1
|
Demineralized Dentin Matrix for Dental and Alveolar Bone Tissues Regeneration: An Innovative Scope Review. Tissue Eng Regen Med 2022; 19:687-701. [PMID: 35429315 PMCID: PMC9294090 DOI: 10.1007/s13770-022-00438-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/08/2022] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
Background: Dentin is a permeable tubular composite and complex structure, and in weight, it is composed of 20% organic matrix, 10% water, and 70% hydroxyapatite crystalline matrix. Demineralization of dentin with gradient concentrations of ethylene diamine tetraacetic acid, 0.6 N hydrochloric acid, or 2% nitric acid removes a major part of the crystalline apatite and maintains a majority of collagen type I and non-collagenous proteins, which creates an osteoinductive scaffold containing numerous matrix elements and growth factors. Therefore, demineralized dentin should be considered as an excellent naturally-derived bioactive material to enhance dental and alveolar bone tissues regeneration. Method: The PubMed and Midline databases were searched in October 2021 for the relevant articles on treated dentin matrix (TDM)/demineralized dentin matrix (DDM) and their potential roles in tissue regeneration. Results: Several studies with different study designs evaluating the effect of TDM/DDM on dental and bone tissues regeneration were found. TDM/DDM was obtained from human or animal sources and processed in different forms (particles, liquid extract, hydrogel, and paste) and different shapes (sheets, slices, disc-shaped, root-shaped, and barrier membranes), with variable sizes measured in micrometers or millimeters, demineralized with different protocols regarding the concentration of demineralizing agents and exposure time, and then sterilized and preserved with different techniques. In the act of biomimetic acellular material, TDM/DDM was used for the regeneration of the dentin-pulp complex through direct pulp capping technique, and it was found to possess the ability to activate the odontogenic differentiation of stem cells resident in the pulp tissues and induce reparative dentin formation. TDM/DDM was also considered for alveolar ridge and maxillary sinus floor augmentations, socket preservation, furcation perforation repair, guided bone, and bioroot regenerations as well as bone and cartilage healing. Conclusion: To our knowledge, there are no standard procedures to adopt a specific form for a specific purpose; therefore, future studies are required to come up with a well-characterized TDM/DDM for each specific application. Likely as decellularized dermal matrix and prospectively, if the TDM/DDM is supplied in proper consistency, forms, and in different sizes with good biological properties, it can be used efficiently instead of some widely-used regenerative biomaterials. Supplementary Information The online version contains supplementary material available at 10.1007/s13770-022-00438-4.
Collapse
|
2
|
Russell N, Walsh WR, Lovric V, Kim P, Chen JH, Larson MJ, Vizesi F. In-vivo Performance of Seven Commercially Available Demineralized Bone Matrix Fiber and Putty Products in a Rat Posterolateral Fusion Model. Front Surg 2020; 7:10. [PMID: 32266283 PMCID: PMC7099880 DOI: 10.3389/fsurg.2020.00010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction: Demineralized bone matrix (DBM) is a widely used bone graft in spinal fusion. Most commercial DBMs are composed of demineralized bone particles (~125–800 microns) suspended in a carrier that provides improved handling but dilutes the osteoinductive component. DBM fibers (DBF) provide improved osteoconductivity and do not require a carrier. It has been suggested that 100% DBF may offer improved performance over particulate-based DBMs with carrier. Study Design: Seven commercially available DBM products were tested in an athymic rat posterolateral fusion model. There were four 100% DBFs, two DBFs containing a carrier, and one particulate-based DBM containing carrier. Objective: The study objectives were to evaluate the in vivo performance: (1) compare fusion rate and fusion maturity of six commercially available DBFs and one particulate-based DBM, and (2) assess the effect of carrier on fusion outcomes for DBFs in a posterolateral fusion model. Methods: The DBF/DBM products evaluated were: StrandTM Family, Propel® DBM Fibers, Vesuvius® Demineralized Fibers, Optium® DBM Putty, Grafton® DBF, Grafton Flex, and DBX® Putty. Single-level posterolateral fusion was performed in 69 athymic rats. Fusion was assessed bilaterally after 4 weeks by manual palpation, radiograph and CT for bridging bone. Fusion mass maturity was assessed with a CT maturity grading scale and by histology. Statistical analysis was performed using Fishers Exact Test for categorical data and Kruskal-Wallis Test for non-parametric data. Results: Strand Family achieved 100% fusion (18/18) by manual palpation, radiographic and CT evaluation, significantly higher than Propel Fibers, Vesuvius Fibers, Optium Putty, and DBX Putty, and not statistically higher than Grafton DBF and Grafton Flex. Strand Family provided the highest fusion maturity, with CT maturity grade of 2.3/3.0 and 89% mature fusion rate. Fusion results suggest a detrimental effect of carrier on fusion performance. Conclusions: There were large variations in fusion performance for seven commercially available DBM products in an established preclinical fusion model. There were even significant differences between different 100% DBF products, suggesting that composition alone does not guarantee in vivo performance. In the absence of definitive clinical evidence, surgeons should carefully consider available data in valid animal models when selecting demineralized allograft options.
Collapse
Affiliation(s)
| | - William R Walsh
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Vedran Lovric
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Peter Kim
- SeaSpine Inc., Carlsbad, CA, United States
| | | | | | | |
Collapse
|
3
|
Ramis JM, Blasco‐Ferrer M, Calvo J, Villa O, Cladera MM, Corbillo C, Gayà A, Monjo M. Improved physical and osteoinductive properties of demineralized bone matrix by gelatin methacryloyl formulation. J Tissue Eng Regen Med 2020; 14:475-485. [DOI: 10.1002/term.3012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/20/2019] [Accepted: 01/05/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Joana M. Ramis
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS)University of the Balearic Islands Palma Spain
- Health Research Institute of the Balearic Islands (IdISBa) Palma Spain
- Department of Fundamental Biology and Health SciencesUniversity of the Balearic Islands Palma Spain
| | - Marc Blasco‐Ferrer
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS)University of the Balearic Islands Palma Spain
- Health Research Institute of the Balearic Islands (IdISBa) Palma Spain
| | - Javier Calvo
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS)University of the Balearic Islands Palma Spain
- Health Research Institute of the Balearic Islands (IdISBa) Palma Spain
- Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB) Palma Spain
| | - Oscar Villa
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS)University of the Balearic Islands Palma Spain
- Health Research Institute of the Balearic Islands (IdISBa) Palma Spain
| | - Margalida M. Cladera
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS)University of the Balearic Islands Palma Spain
- Health Research Institute of the Balearic Islands (IdISBa) Palma Spain
| | - Cristina Corbillo
- Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB) Palma Spain
| | - Antoni Gayà
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS)University of the Balearic Islands Palma Spain
- Health Research Institute of the Balearic Islands (IdISBa) Palma Spain
- Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB) Palma Spain
| | - Marta Monjo
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS)University of the Balearic Islands Palma Spain
- Health Research Institute of the Balearic Islands (IdISBa) Palma Spain
- Department of Fundamental Biology and Health SciencesUniversity of the Balearic Islands Palma Spain
| |
Collapse
|
4
|
Bhamb N, Kanim LEA, Drapeau S, Mohan S, Vasquez E, Shimko D, McKAY W, Bae HW. Comparative Efficacy of Commonly Available Human Bone Graft Substitutes as Tested for Posterolateral Fusion in an Athymic Rat Model. Int J Spine Surg 2019; 13:437-458. [PMID: 31745449 DOI: 10.14444/6059] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Insufficient data exist on bone graft substitute materials efficacy; two thirds lack any clinical data.1,2 This prospective animal study identified efficacy differences among commercially available materials of several classes. Methods Historically validated muscle pouch osteoinduction study (OIS) and posterolateral fusion (PLF) were performed in an athymic rat model. Grafting material products implanted were demineralized bone matrix (DBM)-based allografts (Accell EVO3, DBX Mix, DBX Strip, Grafton Crunch, Grafton Flex, Grafton Matrix, Grafton Putty, Magnifuse, and Progenix Plus), allografts (OsteoSponge, MinerOss), cellular allograft (Osteocel Plus), ceramics (Mozaik Strip), or activated ceramics (Actifuse ABX Putty, Vitoss BA). After 4 weeks, OIS specimens were evaluated ex vivo by histologic osteoinductivity. After 8 weeks, PLF ex vivo specimens were evaluated for fusion by manual palpation (FMP), radiography (FXR), and histology (FHISTO). Results OIS: No materials exhibited a rejection reaction on histology. All DBM-based materials exhibited osteoinductive potential as new bone formation at > 88% of implanted sites. One plain allograft (OsteoSponge) formed bone at 25% of sites. No bone formed for one ceramic (Mozaik Strip), three activated ceramics (Actifuse ABX Putty), or one cellular allograft, regardless of human bone marrow aspirate (hBMA) when added. PLF: Among the 10 DBMs, 6 had FMP of 100% (Accell EVO3, DBX Mix, DBX Strip, Grafton Flex, Grafton Putty, Magnifuse), 2 had FMP of 94% (Grafton Crunch, Grafton Matrix), and 2 conditions had FMP of 0% (Progenix Plus, Progenix Plus + athymic rat iliac crest bone graft [arICBG]). Ceramics (Mozaik Strip), activated ceramics (Actifuse ABX Putty, Vitoss BA), plain allograft (OsteoSponge, MinerOss (PLF study), and cellular allograft (Osteocel Plus) demonstrated 0% FMP. ArICBG demonstrated 13% FMP. Conclusions Eight DBM-based materials (Accell EVO3, DBX Mix, DBX Strip, Grafton Crunch, Grafton Flex, Grafton Matrix, Grafton Putty, Magnifuse) demonstrated excellent (> 90% FMP) efficacy in promoting fusion via bone healing. Two DBM conditions (Progenix Plus, Progenix Plus + arICBG) showed no manual palpation fusion (FMP). Systematically, over the 2 studies (OIS and PLF), cellular (Osteocel Plus), plain allografts (OsteoSponge, MinerOss; PLF study), ceramic (Mozaik Strip), and activated ceramics (Actifuse ABX Putty, Vitoss BA) demonstrated poor FMP efficacy (< 10%). Clinical Relevance When selecting DBMs, clinicians must be cognizant of variability in DBM efficacy by product and lot. While theoretically osteoinductive, cellular allograft and activated ceramics yielded poor in vivo efficacy. Whole allograft and ceramics may provide osteoconductive scaffolding for mixed-material grafting; however, surgeons should be cautious in using them alone. Direct clinical data are needed to establish efficacy for any bone graft substitute.
Collapse
Affiliation(s)
- Neil Bhamb
- Cedars-Sinai Medical Center, Los Angeles, California
| | - Linda E A Kanim
- Translational and Clinical Research, Spine Center, Cedars-Sinai Medical Center, Los Angeles, California
| | | | | | | | | | | | - Hyun W Bae
- Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
5
|
Ramis JM, Calvo J, Matas A, Corbillo C, Gayà A, Monjo M. Enhanced osteoinductive capacity and decreased variability by enrichment of demineralized bone matrix with a bone protein extract. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:103. [PMID: 29956013 DOI: 10.1007/s10856-018-6115-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Osteoinductive capacity of demineralized bone matrix (DBM) is sometimes insufficient or shows high variability between different batches of DBM. Here, we tried to improve its osteoinductive activity by alkali-urea or trypsin treatment but this strategy was unsuccessful. Then, we tested the enrichment of DBM with a bone protein extract (BPE) containing osteogenic growth factors comparing two sources: cortical bone powder and DBM. The osteoinductive capacity (alkaline phosphatase activity) of the obtained BPEs was evaluated in vitro in C2C12 cells. Specific protein levels present in the different BPE was determined by enzyme-linked immunosorbent assay or by a multiplex assay. BPE from cortical bone powder showed a lack of osteoinductive effect, in agreement with the low content on osteoinductive factors. In contrast, BPE from DBM showed osteoinductive activity but also high variability among donors. Thus, we decided to enrich DBM with BPE obtained from a pool of DBM from different donors. Following this strategy, we achieved increased osteoinductive activity and lower variability among donors. In conclusion, the use of a BPE obtained from a pool of demineralized bone to enrich DBM could be used to increase its osteoinductive effect and normalize the differences between donors.
Collapse
Affiliation(s)
- Joana M Ramis
- Group of Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, 07122, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), 07010, Palma, Spain
- Department of Fundamental Biology and Health Sciences, University of the Balearic Islands, 07122, Palma, Spain
| | - Javier Calvo
- Group of Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, 07122, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), 07010, Palma, Spain
- Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), 07004, Palma, Spain
| | - Aina Matas
- Group of Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, 07122, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), 07010, Palma, Spain
| | - Cristina Corbillo
- Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), 07004, Palma, Spain
| | - Antoni Gayà
- Group of Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, 07122, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), 07010, Palma, Spain
- Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), 07004, Palma, Spain
| | - Marta Monjo
- Group of Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, 07122, Palma, Spain.
- Balearic Islands Health Research Institute (IdISBa), 07010, Palma, Spain.
- Department of Fundamental Biology and Health Sciences, University of the Balearic Islands, 07122, Palma, Spain.
| |
Collapse
|
6
|
Huang YZ, Cai JQ, Xue J, Chen XH, Zhang CL, Li XQ, Yang ZM, Huang YC, Deng L. The Poor Osteoinductive Capability of Human Acellular Bone Matrix. Int J Artif Organs 2018. [DOI: 10.1177/039139881203501204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Demineralized bone matrix (DBM) has extensive clinical use for bone regeneration because of its osteoinductive and osteoconductive aptitude. It is suggested that the demineralization process in bone matrix preparation is influential in maintaining osteoinductivity; however, relevant investigations, especially into the osteoinductivity of acellular bone matrix, are not often performed. This study addressed the osteoinductive capability of human acellular cancellous bone matrix (ACBM) after subcutaneous implantation in a rat model. The growth and osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (rBM-MSCs) seeded in this material were also studied. Without the demineralization process, the ACBM we obtained had an interconnected porous network and the micropores in the surface were clearly exposed. After the ACBM was subcutaneously implanted for 4 months, new osteoid formation was noted but not typical mature bone formation. rBM-MSCs grew well in the ACBM and kept a steady morphology after continuous culture for 28 days. However, no mineralized nodule formation was detected and the expression levels of genes encoding osteogenic markers were significantly decreased. These results demonstrated that human ACBM possess the structural features of native bone and poor osteoinductivity; nonetheless this material helped to preserve the undifferentiated phenotype of rBM-MSCs. Such insights may further broaden our understanding of the application of ACBM for bone regeneration and the creation of stem cell niches.
Collapse
Affiliation(s)
- Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu - P.R. China
| | - Jia-Qin Cai
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu - P.R. China
| | - Jing Xue
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu - P.R. China
| | - Xiao-He Chen
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu - P.R. China
| | - Chao-Liang Zhang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu - P.R. China
| | - Xiu-Qun Li
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu - P.R. China
| | - Zhi-Ming Yang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu - P.R. China
| | - Yong-Can Huang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu - P.R. China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong - P.R. China
| | - Li Deng
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu - P.R. China
| |
Collapse
|
7
|
van der Stok J, Hartholt KA, Schoenmakers DAL, Arts JJC. The available evidence on demineralised bone matrix in trauma and orthopaedic surgery: A systematic review. Bone Joint Res 2017; 6:423-432. [PMID: 28733366 PMCID: PMC5539308 DOI: 10.1302/2046-3758.67.bjr-2017-0027.r1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/04/2017] [Indexed: 01/26/2023] Open
Abstract
Objectives The aim of this systematic literature review was to assess the clinical level of evidence of commercially available demineralised bone matrix (DBM) products for their use in trauma and orthopaedic related surgery. Methods A total of 17 DBM products were used as search terms in two available databases: Embase and PubMed according to the Preferred Reporting Items for Systematic Reviews and Meta Analyses statement. All articles that reported the clinical use of a DBM-product in trauma and orthopaedic related surgery were included. Results The literature search resulted in 823 manuscripts of which 64 manuscripts met the final inclusion criteria. The included manuscripts consisted of four randomised controlled trials (level I), eight cohort studies (level III) and 49 case-series (level IV). No clinical studies were found for ten DBM products, and most DBM products were only used in combination with other grafting materials. DBM products were most extensively investigated in spinal surgery, showing limited level I evidence that supports the use Grafton DBM (Osteotech, Eatontown, New Jersey) as a bone graft extender in posterolateral lumbar fusion surgery. DBM products are not thoroughly investigated in trauma surgery, showing mainly level IV evidence that supports the use of Allomatrix (Wright Medical, London, United Kingdom), DBX (DePuy Synthes, Zuchwil, Switzerland), Grafton DBM, or OrthoBlast (Citagenix Laval, Canada) as bone graft extenders. Conclusions The clinical level of evidence that supports the use of DBM in trauma and orthopaedic surgery is limited and consists mainly of poor quality and retrospective case-series. More prospective, randomised controlled trials are needed to understand the clinical effect and impact of DBM in trauma and orthopaedic surgery. Cite this article: J. van der Stok, K. A. Hartholt, D. A. L. Schoenmakers, J. J. C. Arts. The available evidence on demineralised bone matrix in trauma and orthopaedic surgery: A systemati c review. Bone Joint Res 2017;6:423–432. DOI: 10.1302/2046-3758.67.BJR-2017-0027.R1.
Collapse
Affiliation(s)
- J van der Stok
- Department of Orthopaedics, Reinier de Graaf Group, Delft, and Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - K A Hartholt
- Department of Surgery-Traumatology, Reinier de Graaf Group, Delft, The Netherlands
| | - D A L Schoenmakers
- Department of Orthopaedic Surgery, CAPHRI Research School, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - J J C Arts
- Department of Orthopaedic Surgery, CAPHRI Research School, Maastricht University Medical Centre, Maastricht, The Netherlands, and The Orthopaedic Biomechanics Group, Faculty of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| |
Collapse
|
8
|
Smith CA, Board TN, Rooney P, Eagle MJ, Richardson SM, Hoyland JA. Human decellularized bone scaffolds from aged donors show improved osteoinductive capacity compared to young donor bone. PLoS One 2017; 12:e0177416. [PMID: 28505164 PMCID: PMC5432108 DOI: 10.1371/journal.pone.0177416] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/26/2017] [Indexed: 01/15/2023] Open
Abstract
To improve the safe use of allograft bone, decellularization techniques may be utilized to produce acellular scaffolds. Such scaffolds should retain their innate biological and biomechanical capacity and support mesenchymal stem cell (MSC) osteogenic differentiation. However, as allograft bone is derived from a wide age-range, this study aimed to determine whether donor age impacts on the ability an osteoinductive, acellular scaffold produced from human bone to promote the osteogenic differentiation of bone marrow MSCs (BM-MSC). BM-MSCs from young and old donors were seeded on acellular bone cubes from young and old donors undergoing osteoarthritis related hip surgery. All combinations resulted in increased osteogenic gene expression, and alkaline phosphatase (ALP) enzyme activity, however BM-MSCs cultured on old donor bone displayed the largest increases. BM-MSCs cultured in old donor bone conditioned media also displayed higher osteogenic gene expression and ALP activity than those exposed to young donor bone conditioned media. ELISA and Luminex analysis of conditioned media demonstrated similar levels of bioactive factors between age groups; however, IGF binding protein 1 (IGFBP1) concentration was significantly higher in young donor samples. Additionally, structural analysis of old donor bone indicated an increased porosity compared to young donor bone. These results demonstrate the ability of a decellularized scaffold produced from young and old donors to support osteogenic differentiation of cells from young and old donors. Significantly, the older donor bone produced greater osteogenic differentiation which may be related to reduced IGFBP1 bioavailability and increased porosity, potentially explaining the excellent clinical results seen with the use of allograft from aged donors.
Collapse
Affiliation(s)
- Christopher A. Smith
- Divsion of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | | | - Paul Rooney
- National Health Service (NHS) Blood and Tissue Transplant Services, Speke, Liverpool, United Kingdom
| | - Mark J. Eagle
- National Health Service (NHS) Blood and Tissue Transplant Services, Speke, Liverpool, United Kingdom
| | - Stephen M. Richardson
- Divsion of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Judith A. Hoyland
- Divsion of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
9
|
Rodriguez RU, Kemper N, Breathwaite E, Dutta SM, Huber A, Murchison A, Chen S, Hsu EL, Hsu WK, Francis MP. Demineralized bone matrix fibers formable as general and custom 3D printed mold-based implants for promoting bone regeneration. Biofabrication 2016; 8:035007. [DOI: 10.1088/1758-5090/8/3/035007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Helling AL, Tsekoura EK, Biggs M, Bayon Y, Pandit A, Zeugolis DI. In Vitro Enzymatic Degradation of Tissue Grafts and Collagen Biomaterials by Matrix Metalloproteinases: Improving the Collagenase Assay. ACS Biomater Sci Eng 2016; 3:1922-1932. [PMID: 33440550 DOI: 10.1021/acsbiomaterials.5b00563] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Matrix metalloproteinase-1 and -8 are active during the wound healing and remodelling processes, degrading native extracellular matrix and implantable devices. However, traditional in vitro assays utilize primarily matrix metalloproteinase-1 to mimic the in vivo degradation microenvironment. Herein, we assessed the influence of various concentrations of matrix metalloproteinase- 1 and 8 (50, 100, and 200 U/mL) as a function of pH (5.5 and 7.4) and time (3, 6, 9, 12, and 24 h) on the degradation profile of three tissue grafts (chemically cross-linked Permacol, nonchemically cross-linked Permacol and nonchemically cross-linked Strattice) and a collagen biomaterial (nonchemically cross-linked collagen sponge). Chemically cross-linked and nonchemically cross-linked Permacol samples exhibited the highest resistance to enzymatic degradation, while nonchemically cross-linked collagen sponges exhibited the least resistance to enzymatic degradation. Qualitative and quantitative degradation analysis of all samples revealed a similar degradation profile over time, independently of the matrix metalloproteinase used and its respective concentration and pH. These data indicate that matrix metalloproteinase-1 and matrix metalloproteinase-8 exhibit similar degradation profile in vitro, suggesting that matrix metalloproteinase-8 should be used for collagenase assay.
Collapse
Affiliation(s)
| | | | | | - Y Bayon
- Sofradim Production, A Medtronic Company, Trévoux, France
| | | | | |
Collapse
|
11
|
van Houdt CIA, Cardoso DA, van Oirschot BAJA, Ulrich DJO, Jansen JA, Leeuwenburgh SCG, van den Beucken JJJP. Porous titanium scaffolds with injectable hyaluronic acid-DBM gel for bone substitution in a rat critical-sized calvarial defect model. J Tissue Eng Regen Med 2016; 11:2537-2548. [DOI: 10.1002/term.2151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 11/01/2015] [Accepted: 12/22/2015] [Indexed: 12/20/2022]
Affiliation(s)
- C. I. A. van Houdt
- Department of Biomaterials; Radboud University Medical Centre; Nijmegen The Netherlands
| | | | | | - D. J. O. Ulrich
- Department of Plastic Surgery; Radboud University Medical Centre; Nijmegen The Netherlands
| | - J. A. Jansen
- Department of Biomaterials; Radboud University Medical Centre; Nijmegen The Netherlands
| | - S. C. G. Leeuwenburgh
- Department of Biomaterials; Radboud University Medical Centre; Nijmegen The Netherlands
| | | |
Collapse
|
12
|
Ravindran S, Huang CC, Gajendrareddy P, Narayanan R. Biomimetically enhanced demineralized bone matrix for bone regenerative applications. Front Physiol 2015; 6:292. [PMID: 26557093 PMCID: PMC4617051 DOI: 10.3389/fphys.2015.00292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/02/2015] [Indexed: 01/12/2023] Open
Abstract
Demineralized bone matrix (DBM) is one of the most widely used bone graft materials in dentistry. However, the ability of DBM to reliably and predictably induce bone regeneration has always been a cause for concern. The quality of DBM varies greatly depending on several donor dependent factors and also manufacturing techniques. In order to standardize the quality and to enable reliable and predictable bone regeneration, we have generated a biomimetically-enhanced version of DBM (BE-DBM) using clinical grade commercial DBM as a control. We have generated the BE-DBM by incorporating a cell-derived pro-osteogenic extracellular matrix (ECM) within clinical grade DBM. In the present study, we have characterized the BE-DBM and evaluated its ability to induce osteogenic differentiation of human marrow derived stromal cells (HMSCs) with respect to clinical grade commercial DBM. Our results indicate that the BE-DBM contains significantly more pro-osteogenic factors than DBM and enhances HMSC differentiation and mineralized matrix formation in vitro and in vivo. Based on our results, we envision that the BE-DBM has the potential to replace DBM as the bone graft material of choice.
Collapse
Affiliation(s)
- Sriram Ravindran
- Departments of Oral Biology, University of Illinois at Chicago Chicago, IL, USA
| | - Chun-Chieh Huang
- Departments of Oral Biology, University of Illinois at Chicago Chicago, IL, USA
| | | | | |
Collapse
|
13
|
Ho MSH, Medcalf RL, Livesey SA, Traianedes K. The dynamics of adult haematopoiesis in the bone and bone marrow environment. Br J Haematol 2015; 170:472-86. [PMID: 25854627 DOI: 10.1111/bjh.13445] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review explores the dynamic relationship between bone and bone marrow in the genesis and regulation of adult haematopoiesis and will provide an overview of the haematopoietic hierarchical system. This will include the haematopoietic stem cell (HSC) and its niches, as well as discuss emerging evidence of the reciprocal interplay between bone and bone marrow, and support of the pleiotropic role played by bone cells in the regulation of HSC proliferation, differentiation and function. In addition, this review will present demineralized bone matrix as a unique acellular matrix platform that permits the generation of ectopic de novo bone and bone marrow and provides a means of investigating the temporal sequence of bone and bone marrow regeneration. It is anticipated that the utilization of this matrix-based approach will help researchers in gaining deeper insights into the major events leading to adult haematopoiesis in the bone marrow. Furthermore, this model may potentially offer new avenues to manipulate the HSC niche and hence influence the functional output of the haematopoietic system.
Collapse
Affiliation(s)
- Miriel S H Ho
- Australian Centre for Blood Diseases, Monash University, The Alfred Hospital Prahran, Prahran, Victoria, Australia.,Clinical Neurosciences, St Vincent's Hospital Melbourne, Prahran, Victoria, Australia
| | - Robert L Medcalf
- Australian Centre for Blood Diseases, Monash University, The Alfred Hospital Prahran, Prahran, Victoria, Australia
| | - Stephen A Livesey
- Clinical Neurosciences, St Vincent's Hospital Melbourne, Prahran, Victoria, Australia
| | - Kathy Traianedes
- Clinical Neurosciences, St Vincent's Hospital Melbourne, Prahran, Victoria, Australia.,Department of Medicine, The University of Melbourne, St Vincent's Hospital Melbourne, Prahran, Victoria, Australia
| |
Collapse
|
14
|
Production of an osteoinductive demineralised bone matrix powder without the use of organic solvents. Cell Tissue Bank 2014; 16:433-41. [PMID: 25492103 DOI: 10.1007/s10561-014-9487-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
Demineralised bone matrix (DBM) is produced by grinding cortical bone into a powder, sieving the powder to obtain a desired size range and then demineralising the powder using acid. Protocols for the production of DBM powder have been published since 1965 and the powder can be used in lyophilised form or it can be mixed with a carrier to produce a paste or putty. The powder is generally produced from cortical bone which has been processed to remove blood, bone marrow and bone marrow components, including fat. Removal of fat is accomplished by incorporating incubation in an organic solvent, often chloroform, chloroform/methanol or acetone. The use of organic solvents in a clean room environment in a human tissue bank is problematic and involves operator exposure and the potential for the solvent to be trapped in air filters or recirculated throughout the clean room suite. Consequently, in this study, we have developed a cortical bone washing step which removes fat/lipid without the use of an organic solvent. Bone was prepared from six femoral shafts from three donors by dissecting soft tissue and bisecting the shaft, the shafts were then cut into ~9-10 cm lengths. These struts were then taken through a series of hot water washes at 56-59 °C, centrifugation and decontamination steps. Washed cortical struts were then lyophilised before being ground with a compressed air milling machine. The ground bone was sieved, demineralised, freeze-dried and terminally sterilised with a target dose of 25 kGy gamma irradiation. The DBM powder was evaluated for residual calcium content, in vitro cytotoxicity and osteoinductivity by implantation into the muscle of an athymic mouse. Data indicated that in addition to removing in excess of 97% DNA and extractable soluble protein, the washing protocol reduced lipid 10,000-fold. The processed bone was easily ground without clogging the grinder; the sterilised DBM powder was not cytotoxic but was osteoinductive in the animal model. Therefore, we have developed a method of producing osteoinductive DBM without the need to use organic solvents.
Collapse
|
15
|
Hinsenkamp M, Collard JF. Growth factors in orthopaedic surgery: demineralized bone matrix versus recombinant bone morphogenetic proteins. INTERNATIONAL ORTHOPAEDICS 2014; 39:137-47. [PMID: 25338109 DOI: 10.1007/s00264-014-2562-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 12/22/2022]
Abstract
During recent decades the utilisation of growth factors, especially BMPs, has received an increasing interest in orthopaedic surgery. For clinical implantation the two main options are demineralised bone matrix (DBM) and recombinant bone morphogenetic proteins (rhBMP). Many clinical studies agree on an equivalent osteoinductive effect between DBM, BMPs and autologous bone graft; however, the different origins and processing of DBM and rhBMP may introduce some fluctuations. Their respective characteristics are reviewed and possible interactions with their effectiveness are analysed. The main difference concerns the concentration of BMPs, which varies to an order of magnitude of 10(6) between DBM and rhBMPs. This may explain the variability in efficiency of some products and the adverse effects. Currently, considering osteoinductive properties, safety and availability, the DBM seems to offer several advantages. However, if DBM and rhBMPs are useful in some indications, their effectiveness and safety can be improved and more evidence-based studies are needed to better define the indications.
Collapse
Affiliation(s)
- Maurice Hinsenkamp
- Orthopaedic Research Laboratory (LROT) and Musculoskeletal Tissue Bank (BTE), Department of Orthopaedic Surgery, Hôpital Erasme, Université Libre de Bruxelles (ULB), 808, route de Lennik, Brussels, B-1070, Belgium,
| | | |
Collapse
|
16
|
Kiely PD, Brecevich AT, Taher F, Nguyen JT, Cammisa FP, Abjornson C. Evaluation of a new formulation of demineralized bone matrix putty in a rabbit posterolateral spinal fusion model. Spine J 2014; 14:2155-63. [PMID: 24512696 DOI: 10.1016/j.spinee.2014.01.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/12/2013] [Accepted: 01/22/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Alternatives to autologous bone graft (ABG) with osteoconductive, osteoinductive, and osteogenic potential continue to prove elusive. Demineralized bone matrix (DBM) however, with its osteoconductive and osteoinductive potential remains a viable option to ABG in posterolateral spine fusion. PURPOSE To compare the efficacy of a new formulation of DBM putty with that of ABG in a rabbit posterolateral spinal fusion model. STUDY DESIGN Efficacy of a new formulation of DBM was studied in an experimental animal posterolateral spinal fusion model. METHODS Twenty-four male New Zealand White rabbits underwent bilateral posterolateral spine arthrodesis of the L5-L6 intertransverse processes, using either ABG (control group, n=12) or DBM (DBM made from rabbit bone) putty (test group, n=12). The animals were killed 12 weeks after surgery and the lumbar spines were excised. Fusion success was evaluated by manual palpation, high resolution X-rays, microcomputed tomography imaging, biomechanical four-point bending tests, and histology. RESULTS Two animals were lost because of anesthetic related issues. Manual palpation to assess fusion success in the explanted lumbar spines showed no statistical significant difference in successful fusion in 81.8% (9/11) of DBM group and 72.7% (8/11) of ABG group (p=.99). Reliability of these assessments was measured between three independent observers and found near perfect agreement (intraclass correlation cofficient: 0.92 and 0.94, respectively). Fusion using high resolution X-rays was solid in 10 of the DBM group and 9 of the ABG group (p=.59). Biomechanical testing showed no significant difference in stiffness between the control and test groups on flexion, extension, and left lateral and right lateral bends, with p values accounting for .79, .42, .75, and .52, respectively. The bone volume/total volume was greater than 85% in the DBM treated fusion masses. Histologic evaluation revealed endochondral ossification in both groups, but the fusion masses were more mature in the DBM group. CONCLUSIONS The DBM putty achieved comparable fusion rates to ABG in the rabbit posterolateral spinal fusion model.
Collapse
Affiliation(s)
- Paul D Kiely
- Integrated Spine Research Department, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA.
| | - Antonio T Brecevich
- Integrated Spine Research Department, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| | - Fadi Taher
- Integrated Spine Research Department, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| | - Joseph T Nguyen
- Integrated Spine Research Department, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| | - Frank P Cammisa
- Integrated Spine Research Department, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| | - Celeste Abjornson
- Integrated Spine Research Department, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| |
Collapse
|
17
|
Eldibany R, Shokry M. The effect of Nanobone® in combination with platelet rich fibrin on bone regeneration following enucleation of large mandibular cysts. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.tdj.2014.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Kim YK, Lee JY, Kim SG, Lim SC. Guided bone regeneration using demineralized allogenic bone matrix with calcium sulfate: case series. J Adv Prosthodont 2013; 5:167-71. [PMID: 23755343 PMCID: PMC3675290 DOI: 10.4047/jap.2013.5.2.167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 04/11/2013] [Accepted: 04/23/2013] [Indexed: 02/05/2023] Open
Abstract
PURPOSE The purpose of this case series was to evaluate the effect of guided bone regeneration using demineralized allogenic bone matrix with calcium sulfate. MATERIALS AND METHODS Guided bone regeneration using Demineralized Allogenic Bone Matrix with Calcium Sulfate (AlloMatrix™, Wright. USA) was performed at the time of implant placement from February 2010 to April 2010. At the time of the second surgery, clinical evaluation of bone healing and histologic evaluation were performed. The study included 10 patients, and 23 implants were placed. The extent of bony defects around implants was determined by measuring the horizontal and vertical bone defects using a periodontal probe from the mesial, distal, buccal, and lingual sides and calculating the mean and standard deviation of these measurements. Wedge-shaped tissue samples were obtained from 3 patients and histologic examination was performed. RESULTS In clinical evaluation, it was observed that horizontal bone defects were completely healed with new bones, and in the vertical bone defect area, 15.1% of the original defect area remained. In 3 patients, histological tests were performed, and 16.7-41.7% new bone formation was confirmed. Bone graft materials slowly underwent resorption over time. CONCLUSION AlloMatrix™ is an allograft material that can be readily manipulated. It does not require the use of barrier membranes, and good bone regeneration can be achieved with time.
Collapse
Affiliation(s)
- Young-Kyun Kim
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ji-Young Lee
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Su-Gwan Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Seung-Chul Lim
- Department of Pathology, School of Medicine, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
19
|
Ghanaati S, Udeabor SE, Barbeck M, Willershausen I, Kuenzel O, Sader RA, Kirkpatrick CJ. Implantation of silicon dioxide-based nanocrystalline hydroxyapatite and pure phase beta-tricalciumphosphate bone substitute granules in caprine muscle tissue does not induce new bone formation. Head Face Med 2013; 9:1. [PMID: 23286366 PMCID: PMC3563579 DOI: 10.1186/1746-160x-9-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 12/10/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteoinductive bone substitutes are defined by their ability to induce new bone formation even at heterotopic implantation sites. The present study was designed to analyze the potential osteoinductivity of two different bone substitute materials in caprine muscle tissue. MATERIALS AND METHODS One gram each of either a porous beta-tricalcium phosphate (β-TCP) or an hydroxyapatite/silicon dioxide (HA/SiO2)-based nanocrystalline bone substitute material was implanted in several muscle pouches of goats. The biomaterials were explanted at 29, 91 and 181 days after implantation. Conventional histology and special histochemical stains were performed to detect osteoblast precursor cells as well as mineralized and unmineralized bone matrix. RESULTS Both materials underwent cellular degradation in which tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells and TRAP-negative multinucleated giant cells were involved. The ß-TCP was completely resorbed within the observation period, whereas some granules of the HA-groups were still detectable after 180 days. Neither osteoblasts, osteoblast precursor cells nor extracellular bone matrix were found within the implantation bed of any of the analyzed biomaterials at any of the observed time points. CONCLUSIONS This study showed that ß-TCP underwent a faster degradation than the HA-based material. The lack of osteoinductivity for both materials might be due to their granular shape, as osteoinductivity in goat muscle has been mainly attributed to cylindrical or disc-shaped bone substitute materials. This hypothesis however requires further investigation to systematically analyze various materials with comparable characteristics in the same experimental setting.
Collapse
Affiliation(s)
- Shahram Ghanaati
- Institute of Pathology, REPAIR-Lab, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, Mainz, 55101, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Gruskin E, Doll BA, Futrell FW, Schmitz JP, Hollinger JO. Demineralized bone matrix in bone repair: history and use. Adv Drug Deliv Rev 2012; 64:1063-77. [PMID: 22728914 PMCID: PMC7103314 DOI: 10.1016/j.addr.2012.06.008] [Citation(s) in RCA: 290] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/15/2012] [Accepted: 06/15/2012] [Indexed: 11/27/2022]
Abstract
Demineralized bone matrix (DBM) is an osteoconductive and osteoinductive commercial biomaterial and approved medical device used in bone defects with a long track record of clinical use in diverse forms. True to its name and as an acid-extracted organic matrix from human bone sources, DBM retains much of the proteinaceous components native to bone, with small amounts of calcium-based solids, inorganic phosphates and some trace cell debris. Many of DBM's proteinaceous components (e.g., growth factors) are known to be potent osteogenic agents. Commercially sourced as putty, paste, sheets and flexible pieces, DBM provides a degradable matrix facilitating endogenous release of these compounds to the bone wound sites where it is surgically placed to fill bone defects, inducing new bone formation and accelerating healing. Given DBM's long clinical track record and commercial accessibility in standard forms and sources, opportunities to further develop and validate DBM as a versatile bone biomaterial in orthopedic repair and regenerative medicine contexts are attractive.
Collapse
Affiliation(s)
- Elliott Gruskin
- Synthes USA, 1302 Wrights Lane East, West Chester, PA 19380, USA.
| | | | | | | | | |
Collapse
|
21
|
Park BW, Kang EJ, Byun JH, Son MG, Kim HJ, Hah YS, Kim TH, Mohana Kumar B, Ock SA, Rho GJ. In vitro and in vivo osteogenesis of human mesenchymal stem cells derived from skin, bone marrow and dental follicle tissues. Differentiation 2012; 83:249-59. [DOI: 10.1016/j.diff.2012.02.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 02/13/2012] [Accepted: 02/17/2012] [Indexed: 01/09/2023]
|
22
|
Pietrzak WS, Dow M, Gomez J, Soulvie M, Tsiagalis G. The in vitro elution of BMP-7 from demineralized bone matrix. Cell Tissue Bank 2011; 13:653-61. [PMID: 22200971 DOI: 10.1007/s10561-011-9286-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 12/13/2011] [Indexed: 01/25/2023]
Abstract
Demineralized bone matrix (DBM) grafts induce new bone formation by locally releasing matrix-associated growth factors, such as bone morphogenetic proteins (BMPs), to the surrounding tissue after implantation. However, the release kinetics of BMPs from DBM lack characterization. Such information can potentially help to improve processing techniques to maximize graft osteoinductive potential, as well as increase understanding of the osteoinductive process itself. We produced DBM with three particle size ranges from bovine cortical bone, i.e., <106, 106-300, and 300-710 μm and extracted 1.5 g of each size range in 40 ml of Sorensen's buffer at room temperature for up to 168 h. The BMP-7 concentration of the DBM and the buffer were measured at each time point using enzyme-linked immunosorbant assay. Based on measurement of the concentration of BMP-7 in the buffer, the 0-8 h elution rate was high, i.e., 3.3, 2.9, and 2.2 ng BMP-7/g DBM h, and for the 8-168 h interval was much lower, at 0.039, 0.15, and 0.11 ng BMP-7/g DBM h for the three size ranges, respectively. By 168 h, there was no indication that elution was nearing completion. Measurement of the residual BMP-7 remaining in the DBM as a function of time yielded unexpected results, i.e., after the BMP-7 content of the DBM declined for the first 4-6 h, it paradoxically increased for the remaining interval. We propose a two-compartment model to help explain these results in terms of the possible distribution of BMP-7 in bone matrix.
Collapse
|
23
|
Schwartz Z, Hyzy SL, Moore MA, Hunter SA, Ronholdt CJ, Sunwoo M, Boyan BD. Osteoinductivity of demineralized bone matrix is independent of donor bisphosphonate use. J Bone Joint Surg Am 2011; 93:2278-86. [PMID: 22258774 PMCID: PMC3234347 DOI: 10.2106/jbjs.j.01469] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Demineralized bone matrix is commonly used as a bone graft substitute, either alone or to supplement an osteoconductive material, because of its osteoinductive properties. The aging of the population has led to an increase in the number of prospective donors of demineralized bone matrix who have taken bisphosphonates to prevent osteoclast-mediated bone resorption. The aim of this study was to determine whether oral bisphosphonate usage affects the osteoinductivity of demineralized bone matrix from donors. METHODS Sex-matched and age-matched pairs of samples were provided by four tissue banks (three or four pairs per bank). Demineralized bone matrix donors without bisphosphonate treatment had a mean age (and standard deviation) of 69.1 ± 2.5 years, and donors with bisphosphonate treatment had a mean age of 68.9 ± 2.0 years. Each pair included one donor known to have taken bisphosphonates and one who had not taken bisphosphonates. Demineralized bone matrix previously confirmed as osteoinductive was the positive control, and heat-inactivated demineralized bone matrix was the negative control. Demineralized bone matrix incubated with 1 mL of phosphate-buffered saline solution containing 0, 0.002, 2.0, or 2000 ng/mL of alendronate was also tested. Gelatin capsules containing 15 mg of demineralized bone matrix were implanted bilaterally in the gastrocnemius muscle of male nude mice (eight implants per group). The mice were killed thirty-five days after implantation, and hind limbs were recovered and processed for histological analysis. Osteoinductivity was measured with use of a qualitative score and by histomorphometry. RESULTS Nine of fifteen samples from donors who had had bisphosphonate treatment and ten of fifteen samples from patients who had not had bisphosphonate treatment were osteoinductive. Qualitative mean scores were comparable (1.7 ± 0.4 for those without bisphosphonates and 1.9 ± 0.7 for those with bisphosphonates). Osteoinductive demineralized bone matrix samples produced ossicles of comparable size, regardless of bisphosphonate usage. Histomorphometric measurements of the area of new bone formation and residual demineralized bone matrix were also comparable. The addition of alendronate to control demineralized bone matrix did not affect its osteoinductivity. CONCLUSIONS Demineralized bone matrix samples from donors treated with bisphosphonates and donors not treated with bisphosphonates have the same ability to induce bone formation. However, it is not known if the quality of the new bone is affected, with subsequent consequences affecting bone remodeling.
Collapse
Affiliation(s)
- Zvi Schwartz
- Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Drive N.W., Atlanta, GA 30332-0363. E-mail address for B.D. Boyan:
| | - Sharon L. Hyzy
- Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Drive N.W., Atlanta, GA 30332-0363. E-mail address for B.D. Boyan:
| | - Mark A. Moore
- LifeNet Health, Bio-Implants Division, 1864 Concert Drive, Virginia Beach, VA 23453. E-mail address:
| | - Shawn A. Hunter
- Community Tissue Services, Center for Tissue Innovation and Research, 2900 College Drive, Kettering, OH 45420. E-mail address:
| | - Chad J. Ronholdt
- LABS Inc., 6933-B South Revere Parkway, Centennial, CO 80112. E-mail address:
| | - MoonHae Sunwoo
- Musculoskeletal Transplant Foundation, 125 May Street, Edison, NJ 08837. E-mail address:
| | - Barbara D. Boyan
- Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Drive N.W., Atlanta, GA 30332-0363. E-mail address for B.D. Boyan:
| |
Collapse
|
24
|
Kim JH, Oh JH, Han I, Kim HS, Chung SW. Grafting using injectable calcium sulfate in bone tumor surgery: comparison with demineralized bone matrix-based grafting. Clin Orthop Surg 2011; 3:191-201. [PMID: 21909466 PMCID: PMC3162199 DOI: 10.4055/cios.2011.3.3.191] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 11/20/2010] [Indexed: 12/17/2022] Open
Abstract
Background Injectable calcium sulfate is a clinically proven osteoconductive biomaterial, and it is an injectable, resorbable and semi-structural bone graft material. The purpose of this study was to validate the clinical outcomes of injectable calcium sulfate (ICS) grafts as compared with those of a demineralized bone matrix (DBM)-based graft for filling in contained bony defects created by tumor surgery. Methods Fifty-six patients (41 males and 15 females) with various bone tumors and who were surgically treated between September 2003 and October 2007 were included for this study. The patients were randomly allocated into two groups, and either an ICS graft (28 patients) or a DBM-based graft (28 patients) was implanted into each contained defect that was developed by the surgery. The radiographic outcomes were compared between the two groups and various clinical factors were included for the statistical analysis. Results When one case with early postoperative pathologic fracture in the DBM group was excluded, the overall success rates of the ICS and DBM grafting were 85.7% (24/28) and 88.9% (24/27) (p > 0.05), respectively. The average time to complete healing was 17.3 weeks in the ICS group and 14.9 weeks in the DBM group (p > 0.05). Additionally, the ICS was completely resorbed within 3 months, except for one case. Conclusions Although the rate of resorption of ICS is a concern, the injectable calcium sulfate appears to be a comparable bone graft substitute for a DBM-based graft, with a lower cost, for the treatment of the bone defects created during surgery for various bone tumors.
Collapse
Affiliation(s)
- June Hyuk Kim
- Orthopedic Oncology Clinic, National Cancer Center, Goyang, Korea
| | | | | | | | | |
Collapse
|
25
|
Brydone AS, Meek D, Maclaine S. Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proc Inst Mech Eng H 2011; 224:1329-43. [PMID: 21287823 DOI: 10.1243/09544119jeim770] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
As the population ages, the number of operations performed on bone is expected to increase. Diseases such as arthritis, tumours, and trauma can lead to defects in the skeleton requiring an operation to replace or restore the lost bone. Surgeons can use autografts, allografts, and/or bone graft substitutes to restore areas of bone loss. Surgical implants are also used in addition or in isolation to replace the diseased bone. This review considers the application of available bone grafts in different clinical settings. It also discusses recently introduced bioactive biomaterials and highlights the clinical difficulties and technological deficiencies that exist in our current surgical practice.
Collapse
Affiliation(s)
- A S Brydone
- Southern General Hospital, 1345 Govan Road, Glasgow G51 4TF, UK
| | | | | |
Collapse
|
26
|
Figueiredo M, Cunha S, Martins G, Freitas J, Judas F, Figueiredo H. Influence of hydrochloric acid concentration on the demineralization of cortical bone. Chem Eng Res Des 2011. [DOI: 10.1016/j.cherd.2010.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Abstract
STUDY DESIGN Literature-based topic review. OBJECTIVE To review the complications and the concerns that may be associated with all of the commonly used osteobiologic options for spine fusion. SUMMARY OF BACKGROUND DATA Obtaining a solid arthrodesis is an important objective in many lumbar surgical procedures, and a wide array of bone graft materials may be used in an attempt to achieve this goal. Iliac crest bone graft, as well as all of the available osteobiologic alternatives, carries potential risks and concerns for both patient and surgeon. METHODS Review of literature and expert opinion. CONCLUSION Some of the potential complications associated with osteobiologic materials used in spinal fusion are well understood and clearly documented whereas others require further study and clarification. In any given clinical situation, the patient and surgeon need to balance the benefits and performance characteristics of the graft material with the risk profile to optimize clinical management.
Collapse
|
28
|
Kim YK, Kim SG, Lim SC, Lee HJ, Yun PY. A clinical study on bone formation using a demineralized bone matrix and resorbable membrane. ORAL SURGERY, ORAL MEDICINE, ORAL PATHOLOGY, ORAL RADIOLOGY, AND ENDODONTICS 2010; 109:e6-11. [PMID: 20417135 DOI: 10.1016/j.tripleo.2010.01.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 12/30/2009] [Accepted: 01/23/2010] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The purpose of this study was to evaluate new bone formation following guided bone regeneration (GBR) using a composite of demineralized cortical and nondemineralized cancellous bone admixed in a poloxamer reverse phase carrier (Orthoblast II) and resorbable collagen membrane (Ossix). STUDY DESIGN Fourteen patients (14 specimens) participated in this study from January 2006 to May 2006. In all these 14 patients, bone grafting for the regeneration of dehiscence defects around the implants was required. At the 4- and/or 6-month healing period, a biopsy specimen was obtained by one oral and maxillofacial surgeon. The specimens were fixed, demineralized, embedded, and sectioned by a pathologist, and histomorphometric evaluations were performed using a computer-assisted Visus Image Analysis System. RESULTS A high proportion of new bone formation (12.3%-78.7%) was observed during the 4- and/or 6-month healing period. Although histopathologic findings indicated that the grafted materials did not completely resorb, new bone formation and bone remodeling were observed to increase with healing time. CONCLUSION It was concluded from this study that the use of GBR consisting of Orthoblast II and Ossix membranes caused favorable bone formation during the 6-month healing period. Additionally, the increase in the woven bone to lamellar bone (LB/WB) ratio and the new bone to residual graft material (NB/GM) ratio observed in this 6-month study also provided evidence of increasing bony remodeling and maturity as well as the continuous resorption of the grafting materials.
Collapse
Affiliation(s)
- Young-Kyun Kim
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam City, Republic of Korea
| | | | | | | | | |
Collapse
|
29
|
Kim MG, Jung IK, Shin SH, Kim CH, Kim BJ, Kim JH, Hwang YS, Jung EG, Kim JW, Kim UK. Effect of adipose-derived stem cells on bone healing on titanium implant in tibia of diabetes mellitus induced rats. J Korean Assoc Oral Maxillofac Surg 2010. [DOI: 10.5125/jkaoms.2010.36.5.392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Min-Gu Kim
- Department of Oral and Maxillofacial Surgery, Collage of Medicine, Dona-A Universtiy, Busan, Korea
| | - In-Kyo Jung
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Sang-Hun Shin
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Chul-Hoon Kim
- Department of Oral and Maxillofacial Surgery, Collage of Medicine, Dona-A Universtiy, Busan, Korea
| | - Bok-Joo Kim
- Department of Oral and Maxillofacial Surgery, Collage of Medicine, Dona-A Universtiy, Busan, Korea
| | - Jung-Han Kim
- Department of Oral and Maxillofacial Surgery, Collage of Medicine, Dona-A Universtiy, Busan, Korea
| | - Young-Sup Hwang
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Eu-Gene Jung
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Jin-Woo Kim
- Department of Oral and Maxillofacial Surgery, Collage of Medicine, Dona-A Universtiy, Busan, Korea
| | - Uk-Kyu Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, Korea
| |
Collapse
|
30
|
In vitro testing of the osteoinductive potential of different bony allograft preparations. Arch Orthop Trauma Surg 2010; 130:143-9. [PMID: 19529951 DOI: 10.1007/s00402-009-0908-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Bony allografts are used frequently in the clinic for bone defect filling, however, less comparative data concerning their osteoinductive potential are available. AIM The purpose of the present study was the comparative analysis of different allograft preparations. From five donors, we investigated fresh-frozen cancellous bone (native), peracetic acid–ethanol sterilized (PES) cancellous bone, cortical bone and demineralised bone matrix (DBM). In addition, two commercially available DBM products from five different donors were analyzed: Allomatrix® (Wright Medical Technology Inc.) and DBX putty® (Synthes GmbH). For positive control and as a clinically used growth factor, BMP-2 was chosen. METHOD To investigate the osteoinductivity C2C12 cells were cultured with the different materials and the effect on cell proliferation and alkaline phosphatase activity were measured. RESULT Proliferation was significantly enhanced by the native cancellous bone, Allomatrix, and BMP-2 and decreased by the PES-processed cancellous bone. The osteogenic differentiation was significantly enhanced by BMP-2 and the two commercial DBM products and decreased by PES-sterilized cancellous bone. All tested materials revealed a high donor-dependent variability. This is the first comparative study on the osteoinductivity of bony allografts frequently used in clinic.
Collapse
|
31
|
|
32
|
Dinopoulos HTH, Giannoudis PV. Safety and efficacy of use of demineralised bone matrix in orthopaedic and trauma surgery. Expert Opin Drug Saf 2007; 5:847-66. [PMID: 17044811 DOI: 10.1517/14740338.5.6.847] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Demineralised bone matrix (DBM) acts as an osteoconductive, and possibly as an osteoinductive, material. It is widely used in orthopaedic, neurosurgical, plastic and dental areas. More than 500,000 bone grafting procedures with DBM are performed annually in the US. It does not offer structural support, but it is well suited for filling bone defects and cavities. The osteoinductive nature of DBM is presumably attributed to the presence of matrix-associated bone morphogenetic proteins (BMPs) and growth factors, which are made available to the host environment by the demineralisation process. Clinical results have not been uniformly favourable; however, a variable clinical response is attributed partly to nonuniform processing methods found among numerous bone banks and commercial suppliers. DBMs remain reasonably safe and effective products. The ultimate safe bone-graft substitute, one that is osteoconductive, osteoinductive, osteogenic and mechanically strong, remains elusive.
Collapse
Affiliation(s)
- Haralampos T H Dinopoulos
- University of Leeds, Academic Department of Trauma & Orthopaedics, School of Medicine, St. James's University Hospital, Beckett Street, Leeds, West Yorkshire, LS9 7TF, UK
| | | |
Collapse
|
33
|
Wang JC, Alanay A, Mark D, Kanim LEA, Campbell PA, Dawson EG, Lieberman JR. A comparison of commercially available demineralized bone matrix for spinal fusion. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2007; 16:1233-40. [PMID: 17205237 PMCID: PMC2200779 DOI: 10.1007/s00586-006-0282-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 11/15/2006] [Accepted: 11/24/2006] [Indexed: 12/15/2022]
Abstract
In an effort to augment the available grafting material as well as to increase spinal fusion rates, the utilization of a demineralized bone matrix (DBM) as a graft extender or replacement is common. There are several commercially available DBM substances available for use in spinal surgery, each with different amounts of DBM containing osteoinductive proteins. Each product may have different osteoinductivity potential due to different methods of preparation, storage, and donor specifications. The purpose of this study is to prospectively compare the osteoinductive potential of three different commercially available DBM substances in an athymic rodent spinal fusion model and to discuss the reasons of the variability in osteoinductivity. A posterolateral fusion was performed in 72 mature athymic nude female rats. Three groups of 18 rats were implanted with 1 of 3 DBMs (Osteofil, Grafton, and Dynagraft). A fourth group was implanted with rodent autogenous iliac crest bone graft. The rats were sacrificed at 2, 4, 6, and 8 weeks. A dose of 0.3 cm(3) per side (0.6 cm(3)per animal) was used for each substance. Radiographs were taken at 2 weeks intervals until sacrifice. Fusion was determined by radiographs, manual palpation, and histological analysis. The Osteofil substance had the highest overall fusion rate (14/18), and the highest early 4 weeks fusion rate of (4/5). Grafton produced slightly lower fusion rates of (11/17) overall, and lower early 4 weeks fusion rate of (2/5). There was no statistically significant difference between the rate of fusion after implantation of Osteofil and Grafton. None of the sites implanted with Dynagraft fused at any time point (0/17), and there was a significantly lower fusion rate between the Dynagraft and the other two substances at the six-week-time point and for final fusion rate (P = 0.0001, Fischer's exact test). None of the autogenous iliac crest animals fused at any time point. Non-decalcified histology confirmed the presence of a pseudarthrosis or the presence of a solid fusion, and the results were highly correlated with the manual testing. Although all products claim to have significant osteoinductive capabilities, this study demonstrates that there are significant differences between some of the tested products.
Collapse
Affiliation(s)
- Jeffrey C. Wang
- Department of Orthopaedics and Traumatology, UCLA School of Medicine, Los Angeles, CA 90024 USA
| | - A. Alanay
- Department of Orthopaedics and Traumatology, UCLA School of Medicine, Los Angeles, CA 90024 USA
- Department of Orthopaedics and Traumatology, UCLA School of Medicine, Los Angeles, CA 90024 USA
| | - Davies Mark
- Department of Orthopaedics and Traumatology, UCLA School of Medicine, Los Angeles, CA 90024 USA
| | - Linda E. A. Kanim
- Department of Orthopaedics and Traumatology, UCLA School of Medicine, Los Angeles, CA 90024 USA
| | - Pat A. Campbell
- Department of Orthopaedics and Traumatology, UCLA School of Medicine, Los Angeles, CA 90024 USA
| | - Edgar G. Dawson
- Department of Orthopaedics and Traumatology, UCLA School of Medicine, Los Angeles, CA 90024 USA
| | - Jay R. Lieberman
- Department of Orthopaedics and Traumatology, UCLA School of Medicine, Los Angeles, CA 90024 USA
| |
Collapse
|
34
|
McMillan J, Kinney RC, Ranly DM, Fatehi-Sedeh S, Schwartz Z, Boyan BD. Osteoinductivity of demineralized bone matrix in immunocompromised mice and rats is decreased by ovariectomy and restored by estrogen replacement. Bone 2007; 40:111-21. [PMID: 16973427 DOI: 10.1016/j.bone.2006.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 07/18/2006] [Accepted: 07/18/2006] [Indexed: 10/24/2022]
Abstract
The osteoinduction potential of human demineralized bone matrix (DBM) in females with low estrogen (E2) is unknown. Moreover, the osteoinductivity of commercial human DBM is tested in male athymic rats and mice, but DBM performance in these animals may not reflect performance in female animals or provide information on E2's role in the process. To gain insight, human DBM was implanted bilaterally in the gastrocnemius of twenty-four athymic female mice (10 mg/implant) and twenty-four athymic female rats (15 mg/implant). Eight animals in each group were sham-operated (SHAM), ovariectomized (OVX), or ovariectomized with E2-replacement (OVX+E2) via subcutaneous slow release capsules of 17beta-estradiol. OVX and OVX+E2 animals were pair-fed to SHAM animals. Four animals from each group were euthanized at 35 days and four at 56 days. Animal weight, uterine weight, and blood estrogen levels confirmed that pair feeding, ovariectomy, and E2 replacement were successful. Histological sections of implanted tissues were evaluated qualitatively for absence or presence of DBM, ossicle formation, and new bone or cartilage using a previously developed qualitative scoring system (QS) and by histomorphometry to obtain a quantitative assessment of osteoinduction. OVX mice had a small but significant QS decrease at 35 days compared to SHAM mice, confirmed by quantitative measurement of ossicle, marrow space, and new bone areas. The QS in rats was not affected by OVX but histomorphometry showed decreased new bone in OVX rats, which was restored by E2. The QS indicated that the number of new bone sites was not reduced by OVX in rats or mice at 56 days, but the relative amount of new bone v. marrow space was affected and differed with animal species. Residual DBM was less in OVX animals, indicating that DBM resorption was affected. Cartilage was present in rats but not in mice, suggesting that endochondral ossification was slower and indicating that bone graft studies in these species are not necessarily comparable. These results show the importance of E2 in human DBM-induced bone formation and suggest that E2 may be needed for clinical effectiveness in post-menopausal women.
Collapse
Affiliation(s)
- J McMillan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA
| | | | | | | | | | | |
Collapse
|
35
|
Bae HW, Zhao L, Kanim LEA, Wong P, Delamarter RB, Dawson EG. Intervariability and intravariability of bone morphogenetic proteins in commercially available demineralized bone matrix products. Spine (Phila Pa 1976) 2006; 31:1299-306; discussion 1307-8. [PMID: 16721289 DOI: 10.1097/01.brs.0000218581.92992.b7] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Enzyme-linked immunosorbent assay was used to detect bone morphogenetic proteins (BMPs) 2, 4, and 7 in 9 commercially available ("off the shelf") demineralized bone matrix (DBM) product formulations using 3 different manufacturer's production lots of each DBM formulation. OBJECTIVES To evaluate and compare the quantity of BMPs among several different DBM formulations (inter-product variability), as well as examine the variability of these proteins in different production lots within the same DBM formulation (intra-product variability). SUMMARY OF BACKGROUND DATA DBMs are commonly used to augment available bone graft in spinal fusion procedures. Surgeons are presented with an ever-increasing variety of commercially available human DBMs from which to choose. Yet, there is limited information on a specific DBM product's osteoinductive efficacy, potency, and constancy. METHODS There were protein extracts from each DBM sample separately dialyzed 4 times against distilled water at 4 degrees C for 48 hours. The amount of BMP-2, BMP-4, and BMP-7 was determined using enzyme-linked immunosorbent assay. RESULTS.: The concentrations of detected BMP-2 and BMP-7 were low for all DBM formulations, only nanograms of BMP were extracted from each gram of DBM (20.2-120.6 ng BMP-2/g DBM product; 54.2-226.8 ng BMP-7/g DBM). The variability of BMP concentrations among different lots of the same DBM formulation, intra-product variability, was higher than the variability of concentrations among different DBM formulations, inter-product variability (coefficient of variation range BMP-2 [16.34% to 76.01%], P < 0.01; BMP-7 [3.71% to 82.08%], P < 0.001). BMP-4 was undetectable. CONCLUSIONS The relative quantities of BMPs in DBMs are low, in the order of 1 x 10(-9) g of BMP/g of DBM. There is higher variability in concentration of BMPs among 3 different lots of the same DBM formulation than among different DBM formulations. This variability questions DBM products' reliability and, possibly, efficacy in providing consistent osteoinduction.
Collapse
Affiliation(s)
- Hyun W Bae
- Spine Research Foundation, Spine Institute at Saint John's Health Center, Santa Monica, CA 90404, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Eppley BL, Pietrzak WS, Blanton MW. Allograft and alloplastic bone substitutes: a review of science and technology for the craniomaxillofacial surgeon. J Craniofac Surg 2006; 16:981-9. [PMID: 16327544 DOI: 10.1097/01.scs.0000179662.38172.dd] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Bone healing is a complex and multifactorial process. As such, there are numerous steps in the process to which intervention can be directed. This has given rise to many bone graft technologies that have been used to regenerate bone, creating, perhaps, a bewildering array of options. The options that surgeons have the most familiarity with are the ones that have been available the longest (i.e., autograft and allograft). Although useful for the widest spectrum of clinical applications, limitations of these grafts has prompted the development of new materials. Demineralized bone matrix formulations and synthetic ceramic materials are now being used with greater frequency. These biomaterials have demonstrated their usefulness in facial plastic and reconstructive surgery with their ability to augment and replace portions of the craniofacial skeleton. The purpose of this article is to describe and discuss the allograft and alloplastic bone grafting technologies so that the reader can consider each in the context of the others and gain a better appreciation for how each fits into the universe of existing and emerging treatments for bone regeneration.
Collapse
Affiliation(s)
- Barry L Eppley
- Division of Plastic Surgery, Indiana School of Medicine, Indianapolis, Indiana, USA.
| | | | | |
Collapse
|
37
|
Pradel W, Eckelt U, Lauer G. Bone regeneration after enucleation of mandibular cysts: Comparing autogenous grafts from tissue-engineered bone and iliac bone. ACTA ACUST UNITED AC 2006; 101:285-90. [PMID: 16504859 DOI: 10.1016/j.tripleo.2005.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 04/29/2005] [Accepted: 06/09/2005] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The aim of this study was to compare bone regeneration after grafting enucleated mandibular cyst cavities using either autogenous osteoblasts cultured on a biomaterial or autogenous spongiose iliac bone. STUDY DESIGN Twenty patients with 22 mandibular cysts were assessed. Eleven cysts were filled in with tissue-engineered bone (autogenous osteblasts cultured on demineralized bone matrix Osteovit) and 11 with spongiose iliac bone as controls. Panoramic radiographs were taken preoperatively, immediately postoperatively, and 3, 6, and 12 months after surgery. Radiolucency was computer analyzed using gray-level histograms. RESULTS In both groups bone regeneration took place in a similar fashion. After 3 and 6 months there were few differences in bone density between the groups. However, in radiographic controls after 12 months ossification was considerably stronger in cysts grafted with tissue-engineered bone. CONCLUSION These results advocate for the clinical application of tissue-engineered bone as an alternative viable filling material for cysts.
Collapse
Affiliation(s)
- Winnie Pradel
- Department of Oral and Maxillofacial Surgery, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, Germany.
| | | | | |
Collapse
|
38
|
Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of bone: the reconstructive surgeon's point of view. J Cell Mol Med 2006; 10:7-19. [PMID: 16563218 PMCID: PMC3933098 DOI: 10.1111/j.1582-4934.2006.tb00287.x] [Citation(s) in RCA: 339] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 02/06/2006] [Indexed: 12/23/2022] Open
Abstract
Bone defects represent a medical and socioeconomic challenge. Different types of biomaterials are applied for reconstructive indications and receive rising interest. However, autologous bone grafts are still considered as the gold standard for reconstruction of extended bone defects. The generation of bioartificial bone tissues may help to overcome the problems related to donor site morbidity and size limitations. Tissue engineering is, according to its historic definition, an "interdisciplinary field that applies the principles of engineering and the life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function". It is based on the understanding of tissue formation and regeneration and aims to rather grow new functional tissues than to build new spare parts. While reconstruction of small to moderate sized bone defects using engineered bone tissues is technically feasible, and some of the currently developed concepts may represent alternatives to autologous bone grafts for certain clinical conditions, the reconstruction of large-volume defects remains challenging. Therefore vascularization concepts gain on interest and the combination of tissue engineering approaches with flap prefabrication techniques may eventually allow application of bone-tissue substitutes grown in vivo with the advantage of minimal donor site morbidity as compared to conventional vascularized bone grafts. The scope of this review is the introduction of basic principles and different components of engineered bioartificial bone tissues with a strong focus on clinical applications in reconstructive surgery. Concepts for the induction of axial vascularization in engineered bone tissues as well as potential clinical applications are discussed in detail.
Collapse
Affiliation(s)
- U Kneser
- Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Krankenhausstrasse 12, 91054 Erlangen Germany.
| | | | | | | |
Collapse
|
39
|
Pietrzak WS, Woodell-May J, McDonald N. Assay of Bone Morphogenetic Protein-2, -4, and -7 in Human Demineralized Bone Matrix. J Craniofac Surg 2006; 17:84-90. [PMID: 16432413 DOI: 10.1097/01.scs.0000179745.91165.73] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Demineralized bone matrix (DBM) is a widely used bone graft material that derives its osteoinductive potential from matrix-associated bone morphogenetic proteins (BMPs). Prior investigations have shown that the osteoinductive potential can vary widely, with influence from both donor and processing sources. Although it is plausible that donor variance in the BMP profile can be an important consideration, the few published studies available have given inconsistent and incomplete information about this. The goal was to (1) characterize the variance of BMP-2, BMP-4, and BMP-7 in fully demineralized DBM derived from 20 appropriately screened (Food and Drug Administration and the American Association of Tissue Banks criteria) donors (male and female, 17-65 years) and (2) using literature review, infer the potential for this to be an important source of variability in graft function. BMPs were extracted with 4 M guanidine hydrochloride, and levels of BMP-2, BMP-4, and BMP-7 were measured using enzyme-linked immunosorbent assay. Measured levels were as follows: BMP-2 = 21.4 +/- 12.0 ng/g DBM, BMP-4 = 5.45 +/- 2.04 ng/g DBM, and BMP-7 = 84.1 +/- 34.4 ng/g DBM, which were significantly different (P < 0.05). There was a positive linear correlation between BMP-2 and BMP-7 (P = 0.0227). DBM derived from female donors had significantly greater concentrations of BMP-2 and BMP-7 than did that derived from male donors (P = 0.0257 and 0.0245, respectively). There was no significant correlation between donor age and the levels of any of the measured BMPs. The magnitude of variance of BMP profile appears to reasonably well correspond to the variance in osteoinductive potential cited by others, suggesting the possibility of using this as a method of donor screening.
Collapse
|
40
|
Pietrzak WS, Perns SV, Keyes J, Woodell-May J, McDonald NM. Demineralized bone matrix graft: a scientific and clinical case study assessment. J Foot Ankle Surg 2005; 44:345-53. [PMID: 16210154 DOI: 10.1053/j.jfas.2005.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Osteoinductive demineralized bone matrix results from bone demineralization and is attributed to matrix-associated bone morphogenetic proteins. The osteoinductive potential can vary with donor. Many bioassay methods are available to screen donors, each with its own interpretation, so performance of more than one may be of value. Furthermore, little is known about the relationship between bioassay results and clinical outcomes. A study designed to meaningfully explore these issues would require assay of a large number of donors as well as clinical utilization in a large patient population. A preliminary study was undertaken to gain initial perspective. Using demineralized bone matrix derived from one 33-year-old female donor, 2 methods of bioassay and a clinical case study were performed. The levels of bone morphogenetic proteins 2, 4, and 7 in lyophilized demineralized bone matrix powder were measured (19.65 +/- 0.30 ng/g, 2.49 +/- 0.19 ng/g, and 82.03 +/- 6.89 ng/g, respectively). Also, putty (Osteostim DBM Putty), prepared from powder, was intramuscularly implanted in athymic rats and de novo bone formation quantified (6.7% +/- 3.5% new bone formation with 49% +/- 17% of the implant area associated with new bone formation). The putty, in conjunction with internal fixation, was used in the revision of a medial malleolar nonunion of an obese, 76-year-old woman. Radiographic union with excellent graft incorporation was achieved by 12 weeks postoperatively, with maintenance of an acceptable clinical result during the 14-month follow-up period. These results are interpreted in the broader context of demineralized bone grafting, in general, and an outline for further study is presented.
Collapse
|