1
|
Toledano-Osorio M, Osorio R, Bueno J, Vallecillo C, Vallecillo-Rivas M, Sanz M. Next-generation antibacterial nanopolymers for treating oral chronic inflammatory diseases of bacterial origin. Int Endod J 2024; 57:787-803. [PMID: 38340038 DOI: 10.1111/iej.14040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND 'Periodontitis' refers to periodontal destruction of connective tissue attachment and bone, in response to microorganisms forming subgingival biofilms on the root surface, while 'apical periodontitis' refers to periapical inflammatory processes occurring in response to microorganisms within the root canal system. The treatment of both diseases is based on the elimination of the bacterial challenge, though its predictability depends on the ability of disrupting these biofilms, what may need adjunctive antibacterial strategies, such as the next-generation antibacterial strategies (NGAS). From all the newly developed NGAS, the use of polymeric nanotechnology may pose a potential effective approach. Although some of these strategies have only been tested in vitro and in preclinical in vivo models, their use holds a great potential, and therefore, it is relevant to understand their mechanism of action and evaluate their scientific evidence of efficacy. OBJECTIVES To explore NGAS based on polymeric nanotechnology used for the potential treatment of periodontitis and apical periodontitis. METHOD A systemic search of scientific publications of adjunctive antimicrobial strategies using nanopolymers to treat periodontal and periapical diseases was conducted using The National Library of Medicine (MEDLINE by PubMed), The Cochrane Oral Health Group Trials Register, EMBASE and Web of Science. RESULTS Different polymeric nanoparticles, nanofibres and nanostructured hydrogels combined with antimicrobial substances have been identified in the periodontal literature, being the most commonly used nanopolymers of polycaprolactone, poly(lactic-co-glycolic acid) and chitosan. As antimicrobials, the most frequently used have been antibiotics, though other antimicrobial substances, such as metallic ions, peptides and naturally derived products, have also been added to the nanopolymers. CONCLUSION Polymeric nanomaterials containing antimicrobial compounds may be considered as a potential NGAS. Its relative efficacy, however, is not well understood since most of the existing evidence is derived from in vitro or preclinical in vivo studies.
Collapse
Affiliation(s)
- Manuel Toledano-Osorio
- Postgraduate Program of Specialization in Periodontology, Faculty of Dentistry, University Complutense of Madrid, Madrid, Spain
| | - Raquel Osorio
- Faculty of Dentistry, University of Granada, Granada, Spain
| | - Jaime Bueno
- Postgraduate Program of Specialization in Periodontology, Faculty of Dentistry, University Complutense of Madrid, Madrid, Spain
| | | | | | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
2
|
Jin H, Ji Y, Cui Y, Xu L, Liu H, Wang J. Simvastatin-Incorporated Drug Delivery Systems for Bone Regeneration. ACS Biomater Sci Eng 2021; 7:2177-2191. [PMID: 33877804 DOI: 10.1021/acsbiomaterials.1c00462] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Local drug delivery systems composed of biomaterials and osteogenic substances provide promising strategies for the reconstruction of large bone defects. In recent years, simvastatin has been studied extensively for its pleiotropic effects other than lowering of cholesterol, including its ability to induce osteogenesis and angiogenesis. Accordingly, several studies of simvastatin incorporated drug delivery systems have been performed to demonstrate the feasibility of such systems in enhancing bone regeneration. Therefore, this review explores the molecular mechanisms by which simvastatin affects bone metabolism and angiogenesis. The simvastatin concentrations that promote osteogenic differentiation are analyzed. Furthermore, we summarize and discuss a variety of simvastatin-loaded drug delivery systems that use different loading methods and materials. Finally, current shortcomings of and future development directions for simvastatin-loaded drug delivery systems are summarized. This review provides various advanced design strategies for simvastatin-incorporated drug delivery systems that can enhance bone regeneration.
Collapse
Affiliation(s)
- Hui Jin
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, P.R. China.,Department of Pain, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Youbo Ji
- Department of Pain, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Yutao Cui
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Li Xu
- Department of Orthopedics, Weihai Guanghua Hospital, Weihai 264200, P.R. China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| |
Collapse
|
3
|
Formulation of transdermal nanoemulsion gel drug delivery system of lovastatin and its in vivo characterization in glucocorticoid induced osteoporosis rat model. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
4
|
Kaur R, Ajitha M. Transdermal delivery of fluvastatin loaded nanoemulsion gel: Preparation, characterization and in vivo anti-osteoporosis activity. Eur J Pharm Sci 2019; 136:104956. [PMID: 31202895 DOI: 10.1016/j.ejps.2019.104956] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/20/2019] [Accepted: 06/12/2019] [Indexed: 01/10/2023]
Abstract
The objective of present study was to develop hydrogel based nanoemulsion (NE) drug delivery system for transdermal delivery and evaluate its potential in in vivo anti-osteoporotic activity. NE was prepared using aqueous phase titration method and characterized for droplet size, zeta potential and morphology. It was then formulated into hydrogel based NE gel using carbopol 940 as gelling agent. NE gel was evaluated for pH, viscosity, in vitro/ex vivo permeation studies and in vivo anti-osteoporotic activity. The results indicated formation of spherical, nano sized globules of NE ranging from 11.17 ± 0.24 to 128.8 ± 0.16 nm with polydispersity of <0.5. In vitro and ex vivo permeation studies showed significantly higher permeation of NE as well as NE gel in comparison to fluvastatin solution indicating that NE gel can effectively penetrate through skin layers. In vivo anti-osteoporotic results demonstrated formation of new bone in trabecular region of osteoporotic rat femurs through micro-CT scanning radiographs. Biomechanical strength testing demonstrated greater load bearing capacity of rat femurs in the treated animals in comparison with the osteoporotic group. Thus, developed NE gel formulation of fluvastatin demonstrated greater potential for transdermal delivery and in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Centre for Pharmaceutical Sciences, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad (JNTUH), Hyderabad, Telangana State, India.
| | - Makula Ajitha
- Centre for Pharmaceutical Sciences, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad (JNTUH), Hyderabad, Telangana State, India
| |
Collapse
|
5
|
Du F, Bobbala S, Yi S, Scott EA. Sequential intracellular release of water-soluble cargos from Shell-crosslinked polymersomes. J Control Release 2018; 282:90-100. [PMID: 29601932 DOI: 10.1016/j.jconrel.2018.03.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/13/2018] [Accepted: 03/25/2018] [Indexed: 12/21/2022]
Abstract
Polymer vesicles, i.e. polymersomes (PS), present unique nanostructures with an interior aqueous core that can encapsulate multiple independent cargos concurrently. However, the sequential release of such co-loaded actives remains a challenge. Here, we report the rational design and synthesis of oxidation-responsive shell-crosslinked PS with capability for the controlled, sequential release of encapsulated hydrophilic molecules and hydrogels. Amphiphilic brush block copolymers poly(oligo(ethylene glycol) methyl ether methacrylate)-b-poly(oligo(propylene sulfide) methacrylate) (POEGMA-POPSMA) were prepared to fabricate PS via self-assembly in aqueous solution. As a type of unique drug delivery vehicle, the interior of the PS was co-loaded with hydrophilic molecules and water-soluble poly(N-isopropylacrylamide) (PNIPAM) conjugates. Due to the thermosensitivity of PNIPAM, PNIPAM conjugates within the PS aqueous interior underwent a phase transition to form hydrogels in situ when the temperature was raised above the lower critical solution temperature (LCST) of PNIPAM. Via control of the overall shell permeability by oxidation, we realized the sequential release of two water-soluble payloads based on the assumption that hydrogels have much smaller membrane permeability than that of molecular cargos. The ability to control the timing of release of molecular dyes and PNIPAM-based hydrogels was also observed within live cells. Furthermore, leakage of hydrogels from the PS was effectively alleviated in comparison to molecular cargos, which would facilitate intracellular accumulation and prolonged retention of hydrogels within the cell cytoplasm. Thus, we demonstrate that the integration of responsive hydrogels into PS with crosslinkable membranes provides a facile and versatile technique to control the stability and release of water-soluble cargos for drug delivery purposes.
Collapse
Affiliation(s)
- Fanfan Du
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Sharan Bobbala
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Sijia Yi
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Evan Alexander Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
6
|
Russo E, Gaglianone N, Baldassari S, Parodi B, Croce I, Bassi AM, Vernazza S, Caviglioli G. Chitosan-clodronate nanoparticles loaded in poloxamer gel for intra-articular administration. Colloids Surf B Biointerfaces 2016; 143:88-96. [PMID: 26998870 DOI: 10.1016/j.colsurfb.2016.03.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/29/2016] [Accepted: 03/09/2016] [Indexed: 11/17/2022]
Abstract
This work was based on the study of an intra-articular delivery system constituted by a poloxamer gel vehiculating clodronate in chitosan nanoparticles. This system has been conceived to obtain a specific and controlled release of clodronate in the joints to reduce the arthritis rheumatoid degenerative effect. Clodronate (CLO) is a first-generation bisphosphonate with anti-inflammatory properties, inhibiting the cytokine and NO secretion from macrophages, therefore causing apoptosis in these cells. This is related to its ability to be metabolized by cells and converted into a cytotoxic intermediate as a non-hydrolysable analogue of ATP. Chitosan (CHI) was used to develop nanosystems, by ionotropic gelation induced by clodronate itself. A fractional factorial experimental design allowed us to obtain nanoparticles, the diameter of which ranged from 200 to 300nm. Glutaraldehyde was used to increase nanoparticle stability and modify the drug release profile. The zeta potential value of crosslinked nanopaparticles was 21.0mV±1.3, while drug loading was 31.0%±5.4 w/w; nanoparticle yield was 18.2%±1.8 w/w, the encapsulation efficiency was 48.8%±9.9 w/w. Nanoparticles were homogenously loaded in a poloxamer sol, and the drug delivery system is produced in-situ after local administration, when sol become gel at physiological temperature. The properties of poloxamer gels containing CHI-CLO nanoparticles, such as viscosity, gelation temperature and drug release properties, were evaluated. In vitro studies were conducted to evaluate the effects of these nanoparticles on a human monocytic cell line (THP1). The results showed that this drug delivery system is more efficient, with respect to the free drug, to counteract the inflammatory process characteristic of several degenerative diseases.
Collapse
Affiliation(s)
- E Russo
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - N Gaglianone
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - S Baldassari
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - B Parodi
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - I Croce
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - A M Bassi
- Department of Experimental Medicine, General Pathology, University of Genova, Via L.B. Alberti 2, 16132 Genova, Italy
| | - S Vernazza
- Department of Experimental Medicine, General Pathology, University of Genova, Via L.B. Alberti 2, 16132 Genova, Italy
| | - G Caviglioli
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| |
Collapse
|
7
|
Uskoković V. When 1+1>2: Nanostructured composites for hard tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:434-51. [PMID: 26354283 PMCID: PMC4567690 DOI: 10.1016/j.msec.2015.07.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/15/2015] [Accepted: 07/23/2015] [Indexed: 12/20/2022]
Abstract
Multicomponent, synergistic and multifunctional nanostructures have taken over the spotlight in the realm of biomedical nanotechnologies. The most prospective materials for bone regeneration today are almost exclusively composites comprising two or more components that compensate for the shortcomings of each one of them alone. This is quite natural in view of the fact that all hard tissues in the human body, except perhaps the tooth enamel, are composite nanostructures. This review article highlights some of the most prospective breakthroughs made in this research direction, with the hard tissues in main focus being those comprising bone, tooth cementum, dentin and enamel. The major obstacles to creating collagen/apatite composites modeled after the structure of bone are mentioned, including the immunogenicity of xenogeneic collagen and continuously failing attempts to replicate the biomineralization process in vitro. Composites comprising a polymeric component and calcium phosphate are discussed in light of their ability to emulate the soft/hard composite structure of bone. Hard tissue engineering composites created using hard material components other than calcium phosphates, including silica, metals and several types of nanotubes, are also discoursed on, alongside additional components deliverable using these materials, such as cells, growth factors, peptides, antibiotics, antiresorptive and anabolic agents, pharmacokinetic conjugates and various cell-specific targeting moieties. It is concluded that a variety of hard tissue structures in the body necessitates a similar variety of biomaterials for their regeneration. The ongoing development of nanocomposites for bone restoration will result in smart, theranostic materials, capable of acting therapeutically in direct feedback with the outcome of in situ disease monitoring at the cellular and subcellular scales. Progress in this research direction is expected to take us to the next generation of biomaterials, designed with the purpose of fulfilling Daedalus' dream - not restoring the tissues, but rather augmenting them.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
8
|
Abstract
A locally injectable system sequentially delivering an antiresorptive drug (clodronate) followed by an osteogenic agent (simvastatin) was hypothesized to improve femoral head microarchitecture, size, and shape compared with untreated or partial treatment groups in an established piglet osteonecrosis model. After 6 weeks, the clodronate+simvastatin treatment resulted in no collapse, microCT measurements and epiphyseal quotients within 10% of control, normal microstructure, and healthy histology. All other groups exhibited collapse, lower epiphyseal quotients and total femoral head volumes (P<0.05), and abnormal histology. This pilot study provides evidence of synergistic antiresorptive and osteogenic activities, which may prevent femoral head collapse in Perthes disease.
Collapse
|
9
|
Rambhia KJ, Ma PX. Controlled drug release for tissue engineering. J Control Release 2015; 219:119-128. [PMID: 26325405 DOI: 10.1016/j.jconrel.2015.08.049] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 11/19/2022]
Abstract
Tissue engineering is often referred to as a three-pronged discipline, with each prong corresponding to 1) a 3D material matrix (scaffold), 2) drugs that act on molecular signaling, and 3) regenerative living cells. Herein we focus on reviewing advances in controlled release of drugs from tissue engineering platforms. This review addresses advances in hydrogels and porous scaffolds that are synthesized from natural materials and synthetic polymers for the purposes of controlled release in tissue engineering. We pay special attention to efforts to reduce the burst release effect and to provide sustained and long-term release. Finally, novel approaches to controlled release are described, including devices that allow for pulsatile and sequential delivery. In addition to recent advances, limitations of current approaches and areas of further research are discussed.
Collapse
Affiliation(s)
- Kunal J Rambhia
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter X Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
10
|
Bayer EA, Gottardi R, Fedorchak MV, Little SR. The scope and sequence of growth factor delivery for vascularized bone tissue regeneration. J Control Release 2015; 219:129-140. [PMID: 26264834 DOI: 10.1016/j.jconrel.2015.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 12/21/2022]
Abstract
Bone regeneration is a complex process, that in vivo, requires the highly coordinated presentation of biochemical cues to promote the various stages of angiogenesis and osteogenesis. Taking inspiration from the natural healing process, a wide variety of growth factors are currently being released within next generation tissue engineered scaffolds (in a variety of ways) in order to heal non-union fractures and bone defects. This review will focus on the delivery of multiple growth factors to the bone regeneration niche, specifically 1) dual growth factor delivery signaling and crosstalk, 2) the importance of growth factor timing and temporal separation, and 3) the engineering of delivery systems that allow for temporal control over presentation of soluble growth factors. Alternative methods for growth factor presentation, including the use of gene therapy and platelet-rich plasma scaffolds, are also discussed.
Collapse
Affiliation(s)
- E A Bayer
- The University of Pittsburgh, Department of Bioengineering, USA; The University of Pittsburgh, The McGowan Institute for Regenerative Medicine, USA
| | - R Gottardi
- The University of Pittsburgh, Department of Chemical Engineering, USA; The University of Pittsburgh, Department of Orthopedic Surgery, USA; The University of Pittsburgh, The McGowan Institute for Regenerative Medicine, USA; RiMED Foundation, Palermo, Italy
| | - M V Fedorchak
- The University of Pittsburgh, Department of Bioengineering, USA; The University of Pittsburgh, Department of Chemical Engineering, USA; The University of Pittsburgh, Department of Ophthalmology, USA; The University of Pittsburgh, The McGowan Institute for Regenerative Medicine, USA
| | - S R Little
- The University of Pittsburgh, Department of Bioengineering, USA; The University of Pittsburgh, Department of Chemical Engineering, USA; The University of Pittsburgh, Department of Immunology, USA; The University of Pittsburgh, The McGowan Institute for Regenerative Medicine, USA.
| |
Collapse
|
11
|
Micellar carriers for the delivery of multiple therapeutic agents. Colloids Surf B Biointerfaces 2015; 135:291-308. [PMID: 26263217 DOI: 10.1016/j.colsurfb.2015.07.046] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 07/16/2015] [Accepted: 07/19/2015] [Indexed: 12/27/2022]
Abstract
Multi-drug therapy is described as a simultaneous or sequential administration of two or more drugs with similar or different mechanisms of action and is recognized as a more efficient solution to combat successfully, various ailments. Polymeric micelles (PMs) are self-assemblies of block copolymers providing numerous opportunities for drug delivery. To date various micellar formulations were studied for delivery of drugs, nutraceuticals and genes; a few of them are in clinical trials. It was observed that there is an immense need for the development of PMs embedding multiple therapeutic agents to combat various ailments, including cancers, HIV/AIDS, malaria, multiple sclerosis, hypertension, infectious diseases, cardiovascular and metabolic diseases, immune disorders and many psychiatric disorders. Several combinations of drug-drug, drug-nutraceutical, drug-gene and drug-siRNA explored to date are detailed in this review, with a special emphasis on their potential and future perspectives. A summary of various preparation methods, characterization techniques and applications of PMs are also provided. This review presents a holistic approach on multi-drug delivery using micellar carriers and emphasizes on the development of therapeutic hybrids embedding novel combinations for safer and effective therapy.
Collapse
|
12
|
Shah SR, Werlang CA, Kasper FK, Mikos AG. Novel applications of statins for bone regeneration. Natl Sci Rev 2014; 2:85-99. [PMID: 26543666 DOI: 10.1093/nsr/nwu028] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The use of statins for bone regeneration is a promising and growing area of research. Statins, originally developed to treat high cholesterol, are inhibitors of the enzyme 3-hydroxy-3-methylglutaryl, the rate-limiting enzyme of the mevalonate pathway. Because the mevalonate pathway is responsible for the synthesis of a wide variety of important biochemical molecules, including cholesterol and other isoprenoids, the effects of statins are pleiotropic. In particular, statins can greatly affect the process of bone turnover and regeneration via effects on important cell types, including mesenchymal stem cells, osteoblasts, endothelial cells, and osteoclasts. Statins have also been shown to have anti-inflammatory and antimicrobial properties that may be useful since infection can derail normal bone healing. This review will explore the pleiotropic effects of statins, discuss the current use of statins for bone regeneration, particularly with regard to biomaterials-based controlled delivery, and offer perspectives on the challenges and future directions of this emerging area of bone tissue engineering.
Collapse
Affiliation(s)
- Sarita R Shah
- Department of Bioengineering, Rice University, Houston, TX 77005-1892, USA
| | - Caroline A Werlang
- Department of Bioengineering, Rice University, Houston, TX 77005-1892, USA
| | - F Kurtis Kasper
- Department of Bioengineering, Rice University, Houston, TX 77005-1892, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX 77005-1892, USA ; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77251-1892, USA
| |
Collapse
|
13
|
Cao Y, Wang B, Wang Y, Lou D. Polymer-controlled core–shell nanoparticles: a novel strategy for sequential drug release. RSC Adv 2014. [DOI: 10.1039/c4ra03610g] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Immiscible and miscible liquids were utilized to fabricate PVP/PLGA and PCL/PLGA nanoparticles with a distinct core–shell structure by coaxial electrospray. Two different sequential drug release profiles from different nanoparticles were observed. The melanoma cells and endothelial cells can be sequentially targeted and killed by therapeutic agents released from nanoparticles.
Collapse
Affiliation(s)
- Yang Cao
- College of Bioengineering
- Chongqing University
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- Chongqing 400030, PR China
| | - Bochu Wang
- College of Bioengineering
- Chongqing University
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- Chongqing 400030, PR China
| | - Yazhou Wang
- College of Bioengineering
- Chongqing University
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- Chongqing 400030, PR China
| | - Deshuai Lou
- College of Bioengineering
- Chongqing University
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- Chongqing 400030, PR China
| |
Collapse
|
14
|
Lima AC, Custódio CA, Alvarez-Lorenzo C, Mano JF. Biomimetic methodology to produce polymeric multilayered particles for biotechnological and biomedical applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:2487-2486. [PMID: 23296984 DOI: 10.1002/smll.201202147] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/15/2012] [Indexed: 06/01/2023]
Affiliation(s)
- Ana Catarina Lima
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, Zona Industrial da Gandra, S. Claudio do Barco, 4806-909 Caldas das Taipas, Giomarães, Portugal
| | | | | | | |
Collapse
|
15
|
Gupta GK, Kumar A, Khedgikar V, Kushwaha P, Gautam J, Nagar GK, Gupta V, Verma A, Dwivedi AK, Misra A, Trivedi R, Mishra PR. Osteogenic efficacy enhancement of kaempferol through an engineered layer-by-layer matrix: a study in ovariectomized rats. Nanomedicine (Lond) 2013; 8:757-71. [DOI: 10.2217/nnm.12.171] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aim: A layer-by-layer matrix (LBL) comprising kaempferol (LBL–KEM) was prepared for improved osteogenic action. Materials & methods: The LBL–KEM consisted of alternate layers of sodium alginate and protamine sulfate, which were sequentially deposited on the preformed kaempferol (KEM)-loaded CaCO3 core (CaCO3–KEM) by LBL self-assembly. The LBL matrix developed was evaluated for layer growth by ζ-potential and size alterations after self-assembly of each layer. Its physicochemical properties and intestinal absorption pattern were characterized and its pharmacokinetic behavior, mineralization of bone marrow cells, bone mineral density, bone strength, microcrack formation and estrogenicity were evaluated after oral administration. Results: The entrapment efficiency of KEM was 94 ± 2% and the cumulative %KEM released from LBL–KEM was 19.2 and 63.5% at pH 1.4 and 7.4, respectively, after 24 h. Stepwise polyelectrolyte assembly onto initially positively charged particles (+21.2 mV) resulted in alterations between -28.5 and +10.9 mV. A final ζ-potential of -8.9 mV was obtained after terminal surface modification with sodium deoxycholate. Fluorescein isothiocyanate-labeled LBL matrix was diffused into the basolateral lacteal region upon oral administration to rats. The area under the KEM serum concentration curve following oral administration of LBL–KEM to rats was 2479 ± 682 ng·h/ml, nearly twofold higher than free KEM. The concentration–time profile in bone marrow indicated improved penetration and retention of KEM on administration of LBL–KEM. Treatment with LBL–KEM restored bone mineralization, bone mineral density, microcrack formation and empty osteocyte lacunae density in ovariectomized (OVx) rats, which was significantly (p < 0.05) improved in femoral diaphysea, tibial head and vertebrae compared with free KEM treatment. Administration of LBL–KEM to growing female rats for 4 weeks resulted in no estrogenicity when compared with OVx rats. Conclusion: The data suggests that LBL matrix enhanced drug delivery, improved pharmacokinetics and maintained better bone quality under OVx conditions. Original submitted 30 November 2011; Revised submitted 17 May 2012; Published online 14 January 2013
Collapse
Affiliation(s)
- Girish K Gupta
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, Chattar Manzil Palace, Lucknow 226-001, India
| | - Avinash Kumar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Chattar Manzil Palace, Lucknow 226-001, India
| | - Vikram Khedgikar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Chattar Manzil Palace, Lucknow 226-001, India
| | - Priyanka Kushwaha
- Division of Endocrinology, CSIR-Central Drug Research Institute, Chattar Manzil Palace, Lucknow 226-001, India
| | - Jyoti Gautam
- Division of Endocrinology, CSIR-Central Drug Research Institute, Chattar Manzil Palace, Lucknow 226-001, India
| | - Geet K Nagar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Chattar Manzil Palace, Lucknow 226-001, India
| | - Varsha Gupta
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, Chattar Manzil Palace, Lucknow 226-001, India
| | - Ashwni Verma
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, Chattar Manzil Palace, Lucknow 226-001, India
| | - Anil Kumar Dwivedi
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, Chattar Manzil Palace, Lucknow 226-001, India
| | - Amit Misra
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, Chattar Manzil Palace, Lucknow 226-001, India
| | - Ritu Trivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Chattar Manzil Palace, Lucknow 226-001, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, Chattar Manzil Palace, Lucknow 226-001, India.
| |
Collapse
|
16
|
Biomedical applications of bisphosphonates. J Control Release 2013; 167:175-88. [PMID: 23395668 DOI: 10.1016/j.jconrel.2013.01.032] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/24/2012] [Accepted: 01/30/2013] [Indexed: 02/08/2023]
Abstract
Since their discovery over 100 years ago, bisphosphonates have been used industrially as corrosion inhibitors and complexing agents. With the discovery of their pharmacological activity in the late 1960s, implicating their high affinity for hydroxyapatite, bisphosphonates have been employed in the treatment of bone diseases and as targeting agents for colloids and drugs. They have notably been investigated for the treatment of Paget's disease, osteoporosis, bone metastases, malignancy-associated hypercalcemia, and pediatric bone diseases. Currently, they are first-line medications for several of these diseases and are taken by millions of patients worldwide, mostly postmenopausal women. A major problem associated with their use is their low oral bioavailability. Several delivery systems have been proposed to improve their absorption and to direct them to sites other than bone tissues. Beyond their important pharmacological role, the medical applications of bisphosphonates are numerous. In addition, their metal-chelating properties have been exploited to coat and stabilize implants, nanoparticulates, and contrast agents. In this contribution, we review the pharmacological and clinical uses of bisphosphonates and highlight their novel applications in the pharmaceutical and biomedical fields.
Collapse
|