Regarding to the different physiological and pathological microenvironment around implants before and after surgery, these surface nanomodifications are designed to respond to different stimuli and environmental changes in a timely, efficient, and specific way/manner. Here, we focus on the materials related to stimuli-responsive nanotechnology on titanium implant surface modification, including metals and their compounds, polymer materials and other materials. In addition, the mechanism of different response types is introduced according to different activation stimuli, including magnetic, electrical, photic, radio frequency and ultrasonic stimuli, pH and enzymatic stimuli (the internal stimuli). Meanwhile, the associated functions, potential applications and developing prospect were discussion.
Collapse
Affiliation(s)
- Jingyuan Han
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Qianli Ma
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Geitmyrsveien, Oslo, 710455 Norway
| | - Yanxin An
- Department of General Surgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Fan Wu
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Yuqing Zhao
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Gaoyi Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Jing Wang
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| |
Collapse
|
6
|
Zhang X, Zhang H, Zhang Y, Huangfu H, Yang Y, Qin Q, Zhang Y, Zhou Y. 3D printed reduced graphene oxide-GelMA hybrid hydrogel scaffolds for potential neuralized bone regeneration. J Mater Chem B 2023; 11:1288-1301. [PMID: 36651822 DOI: 10.1039/d2tb01979e] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Peripheral nerves participate in bone growth and repair by secreting neurotransmitters, and enable new bone to possess physiological bone-sensing capability. However, it is difficult to achieve synchronized nerve regeneration during the healing process of large bone defects at present. As a bioactive nanomaterial, reduced graphene oxide (rGO) can promote neuronal differentiation and myelination of Schwann cells (SCs), while enhancing the adhesion and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) through its strong non-covalent binding ability. In this study, 3D printing-based rGO/GelMA hydrogels with enhanced osteogenic and neurogenic dual differentiation were used to simultaneously load SCs and BMSCs. By changing the concentration of rGO(0.03%/0.05%/0.1%), the compressive strength, rheological properties and aperture of the hydrogel can be improved. In vitro, cell live/death staining, phalloidin staining and SEM showed that cells loaded on the hydrogel had a high survival rate (85%) and good adhesion ability. In vivo, we found that the rGO/GelMA hydrogel exhibited the same low inflammatory response compared to the pure-GelMA group and the cell-only group, but surrounded by collagen fibers. Meanwhile, the osteogenic and neural proteins in the rGO/GelMA group were found to be highly expressed in immunohistochemistry and immunofluorescence. In this study, a scaffold material containing double cells was used to promote synergistic regeneration of nerves and bone, providing a promising strategy for the preparation of personalized and functionalized biomimetic bone material.
Collapse
Affiliation(s)
- Xinwei Zhang
- Hospital of Stomatology, Jilin University, Changchun 130000, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130000, China
| | - Hao Zhang
- Hospital of Stomatology, Jilin University, Changchun 130000, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130000, China
| | - Yi Zhang
- Hospital of Stomatology, Jilin University, Changchun 130000, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130000, China
| | - Huimin Huangfu
- Hospital of Stomatology, Jilin University, Changchun 130000, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130000, China
| | - Yixin Yang
- Hospital of Stomatology, Jilin University, Changchun 130000, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130000, China
| | - Qiuyue Qin
- Hospital of Stomatology, Jilin University, Changchun 130000, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130000, China
| | - Yidi Zhang
- Hospital of Stomatology, Jilin University, Changchun 130000, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130000, China
| | - Yanmin Zhou
- Hospital of Stomatology, Jilin University, Changchun 130000, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130000, China
| |
Collapse
|
7
|
Huang S, Zhong Y, Fu Y, Zheng X, Feng Z, Mo A. Graphene and its derivatives: "one stone, three birds" strategy for orthopedic implant-associated infections. Biomater Sci 2023; 11:380-399. [PMID: 36453143 DOI: 10.1039/d2bm01507b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Orthopedic implants provide an avascular surface for microbial attachment and biofilm formation, impeding the entry of immune cells and the diffusion of antibiotics. The above is an important cause of dental and orthopedic implant-associated infection (IAI). For the prevention and treatment of IAI, the drawbacks of antibiotic resistance and surgical treatment are increasingly apparent. Due to their outstanding biological properties such as biocompatibility, immunomodulatory effects, and antibacterial properties, graphene-based nanomaterials (GBNs) have been applied to bone tissue engineering to deal with IAI, and in particular have great potential application in drug/gene carriers, multi-functional platforms, and coating forms. Here we review the latest research progress and achievements in GBNs for the prevention and treatment of IAI, mainly including their biomedical applications for antibacterial and immunomodulation effects, and for inducing osteogenesis. Furthermore, the biosafety of graphene family materials in bone tissue regeneration and the feasibility of clinical application are critically analyzed and discussed.
Collapse
Affiliation(s)
- Si Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yongjin Zhong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaofei Zheng
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zeru Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Anchun Mo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Xu Y, Liu K, Yang Y, Kim MS, Lee CH, Zhang R, Xu T, Choi SE, Si C. Hemicellulose-based hydrogels for advanced applications. Front Bioeng Biotechnol 2023; 10:1110004. [PMID: 36698644 PMCID: PMC9868175 DOI: 10.3389/fbioe.2022.1110004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/21/2022] [Indexed: 01/10/2023] Open
Abstract
Hemicellulose-based hydrogels are three-dimensional networked hydrophilic polymer with high water retention, good biocompatibility, and mechanical properties, which have attracted much attention in the field of soft materials. Herein, recent advances and developments in hemicellulose-based hydrogels were reviewed. The preparation method, formation mechanism and properties of hemicellulose-based hydrogels were introduced from the aspects of chemical cross-linking and physical cross-linking. The differences of different initiation systems such as light, enzymes, microwave radiation, and glow discharge electrolytic plasma were summarized. The advanced applications and developments of hemicellulose-based hydrogels in the fields of controlled drug release, wound dressings, high-efficiency adsorption, and sensors were summarized. Finally, the challenges faced in the field of hemicellulose-based hydrogels were summarized and prospected.
Collapse
Affiliation(s)
- Ying Xu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Kun Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Yanfan Yang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Min-Seok Kim
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, South Korea
| | - Chan-Ho Lee
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, South Korea
| | - Rui Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China,Department of Finance, Tianjin University of Science and Technology, Tianjin, China
| | - Ting Xu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China,*Correspondence: Ting Xu, ; Sun-Eun Choi, ; Chuanling Si,
| | - Sun-Eun Choi
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, South Korea,*Correspondence: Ting Xu, ; Sun-Eun Choi, ; Chuanling Si,
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China,State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China,*Correspondence: Ting Xu, ; Sun-Eun Choi, ; Chuanling Si,
| |
Collapse
|
9
|
Salimi E, Nigje AK. Investigating the antibacterial activity of carboxymethyl cellulose films treated with novel Ag@GO decorated SiO2 nanohybrids. Carbohydr Polym 2022; 298:120077. [DOI: 10.1016/j.carbpol.2022.120077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022]
|
10
|
Kang Y, Zhang H, Chen L, Dong J, Yao B, Yuan X, Qin D, Yaremenko AV, Liu C, Feng C, Ji X, Tao W. The marriage of Xenes and hydrogels: Fundamentals, applications, and outlook. Innovation (N Y) 2022; 3:100327. [PMID: 36263399 PMCID: PMC9573930 DOI: 10.1016/j.xinn.2022.100327] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/19/2022] [Indexed: 12/04/2022] Open
Abstract
Hydrogels have blossomed as superstars in various fields, owing to their prospective applications in tissue engineering, soft electronics and sensors, flexible energy storage, and biomedicines. Two-dimensional (2D) nanomaterials, especially 2D mono-elemental nanosheets (Xenes) exhibit high aspect ratio morphology, good biocompatibility, metallic conductivity, and tunable electrochemical properties. These fascinating characteristics endow numerous tunable application-specific properties for the construction of Xene-based hydrogels. Hierarchical multifunctional hydrogels can be prepared according to the application requirements and can be effectively tuned by different stimulation to complete specific tasks in a spatiotemporal sequence. In this review, the synthesis mechanism, properties, and emerging applications of Xene hydrogels are summarized, followed by a discussion on expanding the performance and application range of both hydrogels and Xenes.
Collapse
Affiliation(s)
- Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Hanjie Zhang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Jinrui Dong
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Bin Yao
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Xue Yuan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Duotian Qin
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexey V. Yaremenko
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chuang Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chan Feng
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Respiratory Medicine, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Effect of cellulose nanofibers on polyhydroxybutyrate electrospun scaffold for bone tissue engineering applications. Int J Biol Macromol 2022; 220:1402-1414. [PMID: 36116594 DOI: 10.1016/j.ijbiomac.2022.09.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022]
Abstract
The choice of materials and preparation methods are the most important factors affecting the final characteristics of the scaffolds. In this study, cellulose nanofibers (CNFs) as a nano-additive reinforcer were selected to prepare a polyhydroxybutyrate (PHB) based nanocomposite mat. The PHB/CNF (PC) scaffold properties, created via the electrospinning method, were investigated and compared with pure PHB. The obtained results, in addition to a slight increment of crystallinity (from ≃46 to 53 %), showed better water contact angle (from ≃120 to 96°), appropriate degradation rate (up to ≃25 % weight loss in two months), prominent biomineralization (Ca/P ratio about 1.50), and ≃89 % increment in toughness factor of PC compare to the neat PHB. Moreover, the surface roughness as an affecting parameter on cell behavior was also increased up to ≃43 % in the presence of CNFs. Eventually, not only the MTT assay revealed better human osteoblast MG63 cell viability on PC samples, but also DAPI staining and SEM results confirmed the more plausible cell spreading in the presence of cellulose nano-additive. These improvements, along with the appropriate results of ALP and Alizarin red, authenticate that the newly PC nanocomposite composition has the required efficiency in the field of bone tissue engineering.
Collapse
|
12
|
Liu C, Tan D, Chen X, Liao J, Wu L. Research on Graphene and Its Derivatives in Oral Disease Treatment. Int J Mol Sci 2022; 23:ijms23094737. [PMID: 35563128 PMCID: PMC9104291 DOI: 10.3390/ijms23094737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023] Open
Abstract
Oral diseases present a global public health problem that imposes heavy financial burdens on individuals and health-care systems. Most oral health conditions can be treated in their early stage. Even if the early symptoms of oral diseases do not seem to cause significant discomfort, prompt treatment is essential for preventing their progression. Biomaterials with superior properties enable dental therapies with applications in restoration, therapeutic drug/protein delivery, and tissue regeneration. Graphene nanomaterials have many unique mechanical and physiochemical properties and can respond to the complex oral microenvironment, which includes oral microbiota colonization and high masticatory force. Research on graphene nanomaterials in dentistry, especially in caries, periodontitis therapy, and implant coatings, is progressing rapidly. Here, we review the development of graphene and its derivatives for dental disease therapy.
Collapse
Affiliation(s)
- Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (C.L.); (X.C.)
| | - Dan Tan
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China;
| | - Xiaoli Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (C.L.); (X.C.)
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, West China School & Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (J.L.); (L.W.)
| | - Leng Wu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430030, China
- Correspondence: (J.L.); (L.W.)
| |
Collapse
|
13
|
Ricci A, Cataldi A, Zara S, Gallorini M. Graphene-Oxide-Enriched Biomaterials: A Focus on Osteo and Chondroinductive Properties and Immunomodulation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2229. [PMID: 35329679 PMCID: PMC8955105 DOI: 10.3390/ma15062229] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022]
Abstract
Due to its exceptional physical properties, such as high electronic conductivity, good thermal stability, excellent mechanical strength, and chemical versatility, graphene has sparked a lot of interest in the scientific community for various applications. It has therefore been employed as an antibacterial agent, in photothermal therapy (PTT) and biosensors, in gene delivery systems, and in tissue engineering for regenerative purposes. Since it was first discovered in 1947, different graphene derivatives have been synthetized from pristine graphene. The most adaptable derivate is graphene oxide (GO). Owing to different functional groups, the amphiphilic structure of GO can interact with cells and exogenous or endogenous growth/differentiation factors, allowing cell adhesion, growth, and differentiation. When GO is used as a coating for scaffolds and nanomaterials, it has been found to enhance bone, chondrogenic, cardiac, neuronal, and skin regeneration. This review focuses on the applications of graphene-based materials, in particular GO, as a coating for scaffolds in bone and chondrogenic tissue engineering and summarizes the most recent findings. Moreover, novel developments on the immunomodulatory properties of GO are reported.
Collapse
Affiliation(s)
| | | | | | - Marialucia Gallorini
- Department of Pharmacy, “G. d'Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (A.R.); (A.C.); (S.Z.)
| |
Collapse
|
14
|
Progress in the Development of Graphene-Based Biomaterials for Tissue Engineering and Regeneration. MATERIALS 2022; 15:ma15062164. [PMID: 35329615 PMCID: PMC8955908 DOI: 10.3390/ma15062164] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022]
Abstract
Over the last few decades, tissue engineering has become an important technology for repairing and rebuilding damaged tissues and organs. The scaffold plays an important role and has become a hot pot in the field of tissue engineering. It has sufficient mechanical and biochemical properties and simulates the structure and function of natural tissue to promote the growth of cells inward. Therefore, graphene-based nanomaterials (GBNs), such as graphene and graphene oxide (GO), have attracted wide attention in the field of biomedical tissue engineering because of their unique structure, large specific surface area, good photo-thermal effect, pH response and broad-spectrum antibacterial properties. In this review, the structure and properties of typical GBNs are summarized, the progress made in the development of GBNs in soft tissue engineering (including skin, muscle, nerve and blood vessel) are highlighted, the challenges and prospects of the application of GBNs in soft tissue engineering have prospected.
Collapse
|
15
|
Yang S, Yu W, Zhang J, Han X, Wang J, Sun D, Shi R, Zhou Y, Zhang H, Zhao J. The antibacterial property of zinc oxide/graphene oxide modified porous polyetheretherketone against S. sanguinis, F. nucleatum and P. gingivalis. Biomed Mater 2022; 17. [PMID: 35114651 DOI: 10.1088/1748-605x/ac51ba] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/03/2022] [Indexed: 11/11/2022]
Abstract
About 30% failures of implant are caused by peri-implantitis. Subgingival plaque, consisting of S. sanguinis, F. nucleatum, P. gingivalis et. al, is the initiating factor of peri-implantitis. Polyetheretherketone(PEEK) is widely used for the fabrication of implant abutment, healing cap and temporary abutment in dental applications. As a biologically inert material, PEEK has shown poor antibacterial properties. To promote the antibacterial activity of PEEK, we loaded ZnO/GO on sulfonated PEEK. We screened out that when mass ratio of ZnO/GO was 4:1, dip-coating time was 25 min, ZnO/GO modified SPEEK shown the best physical and chemical properties. At the meantime, the ZnO/GO-SPEEK samples possess a good biocompatibility. The ZnO/GO-SPEEK inhibits P. gingivalis obviously, and could exert an antibacterial activity to S. sanguinis in the early stage, prevents biofilm formation effectively. With the favorable in vitro performances, the modification of PEEK with ZnO/GO is promising for preventing peri-implantitis.
Collapse
Affiliation(s)
- Shihui Yang
- Hospital of Stomatology, Department of Dental Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| | - Wanqi Yu
- Hospital of Stomatology, Department of Dental Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| | - Jingjie Zhang
- Hospital of Stomatology, Department of Dental Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| | - Xiao Han
- Hospital of Stomatology, Department of Dental Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| | - Junyan Wang
- Hospital of Stomatology, Department of Dental Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| | - Duo Sun
- Hospital of Stomatology, Department of Dental Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| | - Ruining Shi
- Hospital of Stomatology, Department of Dental Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| | - Yanmin Zhou
- Hospital of Stomatology, Department of Dental Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| | - Haibo Zhang
- Engineering Research Center of High Performance Plastic, Ministry of Education, College of Chemistry, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| | - Jinghui Zhao
- Hospital of Stomatology, Department of Dental Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| |
Collapse
|
16
|
Pan X, Cheng D, Ruan C, Hong Y, Lin C. Development of Graphene-Based Materials in Bone Tissue Engineaering. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2100107. [PMID: 35140982 PMCID: PMC8812920 DOI: 10.1002/gch2.202100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/31/2021] [Indexed: 06/14/2023]
Abstract
Bone regeneration-related graphene-based materials (bGBMs) are increasingly attracting attention in tissue engineering due to their special physical and chemical properties. The purpose of this review is to quantitatively analyze mass academic literature in the field of bGBMs through scientometrics software CiteSpace, to demonstrate the rules and trends of bGBMs, thus to analyze and summarize the mechanisms behind the rules, and to provide clues for future research. First, the research status, hotspots, and frontiers of bGBMs are analyzed in an intuitively and vividly visualized way. Next, the extracted important subjects such as fabrication techniques, cytotoxicity, biodegradability, and osteoinductivity of bGBMs are presented, and the different mechanisms, in turn, are also discussed. Finally, photothermal therapy, which is considered an emerging area of application of bGBMs, is also presented. Based on this approach, this work finds that different studies report differing opinions on the biological properties of bGBMS due to the lack of consistency of GBMs preparation. Therefore, it is necessary to establish more standards in fabrication, characterization, and testing for bGBMs to further promote scientific progress and clinical translation.
Collapse
Affiliation(s)
- Xiaoling Pan
- College of StomatologyXinjiang Medical UniversityUrumqiXinjiang830011P. R. China
- Department of Oral Maxillofacial SurgeryShenzhen HospitalSouthern Medical UniversityShenzhen518000P. R. China
| | - Delin Cheng
- Research Center for Human Tissue and Organs DegenerationInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs DegenerationInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Yonglong Hong
- Department of Oral Maxillofacial SurgeryShenzhen HospitalSouthern Medical UniversityShenzhen518000P. R. China
| | - Cheng Lin
- Department of Oral Maxillofacial SurgeryShenzhen HospitalSouthern Medical UniversityShenzhen518000P. R. China
| |
Collapse
|
17
|
李 永, 周 俊, 胡 书, 王 家, 王 坤, 王 伟. [Methods of improving the mechanical properties of hydrogels and their research progress in bone tissue engineering]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:1615-1622. [PMID: 34913320 PMCID: PMC8669179 DOI: 10.7507/1002-1892.202107053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/13/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To review the methods of improving the mechanical properties of hydrogels and the research progress in bone tissue engineering. METHODS The recent domestic and foreign literature on hydrogels in bone tissue engineering was reviewed, and the methods of improving the mechanical properties of hydrogels and the effect of bone repair in vivo and in vitro were summarized. RESULTS Hydrogels are widely used in bone tissue engineering, but their mechanical properties are poor. Improving the mechanical properties of hydrogels can enhance bone repair. The methods of improving the mechanical properties of hydrogels include the construction of dual network structures, inorganic nanoparticle composites, introduction of conductive materials, and fiber network reinforcement. These methods can improve the mechanical properties of hydrogels to various degrees while also demonstrating a significant bone repair impact. CONCLUSION The mechanical properties of hydrogels can be effectively improved by modifying the system, components, and fiber structure, and bone repair can be effectively promoted.
Collapse
Affiliation(s)
- 永伟 李
- 西安交通大学第二附属医院骨关节外科(西安 710004)Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Shaanxi, 710004, P.R.China
| | - 俊鹏 周
- 西安交通大学第二附属医院骨关节外科(西安 710004)Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Shaanxi, 710004, P.R.China
| | - 书刚 胡
- 西安交通大学第二附属医院骨关节外科(西安 710004)Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Shaanxi, 710004, P.R.China
| | - 家麟 王
- 西安交通大学第二附属医院骨关节外科(西安 710004)Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Shaanxi, 710004, P.R.China
| | - 坤正 王
- 西安交通大学第二附属医院骨关节外科(西安 710004)Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Shaanxi, 710004, P.R.China
| | - 伟 王
- 西安交通大学第二附属医院骨关节外科(西安 710004)Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Shaanxi, 710004, P.R.China
| |
Collapse
|
18
|
Liu W, Luo H, Wei Q, Liu J, Wu J, Zhang Y, Chen L, Ren W, Shao L. Electrochemically derived nanographene oxide activates endothelial tip cells and promotes angiogenesis by binding endogenous lysophosphatidic acid. Bioact Mater 2021; 9:92-104. [PMID: 34820558 PMCID: PMC8586026 DOI: 10.1016/j.bioactmat.2021.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/08/2023] Open
Abstract
Graphene oxide (GO) exhibits good mechanical and physicochemical characteristics and has extensive application prospects in bone tissue engineering. However, its effect on angiogenesis is unclear, and its potential toxic effects are heavily disputed. Herein, we found that nanographene oxide (NGO) synthesized by one-step water electrolytic oxidation is smaller and shows superior biocompatibility. Moreover, NGO significantly enhanced angiogenesis in calvarial bone defect areas in vivo, providing a good microenvironment for bone regeneration. Endothelial tip cell differentiation is an important step in the initiation of angiogenesis. We verified that NGO activates endothelial tip cells by coupling with lysophosphatidic acid (LPA) in serum via strong hydrogen bonding interactions, which has not been reported. In addition, the mechanism by which NGO promotes angiogenesis was systematically studied. NGO-coupled LPA activates LPAR6 and facilitates the formation of migratory tip cells via Hippo/Yes-associated protein (YAP) independent of reactive oxygen species (ROS) stimulation or additional complex modifications. These results provide an effective strategy for the application of electrochemically derived NGO and more insight into NGO-mediated angiogenesis. Electrochemically derived nanographene oxide (NGO) has good cytocompatibility without upregulating reactive oxygen species. NGO exhibits better dispersibility and couples with endogenous lysophosphatidic acid (LPA) in body fluid. NGO enhances the angiogenesis by recruiting endogenous LPA and promoting endothelial tip cell formation.
Collapse
Affiliation(s)
- Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Haiyun Luo
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Qinwei Wei
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Lili Chen
- Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wencai Ren
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
- Corresponding author. Stomatological Hospital, Southern Medical University, Guangzhou 510280, China Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China.
| |
Collapse
|
19
|
Mousavi SM, Yousefi K, Hashemi SA, Afsa M, BahranI S, Gholami A, Ghahramani Y, Alizadeh A, Chiang WH. Renewable Carbon Nanomaterials: Novel Resources for Dental Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2800. [PMID: 34835565 PMCID: PMC8622722 DOI: 10.3390/nano11112800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 02/03/2023]
Abstract
Dental tissue engineering (TE) is undergoing significant modifications in dental treatments. TE is based on a triad of stem cells, signaling molecules, and scaffolds that must be understood and calibrated with particular attention to specific dental sectors. Renewable and eco-friendly carbon-based nanomaterials (CBMs), including graphene (G), graphene oxide (GO), reduced graphene oxide (rGO), graphene quantum dots (GQD), carbon nanotube (CNT), MXenes and carbide, have extraordinary physical, chemical, and biological properties. In addition to having high surface area and mechanical strength, CBMs have greatly influenced dental and biomedical applications. The current study aims to explore the application of CBMs for dental tissue engineering. CBMs are generally shown to have remarkable properties, due to various functional groups that make them ideal materials for biomedical applications, such as dental tissue engineering.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan;
| | - Khadije Yousefi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran; (K.Y.); (M.A.)
- Department of Dental Materials and Biomaterials Research Centre, Shiraz Dental School, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| | - Marzie Afsa
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran; (K.Y.); (M.A.)
| | - Sonia BahranI
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran; (K.Y.); (M.A.)
| | - Yasmin Ghahramani
- Department of Endodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Ali Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran;
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan;
| |
Collapse
|
20
|
Semitela Â, Carvalho S, Fernandes C, Pinto S, Fateixa S, Nogueira HIS, Bdikin I, Completo A, Marques PAAP, Gonçalves G. Biomimetic Graphene/Spongin Scaffolds for Improved Osteoblasts Bioactivity via Dynamic Mechanical Stimulation. Macromol Biosci 2021; 22:e2100311. [PMID: 34610190 DOI: 10.1002/mabi.202100311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/21/2021] [Indexed: 01/03/2023]
Abstract
Biomimetics offers excellent prospects for design a novel generation of improved biomaterials. Here the controlled integration of graphene oxide (GO) derivatives with a 3D marine spongin (MS) network is explored to nanoengineer novel smart bio-based constructs for bone tissue engineering. The results point out that 3D MS surfaces can be homogeneously coated by layer-by-layer (LbL) assembly of oppositely charged polyethyleneimine (PEI) and GO. Notably, the GOPEI@MS bionanocomposites present a high structural and mechanical stability under compression tests in wet conditions (shape memory). Dynamic mechanically (2 h of sinusoidal compression cyclic interval (0.5 Hz, 0-10% strain)/14 d) stimulates GOPEI@MS seeded with osteoblast (MC3T3-E1), shows a significant improvement in bioactivity, with cell proliferation being two times higher than under static conditions. Besides, the dynamic assays show that GOPEI@MS bionanocomposites are able to act as mechanical stimulus-responsive scaffolds able to resemble physiological bone extracellular matrix (ECM) requirements by strongly triggering mineralization of the bone matrix. These results prove that the environment created by the system cell-GOPEI@MS is suitable for controlling the mechanisms regulating mechanical stimulation-induced cell proliferation for potential in vivo experimentation.
Collapse
Affiliation(s)
- Ângela Semitela
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Sara Carvalho
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Cristiana Fernandes
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Susana Pinto
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Sara Fateixa
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Helena I S Nogueira
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Igor Bdikin
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
| | - António Completo
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Paula A A P Marques
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Gil Gonçalves
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
21
|
Wu M, Zou L, Jiang L, Zhao Z, Liu J. Osteoinductive and antimicrobial mechanisms of graphene-based materials for enhancing bone tissue engineering. J Tissue Eng Regen Med 2021; 15:915-935. [PMID: 34469046 DOI: 10.1002/term.3239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 02/05/2023]
Abstract
Graphene-based materials (GMs) have great application prospects in bone tissue engineering due to their osteoinductive ability and antimicrobial activity. GMs induce osteogenic differentiation through several mechanisms and pathways in bone tissue engineering. First of all, the surface and high hardness of the porous folds of graphene or graphene oxide (GO) can generate mechanical stimulation to initiate a cascade of reactions that promote osteogenic differentiation without any chemical inducers. In addition, change of the extracellular matrix (ECM), regulation of macrophage polarization, the oncostatin M (OSM) signaling pathway, the MAPK signaling pathway, the BMP signaling pathway, the Wnt/β-catenin signaling pathway, and other pathways are involved in GMs' regulation of osteogenesis. In bone tissue engineering, GMs prevent the formation of microbial biofilms mainly through preventing microbial adhesion and killing them. The former is mainly achieved by reducing surface free energy (SFE) and increasing hydrophobicity. The latter mainly includes oxidative stress and photothermal/photodynamic effects. Graphene and its derivatives (GDs) are mainly combined with bioactive ceramic materials, metal materials and macromolecular polymers to play an antimicrobial effect in bone tissue engineering. Concentration, number of layers, and type of GDs often affect the antimicrobial activity of GMs. In this paper, we reviewed relevant osteoinductive and antimicrobial mechanisms of GMs and their applications in bone tissue engineering.
Collapse
Affiliation(s)
- Mengsong Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linli Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
He Y, Chen G, Li Y, Li Y, Yi C, Zhang X, Li H, Zeng B, Wang C, Xie W, Zhao W, Yu D. Effect of magnetic graphene oxide on cellular behaviors and osteogenesis under a moderate static magnetic field. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102435. [PMID: 34186257 DOI: 10.1016/j.nano.2021.102435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 05/13/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022]
Abstract
The biological behaviors of magnetic graphene oxide (MGO) in a static magnetic field (SMF) are unknown. The current study is to investigate the cellular behaviors, osteogenesis and the mechanism in BMSCs treated with MGO combined with an SMF. Results showed that the synthetic MGO particles were bio-compatible and could significantly improve the osteogenesis of BMSCs under SMFs, as verified by elevated alkaline phosphatase activity, mineralized nodule formation, and expressions of mRNA and protein levels. Under SMF at the same intensity, the addition of graphene oxide to Fe3O4 could increase the osteogenic ability of BMSCs. The Wnt/β-catenin pathway was indicated to be related to the MGO-driven osteogenic behavior of the BMSCs under SMF. Taken together, our findings suggested that MGO under an SMF could promote osteogenesis in BMSCs through the Wnt/β-catenin pathway and hence should attract more attention for practical applications in bone tissue regeneration.
Collapse
Affiliation(s)
- Yi He
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Guanhui Chen
- Department of Stomatology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ye Li
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yiming Li
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chen Yi
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiliu Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hongyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Binghui Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chao Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Weihong Xie
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wei Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Dongsheng Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
23
|
Sobczak-Kupiec A, Drabczyk A, Florkiewicz W, Głąb M, Kudłacik-Kramarczyk S, Słota D, Tomala A, Tyliszczak B. Review of the Applications of Biomedical Compositions Containing Hydroxyapatite and Collagen Modified by Bioactive Components. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2096. [PMID: 33919199 PMCID: PMC8122483 DOI: 10.3390/ma14092096] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Regenerative medicine is becoming a rapidly evolving technique in today's biomedical progress scenario. Scientists around the world suggest the use of naturally synthesized biomaterials to repair and heal damaged cells. Hydroxyapatite (HAp) has the potential to replace drugs in biomedical engineering and regenerative drugs. HAp is easily biodegradable, biocompatible, and correlated with macromolecules, which facilitates their incorporation into inorganic materials. This review article provides extensive knowledge on HAp and collagen-containing compositions modified with drugs, bioactive components, metals, and selected nanoparticles. Such compositions consisting of HAp and collagen modified with various additives are used in a variety of biomedical applications such as bone tissue engineering, vascular transplantation, cartilage, and other implantable biomedical devices.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bożena Tyliszczak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (A.S.-K.); (A.D.); (W.F.); (M.G.); (S.K.-K.); (D.S.); (A.T.)
| |
Collapse
|
24
|
A bioinspired, ice-templated multifunctional 3D cryogel composite crosslinked through in situ reduction of GO displayed improved mechanical, osteogenic and antimicrobial properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111584. [DOI: 10.1016/j.msec.2020.111584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/14/2020] [Accepted: 09/28/2020] [Indexed: 12/27/2022]
|
25
|
Kucukyildiz EN, Dayi B, Altin S, Yigit O. In vitro comparison of physical, chemical, and mechanical properties of graphene nanoplatelet added Angelus mineral trioxide aggregate to pure Angelus mineral trioxide aggregate and calcium hydroxide. Microsc Res Tech 2021; 84:929-942. [PMID: 33410148 DOI: 10.1002/jemt.23654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 11/11/2022]
Abstract
It is important to cover the pulp surface with a biocompatible material that is physically, mechanically, and chemically adequate. Graphene has the potential to form hard tissue, but at high doses, it shows toxic effects. It can be added to biocompatible materials at low doses to enhance their hard tissue forming potential. The aim of this study was to compare the physical, chemical, and mechanical properties of graphene nanoplatelet (GNP) added Angelus mineral trioxide aggregate (A-MTA) to pure A-MTA and calcium hydroxide. Homogeneous mixtures (created by adding +0.1 weight[wt]% and 0.3 wt% GNP to A-MTA), pure A-MTA, and Dycal were used. Three disc-shaped samples of each material were prepared using Teflon mold. Scanning electron microscope-energy dispersive X-ray (SEM-EDX), particle size, microhardness, and Fourier transform infrared spectroscopy (FTIR) analysis of the materials were performed in vitro. Data were analyzed using Kruskal-Wallis test followed by Conover test (p < .001). A-MTA and GNP added samples showed similar peaks in FTIR analysis. In the EDX analysis, the amount of carbon was observed with a higher increase at A-MTA + 0.3 wt% GNP than A-MTA + 0.1 wt% GNP. In the SEM image, hollow structure and particle size decreased as the amount of GNP increased; particle size was smaller at A-MTA + 0.3 wt% GNP than A-MTA + 0.1 wt% GNP (p < .001). A-MTA + 0.3 wt% GNP showed the highest microhardness while Dycal showed the lowest microhardness. The addition of GNP, a material with high potential for forming hard tissue, to the structure of capping materials can also positively contribute to the microhardness of the capping materials.
Collapse
Affiliation(s)
- Elif Nihan Kucukyildiz
- Department of Restorative Dentistry, Faculty of Dentistry, Inonu University, Malatya, Turkey
| | - Burak Dayi
- Department of Restorative Dentistry, Faculty of Dentistry, Inonu University, Malatya, Turkey
| | - Serdar Altin
- Department of Physics, Faculty of Science and Art, Inonu University, Malatya, Turkey
| | - Oktay Yigit
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Firat University, Elazig, Turkey
| |
Collapse
|
26
|
Du Z, Wang C, Zhang R, Wang X, Li X. Applications of Graphene and Its Derivatives in Bone Repair: Advantages for Promoting Bone Formation and Providing Real-Time Detection, Challenges and Future Prospects. Int J Nanomedicine 2020; 15:7523-7551. [PMID: 33116486 PMCID: PMC7547809 DOI: 10.2147/ijn.s271917] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
During continuous innovation in the preparation, characterization and application of various bone repair materials for several decades, nanomaterials have exhibited many unique advantages. As a kind of representative two-dimensional nanomaterials, graphene and its derivatives (GDs) such as graphene oxide and reduced graphene oxide have shown promising potential for the application in bone repair based on their excellent mechanical properties, electrical conductivity, large specific surface area (SSA) and atomic structure stability. Herein, we reviewed the updated application of them in bone repair in order to present, as comprehensively, as possible, their specific advantages, challenges and current solutions. Firstly, how their advantages have been utilized in bone repair materials with improved bone formation ability was discussed. Especially, the effects of further functionalization or modification were emphasized. Then, the signaling pathways involved in GDs-induced osteogenic differentiation of stem cells and immunomodulatory mechanism of GDs-induced bone regeneration were discussed. On the other hand, their applications as contrast agents in the field of bone repair were summarized. In addition, we also reviewed the progress and related principles of the effects of GDs parameters on cytotoxicity and residues. At last, the future research was prospected.
Collapse
Affiliation(s)
- Zhipo Du
- Department of Orthopedics, The Fourth Central Hospital of Baoding City, Baoding 072350, Hebei Province, People's Republic of China
| | - Cunyang Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, People's Republic of China
| | - Ruihong Zhang
- Department of Research and Teaching, The Fourth Central Hospital of Baoding City, Baoding 072350, Hebei Province, People's Republic of China
| | - Xiumei Wang
- Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, People's Republic of China
| |
Collapse
|
27
|
Bonilla-Represa V, Abalos-Labruzzi C, Herrera-Martinez M, Guerrero-Pérez MO. Nanomaterials in Dentistry: State of the Art and Future Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1770. [PMID: 32906829 PMCID: PMC7557393 DOI: 10.3390/nano10091770] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
Nanomaterials are commonly considered as those materials in which the shape and molecular composition at a nanometer scale can be controlled. Subsequently, they present extraordinary properties that are being useful for the development of new and improved applications in many fields, including medicine. In dentistry, several research efforts are being conducted, especially during the last decade, for the improvement of the properties of materials used in dentistry. The objective of the present article is to offer the audience a complete and comprehensive review of the main applications that have been developed in dentistry, by the use of these materials, during the last two decades. It was shown how these materials are improving the treatments in mainly all the important areas of dentistry, such as endodontics, periodontics, implants, tissue engineering and restorative dentistry. The scope of the present review is, subsequently, to revise the main applications regarding nano-shaped materials in dentistry, including nanorods, nanofibers, nanotubes, nanospheres/nanoparticles, and zeolites and other orders porous materials. The results of the bibliographic analysis show that the most explored nanomaterials in dentistry are graphene and carbon nanotubes, and their derivatives. A detailed analysis and a comparative study of their applications show that, although they are quite similar, graphene-based materials seem to be more promising for most of the applications of interest in dentistry. The bibliographic study also demonstrated the potential of zeolite-based materials, although the low number of studies on their applications shows that they have not been totally explored, as well as other porous nanomaterials that have found important applications in medicine, such as metal organic frameworks, have not been explored. Subsequently, it is expected that the research effort will concentrate on graphene and zeolite-based materials in the coming years. Thus, the present review paper presents a detailed bibliographic study, with more than 200 references, in order to briefly describe the main achievements that have been described in dentistry using nanomaterials, compare and analyze them in a critical way, with the aim of predicting the future challenges.
Collapse
Affiliation(s)
- Victoria Bonilla-Represa
- Departamento de Operatoria Dental y Endodoncia, Universidad de Sevilla, E-41009 Sevilla, Spain; (V.B.-R.); (M.H.-M.)
| | | | - Manuela Herrera-Martinez
- Departamento de Operatoria Dental y Endodoncia, Universidad de Sevilla, E-41009 Sevilla, Spain; (V.B.-R.); (M.H.-M.)
| | | |
Collapse
|
28
|
Olate-Moya F, Arens L, Wilhelm M, Mateos-Timoneda MA, Engel E, Palza H. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4343-4357. [PMID: 31909967 DOI: 10.1021/acsami.9b22062] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Scaffolds based on bioconjugated hydrogels are attractive for tissue engineering because they can partly mimic human tissue characteristics. For example, they can further increase their bioactivity with cells. However, most of the hydrogels present problems related to their processability, consequently limiting their use in 3D printing to produce tailor-made scaffolds. The goal of this work is to develop bioconjugated hydrogel nanocomposite inks for 3D printed scaffold fabrication through a micro-extrusion process having improved both biocompatibility and processability. The hydrogel is based on a photocrosslinkable alginate bioconjugated with both gelatin and chondroitin sulfate in order to mimic the cartilage extracellular matrix, while the nanofiller is based on graphene oxide to enhance the printability and cell proliferation. Our results show that the incorporation of graphene oxide into the hydrogel inks considerably improved the shape fidelity and resolution of 3D printed scaffolds because of a faster viscosity recovery post extrusion of the ink. Moreover, the nanocomposite inks produce anisotropic threads after the 3D printing process because of the templating of the graphene oxide liquid crystal. The in vitro proliferation assay of human adipose tissue-derived mesenchymal stem cells (hADMSCs) shows that bioconjugated scaffolds present higher cell proliferation than pure alginate, with the nanocomposites presenting the highest values at long times. Live/Dead assay otherwise displays full viability of hADMSCs adhered on the different scaffolds at day 7. Notably, the scaffolds produced with nanocomposite hydrogel inks were able to guide the cell proliferation following the direction of the 3D printed threads. In addition, the bioconjugated alginate hydrogel matrix induced chondrogenic differentiation without exogenous pro-chondrogenesis factors as concluded from immunostaining after 28 days of culture. This high cytocompatibility and chondroinductive effect toward hADMSCs, together with the improved printability and anisotropic structures, makes these nanocomposite hydrogel inks a promising candidate for cartilage tissue engineering based on 3D printing.
Collapse
Affiliation(s)
- Felipe Olate-Moya
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas , Universidad de Chile , Beauchef 851 , 8370456 Santiago , Chile
| | - Lukas Arens
- Institute for Technical Chemistry and Polymer Chemistry (ITCP) , Karlsruhe Institute of Technology (KIT) , Engesserstr. 18 , 76131 Karlsruhe , Germany
| | - Manfred Wilhelm
- Institute for Technical Chemistry and Polymer Chemistry (ITCP) , Karlsruhe Institute of Technology (KIT) , Engesserstr. 18 , 76131 Karlsruhe , Germany
| | - Miguel Angel Mateos-Timoneda
- Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology , Baldiri Reixac 10-12 , 08028 Barcelona , Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Monforte de Lemos, 3-5 , 28029 Madrid , Spain
- Department of Materials Science, EEBE , Technical University of Catalonia (UPC) , d'Eduard Maristany 16 , 08019 Barcelona , Spain
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology , Baldiri Reixac 10-12 , 08028 Barcelona , Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Monforte de Lemos, 3-5 , 28029 Madrid , Spain
- Department of Materials Science, EEBE , Technical University of Catalonia (UPC) , d'Eduard Maristany 16 , 08019 Barcelona , Spain
| | - Humberto Palza
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas , Universidad de Chile , Beauchef 851 , 8370456 Santiago , Chile
- Millennium Nuclei in Soft Smart Mechanical Metamaterials , Beauchef 851 , 8370456 Santiago , Chile
| |
Collapse
|
29
|
Malmir S, Karbalaei A, Pourmadadi M, Hamedi J, Yazdian F, Navaee M. Antibacterial properties of a bacterial cellulose CQD-TiO 2 nanocomposite. Carbohydr Polym 2020; 234:115835. [PMID: 32070499 DOI: 10.1016/j.carbpol.2020.115835] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/12/2022]
Abstract
Antibacterial dressing can prevent the occurrence of many infections of wounds. Bacterial cellulose (BC) has the ability to carry and transfer the medicine to achieve a wound healing bandage. In this study, Carbon Quantum Dots-Titanium dioxide (CQD-TiO2) nanoparticles (NP) were added to BC as antibacterial agents. FTIR Spectroscopy illuminated that NPs were well-bonded to BC. Interestingly, MIC test proved that BC/CQD-TiO2 nanostructure (NS) has anti-bacterial properties against Staphylococcus aureus. The findings indicated that, CQD-TiO2 NPs have stronger antibacterial properties with better tensile strength compared to CQD NPs, in a concentration-dependent manner. Toxicity of CQD-TiO2 NPs on human L929 fibroblast cells was also evaluated. Most importantly, the results of the scratch test indicated that the NS was effective in wound healing in L929 cells. The approach in this study may provide an alternative to make an antibacterial wound dressing to achieve an effective drug-based bandage.
Collapse
Affiliation(s)
- Samira Malmir
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Atiyeh Karbalaei
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrab Pourmadadi
- Protein Research Center, Shahid Beheshti University, GC, Tehran, Iran.
| | - Javad Hamedi
- Microbial Technology and Products (MTP) Research Center, University of Tehran, Tehran, Iran; Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Fatemeh Yazdian
- Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.
| | - Mona Navaee
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
30
|
Synergistic Effects on Incorporation of β-Tricalcium Phosphate and Graphene Oxide Nanoparticles to Silk Fibroin/Soy Protein Isolate Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2020; 12:polym12010069. [PMID: 31906498 PMCID: PMC7023539 DOI: 10.3390/polym12010069] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
In bone tissue engineering, an ideal scaffold is required to have favorable physical, chemical (or physicochemical), and biological (or biochemical) properties to promote osteogenesis. Although silk fibroin (SF) and/or soy protein isolate (SPI) scaffolds have been widely used as an alternative to autologous and heterologous bone grafts, the poor mechanical property and insufficient osteoinductive capability has become an obstacle for their in vivo applications. Herein, β-tricalcium phosphate (β-TCP) and graphene oxide (GO) nanoparticles are incorporated into SF/SPI scaffolds simultaneously or individually. Physical and chemical properties of these composite scaffolds are evaluated using field emission scanning electron microscope (FESEM), X-ray diffraction (XRD) and attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR). Biocompatibility and osteogenesis of the composite scaffolds are evaluated using bone marrow mesenchymal stem cells (BMSCs). All the composite scaffolds have a complex porous structure with proper pore sizes and porosities. Physicochemical properties of the scaffolds can be significantly increased through the incorporation of β-TCP and GO nanoparticles. Alkaline phosphatase activity (ALP) and osteogenesis-related gene expression of the BMSCs are significantly enhanced in the presence of β-TCP and GO nanoparticles. Especially, β-TCP and GO nanoparticles have a synergistic effect on promoting osteogenesis. These results suggest that the β-TCP and GO enhanced SF/SPI scaffolds are promising candidates for bone tissue regeneration.
Collapse
|
31
|
Witzler M, Büchner D, Shoushrah SH, Babczyk P, Baranova J, Witzleben S, Tobiasch E, Schulze M. Polysaccharide-Based Systems for Targeted Stem Cell Differentiation and Bone Regeneration. Biomolecules 2019; 9:E840. [PMID: 31817802 PMCID: PMC6995597 DOI: 10.3390/biom9120840] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
Bone tissue engineering is an ever-changing, rapidly evolving, and highly interdisciplinary field of study, where scientists try to mimic natural bone structure as closely as possible in order to facilitate bone healing. New insights from cell biology, specifically from mesenchymal stem cell differentiation and signaling, lead to new approaches in bone regeneration. Novel scaffold and drug release materials based on polysaccharides gain increasing attention due to their wide availability and good biocompatibility to be used as hydrogels and/or hybrid components for drug release and tissue engineering. This article reviews the current state of the art, recent developments, and future perspectives in polysaccharide-based systems used for bone regeneration.
Collapse
Affiliation(s)
- Markus Witzler
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (M.W.); (D.B.); (S.H.S.); (P.B.); (S.W.); (E.T.)
| | - Dominik Büchner
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (M.W.); (D.B.); (S.H.S.); (P.B.); (S.W.); (E.T.)
| | - Sarah Hani Shoushrah
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (M.W.); (D.B.); (S.H.S.); (P.B.); (S.W.); (E.T.)
| | - Patrick Babczyk
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (M.W.); (D.B.); (S.H.S.); (P.B.); (S.W.); (E.T.)
| | - Juliana Baranova
- Laboratory of Neurosciences, Department of Biochemistry, Institute of Chemistry–USP, University of São Paulo, Avenida Professor Lineu Prestes 748, Vila Universitaria, São Paulo, SP 05508-000, Brazil;
| | - Steffen Witzleben
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (M.W.); (D.B.); (S.H.S.); (P.B.); (S.W.); (E.T.)
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (M.W.); (D.B.); (S.H.S.); (P.B.); (S.W.); (E.T.)
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (M.W.); (D.B.); (S.H.S.); (P.B.); (S.W.); (E.T.)
| |
Collapse
|
32
|
Bordoni V, Reina G, Orecchioni M, Furesi G, Thiele S, Gardin C, Zavan B, Cuniberti G, Bianco A, Rauner M, Delogu LG. Stimulation of bone formation by monocyte-activator functionalized graphene oxide in vivo. NANOSCALE 2019; 11:19408-19421. [PMID: 31386739 DOI: 10.1039/c9nr03975a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nanosystems are able to enhance bone regeneration, a complex process requiring the mutual interplay between immune and skeletal cells. Activated monocytes can communicate pro-osteogenic signals to mesenchymal stem cells and promote osteogenesis. Thus, the activation of monocytes is a promising strategy to improve bone regeneration. Nanomaterials specifically selected to provoke immune-mediated bone formation are still missing. As a proof of concept, we apply here the intrinsic immune-characteristics of graphene oxide (GO) with the well-recognized osteoinductive capacity of calcium phosphate (CaP) in a biocompatible nanomaterial called maGO-CaP (monocytes activator GO complexed with CaP). In the presence of monocytes, the alkaline phosphatase activity and the expression of osteogenic markers increased. Studying the mechanisms of action, we detected an up-regulation of Wnt and BMP signaling, two key osteogenic pathways. The role of the immune activation was evidenced by the over-production of oncostatin M, a pro-osteogenic factor produced by monocytes. Finally, we tested the pro-osteogenic effects of maGO-CaP in vivo. maGO-CaP injected into the tibia of mice enhanced local bone mass and the bone formation rate. Our study suggests that maGO-CaP can activate monocytes to enhance osteogenesis ex vivo and in vivo.
Collapse
Affiliation(s)
| | - Giacomo Reina
- University of Strasbourg, CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 Strasbourg, France.
| | | | - Giulia Furesi
- University of Sassari, Sassari, Italy. and TU Dresden Medical Center, Dresden, Germany.
| | | | - Chiara Gardin
- Department of Biomedical Sciences University of Padova, Padova, Italy
| | - Barbara Zavan
- Department of Biomedical Sciences University of Padova, Padova, Italy
| | - Gianaurelio Cuniberti
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Dresden University of Technology, Dresden, Germany
| | - Alberto Bianco
- University of Strasbourg, CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 Strasbourg, France.
| | | | - Lucia G Delogu
- University of Sassari, Sassari, Italy. and Department of Biomedical Sciences, University of Padova, Padova, Italy and Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| |
Collapse
|
33
|
J Hill M, Qi B, Bayaniahangar R, Araban V, Bakhtiary Z, Doschak M, Goh B, Shokouhimehr M, Vali H, Presley J, Zadpoor A, Harris M, Abadi P, Mahmoudi M. Nanomaterials for bone tissue regeneration: updates and future perspectives. Nanomedicine (Lond) 2019; 14:2987-3006. [DOI: 10.2217/nnm-2018-0445] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Joint replacement and bone reconstructive surgeries are on the rise globally. Current strategies for implants and bone regeneration are associated with poor integration and healing resulting in repeated surgeries. A multidisciplinary approach involving basic biological sciences, tissue engineering, regenerative medicine and clinical research is required to overcome this problem. Considering the nanostructured nature of bone, expertise and resources available through recent advancements in nanobiotechnology enable researchers to design and fabricate devices and drug delivery systems at the nanoscale to be more compatible with the bone tissue environment. The focus of this review is to present the recent progress made in the rationale and design of nanomaterials for tissue engineering and drug delivery relevant to bone regeneration.
Collapse
Affiliation(s)
- Michael J Hill
- Department of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA
| | - Baowen Qi
- Center for Nanomedicine & Department of Anesthesiology, Brigham & Women's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - Rasoul Bayaniahangar
- Department of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA
| | - Vida Araban
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Zahra Bakhtiary
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Doschak
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Brian C Goh
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mohammadreza Shokouhimehr
- Department of Materials Science & Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hojatollah Vali
- Department of Anatomy & Cell Biology & Facility for Electron Microscopy Research, McGill University, Montreal, QC H3A 0G4, Canada
| | - John F Presley
- Department of Anatomy & Cell Biology & Facility for Electron Microscopy Research, McGill University, Montreal, QC H3A 0G4, Canada
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands
| | - Mitchel B Harris
- Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Parisa PSS Abadi
- Department of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA
| | - Morteza Mahmoudi
- Precision Health Program & Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
34
|
Yang X, Zhao Q, Chen Y, Fu Y, Lu S, Yu X, Yu D, Zhao W. Effects of graphene oxide and graphene oxide quantum dots on the osteogenic differentiation of stem cells from human exfoliated deciduous teeth. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:822-832. [PMID: 30873880 DOI: 10.1080/21691401.2019.1576706] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Graphene and its derivatives, graphene oxide (GO) and graphene oxide quantum dots (GOQDs), have recently attracted much attention as bioactive factors in differentiating stem cells towards osteoblastic lineage. The stem cells from human exfoliated deciduous teeth (SHEDs) possess the properties of self-renewal, extensive proliferation, and multiple differentiation potential, and have gradually become one of the most promising mesenchymal stem cells (MSCs) in bone tissue engineering. The purpose of this study was to explore the effects of GO and GOQDs on the osteogenic differentiation of SHEDs. In this study, GO and GOQDs facilitated SHED proliferation up to 7 days in vitro at the concentration of 1 μg/ml. Because of their excellent fluorescent properties, GOQD uptake by SHEDs was confirmed and distributed in the SHED cytoplasm. Calcium nodules formation, alkaline phosphatase (ALP) activity, and RNA and protein expression increased significantly in SHEDs treated with osteogenic induction medium containing GOQDs but decreased with osteogenic induction medium containing GO. Interestingly, the Wnt/β-catenin signaling pathway appeared to be involved in osteogenic differentiation of SHEDs induced with GOQDs. In summary, GO and GOQDs at the concentration of 1 μg/ml promoted SHED proliferation. GOQDs induced the osteogenic differentiation of SHEDs, whilst GO slightly inhibited it.
Collapse
Affiliation(s)
- Xin Yang
- a Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , China
| | - Qi Zhao
- b Xianning Central Hospital , The First Affiliated Hospital Of Hubei University Of Science And Technology , Xianning , China
| | - Yijing Chen
- a Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , China
| | - Yuanxiang Fu
- c School of Chemistry and Chemical Engineering , Sun Yat-sen University , Zhuhai , China
| | - Shushen Lu
- c School of Chemistry and Chemical Engineering , Sun Yat-sen University , Zhuhai , China
| | - Xinlin Yu
- d International Department , The Affiliated High School of SCNU , Guangzhou , China
| | - Dongsheng Yu
- a Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , China
| | - Wei Zhao
- a Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , China
| |
Collapse
|
35
|
Girão AF, Serrano MC, Completo A, Marques PAAP. Do biomedical engineers dream of graphene sheets? Biomater Sci 2019; 7:1228-1239. [PMID: 30720810 DOI: 10.1039/c8bm01636d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the past few years, graphene has outstandingly emerged as a key nanomaterial for boosting the performance of commercial, industrial and scientific related technologies. The popularity of this novel nanomaterial in biomedical engineering is due to its excellent biological, electronic, optical and thermal properties that, as a whole, surpass the features of commonly used biomaterials and consequently open a wide range of applications so far within the reach of science fiction. In this minireview, the potential of graphene and its based materials in the expanding biomedical field is highlighted with focus on groundbreaking diagnostic, monitoring and therapeutic strategies. Some of the major challenges related to the synthesis and safety of graphene-based materials are also briefly discussed because of their critical importance in bringing this class of carbon materials closer to the clinic.
Collapse
Affiliation(s)
- André F Girão
- TEMA, Department of Mechanical Engineering, University of Aveiro (UA), 3810-193 Aveiro, Portugal.
| | | | | | | |
Collapse
|
36
|
Fabrication and Application of Novel Porous Scaffold in Situ-Loaded Graphene Oxide and Osteogenic Peptide by Cryogenic 3D Printing for Repairing Critical-Sized Bone Defect. Molecules 2019; 24:molecules24091669. [PMID: 31035401 PMCID: PMC6539066 DOI: 10.3390/molecules24091669] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/15/2019] [Accepted: 04/26/2019] [Indexed: 01/09/2023] Open
Abstract
Osteogenic peptides have been reported as highly effective in directing mesenchymal stem cell osteogenic differentiation in vitro and bone formation in vivo. Therefore, developing novel biomaterials for the controlled delivery of osteogenic peptides in scaffolds without lowering the peptide’s biological activity is highly desirable. To repair a critical-sized bone defect to efficiently achieve personalized bone regeneration, a novel bioactive poly(lactic-co-glycolic acid) (PLGA)/β-tricalcium phosphate (β-TCP) composite scaffold, in which graphene oxide (GO) and bone morphogenetic protein (BMP)-2-like peptide were loaded in situ (PTG/P), was produced by an original cryogenic 3D printing method. The scaffolds were mechanically comparable to human cancellous bone and hierarchically porous. The incorporation of GO further improved the scaffold wettability and mechanical strength. The in situ loaded peptides retained a high level of biological activity for an extended time, and the loading of GO in the scaffold further tuned the peptide release so that it was more sustained. Our in vitro study showed that the PTG/P scaffold promoted rat bone marrow-derived mesenchymal stem cell ingrowth into the scaffold and enhanced osteogenic differentiation. Moreover, the in vivo study indicated that the novel PTG/P scaffold with sustained delivery of the peptide could significantly promote bone regeneration in a critical bone defect. Thus, the novel bioactive PTG/P scaffold with a customized shape, improved mechanical strength, sustainable peptide delivery, and excellent osteogenic ability has great potential in bone tissue regeneration.
Collapse
|
37
|
Enamel Surface Remineralization Effect by Fluorinated Graphite and Bioactive Glass-Containing Orthodontic Bonding Resin. MATERIALS 2019; 12:ma12081308. [PMID: 31013602 PMCID: PMC6515273 DOI: 10.3390/ma12081308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/24/2022]
Abstract
All orthodontic appliances are potentially cariogenic. The plaque around the orthodontic appliance can make demineralization on tooth surface causing white spot lesion (WSL). The most effective method to prevent WSL is Fluoride appliance and gargling, but this requires patient cooperation, which consumes additional treatment time and cost. As suggested in this study, biomaterials like bioactive glass and fluorinated graphite (FGt) having antibacterial and anti-demineralization ability effective and easy to use in the clinic. To clinically use orthodontic bonding resins containing Graphite Fluoride BAG (FGtBAG), its properties, biological stability, antimicrobial activity, and remineralization effect must be verified. BAG was mixed with 2.5% FGt containing 51 to 61% fluorine. This mixture was mixed with the CharmFill Flow (CF) in the ratios of 1, 3, and 5 wt%. Microhardness and shear bond strength tests were performed to evaluate its mechanical properties. MTT (3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetra) assay was performed for evaluating its safety. Streptococcus mutans, which is major cariogen by producing lactic acid, was evaluated for antibacterial ability of reducing WSL. In addition, x-ray images were obtained by CBCT (Cone beam computed tomography) after a pH cycle. The remineralization effect was verified in vivo and by Image J. FGtBAG did not differ significantly from CF in mechanical tests. The MTT assay found no significant differences between the groups. The antibacterial activity of FGtBAG at 24 h and 48 h was significantly higher than that of CF. The fluoride release rate tended to increase with the FGtBAG content. The pH cycle results showed that FGtBAG had higher concentration-dependent remineralization effect than CF. The results of this study suggests that orthodontic resins containing FGtBAG can prevent WSL owing to their antibacterial activity and remineralization effect.
Collapse
|
38
|
Xue Y, Hong X, Gao J, Shen R, Ye Z. Preparation and biological characterization of the mixture of poly(lactic-co-glycolic acid)/chitosan/Ag nanoparticles for periodontal tissue engineering. Int J Nanomedicine 2019; 14:483-498. [PMID: 30666109 PMCID: PMC6333395 DOI: 10.2147/ijn.s184396] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective This study aims to produce nanoparticles of chitosan (CS), poly(lactic-co-glycolic acid) (PLGA), and silver and investigate the optimal composite ratio of these three materials for periodontal tissue regeneration. Methods PLGA nanoparticles (nPLGA), CS nanoparticles (nCS), and silver nanoparticles (nAg) were prepared. The antibacterial properties of single nanoparticles and their effects on the proliferation and mineralization of periodontal membrane cells were investigated. Different ratios of nPLGA and nCS were combined, the proliferation and mineralization of periodontal membrane cells were investigated, and based on the results, the optimal ratio was determined. Finally, nPLGA and nCS in optimal ratio were combined with nAg, and the effects of the complex of these three materials on the proliferation and mineralization of periodontal membrane cells were investigated and tested in animals. Results The single nanoparticles were found to have no cytotoxicity and were able to promote cell mineralization. nCS and nAg in low concentrations showed antibacterial activity; however, nAg inhibited cell proliferation. The nPLGA and nCS complex in 3:7 ratio contributed to cell mineralization and had no cytotoxicity. nPLGA/nCS/nAg complex, which had the optimal proportion of the three materials, showed no cytotoxicity and contributed to cell mineralization. Conclusion nPLGA/nCS/nAg complex had no cytotoxicity and contributed to cell mineralization. The 3:7 ratio of nPLGA/nCS and 50 µg/mL nAg were found as the optimal proportion of the three materials.
Collapse
Affiliation(s)
- Yanxiang Xue
- Department of Stomatology, The Liwan Hospital of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China, .,Department of Stomatology, Southern Medical University Guangzhou, Guangzhou 510515, China,
| | - Xiaofang Hong
- Department of Stomatology, Zhongshan Hospital of Xiamen University, Medical College of Xiamen University, Xiamen University, Xiamen 361000, China,
| | - Jie Gao
- Department of Stomatology, The Liwan Hospital of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China, .,Department of Stomatology, Southern Medical University Guangzhou, Guangzhou 510515, China,
| | - Renze Shen
- Department of Stomatology, Zhongshan Hospital of Xiamen University, Medical College of Xiamen University, Xiamen University, Xiamen 361000, China,
| | - Zhanchao Ye
- Department of Stomatology, Zhongshan Hospital of Xiamen University, Medical College of Xiamen University, Xiamen University, Xiamen 361000, China,
| |
Collapse
|
39
|
Qi Z, Guo W, Zheng S, Fu C, Ma Y, Pan S, Liu Q, Yang X. Enhancement of neural stem cell survival, proliferation and differentiation by IGF-1 delivery in graphene oxide-incorporated PLGA electrospun nanofibrous mats. RSC Adv 2019; 9:8315-8325. [PMID: 35518668 PMCID: PMC9061867 DOI: 10.1039/c8ra10103e] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/04/2019] [Indexed: 11/21/2022] Open
Abstract
The mammalian central nervous system has a limited ability for self-repair under injury conditions.
Collapse
Affiliation(s)
- Zhiping Qi
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun TX 130041
- PR China
| | - Wenlai Guo
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun TX 130041
- PR China
| | - Shuang Zheng
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun TX 130041
- PR China
| | - Chuan Fu
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun TX 130041
- PR China
| | - Yue Ma
- Department of Gynecological Oncology
- The First Hospital of Jilin University
- Changchun TX 130000
- PR China
| | - Su Pan
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun TX 130041
- PR China
| | - Qinyi Liu
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun TX 130041
- PR China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun TX 130041
- PR China
| |
Collapse
|
40
|
Shahmoradi S, Golzar H, Hashemi M, Mansouri V, Omidi M, Yazdian F, Yadegari A, Tayebi L. Optimizing the nanostructure of graphene oxide/silver/arginine for effective wound healing. NANOTECHNOLOGY 2018; 29:475101. [PMID: 30179859 DOI: 10.1088/1361-6528/aadedc] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this study, we introduce a novel graphene oxide/silver/arginine (GO/Ag/Arg) nanohybrid structure, which can act as an angiogenesis promoter and provide antibacterial nanostructure for improving the wound healing process. GO/Ag nanostructure has been optimized in terms of the GO/Ag mass ratio and pH values using central composite design and the response surface method to increase the Ag loading efficiency. Then, Arg was chemically introduced to the surface of GO/Ag nanostructure. Electrospun polycaprolactone (PCL)-GO/Ag/Arg nanocomposite was successfully fabricated and characterized. The synthesized nanocomposite demonstrated not only a great antibacterial effect on both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacterial species, but appropriate biocompatibility against L929 fibroblastic cell lines. The results demonstrated that the preparation of the PCL-GO/Ag/Arg nanocomposite at a concentration of 1.0 wt% GO/Ag/Arg possessed the best biological and mechanical features. In vivo experiments also revealed that the use of optimized PCL-GO/Ag/Arg nanocomposite, after 12 d of treatment, led to significant increase in the healing process and also regeneration of the wound via reconstruction of a thickened epidermis layer on the wound surface, which was confirmed by histological analysis. In conclusion, the proposed approach can introduce a novel notion for preparing antibacterial material that significantly promotes angiogenesis.
Collapse
Affiliation(s)
- Saleheh Shahmoradi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Fabrication of hydroxyapatite/hydrophilic graphene composites and their modulation to cell behavior toward bone reconstruction engineering. Colloids Surf B Biointerfaces 2018; 173:512-520. [PMID: 30340179 DOI: 10.1016/j.colsurfb.2018.10.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 01/23/2023]
Abstract
Cell adhesion was the first step of bone reconstruction. While hydroxyapatite (HA)/graphene composites had been utilized for improving the cell adhesion and bone osteogenesis, the impact of cell adhesion and HA/graphene composites, especially HA/hydrophilic graphene (HG) composites, on internal interaction force and external surface properties remained poorly understood. Here, higher stability HA/HG composites were synthesized without extra ion introduction with in situ self-assembling method. And with XRD, FT-IR, XPS and Raman analyses, the evidences of the formation of HA and the introduction of HG was clear. TEM and SEM images showed the net-like spatial structure due to the internal interaction force between HA and HG, which provided the strain stimulation for cell adhesion. Subsequently, the external surface properties of HA/HG composites demonstrated that the roughness and hydrophilic ability of HA/HG composites could be artificially regulated by increasing the content of HG. Besides, the cell proliferation rate of HA/HG composites had been investigated. Compared to the intrinsic HA, HA/5%HG possessed the higher cell proliferation rate (264.81%) and promoted the spreading and growth of MC3T3-E1 cells. Finally, the regulation mechanism between HA/HG and cell adhesion were illuminated in detail. The excellent regular behavior of HA/HG composites for cell adhesion made them promising candidates for bone reconstruction and repairing. The present work provided the reference for the design of modifiable biomaterials and offered much inspiration for the future research of bone reconstruction engineering.
Collapse
|
42
|
Lee SM, Yoo KH, Yoon SY, Kim IR, Park BS, Son WS, Ko CC, Son SA, Kim YI. Enamel Anti-Demineralization Effect of Orthodontic Adhesive Containing Bioactive Glass and Graphene Oxide: An In-Vitro Study. MATERIALS 2018; 11:ma11091728. [PMID: 30223468 PMCID: PMC6163975 DOI: 10.3390/ma11091728] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023]
Abstract
White spot lesions (WSLs), a side effect of orthodontic treatment, can result in reversible and unaesthetic results. Graphene oxide (GO) with a bioactive glass (BAG) mixture (BAG@GO) was added to Low-Viscosity Transbond XT (LV) in a ratio of 1, 3, and 5%. The composite’s characterization and its physical and biological properties were verified with scanning electron microscopy (SEM) and X-ray diffraction (XRD); its microhardness, shear bond strength (SBS), cell viability, and adhesive remnant index (ARI) were also assessed. Efficiency in reducing WSL was evaluated using antibacterial activity of S. mutans. Anti-demineralization was analyzed using a cycle of the acid-base solution. Adhesives with 3 wt.% or 5 wt.% of BAG@GO showed significant increase in microhardness compared with LV. The sample and LV groups showed no significant differences in SBS or ARI. The cell viability test confirmed that none of the sample groups showed higher toxicity compared to the LV group. Antibacterial activity was higher in the 48-h group than in the 24 h group; the 48 h test showed that BAG@GO had a high antibacterial effect, which was more pronounced in 5 wt.% of BAG@GO. Anti-demineralization effect was higher in the BAG@GO-group than in the LV-group; the higher the BAG@GO concentration, the higher the anti-demineralization effect.
Collapse
Affiliation(s)
- Seung-Min Lee
- Department of Orthodontics, Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Korea.
| | - Kyung-Hyeon Yoo
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Korea.
| | - Seog-Young Yoon
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Korea.
| | - In-Ryoung Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Bong-Soo Park
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Woo-Sung Son
- Department of Orthodontics, Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Korea.
| | - Ching-Chang Ko
- Department of Orthodontics, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA.
| | - Sung-Ae Son
- Department of Conservative Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Yong-Il Kim
- Department of Orthodontics, Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Korea.
- Institute of Translational Dental Sciences, Pusan National University, Busan 46241, Korea.
| |
Collapse
|