1
|
Fiehn LA, Kunisch E, Saur M, Arango-Ospina M, Merle C, Hagmann S, Stiller A, Hupa L, Kaňková H, Galusková D, Renkawitz T, Boccaccini AR, Westhauser F. A comparative in vitro and in vivo analysis of the impact of copper substitution on the cytocompatibility, osteogenic, and angiogenic properties of a borosilicate bioactive glass. J Biomed Mater Res A 2024; 112:1740-1759. [PMID: 38623001 DOI: 10.1002/jbm.a.37721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/10/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024]
Abstract
The 0106-B1-bioactive glass (BG) composition (in wt %: 37.5 SiO2, 22.6 CaO, 5.9 Na2O, 4.0 P2O5, 12.0 K2O, 5.5 MgO, and 12.5 B2O3) has demonstrated favorable processing properties and promising bone regeneration potential. The present study aimed to evaluate the biological effects of the incorporation of highly pro-angiogenic copper (Cu) in 0106-B1-BG in vitro using human bone marrow-derived mesenchymal stromal cells (BMSCs) as well as its in vivo potential for bone regeneration. CuO was added to 0106-B1-BG in exchange for CaO, resulting in Cu-doped BG compositions containing 1.0, 2.5 and 5.0 wt % CuO (composition in wt %: 37.5 SiO2, 21.6/ 20.1/17.6 CaO, 5.9 Na2O, 4.0 P2O5, 12.0 K2O, 5.5 MgO, 12.5 B2O3, and 1.0/ 2.5/ 5.0 CuO). In vitro, the BGs' impact on the viability, proliferation, and growth patterns of BMSCs was evaluated. Analyses of protein secretion, matrix formation, and gene expression were used for the assessment of the BGs' influence on BMSCs regarding osteogenic differentiation and angiogenic stimulation. The presence of Cu improved cytocompatibility, osteogenic differentiation, and angiogenic response when compared with unmodified 0106-B1-BG in vitro. In vivo, a critical-size femoral defect in rats was filled with scaffolds made from BGs. Bone regeneration was evaluated by micro-computed tomography. Histological analysis was performed to assess bone maturation and angiogenesis. In vivo effects regarding defect closure, presence of osteoclastic cells or vascular structures in the defect were not significantly changed by the addition of Cu compared with undoped 0106-B1-BG scaffolds. Hence, while the in vitro properties of the 0106-B1-BG were significantly improved by the incorporation of Cu, further evaluation of the BG composition is necessary to transfer these effects to an in vivo setting.
Collapse
Affiliation(s)
- Linn Anna Fiehn
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Elke Kunisch
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Merve Saur
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Christian Merle
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Sébastien Hagmann
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Adrian Stiller
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Turku, Finland
| | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Turku, Finland
| | - Hana Kaňková
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Trenčín, Slovakia
| | - Dagmar Galusková
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Trenčín, Slovakia
| | - Tobias Renkawitz
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Fabian Westhauser
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
2
|
Piatti E, Miola M, Verné E. Tailoring of bioactive glass and glass-ceramics properties for in vitro and in vivo response optimization: a review. Biomater Sci 2024; 12:4546-4589. [PMID: 39105508 DOI: 10.1039/d3bm01574b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Bioactive glasses are inorganic biocompatible materials that can find applications in many biomedical fields. The main application is bone and dental tissue engineering. However, some applications in contact with soft tissues are emerging. It is well known that both bulk (such as composition) and surface properties (such as morphology and wettability) of an implanted material influence the response of cells in contact with the implant. This review aims to elucidate and compare the main strategies that are employed to modulate cell behavior in contact with bioactive glasses. The first part of this review is focused on the doping of bioactive glasses with ions and drugs, which can be incorporated into the bioceramic to impart several therapeutic properties, such as osteogenic, proangiogenic, or/and antibacterial ones. The second part of this review is devoted to the chemical functionalization of bioactive glasses using drugs, extra-cellular matrix proteins, vitamins, and polyphenols. In the third and final part, the physical modifications of the surfaces of bioactive glasses are reviewed. Both top-down (removing materials from the surface, for example using laser treatment and etching strategies) and bottom-up (depositing materials on the surface, for example through the deposition of coatings) strategies are discussed.
Collapse
Affiliation(s)
- Elisa Piatti
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Marta Miola
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Enrica Verné
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
3
|
Sharifianjazi F, Sharifianjazi M, Irandoost M, Tavamaishvili K, Mohabatkhah M, Montazerian M. Advances in Zinc-Containing Bioactive Glasses: A Comprehensive Review. J Funct Biomater 2024; 15:258. [PMID: 39330233 PMCID: PMC11433484 DOI: 10.3390/jfb15090258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Bioactive glasses (BGs) have attracted significant attention in the biomaterials field due to their ability to promote soft and hard tissue regeneration and their potential for various clinical applications. BGs offer enriched features through the integration of different therapeutic inorganic ions within their composition. These ions can trigger specific responses in the body conducive to a battery of applications. For example, zinc, a vital trace element, plays a role in numerous physiological processes within the human body. By incorporating zinc, BGs can inhibit bacterial growth, exert anti-inflammatory effects, and modify bioactivity, promoting better integration with surrounding tissues when used in scaffolds for tissue regeneration. This article reviews recent developments in zinc-containing BGs (ZBGs), focusing on their synthesis, physicochemical, and biological properties. ZBGs represent a significant advancement in applications extending beyond bone regeneration. Overall, their biological roles hold promise for various applications, such as bone tissue engineering, wound healing, and biomedical coatings. Ongoing research continues to explore the potential benefits of ZBGs and to optimize their properties for diverse clinical applications.
Collapse
Affiliation(s)
- Fariborz Sharifianjazi
- Center for Advanced Materials and Structures, School of Science and Technology, The University of Georgia, Tbilisi 0171, Georgia
- Department of Civil Engineering, School of Science and Technology, The University of Georgia, Tbilisi 0171, Georgia
| | | | - Maryam Irandoost
- Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran 15916-34311, Iran
| | - Ketevan Tavamaishvili
- School of Medicine, Georgian American University, 10 Merab Aleksidze Street, Tbilisi 0160, Georgia
| | - Mehdi Mohabatkhah
- Department of Engineering, Maku Branch, Islamic Azad University, Azerbaijan 58619-93548, Iran
| | - Maziar Montazerian
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
4
|
Johari N, Rahimi F, Azami H, Rafati F, Nokhbedehghan Z, Samadikuchaksaraei A, Moroni L. The impact of copper nanoparticles surfactant on the structural and biological properties of chitosan/sodium alginate wound dressings. BIOMATERIALS ADVANCES 2024; 162:213918. [PMID: 38880016 DOI: 10.1016/j.bioadv.2024.213918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/02/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Multifunctional wound dressings based on hydrogels are an efficacious and practicable strategy in therapeutic processes and accelerated chronic wound healing. Here, copper (Cu) nanoparticles were added to chitosan/sodium alginate (CS/SA) hydrogels to improve the antibacterial properties of the prepared wound dressings. Due to the super-hydrophobicity of Cu nanoparticles, polyethylene glycol (PEG) was used as a surfactant, and then added to the CS/SA-based hydrogels. The CS/SA/Cu hydrogels were synthesized with 0, 2, 3.5, and 5 wt% Cu nanoparticles. The structural and morphological properties in presence of PEG were evaluated using Fourier-transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), and field emission scanning electron microscopy (FESEM). The biodegradation and swelling properties of the hydrogels were investigated in phosphate buffer saline (PBS) at 37 °C for up to 30 days. Cell viability and adhesion, as well as antibacterial behavior, were investigated via MTT assay, FESEM, and disk diffusion method, respectively. The obtained results showed that PEG provided new intra- and intermolecular bonds that affected significantly the hydrogels' degradation and swelling ratio, which increased up to ~1200 %. Cell viability reached ~110 % and all samples showed remarkable antibacterial behavior when CS/SA/Cu containing 2 wt% was introduced. This study provided new insights regarding the use of PEG as a surfactant for Cu nanoparticles in CS/SA hydrogel wound dressing, ultimately affecting the chemical bonding and various properties of the prepared hydrogels.
Collapse
Affiliation(s)
- Narges Johari
- Materials Engineering group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran.
| | - Faezeh Rahimi
- Materials Engineering group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran
| | - Haniyeh Azami
- Materials Engineering group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran
| | - Fatemeh Rafati
- Materials Engineering group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran
| | - Zeinab Nokhbedehghan
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Lorenzo Moroni
- MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
5
|
Mughal A, Gillani SMH, Ahmed S, Fatima D, Hussain R, Manzur J, Nawaz MH, Minhas B, Shoaib Butt M, Bodaghi M, Ur Rehman MA. 3D-printed polyether-ether ketone/carboxymethyl cellulose scaffolds coated with Zn-Mn doped mesoporous bioactive glass nanoparticles. J Mech Behav Biomed Mater 2024; 156:106581. [PMID: 38776740 DOI: 10.1016/j.jmbbm.2024.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Patient-specific fabrication of scaffold/implant requires an engineering approach to manufacture the ideal scaffold. Herein, we design and 3D print scaffolds comprised of polyether-ether-ketone (PEEK) and sodium-carboxymethyl cellulose (Na-CMC). The fabricated scaffold was dip coated with Zn and Mn doped bioactive glass nanoparticles (Zn-Mn MBGNs). The synthesized ink exhibit suitable shear-thinning behavior for direct ink write (DIW) 3D printing. The scaffolds were crafted with precision, featuring 85% porosity, 0.3 mm layer height, and 1.5 mm/s printing speed at room temperature. Scanning electron microscopy images reveal a well-defined scaffold with an average pore size of 600 ± 30 μm. The energy dispersive X-ray spectroscopy analysis confirmed a well dispersed/uniform coating of Zn-Mn MBGNs on the PEEK/Na-CMC scaffold. Fourier transform infrared spectroscopy approved the presence of PEEK, CMC, and Zn-Mn MBGNs. The tensile test revealed a Young's modulus of 2.05 GPa. Antibacterial assays demonstrate inhibition zone against Staphylococcus aureus and Escherichia Coli strains. Chick Chorioallantoic Membrane assays also present significant angiogenesis potential, owing to the antigenic nature of Zn-Mn MBGNs. WST-8 cell viability assays depicted cell proliferation, with a 103% viability after 7 days of culture. This study suggests that the PEEK/Na-CMC scaffolds coated with Zn-Mn MBGNs are an excellent candidate for osteoporotic fracture treatment. Thus, the fabricated scaffold can offer multifaceted properties for enhanced patient outcomes in the bone tissue regeneration.
Collapse
Affiliation(s)
- Awab Mughal
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan; Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan
| | - Syed Muneeb Haider Gillani
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan; Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan
| | - Sheraz Ahmed
- Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan
| | - Duaa Fatima
- Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan; School of Chemical and Material Engineering (SCME), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Rabia Hussain
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan
| | - Jawad Manzur
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan
| | - Muhammad Haseeb Nawaz
- Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan
| | - Badar Minhas
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan
| | - Muhammad Shoaib Butt
- School of Chemical and Material Engineering (SCME), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| | - Muhammad Atiq Ur Rehman
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan; Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan.
| |
Collapse
|
6
|
Matic T, Daou F, Cochis A, Barac N, Ugrinovic V, Rimondini L, Veljovic D. Multifunctional Sr,Mg-Doped Mesoporous Bioactive Glass Nanoparticles for Simultaneous Bone Regeneration and Drug Delivery. Int J Mol Sci 2024; 25:8066. [PMID: 39125634 PMCID: PMC11312059 DOI: 10.3390/ijms25158066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Mesoporous bioactive glass nanoparticles (MBGNs) doped with therapeutical ions present multifunctional systems that enable a synergistic outcome through the dual delivery of drugs and ions. The aim of this study was to evaluate influence of co-doping with strontium and magnesium ions (SrMg-MBGNs) on the properties of MBGNs. A modified microemulsion-assisted sol-gel synthesis was used to obtain particles, and their physicochemical properties, bioactivity, and drug-loading/release ability were evaluated. Indirect biological assays using 2D and 3D cell culture models on human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and endothelial EA.hy926 cells, respectively, were used to determine biocompatibility of MBGNs, their influence on alkaline phosphatase (ALP) production, calcium deposition, and cytoskeletal organization. Results showed that Sr,Mg-doping increased pore volume and solubility, and changed the mesoporous structure from worm-like to radial-dendritic, which led to a slightly accelerated drug release compared to pristine MBGNs. Biological assays confirmed that particles are biocompatible, and have ability to slightly induce ALP production and calcium deposition of hBM-MSCs, as well as to significantly improve the proliferation of EA.hy926 compared to biochemical stimulation via vascular endothelial growth factor (VEGF) administration or regular media. Fluorescence staining revealed that SrMg-MBGNs had a similar effect on EA.hy926 cytoskeletal organization to the VEGF group. In conclusion, Sr,Mg-MBGNs might be considered promising biomaterial for biomedical applications.
Collapse
Affiliation(s)
- Tamara Matic
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (T.M.); (D.V.)
| | - Farah Daou
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), Università del Piemonte Orientale (UPO), Corso Trieste 15A, 28100 Novara, Italy; (F.D.); (A.C.)
| | - Andrea Cochis
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), Università del Piemonte Orientale (UPO), Corso Trieste 15A, 28100 Novara, Italy; (F.D.); (A.C.)
| | - Nemanja Barac
- Innovation Center of the Faculty of Technology and Metallurgy Ltd., Karnegijeva 4, 11000 Belgrade, Serbia; (N.B.); (V.U.)
| | - Vukasin Ugrinovic
- Innovation Center of the Faculty of Technology and Metallurgy Ltd., Karnegijeva 4, 11000 Belgrade, Serbia; (N.B.); (V.U.)
| | - Lia Rimondini
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), Università del Piemonte Orientale (UPO), Corso Trieste 15A, 28100 Novara, Italy; (F.D.); (A.C.)
| | - Djordje Veljovic
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (T.M.); (D.V.)
| |
Collapse
|
7
|
Bian A, Sun Y, Guan J, Xie L, Yang H, Han P, Lin H, Qiao H, Zhang X, Huang Y. Dopamine-mediated copper-loaded ZnTiO3 antimicrobial coating with immunomodulatory properties effectively enhances vascularised osteogenesis on titanium implants. J IND ENG CHEM 2024; 135:94-109. [DOI: 10.1016/j.jiec.2024.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Cui Y, Hong S, Jiang W, Li X, Zhou X, He X, Liu J, Lin K, Mao L. Engineering mesoporous bioactive glasses for emerging stimuli-responsive drug delivery and theranostic applications. Bioact Mater 2024; 34:436-462. [PMID: 38282967 PMCID: PMC10821497 DOI: 10.1016/j.bioactmat.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
Mesoporous bioactive glasses (MBGs), which belong to the category of modern porous nanomaterials, have garnered significant attention due to their impressive biological activities, appealing physicochemical properties, and desirable morphological features. They hold immense potential for utilization in diverse fields, including adsorption, separation, catalysis, bioengineering, and medicine. Despite possessing interior porous structures, excellent morphological characteristics, and superior biocompatibility, primitive MBGs face challenges related to weak encapsulation efficiency, drug loading, and mechanical strength when applied in biomedical fields. It is important to note that the advantageous attributes of MBGs can be effectively preserved by incorporating supramolecular assemblies, miscellaneous metal species, and their conjugates into the material surfaces or intrinsic mesoporous networks. The innovative advancements in these modified colloidal inorganic nanocarriers inspire researchers to explore novel applications, such as stimuli-responsive drug delivery, with exceptional in-vivo performances. In view of the above, we outline the fabrication process of calcium-silicon-phosphorus based MBGs, followed by discussions on their significant progress in various engineered strategies involving surface functionalization, nanostructures, and network modification. Furthermore, we emphasize the recent advancements in the textural and physicochemical properties of MBGs, along with their theranostic potentials in multiple cancerous and non-cancerous diseases. Lastly, we recapitulate compelling viewpoints, with specific considerations given from bench to bedside.
Collapse
Affiliation(s)
| | | | | | - Xiaojing Li
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xingyu Zhou
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xiaoya He
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jiaqiang Liu
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Lixia Mao
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
9
|
Naruphontjirakul P, Li M, Boccaccini AR. Strontium and Zinc Co-Doped Mesoporous Bioactive Glass Nanoparticles for Potential Use in Bone Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:575. [PMID: 38607110 PMCID: PMC11013354 DOI: 10.3390/nano14070575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Mesoporous bioactive glass nanoparticles (MBGNs) have attracted significant attention as multifunctional nanocarriers for various applications in both hard and soft tissue engineering. In this study, multifunctional strontium (Sr)- and zinc (Zn)-containing MBGNs were successfully synthesized via the microemulsion-assisted sol-gel method combined with a cationic surfactant (cetyltrimethylammonium bromide, CTAB). Sr-MBGNs, Zn-MBGNs, and Sr-Zn-MBGNs exhibited spherical shapes in the nanoscale range of 100 ± 20 nm with a mesoporous structure. Sr and Zn were co-substituted in MBGNs (60SiO2-40CaO) to induce osteogenic potential and antibacterial properties without altering their size, morphology, negative surface charge, amorphous nature, mesoporous structure, and pore size. The synthesized MBGNs facilitated bioactivity by promoting the formation of an apatite-like layer on the surface of the particles after immersion in Simulated Body Fluid (SBF). The effect of the particles on the metabolic activity of human mesenchymal stem cells was concentration-dependent. The hMSCs exposed to Sr-MBGNs, Zn-MBGNs, and Sr-Zn-MBGNs at 200 μg/mL enhanced calcium deposition and osteogenic differentiation without osteogenic supplements. Moreover, the cellular uptake and internalization of Sr-MBGNs, Zn-MBGNs, and Sr-Zn-MBGNs in hMSCs were observed. These novel particles, which exhibited multiple functionalities, including promoting bone regeneration, delivering therapeutic ions intracellularly, and inhibiting the growth of Staphylococcus aureus and Escherichia coli, are potential nanocarriers for bone regeneration applications.
Collapse
Affiliation(s)
- Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Meng Li
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.L.); (A.R.B.)
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.L.); (A.R.B.)
| |
Collapse
|
10
|
Rehder F, Arango-Ospina M, Decker S, Saur M, Kunisch E, Moghaddam A, Renkawitz T, Boccaccini AR, Westhauser F. The Addition of Zinc to the ICIE16-Bioactive Glass Composition Enhances Osteogenic Differentiation and Matrix Formation of Human Bone Marrow-Derived Mesenchymal Stromal Cells. Biomimetics (Basel) 2024; 9:53. [PMID: 38248627 PMCID: PMC10813151 DOI: 10.3390/biomimetics9010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
An ICIE16-bioactive glass (BG) composition (in mol%: 49.5 SiO2, 6.6 Na2O, 36.3 CaO, 1.1 P2O5, and 6.6 K2O) has demonstrated excellent in vitro cytocompatibility when cultured with human bone marrow-derived mesenchymal stromal cells (BMSCs). However, its impact on the development of an osseous extracellular matrix (ECM) is limited. Since zinc (Zn) is known to enhance ECM formation and maturation, two ICIE16-BG-based Zn-supplemented BG compositions, namely 1.5 Zn-BG and 3Zn-BG (in mol%: 49.5 SiO2, 6.6 Na2O, 34.8/33.3 CaO, 1.1 P2O5, 6.6 K2O, and 1.5/3.0 ZnO) were developed, and their influence on BMSC viability, osteogenic differentiation, and ECM formation was assessed. Compared to ICIE16-BG, the Zn-doped BGs showed improved cytocompatibility and significantly enhanced osteogenic differentiation. The expression level of the osteopontin gene was significantly higher in the presence of Zn-doped BGs. A larger increase in collagen production was observed when the BMSCs were exposed to the Zn-doped BGs compared to that of the ICIE16-BG. The calcification of the ECM was increased by all the BG compositions; however, calcification was significantly enhanced by the Zn-doped BGs in the early stages of cultivation. Zn constitutes an attractive addition to ICIE16-BG, since it improves its ability to build and calcify an ECM. Future studies should assess whether these positive properties remain in an in vivo environment.
Collapse
Affiliation(s)
- Felix Rehder
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany (M.S.)
| | - Marcela Arango-Ospina
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Simon Decker
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany (M.S.)
| | - Merve Saur
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany (M.S.)
| | - Elke Kunisch
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany (M.S.)
| | - Arash Moghaddam
- PrivatÄrztliches Zentrum Aschaffenburg, Frohsinnstraße 12, 63739 Aschaffenburg, Germany
| | - Tobias Renkawitz
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany (M.S.)
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Fabian Westhauser
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany (M.S.)
| |
Collapse
|
11
|
Zhang X, Nan K, Zhang Y, Song K, Geng Z, Shang D, Fan L. Lithium and cobalt co-doped mesoporous bioactive glass nanoparticles promote osteogenesis and angiogenesis in bone regeneration. Front Bioeng Biotechnol 2024; 11:1288393. [PMID: 38239917 PMCID: PMC10794388 DOI: 10.3389/fbioe.2023.1288393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024] Open
Abstract
Healing of severe fractures and bone defects involves many complex biological processes, including angiogenesis and osteogenesis, presenting significant clinical challenges. Biomaterials used for bone tissue engineering often possess multiple functions to meet these challenges, including proangiogenic, proosteogenic, and antibacterial properties. We fabricated lithium and cobalt co-doped mesoporous bioactive glass nanoparticles (Li-Co-MBGNs) using a modified sol-gel method. Physicochemical analysis revealed that the nanoparticles had high specific surface areas (>600 m2/g) and a mesoporous structure suitable for hydroxyapatite (HA) formation and sustained release of therapeutic ions. In vitro experiments with Li-Co-MBGNs showed that these promoted angiogenic properties in HUVECs and pro-osteogenesis abilities in BMSCs by releasing Co2+ and Li+ ions. We observed their antibacterial activity against Staphylococcus aureus and Escherichia coli, indicating their potential applications in bone tissue engineering. Overall, our findings indicate the feasibility of its application in bone tissue engineering.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi, China
| | - Kai Nan
- Department of Osteonecrosis and Joint Reconstruction Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yuankai Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Keke Song
- Department of Anesthesiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zilong Geng
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Donglong Shang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lihong Fan
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
12
|
Lavric R, Vreme C, Busuioc C, Isopencu GO, Nicoara AI, Oprea OC, Banciu DD, Constantinoiu I, Musat AMR. The Effect of Silver and Samarium on the Properties of Bioglass Coatings Produced by Pulsed Laser Deposition and Spin Coating. J Funct Biomater 2023; 14:560. [PMID: 38132814 PMCID: PMC10744176 DOI: 10.3390/jfb14120560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
The current study reports the use of silver (Ag) and samarium (Sm) as dopants to improve the properties of standard bioglass in terms of biological performance. This experiment considers thin films of doped bioglass obtained by pulsed laser deposition (PLD) and spin coating (SC). For both methods, some parameters were gradually varied, as the main objective was to produce a bioglass that could be used in biomedical fields. In order to study the morphology, the phase composition and other properties, the samples obtained were subjected to multiple analyses, such as thermal analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared (FT-IR), Raman spectroscopy, and x-ray diffraction (XRD). Furthermore, the in vitro bioactivity of the samples, as assessed through simulated body fluid (SBF) immersion, as well as immunocytochemistry and evaluation of actin filaments, assessed through fluorescence microscopy, are reported. The results confirmed the formation of the designed vitreous target employed as the source of material in the PLD experiments only at sintering temperatures below 800 °C; this vitreous nature was preserved in the grown film as well. The presence of Ag and Ce dopants in the parent glassy matrix was validated for all stages, from powder, to target, to PLD/SC-derived coatings. Additionally, it was demonstrated that the surface topography of the layers can be adjusted by using substrates with different roughness or by modulating the processing parameters, such as substrate temperature and working pressure in PLD, rotation speed, and number of layers in SC. The developed material was found to be highly bioactive after 28 days of immersion in SBF, but it was also found to be a potential candidate for inhibiting the growth of Gram-negative bacteria and a suitable support for cell growth and proliferation.
Collapse
Affiliation(s)
- Roxana Lavric
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University of Science and Technology POLITEHNICA Bucharest, RO-060042 Bucharest, Romania; (R.L.)
| | - Cornelia Vreme
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University of Science and Technology POLITEHNICA Bucharest, RO-060042 Bucharest, Romania; (R.L.)
| | - Cristina Busuioc
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, RO-060042 Bucharest, Romania
| | - Gabriela-Olimpia Isopencu
- Department of Chemical and Biochemical Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, RO-060042 Bucharest, Romania;
| | - Adrian-Ionut Nicoara
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, RO-060042 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, RO-060042 Bucharest, Romania;
| | - Daniel-Dumitru Banciu
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University of Science and Technology POLITEHNICA Bucharest, RO-060042 Bucharest, Romania; (R.L.)
| | - Izabela Constantinoiu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, RO-060042 Bucharest, Romania
- Department of Lasers, National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele, Romania
| | - Ana-Maria-Raluca Musat
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, RO-060042 Bucharest, Romania
| |
Collapse
|
13
|
Bibi M, Batool SA, Iqbal S, Zaidi SB, Hussain R, Akhtar M, Khan A, Alqahtani MS, Abbas M, Ur Rehman MA. Synthesis and characterization of mesoporous bioactive glass nanoparticles loaded with peganum harmala for bone tissue engineering. Heliyon 2023; 9:e21636. [PMID: 38027746 PMCID: PMC10665746 DOI: 10.1016/j.heliyon.2023.e21636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/08/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Globally, there is an increase in a number of bone disorders including osteoarthritis (OA), osteomyelitis, bone cancer, and etc., which has led to a demand for bone tissue regeneration. In order to take use of the osteogenic potential of natural herbs, mesoporous bioactive glass nanoparticles (MBGNs) have the ability to deliver therapeutically active chemicals locally. MBGNs influence bioactivity and osteointegration of materials making them suitable for bone tissue engineering (BTE). In the present study, we developed Peganum Harmala (P. harmala) loaded MBGNs (PH-MBGNs) synthesized via modified Stöber process. The MBGNs were analyzed in terms of surface morphology, chemical make-up, amorphous nature, chemical interaction, pore size, and surface area before and after loading with P. harmala. A burst release of drug from PH-MBGNs was observed within 8 h immersion in phosphate buffer saline (PBS). PH-MBGNs effectively prevented Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) from spreading. Furthermore, PH-MBGNs developed a hydroxyapatite (HA) layer in the presence of simulated body fluid (SBF) after 21 days, which confirmed the in-vitro bioactivity of MBGNs. In conclusion, PH-MBGNs synthesized in this work are potential candidate for scaffolding or a constituent in the coatings for BTE applications.
Collapse
Affiliation(s)
- Maria Bibi
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan
| | - Syeda Ammara Batool
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan
| | - Sajid Iqbal
- Department of Nuclear and Quantum Engineering Korea Advanced Institute of Science and Technology (KAIST) 34141, Daejeon, Republic of Korea
| | - Shaher Bano Zaidi
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan
| | - Rabia Hussain
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan
| | - Memoona Akhtar
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan
| | - Ahmad Khan
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Muhammad Atiq Ur Rehman
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan
| |
Collapse
|
14
|
Vergnaud F, Mekonnen B, El Abbassi A, Vichery C, Nedelec JM. Correlating the Effect of Composition and Textural Properties on Bioactivity for Pristine and Copper-Doped Binary Mesoporous Bioactive Glass Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6690. [PMID: 37895672 PMCID: PMC10608725 DOI: 10.3390/ma16206690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
Multifunctional substitutes for bone tissue engineering have gained significant interest in recent years in the aim to address the clinical challenge of treating large bone defects resulting from surgical procedures. Sol-gel mesoporous bioactive glass nanoparticles (MBGNs) have emerged as a promising solution due to their high reactivity and versatility. The effect of calcium content on MBGNs textural properties is well known. However, the relationship between their composition, textural properties, and reactivity has not yet been thoroughly discussed in existing studies, leading to divergent conclusions. In this study, pristine and copper-doped binary MGBNs were synthesized by a modified Stöber method, using a cationic surfactant as pore-templating agent. An opposite evolution between calcium content (12-26 wt%) and specific surface area (909-208 m2/g) was evidenced, while copper introduction (8.8 wt%) did not strongly affect the textural properties. In vitro bioactivity assessments conducted in simulated body fluid (SBF) revealed that the kinetics of hydroxyapatite (HAp) crystallization are mainly influenced by the specific surface area, while the composition primarily controls the quantity of calcium phosphate produced. The MBGNs exhibited a good bioactivity within 3 h, while Cu-MBGNs showed HAp crystallization after 48 h, along with a controlled copper release (up to 84 ppm at a concentration of 1 mg/mL). This comprehensive understanding of the interplay between composition, textural properties, and bioactivity, offers insights for the design of tailored MBGNs for bone tissue regeneration with additional biological and antibacterial effects.
Collapse
Affiliation(s)
| | | | | | - Charlotte Vichery
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France
| | | |
Collapse
|
15
|
Ye K, Zhang X, Shangguan L, Liu X, Nie X, Qiao Y. Manganese-Implanted Titanium Modulates the Crosstalk between Bone Marrow Mesenchymal Stem Cells and Macrophages to Improve Osteogenesis. J Funct Biomater 2023; 14:456. [PMID: 37754870 PMCID: PMC10531852 DOI: 10.3390/jfb14090456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Manganese (Mn) is an essential micronutrient in various physiological processes, but its functions in bone metabolism remain undefined. This is partly due to the interplay between immune and bone cells because Mn plays a central role in the immune system. In this study, we utilized the plasma immersion ion implantation and deposition (PIII&D) technique to introduce Mn onto the titanium surface. The results demonstrated that Mn-implanted surfaces stimulated the shift of macrophages toward the M1 phenotype and had minimal effects on the osteogenic differentiation of mouse bone marrow mesenchymal stem cells (mBMSCs) under mono-culture conditions. However, they promoted the M2 polarization of macrophages and improved the osteogenic activities of mBMSCs under co-culture conditions, indicating the importance of the crosstalk between mBMSCs and macrophages mediated by Mn in osteogenic activities. This study provides a positive incentive for the application of Mn in the field of osteoimmunology.
Collapse
Affiliation(s)
- Kuicai Ye
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (K.Y.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianming Zhang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (K.Y.)
| | - Li Shangguan
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (K.Y.)
- School of Materials Science, Shanghai University, Shanghai 200444, China
| | - Xingdan Liu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (K.Y.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoshuang Nie
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (K.Y.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqin Qiao
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (K.Y.)
| |
Collapse
|
16
|
Polley C, Distler T, Scheufler C, Detsch R, Lund H, Springer A, Schneidereit D, Friedrich O, Boccaccini AR, Seitz H. 3D printing of piezoelectric and bioactive barium titanate-bioactive glass scaffolds for bone tissue engineering. Mater Today Bio 2023; 21:100719. [PMID: 37529217 PMCID: PMC10387613 DOI: 10.1016/j.mtbio.2023.100719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 08/03/2023] Open
Abstract
Bone healing is a complex process orchestrated by various factors, such as mechanical, chemical and electrical cues. Creating synthetic biomaterials that combine several of these factors leading to tailored and controlled tissue regeneration, is the goal of scientists worldwide. Among those factors is piezoelectricity which creates a physiological electrical microenvironment that plays an important role in stimulating bone cells and fostering bone regeneration. However, only a limited number of studies have addressed the potential of combining piezoelectric biomaterials with state-of-the-art fabrication methods to fabricate tailored scaffolds for bone tissue engineering. Here, we present an approach that takes advantage of modern additive manufacturing techniques to create macroporous biomaterial scaffolds based on a piezoelectric and bioactive ceramic-crystallised glass composite. Using binder jetting, scaffolds made of barium titanate and 45S5 bioactive glass are fabricated and extensively characterised with respect to their physical and functional properties. The 3D-printed ceramic-crystallised glass composite scaffolds show both suitable mechanical strength and bioactive behaviour, as represented by the accumulation of bone-like calcium phosphate on the surface. Piezoelectric scaffolds that mimic or even surpass bone with piezoelectric constants ranging from 1 to 21 pC/N are achieved, depending on the composition of the composite. Using MC3T3-E1 osteoblast precursor cells, the scaffolds show high cytocompatibility coupled with cell attachment and proliferation, rendering the barium titanate/45S5 ceramic-crystallised glass composites promising candidates for bone tissue engineering.
Collapse
Affiliation(s)
| | - Thomas Distler
- Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Rainer Detsch
- Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Henrik Lund
- Leibniz Institute for Catalysis, Rostock, Germany
| | - Armin Springer
- Electron Microscopy Centrum, University Hospital Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Rostock, Germany
| | - Dominik Schneidereit
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Hermann Seitz
- Chair of Microfluidics, University of Rostock, Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Rostock, Germany
| |
Collapse
|
17
|
Manzur J, Akhtar M, Aizaz A, Ahmad K, Yasir M, Minhas BZ, Avcu E, Ur Rehman MA. Electrophoretic Deposition, Microstructure, and Selected Properties of Poly(lactic- co-glycolic) Acid-Based Antibacterial Coatings on Mg Substrate. ACS OMEGA 2023; 8:18074-18089. [PMID: 37251160 PMCID: PMC10210021 DOI: 10.1021/acsomega.3c01384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
There is an urgent need to develop biodegradable implants that can degrade once they have fulfilled their function. Commercially pure magnesium (Mg) and its alloys have the potential to surpass traditional orthopedic implants due to their good biocompatibility and mechanical properties, and most critically, biodegradability. The present work focuses on the synthesis and characterization (microstructural, antibacterial, surface, and biological properties) of poly(lactic-co-glycolic) acid (PLGA)/henna (Lawsonia inermis)/Cu-doped mesoporous bioactive glass nanoparticles (Cu-MBGNs) composite coatings deposited via electrophoretic deposition (EPD) on Mg substrates. PLGA/henna/Cu-MBGNs composite coatings were robustly deposited on Mg substrates using EPD, and their adhesive strength, bioactivity, antibacterial activity, corrosion resistance, and biodegradability were thoroughly investigated. Scanning electron microscopy and Fourier transform infrared spectroscopy studies confirmed the uniformity of the coatings' morphology and the presence of functional groups that were attributable to PLGA, henna, and Cu-MBGNs, respectively. The composites exhibited good hydrophilicity with an average roughness of 2.6 μm, indicating desirable properties for bone forming cell attachment, proliferation, and growth. Crosshatch and bend tests confirmed that the adhesion of the coatings to Mg substrates and their deformability were adequate. Electrochemical Tafel polarization tests revealed that the composite coating adjusted the degradation rate of Mg substrate in a human physiological environment. Incorporating henna into PLGA/Cu-MBGNs composite coatings resulted in antibacterial activity against Escherichia coli and Staphylococcus aureus. The coatings stimulated the proliferation and growth of osteosarcoma MG-63 cells during the initial incubation period of 48 h (determined by the WST-8 assay).
Collapse
Affiliation(s)
- Jawad Manzur
- Department
of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Memoona Akhtar
- Department
of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Aqsa Aizaz
- Department
of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Khalil Ahmad
- Department
of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Muhammad Yasir
- Department
of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Badar Zaman Minhas
- Department
of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Egemen Avcu
- Department
of Mechanical Engineering, Kocaeli University, Kocaeli 41001, Turkey
- Ford
Otosan Ihsaniye Automotive Vocational School, Kocaeli University, Kocaeli 41650, Turkey
| | - Muhammad Atiq Ur Rehman
- Department
of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| |
Collapse
|
18
|
Arcos D, Portolés MT. Mesoporous Bioactive Nanoparticles for Bone Tissue Applications. Int J Mol Sci 2023; 24:3249. [PMID: 36834659 PMCID: PMC9964985 DOI: 10.3390/ijms24043249] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Research in nanomaterials with applications in bone regeneration therapies has experienced a very significant advance with the development of bioactive mesoporous nanoparticles (MBNPs). These nanomaterials consist of small spherical particles that exhibit chemical properties and porous structures that stimulate bone tissue regeneration, since they have a composition similar to that of conventional sol-gel bioactive glasses and high specific surface area and porosity values. The rational design of mesoporosity and their ability to incorporate drugs make MBNPs an excellent tool for the treatment of bone defects, as well as the pathologies that cause them, such as osteoporosis, bone cancer, and infection, among others. Moreover, the small size of MBNPs allows them to penetrate inside the cells, provoking specific cellular responses that conventional bone grafts cannot perform. In this review, different aspects of MBNPs are comprehensively collected and discussed, including synthesis strategies, behavior as drug delivery systems, incorporation of therapeutic ions, formation of composites, specific cellular response and, finally, in vivo studies that have been performed to date.
Collapse
Affiliation(s)
- Daniel Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, ISCIII, 28040 Madrid, Spain
| | - María Teresa Portolés
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, ISCIII, 28040 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
19
|
Gavinho SR, Pádua AS, Sá-Nogueira I, Silva JC, Borges JP, Costa LC, Graça MPF. Fabrication, Structural and Biological Characterization of Zinc-Containing Bioactive Glasses and Their Use in Membranes for Guided Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2023; 16:956. [PMID: 36769963 PMCID: PMC9919611 DOI: 10.3390/ma16030956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Polymeric membranes are widely used in guided bone regeneration (GBR), particularly in dentistry. In addition, bioactive glasses can be added to the polymers in order to develop a matrix that is osteoconductive and osteoinductive, increasing cell adhesion and proliferation. The bioactive glasses allow the insertion into its network of therapeutic ions in order to add specific biological properties. The addition of zinc into bioactive glasses can promote antibacterial activity and induce the differentiation and proliferation of the bone cells. In this study, bioactive glasses containing zinc (0.25, 0.5, 1 and 2 mol%) were developed and structurally and biologically characterized. The biological results show that the Zn-containing bioactive glasses do not present significant antibacterial activity, but the addition of zinc at the highest concentration does not compromise the bioactivity and promotes the viability of Saos-2 cells. The cell culture assays in the membranes (PCL, PCL:BG and PCL:BGZn2) showed that zinc addition promotes cell viability and an increase in alkaline phosphatase (ALP) production.
Collapse
Affiliation(s)
- Sílvia R. Gavinho
- I3N and Physics Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Sofia Pádua
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Isabel Sá-Nogueira
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Jorge C. Silva
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - João P. Borges
- I3N-CENIMAT and Materials Science Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Luis C. Costa
- I3N and Physics Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Manuel Pedro F. Graça
- I3N and Physics Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
20
|
Chen L, Zhou X, Mo M. The response of RAW264.7 cells to dicalcium silicate nanoparticles and the effect of the nanoparticle-regulated immune environment on osteogenesis. JOURNAL OF MATERIALS RESEARCH 2022; 37:4268-4283. [DOI: 10.1557/s43578-022-00793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/10/2022] [Indexed: 01/04/2025]
|
21
|
Hosseini M, Hassani Besheli N, Deng D, Lievens C, Zuo Y, Leeuwenburgh SCG, Yang F. Facile post modification synthesis of copper-doped mesoporous bioactive glass with high antibacterial performance to fight bone infection. BIOMATERIALS ADVANCES 2022; 144:213198. [PMID: 36424276 DOI: 10.1016/j.bioadv.2022.213198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/24/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022]
Abstract
Successful treatment of infected bone defects caused by multi-drug resistant bacteria (MDR) has become a major clinical challenge, stressing the urgent need for effective antibacterial bone graft substitutes. Mesoporous bioactive glass nanoparticles (MBGNs), a rapidly emerging class of nanoscale biomaterials, offer specific advantages for the development of biomaterials to treat bone infection due to endowed antibacterial features. Herein, we propose a facile post-modification sol-gel strategy to synthesize effective antibacterial MBGNs doped with copper ions (Cu-PMMBGNs). In this strategy, amine functional groups as chelating agents were introduced to premade mesoporous silica nanoparticles (MSNs) which further facilitate the incorporation of high content of calcium (∼17 mol%) and copper ions (∼8 mol%) without compromising nanoparticle shape, mesoporosity, and homogeneity. The resulting nanoparticles were degradable and showed rapidly induce abundant deposition of apatite crystals on their surface upon soaking in simulated body fluids (SBF) after 3 days. Cu-PMMBGNs exhibited a dose-dependent inhibitory effect on Methicillin-resistant Staphylococcus aureus (MRSA) bacteria, which are common pathogens causing severe bone infections. Most importantly, the nanoparticles containing 5 mol% copper ions at concentrations of 500 and 1000 μg.mL-1 showed highly effective antibacterial performance as reflected by a 99.9 % reduction of bacterial viability. Nanoparticles at a concentration of 500 μg.mL-1 showed no significant cytotoxicity toward preosteoblast cells (∼85-89 % cell viability) compared to the control group. In addition, the nanoscale properties of synthesized Cu-PMMBGNs (∼100 nm in size) facilitated their internalization into preosteoblast cells, which highlights their potential as intracellular carriers in combating intracellular bacteria. Therefore, these copper-doped nanoparticles hold strong promise for use as an antibacterial component in antibacterial bone substitutes such as hydrogels, nanocomposites, and coatings.
Collapse
Affiliation(s)
- Maryam Hosseini
- Department of Dentistry - Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands; Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Negar Hassani Besheli
- Department of Dentistry - Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam 1081 LA, The Netherlands
| | - Caroline Lievens
- Department of Earth Systems Analysis, Faculty of Geo-information Science and Earth Observation, University of Twente, Hengelosestraat 99, 7514 AE Enschede, The Netherlands
| | - Yi Zuo
- Analytic and Testing Center, Sichuan University, 610064 Chengdu, China
| | - Sander C G Leeuwenburgh
- Department of Dentistry - Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands.
| | - Fang Yang
- Department of Dentistry - Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands.
| |
Collapse
|
22
|
In Vitro and In Vivo Response of Zinc-Containing Mesoporous Bioactive Glasses in a Sheep Animal Model. Int J Mol Sci 2022; 23:ijms232213918. [PMID: 36430396 PMCID: PMC9698899 DOI: 10.3390/ijms232213918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Zinc-enriched mesoporous bioactive glasses (MBGs) are bioceramics with potential antibacterial and osteogenic properties. However, few assays have been performed to study these properties in animal models. In this study, MBGs enriched with up to 5% ZnO were synthesized, physicochemically characterized, and evaluated for their osteogenic activity both in vitro and in vivo. The ZnO MBGs showed excellent textural properties despite ZnO incorporation. However, the release of Zn2+ ions inhibited the mineralization process when immersed in simulated body fluid. In vitro assays showed significantly higher values of viability and expression of early markers of cell differentiation and angiogenesis in a ZnO-content-dependent manner. The next step was to study the osteogenic potential in a sheep bone defect model. Despite their excellent textural properties and cellular response in vitro, the ZnO MBGs were not able to integrate into the bone tissue, which can be explained in terms of inhibition of the mineralization process caused by Zn2+ ions. This work highlights the need to develop nanostructured materials for bone regeneration that can mineralize to interact with bone tissue and induce the processes of implant acceptance, cell colonization by osteogenic cells, and regeneration of lost bone tissue.
Collapse
|
23
|
Evaluation of Modified Date Palm (Phoenix dactylifera L.) Mucilage as a Potential Pharmaceutical Excipient. J FOOD QUALITY 2022. [DOI: 10.1155/2022/3923812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Investigation on natural sources from plants, animals, and microorganisms that produce gums and mucilages goes on increasing day by day to check their pharmaceutical applications. Different mucilages have been studied for their pharmaceutical effects but the use of date palm (Phoenix dactylifera L.) mucilage as a pharmaceutical excipient is still under the cover. The aim of this study was therefore to evaluate and compare the flow property and binding ability of crude, purified, modified (hydrolyzed and grafted), green synthesized nanoparticles (Zinc oxide (ZnO), cuperic oxide (CuO), silver (Ag), and gold (Au)) of date palm mucilage with hydroxy propyl methyl cellulose (HPMC) and commercially available paracetamol tablets. Previously purified mucilage (with 58.4% yield) was subjected to modification (i.e., acidic, basic, and enzymatic), grafting (polyacrylamide), and green synthesis of nanoparticles. Flow properties of powdered (granular) crude, purified, modified, and nanoparticles were studied and compared with flow properties of HPMC and paracetamol tablet granules. Tablets were made using granules of all types of date palm mucilage (discussed above), HPMC, and granules of paracetamol tablets to study and compare weight uniformity, hardness, friability, dissolution rate, and disintegration time. When 100 mg/kg of mucilage sample was given to mice no oral toxicity was found. The results obtained during this study were within the acceptable ranges given in pharmacopeias. The pseudoplastic flow behavior, hygroscopic nature, increased solubility, and swelling index across the increase in temperature, hardness of the tablets, friability, and drug release behavior were found better than HPMC and the binders used in commercially available paracetamol, hence making the date palm mucilage (crude, purified, and modified) an excellent excipient to be used in pharmaceutical dosage forms.
Collapse
|
24
|
Batool SA, Ahmad K, Irfan M, Ur Rehman MA. Zn-Mn-Doped Mesoporous Bioactive Glass Nanoparticle-Loaded Zein Coatings for Bioactive and Antibacterial Orthopedic Implants. J Funct Biomater 2022; 13:jfb13030097. [PMID: 35893465 PMCID: PMC9326724 DOI: 10.3390/jfb13030097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/16/2022] Open
Abstract
In recent years, natural polymers have replaced synthetic polymers for antibacterial orthopedic applications owing to their excellent biocompatibility and biodegradability. Zein is a biopolymer found in corn. The lacking mechanical stability of zein is overcome by incorporating bioceramics, e.g., mesoporous bioactive glass nanoparticles (MBGNs). In the present study, pure zein and zein/Zn–Mn MBGN composite coatings were deposited via electrophoretic deposition (EPD) on 316L stainless steel (SS). Zn and Mn were co-doped in MBGNs in order to make use of their antibacterial and osteogenic potential, respectively. A Taguchi design of experiment (DoE) study was established to evaluate the effect of various working parameters on the morphology of the coatings. It was observed that coatings deposited at 20 V for 5 min with 4 g/L concentration (conc.) of Zn–Mn MBGNs showed the highest deposition yield. Uniform coatings with highly dispersed MBGNs were obtained adopting these optimized parameters. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were employed to investigate the morphology and elemental composition of zein/Zn–Mn MBGN composite coatings. Surface properties, i.e., coating roughness and wettability analysis, concluded that composite coatings were appropriate for cell attachment and proliferation. For adhesion strength, various techniques, including a tape test, bend test, pencil hardness test, and tensile test, were performed. Wear and corrosion analysis highlighted the mechanical and chemical stability of the coatings. The colony forming unit (CFU) test showed that the zein/Zn–Mn MBGN composite coating was highly effective against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) due to the presence of Zn. The formation of a hydroxyapatite (HA)-like structure upon immersion in the simulated body fluid (SBF) validated the in vitro bioactivity of the coating. Moreover, a WST-8 assay depicted that the MG-63 cells proliferate on the composite coating. It was concluded that the zein/Zn–Mn MBGN coating synthesized in this work can be used for bioactive and antibacterial orthopedic applications.
Collapse
Affiliation(s)
- Syeda Ammara Batool
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan; (S.A.B.); (K.A.)
| | - Khalil Ahmad
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan; (S.A.B.); (K.A.)
| | - Muhammad Irfan
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) H-12, Islamabad 44000, Pakistan;
| | - Muhammad Atiq Ur Rehman
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan; (S.A.B.); (K.A.)
- Correspondence:
| |
Collapse
|
25
|
Sun Y, Lin J, Li L, Jia K, Xia W, Deng C. In vitroand in vivostudy of magnesium containing bioactive glass nanoparticles modified gelatin scaffolds for bone repair. Biomed Mater 2022; 17. [PMID: 35226881 DOI: 10.1088/1748-605x/ac5949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/28/2022] [Indexed: 11/12/2022]
Abstract
Magnesium containing bioactive glass nanoparticles modified gelatin scaffolds (MBGNs/Gel scaffolds) have shown recently the potential for bone regeneration due to its good biocompatibility, bioresorbability and bioactivity. Nevertheless, its use is limited by its complicated manufacturing process and a relatively expensive price. In this study, MBGNs were prepared by sol-gel process. The MBGNs/Gel was synthesized by a simple immersion method. SEM, transmission electron microscopy and dynamic light scattering analysis showed that the particles had spherical morphology with mean particle size of 100 nm. The MBGNs/Gel scaffolds were observed by SEM. The scaffolds showed connected pore structure with pore size ranging from 100 to 300 μm. SEM images with high magnification showed the existence of MBGNs on the surface of micro-pores. The ion release results revealed the release of Mg, Ca and Si elements from the MBGNs. MTT assay and cytotoxicity studies indicated that, the scaffolds provide a suitable ion related micro-environment for cell attachment and spreading. The Reverse Transcription-Polymerase Chain Reaction (RT-PCR) results showed the scaffolds could promote the osteogenesis of MC3T3-E1. Thein vivostudy also showed higher amount of new bone and trabecular bone which indicated excellent bone induction and conduction property of modified scaffolds. So, the developed MBGNs/Gel scaffolds are a potential candidate for bone regeneration applications.
Collapse
Affiliation(s)
- Yi Sun
- School of Stomatology, Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Jie Lin
- School of Stomatology, Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - LeiLei Li
- School of Stomatology, Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Kai Jia
- School of Stomatology, Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Wen Xia
- School of Stomatology, Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Chao Deng
- School of Stomatology, Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| |
Collapse
|
26
|
van Rijt S, de Groot K, Leeuwenburgh SCG. Calcium phosphate and silicate-based nanoparticles: history and emerging trends. Tissue Eng Part A 2022; 28:461-477. [PMID: 35107351 DOI: 10.1089/ten.tea.2021.0218] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bulk calcium phosphates and silicate-based bioglasses have been extensively studied since the early 1970s due to their unique capacity to bind to host bone, which led to their clinical translation and commercialization in the 1980s. Since the mid-1990s, researchers have synthesized nanoscale calcium phosphate and silicate-based particles of increased specific surface area, chemical reactivity and solubility which offer specific advantages as compared to their bulk counterparts. This review provides a critical perspective on the history and emerging trends of these two classes of ceramic nanoparticles. Their synthesis and functional properties in terms of particle composition, size, shape, charge, dispersion, and toxicity are discussed as a function of relevant processing parameters. Specifically, emerging trends such as the influence of ion doping and mesoporosity on the biological and pharmaceutical performance of these nanoparticles are reviewed in more detail. Finally, a broad comparative overview is provided on the physicochemical properties and applicability of calcium phosphate and silicate-based nanoparticles within the fields of i) local delivery of therapeutic agents, ii) functionalization of biomaterial scaffolds or implant coatings, and iii) bio-imaging applications.
Collapse
Affiliation(s)
- Sabine van Rijt
- Maastricht University, 5211, MERLN Institute-Instructive Biomaterial Engineering, Maastricht, Limburg, Netherlands;
| | - Klaas de Groot
- Vrije Universiteit Amsterdam, 1190, Academic Center for Dentistry Amsterdam (ACTA)-Department of Oral Implantology and Prosthetic Dentistry, Amsterdam, Noord-Holland, Netherlands;
| | - Sander C G Leeuwenburgh
- Radboudumc, 6034, Dept. of Dentistry-Regenerative Biomaterials, Nijmegen, Gelderland, Netherlands;
| |
Collapse
|
27
|
Lei B, Boccaccini AR, Chen X. Editorial: Multifunctional Bioactive Nanomaterials for Tissue Regeneration, Volume 2. Front Chem 2022; 10:848369. [PMID: 35155374 PMCID: PMC8829703 DOI: 10.3389/fchem.2022.848369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bo Lei
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Bo Lei, ; Aldo R. Boccaccini, ; Xiaofeng Chen,
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
- *Correspondence: Bo Lei, ; Aldo R. Boccaccini, ; Xiaofeng Chen,
| | - Xiaofeng Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Bo Lei, ; Aldo R. Boccaccini, ; Xiaofeng Chen,
| |
Collapse
|
28
|
Mesoporous Bioglasses Enriched with Bioactive Agents for Bone Repair, with a Special Highlight of María Vallet-Regí’s Contribution. Pharmaceutics 2022; 14:pharmaceutics14010202. [PMID: 35057097 PMCID: PMC8778065 DOI: 10.3390/pharmaceutics14010202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Throughout her impressive scientific career, Prof. María Vallet-Regí opened various research lines aimed at designing new bioceramics, including mesoporous bioactive glasses for bone tissue engineering applications. These bioactive glasses can be considered a spin-off of silica mesoporous materials because they are designed with a similar technical approach. Mesoporous glasses in addition to SiO2 contain significant amounts of other oxides, particularly CaO and P2O5 and therefore, they exhibit quite different properties and clinical applications than mesoporous silica compounds. Both materials exhibit ordered mesoporous structures with a very narrow pore size distribution that are achieved by using surfactants during their synthesis. The characteristics of mesoporous glasses made them suitable to be enriched with various osteogenic agents, namely inorganic ions and biopeptides as well as mesenchymal cells. In the present review, we summarize the evolution of mesoporous bioactive glasses research for bone repair, with a special highlight on the impact of Prof. María Vallet-Regí´s contribution to the field.
Collapse
|
29
|
Pantulap U, Arango-Ospina M, Boccaccini AR. Bioactive glasses incorporating less-common ions to improve biological and physical properties. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 33:3. [PMID: 34940923 PMCID: PMC8702415 DOI: 10.1007/s10856-021-06626-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/07/2021] [Indexed: 05/29/2023]
Abstract
Bioactive glasses (BGs) have been a focus of research for over five decades for several biomedical applications. Although their use in bone substitution and bone tissue regeneration has gained important attention, recent developments have also seen the expansion of BG applications to the field of soft tissue engineering. Hard and soft tissue repair therapies can benefit from the biological activity of metallic ions released from BGs. These metallic ions are incorporated in the BG network not only for their biological therapeutic effects but also in many cases for influencing the structure and processability of the glass and to impart extra functional properties. The "classical" elements in silicate BG compositions are silicon (Si), phosphorous (P), calcium (Ca), sodium (Na), and potassium (K). In addition, other well-recognized biologically active ions have been incorporated in BGs to provide osteogenic, angiogenic, anti-inflammatory, and antibacterial effects such as zinc (Zn), magnesium (Mg), silver (Ag), strontium (Sr), gallium (Ga), fluorine (F), iron (Fe), cobalt (Co), boron (B), lithium (Li), titanium (Ti), and copper (Cu). More recently, rare earth and other elements considered less common or, some of them, even "exotic" for biomedical applications, have found room as doping elements in BGs to enhance their biological and physical properties. For example, barium (Ba), bismuth (Bi), chlorine (Cl), chromium (Cr), dysprosium (Dy), europium (Eu), gadolinium (Gd), ytterbium (Yb), thulium (Tm), germanium (Ge), gold (Au), holmium (Ho), iodine (I), lanthanum (La), manganese (Mn), molybdenum (Mo), nickel (Ni), niobium (Nb), nitrogen (N), palladium (Pd), rubidium (Rb), samarium (Sm), selenium (Se), tantalum (Ta), tellurium (Te), terbium (Tb), erbium (Er), tin (Sn), tungsten (W), vanadium (V), yttrium (Y) as well as zirconium (Zr) have been included in BGs. These ions have been found to be particularly interesting for enhancing the biological performance of doped BGs in novel compositions for tissue repair (both hard and soft tissue) and for providing, in some cases, extra functionalities to the BG, for example fluorescence, luminescence, radiation shielding, anti-inflammatory, and antibacterial properties. This review summarizes the influence of incorporating such less-common elements in BGs with focus on tissue engineering applications, usually exploiting the bioactivity of the BG in combination with other functional properties imparted by the presence of the added elements.
Collapse
Affiliation(s)
- Usanee Pantulap
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Marcela Arango-Ospina
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058, Erlangen, Germany.
| |
Collapse
|
30
|
Choe YE, Kim YJ, Jeon SJ, Ahn JY, Park JH, Dashnyam K, Mandakhbayar N, Knowles JC, Kim HW, Jun SK, Lee JH, Lee HH. Investigating the mechanophysical and biological characteristics of therapeutic dental cement incorporating copper doped bioglass nanoparticles. Dent Mater 2021; 38:363-375. [PMID: 34933758 DOI: 10.1016/j.dental.2021.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This study was investigated the mechanophysical properties of zinc phosphate cement (ZPC) with or without the copper doped bioglass nanoparticles (Cu-BGn) and their biological effect on dental pulp human cells and bacteria. MATERIALS AND METHODS Cu-BGn were synthesized and characterized firstly and then, the experimental (Cu-ZPC) and control (ZPC) samples were fabricated with similar sizes and/or dimensions (diameter: 4 mm and height: 6 mm) based on the International Organization of Standards (ISO). Specifically, various concentrations of Cu-BGn were tested, and Cu-BGn concentration was optimized at 2.5 wt% based on the film thickness and overall setting time. Next, we evaluated the mechanophysical properties such as compressive strength, elastic modulus, hardness, and surface roughness. Furthermore, the biological behaviors including cell viability and odontoblastic differentiation by using dental pulp human cells as well as antibacterial properties were investigated on the Cu-ZPC. All data were analyzed statistically using SPSS® Statistics 20 (IBM®, USA). p < 0.05 (*) was considered significant, and 'NS' represents nonsignificant. RESULTS Cu-BGn was obtained via a sol-gel method and added onto the ZPC for fabricating a Cu-ZPC composite and for comparison, the Cu-free-ZPC was used as a control. The film thickness (≤ 25 µm) and overall setting time (2.5-8 min) were investigated and the mechanophysical properties showed no significance ('NS') between Cu-ZPC and bare ZPC. However, cell viability and odontoblastic differentiation, alkaline phosphate (ALP) activity and alizarin red S (ARS) staining were highly stimulated in the extracts from the Cu-ZPC group compared to the ZPC group. Additionally, the antibacterial test showed that the Cu-ZPC extracts were more effective than the ZPC extracts (p < 0.05). SIGNIFICANCE Cu-ZPC showed adequate mechanophysical properties (compressive strength, hardness, and surface roughness) and enhanced odontoblastic differentiation as well as antibacterial properties compared to the ZPC-only group. Based on the findings, the fabricated Cu-ZPC might have the potential for use in the field of dental medicine and clinical applications.
Collapse
Affiliation(s)
- Young-Eun Choe
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Yu-Jin Kim
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Se-Jeong Jeon
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Jun-Yong Ahn
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Drug Research Institute, Mongolian Pharmaceutical University & Monos group, Ulaanbaatar 14250, Mongolia.
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Jonathan C Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea; Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK; The Discoveries Centre for Regenerative and Precision Medicine, Eastman Dental Institute, University College London, London, UK.
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea.
| | - Soo-Kyung Jun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Dental Hygiene, Hanseo University, 46 Hanseo 1-ro, Seosan, Chungcheongnam-do 31962, Republic of Korea.
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea.
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| |
Collapse
|
31
|
Zhang Q, Xiao L, Xiao Y. Porous Nanomaterials Targeting Autophagy in Bone Regeneration. Pharmaceutics 2021; 13:1572. [PMID: 34683866 PMCID: PMC8540591 DOI: 10.3390/pharmaceutics13101572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 01/02/2023] Open
Abstract
Porous nanomaterials (PNMs) are nanosized materials with specially designed porous structures that have been widely used in the bone tissue engineering field due to the fact of their excellent physical and chemical properties such as high porosity, high specific surface area, and ideal biodegradability. Currently, PNMs are mainly used in the following four aspects: (1) as an excellent cargo to deliver bone regenerative growth factors/drugs; (2) as a fluorescent material to trace cell differentiation and bone formation; (3) as a raw material to synthesize or modify tissue engineering scaffolds; (4) as a bio-active substance to regulate cell behavior. Recent advances in the interaction between nanomaterials and cells have revealed that autophagy, a cellular survival mechanism that regulates intracellular activity by degrading/recycling intracellular metabolites, providing energy/nutrients, clearing protein aggregates, destroying organelles, and destroying intracellular pathogens, is associated with the phagocytosis and clearance of nanomaterials as well as material-induced cell differentiation and stress. Autophagy regulates bone remodeling balance via directly participating in the differentiation of osteoclasts and osteoblasts. Moreover, autophagy can regulate bone regeneration by modulating immune cell response, thereby modulating the osteogenic microenvironment. Therefore, autophagy may serve as an effective target for nanomaterials to facilitate the bone regeneration process. Increasingly, studies have shown that PNMs can modulate autophagy to regulate bone regeneration in recent years. This paper summarizes the current advances on the main application of PNMs in bone regeneration, the critical role of autophagy in bone regeneration, and the mechanism of PNMs regulating bone regeneration by targeting autophagy.
Collapse
Affiliation(s)
- Qing Zhang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China; (Q.Z.); (L.X.)
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 BT Amsterdam, The Netherlands
| | - Lan Xiao
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China; (Q.Z.); (L.X.)
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Yin Xiao
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China; (Q.Z.); (L.X.)
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
32
|
Vallet-Regi M, Salinas A. Mesoporous bioactive glasses for regenerative medicine. Mater Today Bio 2021; 11:100121. [PMID: 34377972 PMCID: PMC8327654 DOI: 10.1016/j.mtbio.2021.100121] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Stem cells are the central element of regenerative medicine (RM). However, in many clinical applications, the use of scaffolds fabricated with biomaterials is required. In this sense, mesoporous bioactive glasses (MBGs) are going to play an important role in bone regeneration because of their striking textural properties, quick bioactive response, and biocompatibility. As other bioactive glasses, MBGs are mainly formed by silicon, calcium, and phosphorus oxides whose ions play an important role in cell proliferation as well as in homeostasis and bone remodeling process. A common improvement of bioactive glasses for RM is by adding small amounts of oxides of elements that confer them additional biological capacities, including osteogenic, angiogenic, antibacterial, anti-inflammatory, hemostatic, or anticancer properties. Moreover, MBGs are versatile in terms of the different ways in which they can be processed, such as scaffolds, fibers, coatings, or nanoparticles. MBGs are unique because their textural properties are so high that they still exhibit outstanding bioactive responses even after adding extra inorganic ions or being processed as scaffolds or nanoparticles. Moreover, they can be further improved by loading with biomolecules, drugs, and stem cells. This article reviews the state of the art and future perspectives of MBGs in the field of RM of hard tissues.
Collapse
Affiliation(s)
- M. Vallet-Regi
- Department Chemistry in Pharmaceutical Sciences, Universidad Complutense (UCM) Madrid, Spain
- IIS, Hospital 12 de Octubre (imas12), Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - A.J. Salinas
- Department Chemistry in Pharmaceutical Sciences, Universidad Complutense (UCM) Madrid, Spain
- IIS, Hospital 12 de Octubre (imas12), Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
33
|
Westhauser F, Decker S, Nawaz Q, Rehder F, Wilkesmann S, Moghaddam A, Kunisch E, Boccaccini AR. Impact of Zinc- or Copper-Doped Mesoporous Bioactive Glass Nanoparticles on the Osteogenic Differentiation and Matrix Formation of Mesenchymal Stromal Cells. MATERIALS 2021; 14:ma14081864. [PMID: 33918612 PMCID: PMC8069963 DOI: 10.3390/ma14081864] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022]
Abstract
Mesoporous bioactive glass nanoparticles (MBGNs) have gained relevance in bone tissue engineering, especially since they can be used as vectors for therapeutically active ions like zinc (Zn) or copper (Cu). In this study, the osteogenic properties of the ionic dissolution products (IDPs) of undoped MBGNs (composition in mol%: 70 SiO2, 30 CaO) and MBGNs doped with 5 mol% of either Zn (5Zn-MBGNs) or Cu (5Cu-MBGNs; compositions in mol%: 70 SiO2, 25 CaO, 5 ZnO/CuO) on human bone marrow-derived mesenchymal stromal cells were evaluated. Extracellular matrix (ECM) formation and calcification were assessed, as well as the IDPs’ influence on viability, cellular osteogenic differentiation and the expression of genes encoding for relevant members of the ECM. The IDPs of undoped MBGNs and 5Zn-MBGNs had a comparable influence on cell viability, while it was enhanced by IDPs of 5Cu-MBGNs compared to the other MBGNs. IDPs of 5Cu-MBGNs had slightly positive effects on ECM formation and calcification. 5Zn-MBGNs provided the most favorable pro-osteogenic properties since they increased not only cellular osteogenic differentiation and ECM-related gene expression but also ECM formation and calcification significantly. Future studies should analyze other relevant properties of MBGNs, such as their impact on angiogenesis.
Collapse
Affiliation(s)
- Fabian Westhauser
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (S.D.); (F.R.); (S.W.); (E.K.)
- Correspondence: (F.W.); (A.R.B.)
| | - Simon Decker
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (S.D.); (F.R.); (S.W.); (E.K.)
| | - Qaisar Nawaz
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany;
| | - Felix Rehder
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (S.D.); (F.R.); (S.W.); (E.K.)
| | - Sebastian Wilkesmann
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (S.D.); (F.R.); (S.W.); (E.K.)
| | - Arash Moghaddam
- Center for Trauma Surgery, Orthopedics and Sports Medicine, ATORG—Aschaffenburg Trauma and Orthopedic Research Group, Klinikum Aschaffenburg-Alzenau, Am Hasenkopf 1, 63739 Aschaffenburg, Germany;
| | - Elke Kunisch
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (S.D.); (F.R.); (S.W.); (E.K.)
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany;
- Correspondence: (F.W.); (A.R.B.)
| |
Collapse
|
34
|
Bano S, Akhtar M, Yasir M, Salman Maqbool M, Niaz A, Wadood A, Ur Rehman MA. Synthesis and Characterization of Silver-Strontium (Ag-Sr)-Doped Mesoporous Bioactive Glass Nanoparticles. Gels 2021; 7:34. [PMID: 33805013 PMCID: PMC8103248 DOI: 10.3390/gels7020034] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Biomedical implants are the need of this era due to the increase in number of accidents and follow-up surgeries. Different types of bone diseases such as osteoarthritis, osteomalacia, bone cancer, etc., are increasing globally. Mesoporous bioactive glass nanoparticles (MBGNs) are used in biomedical devices due to their osteointegration and bioactive properties. In this study, silver (Ag)- and strontium (Sr)-doped mesoporous bioactive glass nanoparticles (Ag-Sr MBGNs) were prepared by a modified Stöber process. In this method, Ag+ and Sr2+ were co-substituted in pure MBGNs to harvest the antibacterial properties of Ag ions, as well as pro-osteogenic potential of Sr2 ions. The effect of the two-ion concentration on morphology, surface charge, composition, antibacterial ability, and in-vitro bioactivity was studied. Scanning electron microscopy (SEM), X-Ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) confirmed the doping of Sr and Ag in MBGNs. SEM and EDX analysis confirmed the spherical morphology and typical composition of MBGNs, respectively. The Ag-Sr MBGNs showed a strong antibacterial effect against Staphylococcus carnosus and Escherichia coli bacteria determined via turbidity and disc diffusion method. Moreover, the synthesized Ag-Sr MBGNs develop apatite-like crystals upon immersion in simulated body fluid (SBF), which suggested that the addition of Sr improved in vitro bioactivity. The Ag-Sr MBGNs synthesized in this study can be used for the preparation of scaffolds or as a filler material in the composite coatings for bone tissue engineering.
Collapse
Affiliation(s)
- Shaher Bano
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan; (S.B.); (M.A.); (M.Y.); (A.W.)
| | - Memoona Akhtar
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan; (S.B.); (M.A.); (M.Y.); (A.W.)
| | - Muhammad Yasir
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan; (S.B.); (M.A.); (M.Y.); (A.W.)
| | - Muhammad Salman Maqbool
- Department of Mechanical and Manufacturing Engineering, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Akbar Niaz
- Department of Mechanical Engineering, King Faisal University, Al Hufūf 31982, Saudi Arabia;
| | - Abdul Wadood
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan; (S.B.); (M.A.); (M.Y.); (A.W.)
| | - Muhammad Atiq Ur Rehman
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan; (S.B.); (M.A.); (M.Y.); (A.W.)
| |
Collapse
|
35
|
Guduric V, Belton N, Richter RF, Bernhardt A, Spangenberg J, Wu C, Lode A, Gelinsky M. Tailorable Zinc-Substituted Mesoporous Bioactive Glass/Alginate-Methylcellulose Composite Bioinks. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1225. [PMID: 33807758 PMCID: PMC7961332 DOI: 10.3390/ma14051225] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022]
Abstract
Bioactive glasses have been used for bone regeneration applications thanks to their excellent osteoconductivity, an osteostimulatory effect, and high degradation rate, releasing biologically active ions. Besides these properties, mesoporous bioactive glasses (MBG) are specific for their highly ordered mesoporous channel structure and high specific surface area, making them suitable for drug and growth factor delivery. In the present study, calcium (Ca) (15 mol%) in MBG was partially and fully substituted with zinc (Zn), known for its osteogenic and antimicrobial properties. Different MBG were synthesized, containing 0, 5, 10, or 15 mol% of Zn. Up to 7 wt.% of Zn-containing MBG could be mixed into an alginate-methylcellulose blend (algMC) while maintaining rheological properties suitable for 3D printing of scaffolds with sufficient shape fidelity. The suitability of these composites for bioprinting applications has been demonstrated with immortalized human mesenchymal stem cells. Uptake of Ca and phosphorus (P) (phosphate) ions by composite scaffolds was observed, while the released concentration of Zn2+ corresponded to the initial amount of this ion in prepared glasses, suggesting that it can be controlled at the MBG synthesis step. The study introduces a tailorable bioprintable material system suitable for bone tissue engineering applications.
Collapse
Affiliation(s)
- Vera Guduric
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (V.G.); (N.B.); (R.F.R.); (A.B.); (J.S.); (A.L.)
| | - Niall Belton
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (V.G.); (N.B.); (R.F.R.); (A.B.); (J.S.); (A.L.)
| | - Richard Frank Richter
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (V.G.); (N.B.); (R.F.R.); (A.B.); (J.S.); (A.L.)
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (V.G.); (N.B.); (R.F.R.); (A.B.); (J.S.); (A.L.)
| | - Janina Spangenberg
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (V.G.); (N.B.); (R.F.R.); (A.B.); (J.S.); (A.L.)
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, China;
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (V.G.); (N.B.); (R.F.R.); (A.B.); (J.S.); (A.L.)
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (V.G.); (N.B.); (R.F.R.); (A.B.); (J.S.); (A.L.)
| |
Collapse
|