1
|
Lu X, Wang Y, Piao C, Li P, Cao L, Liu T, Ma Y, Wang H. Exosomes Derived from Adipose Mesenhymal Stem Cells Ameliorate Lipid Metabolism Disturbances Following Liver Ischemia-Reperfusion Injury in Miniature Swine. Int J Mol Sci 2024; 25:13069. [PMID: 39684778 DOI: 10.3390/ijms252313069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
The liver plays a crucial role in regulating lipid metabolism. Our study examined the impact of Exosomes derived from adipose mesenchymal stem cells (ADSCs-Exo) on lipid metabolism following liver ischemia-reperfusion injury (IRI) combined with partial hepatectomy. We developed a miniature swine model for a minimally invasive hemi-hepatectomy combined with liver IRI. In this study, we administered PBS, ADSCs-Exo, and adipose-derived stem cells (ADSCs) individually through the portal vein. Before and after surgery, we evaluated various factors including hepatocyte ultrastructure, lipid accumulation in liver tissue, and expression levels of genes and proteins associated with lipid metabolism. In addition, we measured serum and liver tissue levels of high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides (TG), and total cholesterol (CHOL). TEM and oil red O stain indicated a significant reduction in liver steatosis following ADSCs-Exo treatment, which also elevated serum levels of HDL, LDL, TG, and CHOL. Additionally, ADSCs-Exo have been shown to significantly decrease serum concentrations of HDL, LDL, TG, and CHOL in the liver (p < 0.05). Finally, ADSCs-Exo significantly downregulated lipid synthesis-related genes and proteins, including SREBP-1, SREBP-2, ACC1, and FASN (p < 0.05), while upregulating lipid catabolism-related genes and proteins, such as PPAR-α and ACOX1 (p < 0.05). ADSCs-Exo as a cell-free therapy highlights its therapeutic potential in hepatic lipid metabolism abnormalities.
Collapse
Affiliation(s)
- Xiangyu Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, China
| | - Yue Wang
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
| | - Chenxi Piao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, China
| | - Pujun Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, China
| | - Lei Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, China
| | - Tao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, China
| | - Yajun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, China
| |
Collapse
|
2
|
Bayram C, Ozturk S, Karaosmanoglu B, Gultekinoglu M, Taskiran EZ, Ulubayram K, Majd H, Ahmed J, Edirisinghe M. Microfluidic Fabrication of Gelatin-Nano Hydroxyapatite Scaffolds for Enhanced Control of Pore Size Distribution and Osteogenic Differentiation of Dental Pulp Stem Cells. Macromol Biosci 2024; 24:e2400279. [PMID: 39388643 DOI: 10.1002/mabi.202400279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/13/2024] [Indexed: 10/12/2024]
Abstract
The combination of gelatin and hydroxyapatite (HA) has emerged as a promising strategy in dental tissue engineering due to its favorable biocompatibility, mechanical properties, and ability to support cellular activities essential for tissue regeneration, rendering them ideal components for hard tissue applications. Besides, precise control over interconnecting porosity is of paramount importance for tissue engineering materials. Conventional methods for creating porous scaffolds frequently encounter difficulties in regulating pore size distribution. This study demonstrates the fabrication of gelatin-nano HA scaffolds with uniform porosity using a T-type junction microfluidic device in a single-step process. Significant improvements in control over the pore size distribution are achieved by regulating the flow parameters, resulting in effective and time-efficient manufacturing comparable in quality to the innovative 3D bioprinting techniques. The overall porosity of the scaffolds exceeded 60%, with a remarkably narrow size distribution. The incorporation of nano-HAinto 3D porous gelatin scaffolds successfully induced osteogenic differentiation in stem cells at both the protein and gene levels, as evidenced by the significant increase in osteocalcin (OCN), an important marker of osteogenic differentiation. The OCN levels are 26 and 43 times higher for gelatin and gelatin-HA scaffolds, respectively, compared to the control group.
Collapse
Affiliation(s)
- Cem Bayram
- Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara, 06800, Turkey
| | - Sukru Ozturk
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, 06100, Turkey
| | - Beren Karaosmanoglu
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, 06100, Turkey
| | - Merve Gultekinoglu
- Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara, 06800, Turkey
| | - Ekim Z Taskiran
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, 06100, Turkey
| | - Kezban Ulubayram
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, 06100, Turkey
| | - Hamta Majd
- Department of Mechanical Engineering, University College London (UCL), London, WC1E7JE, UK
| | - Jubair Ahmed
- Department of Mechanical Engineering, University College London (UCL), London, WC1E7JE, UK
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London (UCL), London, WC1E7JE, UK
| |
Collapse
|
3
|
Wei Y, Zheng Z, Zhang Y, Sun J, Xu S, Di X, Ding X, Ding G. Regulation of mesenchymal stem cell differentiation by autophagy. Open Med (Wars) 2024; 19:20240968. [PMID: 38799254 PMCID: PMC11117459 DOI: 10.1515/med-2024-0968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/29/2024] Open
Abstract
Autophagy, a process that isolates intracellular components and fuses them with lysosomes for degradation, plays an important cytoprotective role by eliminating harmful intracellular substances and maintaining cellular homeostasis. Mesenchymal stem cells (MSCs) are multipotent progenitor cells with the capacity for self-renewal that can give rise to a subset of tissues and therefore have potential in regenerative medicine. However, a variety of variables influence the biological activity of MSCs following their proliferation and transplantation in vitro. The regulation of autophagy in MSCs represents a possible mechanism that influences MSC differentiation properties under the right microenvironment, affecting their regenerative and therapeutic potential. However, a deeper understanding of exactly how autophagy is mobilized to function as well as clarifying the mechanisms by which autophagy promotes MSCs differentiation is still needed. Here, we review the current literature on the complex link between MSCs differentiation and autophagy induced by various extracellular or intracellular stimuli and the molecular targets that influence MSCs lineage determination, which may highlight the potential regulation of autophagy on MSCs' therapeutic capacity, and provide a broader perspective on the clinical application of MSCs in the treatment of a wide range of diseases.
Collapse
Affiliation(s)
- Yanan Wei
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Zejun Zheng
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Ying Zhang
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Jinmeng Sun
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Shuangshuang Xu
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Xinsheng Di
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Xiaoling Ding
- Clinical Competency Training Center, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Gang Ding
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| |
Collapse
|
4
|
Kim MJ, Park JH, Seok JM, Jung J, Hwang TS, Lee HC, Lee JH, Park SA, Byun JH, Oh SH. BMP-2-immobilized PCL 3D printing scaffold with a leaf-stacked structure as a physically and biologically activated bone graft. Biofabrication 2024; 16:025014. [PMID: 38306679 DOI: 10.1088/1758-5090/ad2537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
Although three-dimensional (3D) printing techniques are used to mimic macro- and micro-structures as well as multi-structural human tissues in tissue engineering, efficient target tissue regeneration requires bioactive 3D printing scaffolds. In this study, we developed a bone morphogenetic protein-2 (BMP-2)-immobilized polycaprolactone (PCL) 3D printing scaffold with leaf-stacked structure (LSS) (3D-PLSS-BMP) as a bioactive patient-tailored bone graft. The unique LSS was introduced on the strand surface of the scaffold via heating/cooling in tetraglycol without significant deterioration in physical properties. The BMP-2 adsorbed on3D-PLSS-BMPwas continuously released from LSS over a period of 32 d. The LSS can be a microtopographical cue for improved focal cell adhesion, proliferation, and osteogenic differentiation.In vitrocell culture andin vivoanimal studies demonstrated the biological (bioactive BMP-2) and physical (microrough structure) mechanisms of3D-PLSS-BMPfor accelerated bone regeneration. Thus, bioactive molecule-immobilized 3D printing scaffold with LSS represents a promising physically and biologically activated bone graft as well as an advanced tool for widespread application in clinical and research fields.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Ho Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Ji Min Seok
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 304-343, Republic of Korea
| | - Jiwoon Jung
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Tae Sung Hwang
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hee-Chun Lee
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials, Hannam University, Daejeon 34054, Republic of Korea
| | - Su A Park
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 304-343, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
5
|
Nambiar J, Jana S, Nandi SK. Strategies for Enhancing Vascularization of Biomaterial-Based Scaffold in Bone Regeneration. CHEM REC 2022; 22:e202200008. [PMID: 35352873 DOI: 10.1002/tcr.202200008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/12/2022] [Indexed: 12/29/2022]
Abstract
Despite the recent advances in reconstructive orthopedics; fracture union is a challenge to bone regeneration. Concurrent angiogenesis is a complex process governed by events, delicately entwined with osteogenesis. However, poorly perfused scaffolds have lower success rates; necessitating the need for a better vascular component, which is important for the delivery of nutrients, oxygen, waste elimination, recruitment of cells for optimal bone repair. This review highlights the latest strategies to promote biomaterial-based scaffold vascularization by incorporation of cells, growth factors, inorganic ions, etc. into natural or synthetic polymers, ceramic materials, or composites of organic and inorganic compounds. Furthermore, it emphasizes structural modifications, biophysical stimuli, and natural molecules to fabricate scaffolds aiding the genesis of dense vascularization following their implantation to manifest a compatible regenerative microenvironment without graft rejection.
Collapse
Affiliation(s)
- Jasna Nambiar
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, India
| | - Sonali Jana
- Department of Veterinary Physiology, West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, India
| |
Collapse
|
6
|
Steiner D, Reinhardt L, Fischer L, Popp V, Körner C, Geppert CI, Bäuerle T, Horch RE, Arkudas A. Impact of Endothelial Progenitor Cells in the Vascularization of Osteogenic Scaffolds. Cells 2022; 11:cells11060926. [PMID: 35326377 PMCID: PMC8946714 DOI: 10.3390/cells11060926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
The microvascular endothelial network plays an important role in osteogenesis, bone regeneration and bone tissue engineering. Endothelial progenitor cells (EPCs) display a high angiogenic and vasculogenic potential. The endothelialization of scaffolds with endothelial progenitor cells supports vascularization and tissue formation. In addition, EPCs enhance the osteogenic differentiation and bone formation of mesenchymal stem cells (MSCs). This study aimed to investigate the impact of EPCs on vascularization and bone formation of a hydroxyapatite (HA) and beta-tricalcium phosphate (ß-TCP)–fibrin scaffold. Three groups were designed: a scaffold-only group (A), a scaffold and EPC group (B), and a scaffold and EPC/MSC group (C). The HA/ß–TCP–fibrin scaffolds were placed in a porous titanium chamber permitting extrinsic vascularization from the surrounding tissue. Additionally, intrinsic vascularization was achieved by means of an arteriovenous loop (AV loop). After 12 weeks, the specimens were explanted and investigated by histology and CT. We were able to prove a strong scaffold vascularization in all groups. No differences regarding the vessel number and density were detected between the groups. Moreover, we were able to prove bone formation in the coimplantation group. Taken together, the AV loop is a powerful tool for vascularization which is independent from scaffold cellularization with endothelial progenitor cells’ prior implantation.
Collapse
Affiliation(s)
- Dominik Steiner
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.R.); (L.F.); (R.E.H.); (A.A.)
- Correspondence:
| | - Lea Reinhardt
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.R.); (L.F.); (R.E.H.); (A.A.)
| | - Laura Fischer
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.R.); (L.F.); (R.E.H.); (A.A.)
| | - Vanessa Popp
- Preclinical Imaging Platform Erlangen (PIPE), Institute of Radiology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (V.P.); (T.B.)
| | - Carolin Körner
- Department of Materials Science and Engineering, Institute of Science and Technology of Metals, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany;
| | - Carol I. Geppert
- Institute of Pathology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Tobias Bäuerle
- Preclinical Imaging Platform Erlangen (PIPE), Institute of Radiology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (V.P.); (T.B.)
| | - Raymund E. Horch
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.R.); (L.F.); (R.E.H.); (A.A.)
| | - Andreas Arkudas
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.R.); (L.F.); (R.E.H.); (A.A.)
| |
Collapse
|
7
|
Nokhbatolfoghahaei H, Bastami F, Farzad-Mohajeri S, Rezai Rad M, Dehghan MM, Bohlouli M, Farajpour H, Nadjmi N, Khojasteh A. Prefabrication technique by preserving a muscular pedicle from masseter muscle as an in vivo bioreactor for reconstruction of mandibular critical-sized bone defects in canine models. J Biomed Mater Res B Appl Biomater 2022; 110:1675-1686. [PMID: 35167181 DOI: 10.1002/jbm.b.35028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 11/08/2022]
Abstract
In vivo bioreactors serve as regenerative niches that improve vascularization and regeneration of bone grafts. This study has evaluated the masseter muscle as a natural bioreactor for βTCP or PCL/βTCP scaffolds, in terms of bone regeneration. The effect of pedicle preservation, along with sole, or MSC- or rhBMP2-combined application of scaffolds, has also been studied. Twenty-four mongrel dogs were randomly placed in six groups, including βTCP, βTCP/rhBMP2, βTCP/MSCs, PCL/βTCP, PCL/βTCP/rhBMP2, and PCL/βTCP/MSCs. During the first surgery, the scaffolds were implanted into the masseter muscle for being prefabricated. After 2 months, each group was divided into two subgroups prior to mandibular bone defect reconstruction; one with a preserved vascularized pedicle and one without. After 12 weeks, animals were euthanized, and new bone formation was evaluated using histological analysis. Histological analysis showed that all β-TCP scaffold groups had resulted in significantly greater rates of new bone formation, either with a pedicle surgical approach or non-pedicle surgical approach, comparing to their parallel groups of βTCP/PCL scaffolds (p ≤ .05). Pedicled β-TCP scaffold groups that were treated with either rhBMP2 (48.443% ± 0.250%) or MSCs (46.577% ± 0.601%) demonstrated the highest rates of new bone formation (p ≤ .05). Therefore, masseter muscle can be used as a local in vivo bioreactor with potential clinical advantages in reconstruction of human mandibular defects. In addition, scaffold composition, pedicle preservation, and treatment with MSCs or rhBMP2, influence new bone formation and scaffold degradation rates in the prefabrication technique.
Collapse
Affiliation(s)
- Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Bastami
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Farzad-Mohajeri
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Maryam Rezai Rad
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Mahboubeh Bohlouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hekmat Farajpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Nadjmi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Cranio-Maxillofacial Surgery/University Hospital, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Arash Khojasteh
- Department of Cranio-Maxillofacial Surgery/University Hospital, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
8
|
Nokhbatolfoghahaei H, Rad MR, Paknejad Z, Ardeshirylajimi A, Khojasteh A. Identification osteogenic signaling pathways following mechanical stimulation: A systematic review. Curr Stem Cell Res Ther 2021; 17:772-792. [PMID: 34615453 DOI: 10.2174/1574888x16666211006105915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION It has been shown that mechanical forces can induce or promote osteogenic differentiation as well as remodeling of the new created bone tissues. To apply this characteristic in bone tissue engineering, it is important to know which mechanical stimuli through which signaling pathway has a more significant impact on osteogenesis. METHODS In this systematic study, an electronic search was conducted using PubMed and Google Scholar databases. This study has been prepared and organized according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Included studies were first categorized according to the in vivo and in vitro studies. RESULTS Six types of mechanical stresses were used in these articles and the most commonly used mechanical force and cell source were tension and bone marrow-derived mesenchymal stem cells (BMMSCs), respectively. These forces were able to trigger twelve signaling pathways in which Wnt pathway was so prominent. CONCLUSION 1) Although specific signaling pathways are induced through specific mechanical forces, Wnt signaling pathways are predominantly activated by almost all types of force/stimulation, 2) All signaling pathways regulate expression of RUNX2, which is known as a master regulator of osteogenesis, 3) In Tension force, the mode of force administration, i.e, continuous or non-continuous tension is more important than the percentage of elongation.
Collapse
Affiliation(s)
- Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Maryam Rezai Rad
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Zahrasadat Paknejad
- Medical nanotechnology and tissue engineering research Center, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Abdolreza Ardeshirylajimi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Arash Khojasteh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| |
Collapse
|
9
|
Shi L, Tee BC, Sun Z. Effects of porcine bone marrow-derived platelet-rich plasma on bone marrow-derived mesenchymal stem cells and endothelial progenitor cells. Tissue Cell 2021; 71:101587. [PMID: 34273802 DOI: 10.1016/j.tice.2021.101587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022]
Abstract
This study investigated the abundance of pro-regenerative growth factors in bone marrow-derived platelet-rich plasma (BM-PRP) and their effects on bone marrow-derived mesenchymal stem cells (BM-MSC) and bone marrow-derived endothelial progenitor cells (BM-EPC). Four 4-5 months-old domestic pigs were included, and each underwent bone marrow aspiration from its humerus bones and processed into bone marrow aspiration concentrate (BMAC) samples. The plasma and cellular portions of BMAC were subsequently separated and collected. The concentration of growth factors including BMP-2, PDGF-BB, TGF-β1 and VEGF in the plasma portion was measured and compared between BM-PRP and bone marrow-derived platelet-poor plasma (BM-PPP). It was found that platelet count was significantly higher in BM-PRP than in BM-PPP, but the concentration of above-mentioned growth factors was not significantly different between BM-PRP and BM-PPP. As most existing literature has indicated the regenerative potency of PRP, this study focused on assessing the effect of BM-PRP treatment on BM-MSC and BM-EPC proliferation, osteogenic differentiation and angiogenesis capacity by comparing samples with 2.5% BM-PRP treatment and samples without BM-PRP treatment (control). In response to BM-PRP treatment, the cellular doubling time increased with culturing time and was significantly shorter in the BM-PRP-treated samples than in control samples. For osteogenic differentiation, BM-PRP-treated BM-MSCs demonstrated a time-dependent increase in alkaline phosphatase (ALP) activity and expression levels of osteogenic differentiation markers. For the expression of angiogenic genes, none of the differences reached statistical significance despite a tendency of stronger expression at day 18 in BM-PRP-treated BM-EPCs. In conclusion, this in vitro study suggests that most BMP-2, PDGF-BB, TGF-β1 and VEGF-A contained in BM-PRP are not platelet-released and BM-PRP may have some stimulation (less than 1-fold) for MSC, EPC proliferation and MSC osteogenic differentiation.
Collapse
Affiliation(s)
- Lei Shi
- Department of Pediatric Dentistry, Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China; Visiting Scholar, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Boon Ching Tee
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Zongyang Sun
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
10
|
Mangione F, Salmon B, EzEldeen M, Jacobs R, Chaussain C, Vital S. Characteristics of Large Animal Models for Current Cell-Based Oral Tissue Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:489-505. [PMID: 33882717 DOI: 10.1089/ten.teb.2020.0384] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The recent advances in the field of cell-based therapeutics open promising perspectives for oral tissue regeneration. The development of large animal models, which overcome the limits of the rodent models and allow to emulate clinical situations, is crucial for the validation of regenerative strategies to move toward clinical application. Currently, porcine, canine, and ovine models are mainly developed for oral regeneration and their specific characteristics have an impact on the outcomes of the studies. Thus, this systematic review investigates the application of porcine, canine, and ovine models in present cell-based oral regeneration, according to the species characteristics and the targeted tissue to regenerate. A customized search of PubMed, EMBASE, Scopus, and Web of Science databases from January 2015 to March 2020 was conducted. Relevant articles about cell-based oral tissues engineering in porcine, canine, and ovine models were evaluated. Among the evaluated articles, 58 relevant studies about cell-based oral regeneration in porcine, canine, and ovine models matched the eligibility criteria and were selected for full analysis. Porcine models, the most similar species with humans, were mostly used for bone and periodontium regeneration; tooth regeneration was reported only in pig, except for one study in dog. Canine models were the most transversal models, successfully involved for all oral tissue regeneration and notably in implantology. However, differences with humans and ethical concerns affect the use of these models. Ovine models, alternative to porcine and canine ones, were mainly used for bone and, scarcely, periodontium regeneration. The anatomy and physiology of these animals restrain their involvement. If consistency was found in defect specificities and cell trends among different species animal models of bone, dentin-pulp complex, or tooth regeneration, variability appeared in periodontium. Regeneration assessment methods were more elaborate in porcines and canines than in ovines. Risk of bias was low for selection, attrition and reporting, but unclear for performance and detection. Overall, if none of the large animal models can be considered an ideal one, they are of deemed importance for oral cell-based tissue engineering and researchers should consider their relevance to establish favorable conditions for a given preclinical cell-based therapeutics.
Collapse
Affiliation(s)
- Francesca Mangione
- URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), UFR Odontology, Université de Paris, Montrouge, France.,Henri Mondor Hospital, AP-HP, Créteil, France
| | - Benjamin Salmon
- URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), UFR Odontology, Université de Paris, Montrouge, France.,Bretonneau Hospital, AP-HP, Paris, France.,Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR, AP-HP, Paris, France
| | - Mostafa EzEldeen
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven, Leuven, Belgium.,Maxillofacial Surgery Department, University Hospitals Leuven, Leuven, Belgium.,Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Leuven, Belgium
| | - Reinhilde Jacobs
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven, Leuven, Belgium.,Maxillofacial Surgery Department, University Hospitals Leuven, Leuven, Belgium.,Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Catherine Chaussain
- URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), UFR Odontology, Université de Paris, Montrouge, France.,Bretonneau Hospital, AP-HP, Paris, France.,Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR, AP-HP, Paris, France
| | - Sibylle Vital
- URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), UFR Odontology, Université de Paris, Montrouge, France.,AP-HP, Hôpital Louis Mourier, DMU ESPRIT, Colombes, France
| |
Collapse
|
11
|
Oral Bone Tissue Regeneration: Mesenchymal Stem Cells, Secretome, and Biomaterials. Int J Mol Sci 2021; 22:ijms22105236. [PMID: 34063438 PMCID: PMC8156243 DOI: 10.3390/ijms22105236] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
In the last few decades, tissue engineering has become one of the most studied medical fields. Even if bone shows self-remodeling properties, in some cases, due to injuries or anomalies, bone regeneration can be required. In particular, oral bone regeneration is needed in the dentistry field, where the functional restoration of tissues near the tooth represents a limit for many dental implants. In this context, the application of biomaterials and mesenchymal stem cells (MSCs) appears promising for bone regeneration. This review focused on in vivo studies that evaluated bone regeneration using biomaterials with MSCs. Different biocompatible biomaterials were enriched with MSCs from different sources. These constructs showed an enhanced bone regenerative power in in vivo models. However, we discussed also a future perspective in tissue engineering using the MSC secretome, namely the conditioned medium and extracellular vesicles. This new approach has already shown promising results for bone tissue regeneration in experimental models.
Collapse
|
12
|
Xu H, Wang C, Liu C, Peng Z, Li J, Jin Y, Wang Y, Guo J, Zhu L. Cotransplantation of mesenchymal stem cells and endothelial progenitor cells for treating steroid-induced osteonecrosis of the femoral head. Stem Cells Transl Med 2021; 10:781-796. [PMID: 33438370 PMCID: PMC8046137 DOI: 10.1002/sctm.20-0346] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/14/2020] [Accepted: 12/06/2020] [Indexed: 11/20/2022] Open
Abstract
Steroid-induced osteonecrosis of the femoral head (ONFH) is characterized by decreased osteogenesis, angiogenesis, and increased adipogenesis. While bone tissue engineering has been widely investigated to treat ONFH, its therapeutic effects remain unsatisfactory. Therefore, further studies are required to determine optimal osteogenesis, angiogenesis and adipogenesis in the necrotic area of the femoral head. In our study, we developed a carboxymethyl chitosan/alginate/bone marrow mesenchymal stem cell/endothelial progenitor cell (CMC/ALG/BMSC/EPC) composite implant, and evaluated its ability to repair steroid-induced ONFH. Our in vitro studies showed that BMSC and EPC coculture displayed enhanced osteogenic and angiogenic differentiation. When compared with single BMSC cultures, adipogenic differentiation in coculture systems was reduced. We also fabricated a three-dimensional (3D) CMC/ALG scaffold for loading cells, using a lyophilization approach, and confirmed its good cell compatibility characteristics, that is, high porosity, low cytotoxicity and favorable cell adhesion. 3D coculture of BMSCs and EPCs also promoted secretion of osteogenic and angiogenic factors. Then, we established an rabbit model of steroid-induced ONFH. The CMC/ALG/BMSC/EPC composite implant was transplanted into the bone tunnel of the rabbit femoral head after core decompression (CD) surgery. Twelve weeks later, radiographical and histological analyses revealed CMC/ALG/BMSC/EPC composite implants had facilitated the repair of steroid-induced ONFH, by promoting osteogenesis and angiogenesis, and reducing adipogenesis when compared with CD, CMC/ALG, CMC/ALG/BMSC and CMC/ALG/EPC groups. Thus, our data show that cotransplantation of BMSCs and EPCs in 3D scaffolds is beneficial in treating steroid-induced ONFH.
Collapse
Affiliation(s)
- Haixia Xu
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Chengqiang Wang
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Chun Liu
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Ziyue Peng
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Jianjun Li
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Yanglei Jin
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Yihan Wang
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Jiasong Guo
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
- Department of Histology and EmbryologySouthern Medical UniversityGuangzhouPeople's Republic of China
- Key Laboratory of Tissue Construction and Detection of Guangdong ProvinceGuangzhouPeople's Republic of China
- Institute of Bone BiologyAcademy of Orthopaedics, Guangdong ProvinceGuangzhouPeople's Republic of China
| | - Lixin Zhu
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| |
Collapse
|
13
|
Vascular Endothelial Growth Factor and Mesenchymal Stem Cells Revealed Similar Bone Formation to Allograft in a Sheep Model. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6676609. [PMID: 33763484 PMCID: PMC7946458 DOI: 10.1155/2021/6676609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/07/2021] [Accepted: 02/25/2021] [Indexed: 01/08/2023]
Abstract
Introduction Mesenchymal stem cells (MSCs) and vascular endothelial growth factor (VEGF) are key factors in bone regeneration. Further stimulation should establish an enhanced cell environment optimal for vessel evolvement and hereby being able to attract bone-forming cells. The aim of this study was to generate new bone by using MSCs and VEGF, being able to stimulate growth equal to allograft. Methods Eight Texel/Gotland sheep had four titanium implants in a size of 10 × 12 mm inserted into bilateral distal femurs, containing a 2 mm gap. In the gap, autologous 3 × 106 MSCs seeded on hydroxyapatite (HA) granules in combination with 10 ng, 100 ng, and 500 ng VEGF release/day were added. After 12 weeks, the implant-bone blocks were harvested, embedded, and sectioned for histomorphometric analysis. Bone formation and mechanical fixation were evaluated. Blood samples were collected for the determination of bone-related biomarkers and VEGF in serum at weeks 0, 1, 4, 8, and 12. Results The combination of 3 × 106 MSCs with 10 ng, 100 ng, and 500 ng VEGF release/day exhibited similar amount of bone formation within the gap as allograft (P > 0.05). Moreover, no difference in mechanical fixation was observed between the groups (P > 0.05). Serum biomarkers showed no significant difference compared to baseline (all P > 0.05). Conclusion MSCs and VEGF exhibit significant bone regeneration, and their bone properties equal to allograft, with no systemic increase in osteogenic markers or VEGF with no visible side effects. This study indicates a possible new approach into solving the problem of insufficient allograft, in larger bone defects.
Collapse
|
14
|
Cun X, Hosta-Rigau L. Topography: A Biophysical Approach to Direct the Fate of Mesenchymal Stem Cells in Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2070. [PMID: 33092104 PMCID: PMC7590059 DOI: 10.3390/nano10102070] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022]
Abstract
Tissue engineering is a promising strategy to treat tissue and organ loss or damage caused by injury or disease. During the past two decades, mesenchymal stem cells (MSCs) have attracted a tremendous amount of interest in tissue engineering due to their multipotency and self-renewal ability. MSCs are also the most multipotent stem cells in the human adult body. However, the application of MSCs in tissue engineering is relatively limited because it is difficult to guide their differentiation toward a specific cell lineage by using traditional biochemical factors. Besides biochemical factors, the differentiation of MSCs also influenced by biophysical cues. To this end, much effort has been devoted to directing the cell lineage decisions of MSCs through adjusting the biophysical properties of biomaterials. The surface topography of the biomaterial-based scaffold can modulate the proliferation and differentiation of MSCs. Presently, the development of micro- and nano-fabrication techniques has made it possible to control the surface topography of the scaffold precisely. In this review, we highlight and discuss how the main topographical features (i.e., roughness, patterns, and porosity) are an efficient approach to control the fate of MSCs and the application of topography in tissue engineering.
Collapse
Affiliation(s)
| | - Leticia Hosta-Rigau
- DTU Health Tech, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark;
| |
Collapse
|
15
|
Dreyer CH, Kjaergaard K, Ding M, Qin L. Vascular endothelial growth factor for in vivo bone formation: A systematic review. J Orthop Translat 2020; 24:46-57. [PMID: 32642428 PMCID: PMC7334443 DOI: 10.1016/j.jot.2020.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/29/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To achieve optimal bone formation one of the most influential parameters has been mentioned to be adequate blood supply. Vascular endothelial growth factor (VEGF) is hereby of particular interest in bone regeneration, because of its primary ability to induce neovascularization and chemokine affection for endothelial cells (EC), and is considered to be the main regulator of vascular formation. However, the growth factor has yet to be implemented in a clinical setting in orthopaedic intervention surgery. We hypothesised that the development of VEGF in vivo for bone formation in the last decade had progressed towards clinical application since the latest systematic review from 2008. OBJECTIVE This systematic review recapped the last 13 years of in vivo bone regeneration using vascular endothelial growth factor (VEGF). METHOD A total of 1374 articles were identified using the PubMed search string (vegf or "vascular endothelial growth factor") and (osteogen∗ or "bone formation" or "bone regeneration"). By 3 selection phases 24 published articles were included by the criteria of being in vivo, using only VEGF for bone formation, published after 2007 and written in English. Articles in vitro, written in different languages than English and older than 2007 was excluded. The most recent systematic review on this subject was published in 2008, with the latest included study from 01 to 11-2007. All included studies were classified based on animal, type of defect, scaffold, control group, type of VEGF, release rate, dosage of VEGF, time of evaluation and results. Each study was evaluated for risk of bias by modified CAMARADES quality assessment for the use in experimental animal studies. The score was calculated by peer review journal publication, use of control group, randomisation of groups, justified VEGF dosage, blinding of results, details on animal model, sample size calculation, comply with ethics and no conflict of interest. RESULTS No clinical trials or human application studies were obtained from our search. Experimentally, 11 articles using solely VEGF for bone formation had a group or a timepoint significantly better than the corresponding control group. 18 articles revealed no significant difference of VEGF compared to the control group and 1 article reported a significant decreased bone growth using VEGF compared to control. CONCLUSION Based on these results no clinical studies have yet been performed. However, indications in the best use of VEGF from experimental studies could be made towards that the optimal release is within the first three weeks, in defect models, with the best effect before eight weeks. Future designs should incorporate this with standardised and reproducible models for verification towards clinical practice. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE This systematic review aims to assess the existing literature to focus on methodologies and outcomes that can provide future knowledge regarding the solitary use of VEGF for bone regeneration in a clinical setting.
Collapse
Affiliation(s)
- Chris H. Dreyer
- Orthopaedic Research Laboratory, Department of Orthopaedics & Traumatology, Odense University Hospital, Department of Clinical Research, University of Southern Denmark, 5000, Odense C, Denmark
- Musculoskeletal Research Laboratory, Department of Orthopaedic Surgery & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- Acute Medicine, Department of Emergency Medicine, Slagelse Hospital, Slagelse, Denmark
| | - Kristian Kjaergaard
- Orthopaedic Research Laboratory, Department of Orthopaedics & Traumatology, Odense University Hospital, Department of Clinical Research, University of Southern Denmark, 5000, Odense C, Denmark
| | - Ming Ding
- Orthopaedic Research Laboratory, Department of Orthopaedics & Traumatology, Odense University Hospital, Department of Clinical Research, University of Southern Denmark, 5000, Odense C, Denmark
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedic Surgery & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
16
|
Niermeyer WL, Rodman C, Li MM, Chiang T. Tissue engineering applications in otolaryngology-The state of translation. Laryngoscope Investig Otolaryngol 2020; 5:630-648. [PMID: 32864434 PMCID: PMC7444782 DOI: 10.1002/lio2.416] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/06/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
While tissue engineering holds significant potential to address current limitations in reconstructive surgery of the head and neck, few constructs have made their way into routine clinical use. In this review, we aim to appraise the state of head and neck tissue engineering over the past five years, with a specific focus on otologic, nasal, craniofacial bone, and laryngotracheal applications. A comprehensive scoping search of the PubMed database was performed and over 2000 article hits were returned with 290 articles included in the final review. These publications have addressed the hallmark characteristics of tissue engineering (cellular source, scaffold, and growth signaling) for head and neck anatomical sites. While there have been promising reports of effective tissue engineered interventions in small groups of human patients, the majority of research remains constrained to in vitro and in vivo studies aimed at furthering the understanding of the biological processes involved in tissue engineering. Further, differences in functional and cosmetic properties of the ear, nose, airway, and craniofacial bone affect the emphasis of investigation at each site. While otolaryngologists currently play a role in tissue engineering translational research, continued multidisciplinary efforts will likely be required to push the state of translation towards tissue-engineered constructs available for routine clinical use. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
| | - Cole Rodman
- The Ohio State University College of MedicineColumbusOhioUSA
| | - Michael M. Li
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Tendy Chiang
- Department of OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
17
|
Native Bovine Hydroxyapatite Powder, Demineralised Bone Matrix Powder, and Purified Bone Collagen Membranes Are Efficient in Repair of Critical-Sized Rat Calvarial Defects. MATERIALS 2020; 13:ma13153393. [PMID: 32751921 PMCID: PMC7436118 DOI: 10.3390/ma13153393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022]
Abstract
Here we evaluated the efficacy of bone repair using various native bovine biomaterials (refined hydroxyapatite (HA), demineralised bone matrix (DBM), and purified bone collagen (COLL)) as compared with commercially available bone mineral and bone autografts. We employed a conventional critical-sized (8 mm diameter) rat calvarial defect model (6-month-old male Sprague–Dawley rats, n = 72 in total). The artificial defect was repaired using HA, DBM, COLL, commercially available bone mineral powder, bone calvarial autograft, or remained unfilled (n = 12 animals per group). Rats were euthanised 4 or 12 weeks postimplantation (n = 6 per time point) with the subsequent examination to assess the extent, volume, area, and mineral density of the repaired tissue by means of microcomputed tomography and hematoxylin and eosin staining. Bovine HA and DBM powder exhibited excellent repair capability similar to the autografts and commercially available bone mineral powder while COLL showed higher bone repair rate. We suggest that HA and DBM powder obtained from bovine bone tissue can be equally applied for the repair of bone defects and demonstrate sufficient potential to be implemented into clinical studies.
Collapse
|
18
|
Wang Z, Han L, Sun T, Wang W, Li X, Wu B. Osteogenic and angiogenic lineage differentiated adipose-derived stem cells for bone regeneration of calvarial defects in rabbits. J Biomed Mater Res A 2020; 109:538-550. [PMID: 32515158 DOI: 10.1002/jbm.a.37036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
Cell sheet techniques are widely used in bone engineering. However, vascularization remains a challenge in fabricating vascularized engineered bone. The goal of this study was to induce adipose-derived stem cell (ADSC) osteogenic and angiogenic lineage differentiation and investigate the use of bidiretionally differentiated ADSCs for bone regeneration. ADSCs were cultured to form an osteogenic cell sheet. Other ADSCs were induced to differentiate into endothelial progenitor cells (EPCs), which were identified and characterized by morphological observation and CD31 immunofluorescent staining. Then, the ADSC sheet-EPC complexes were implanted subcutaneously into nude mice, while ADSC sheets alone were implanted as a control. After 8 weeks of transplantation, microcomputed tomography (micro-CT) and histological observation were used to assess bone formation. We then implanted the complexes in calvarial defects in rabbits and assessed bone repair by micro-CT and histological analysis. The ADSC sheets consisted of multiple layers of cells and extracellular matrix. The obtained EPCs formed capillary-like structures and expressed the specific antigen marker CD31. The osteogenic ADSC sheet-EPC complexes formed dense and well-vascularized new bone tissue at 8 weeks after implantation. Bone density was significantly lower in the control group than in the complex group (p < .05). In addition, the reconstruction of calvarial defects in rabbits in complex group was obviously greater than that in the control group (p < .05). These results suggested that the approach of engineering bone tissue with bidiretionally differentiated ADSCs enabled bone regeneration, thus offering a promising strategy for repairing bone defects.
Collapse
Affiliation(s)
- Zhifa Wang
- School of Stomatology, Southern Medical University, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China.,Department of Stomatology, General Hospital of Southern Theater of PLA, Guangzhou, China
| | - Leng Han
- Department of Pathology, General Hospital of Southern Theater of PLA, Guangzhou, China
| | - Tianyu Sun
- School of Stomatology, Southern Medical University, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Weijian Wang
- Department of Stomatology, General Hospital of Southern Theater of PLA, Guangzhou, China
| | - Xiao Li
- Department of Stomatology, General Hospital of Southern Theater of PLA, Guangzhou, China
| | - Buling Wu
- School of Stomatology, Southern Medical University, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|
19
|
Pereira HF, Cengiz IF, Silva FS, Reis RL, Oliveira JM. Scaffolds and coatings for bone regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:27. [PMID: 32124052 DOI: 10.1007/s10856-020-06364-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/13/2020] [Indexed: 05/28/2023]
Abstract
Bone tissue has an astonishing self-healing capacity yet only for non-critical size defects (<6 mm) and clinical intervention is needed for critical-size defects and beyond that along with non-union bone fractures and bone defects larger than critical size represent a major healthcare problem. Autografts are, still, being used as preferred to treat large bone defects. Mostly, due to the presence of living differentiated and progenitor cells, its osteogenic, osteoinductive and osteoconductive properties that allow osteogenesis, vascularization, and provide structural support. Bone tissue engineering strategies have been proposed to overcome the limited supply of grafts. Complete and successful bone regeneration can be influenced by several factors namely: the age of the patient, health, gender and is expected that the ideal scaffold for bone regeneration combines factors such as bioactivity and osteoinductivity. The commercially available products have as their main function the replacement of bone. Moreover, scaffolds still present limitations including poor osteointegration and limited vascularization. The introduction of pores in scaffolds are being used to promote the osteointegration as it allows cell and vessel infiltration. Moreover, combinations with growth factors or coatings have been explored as they can improve the osteoconductive and osteoinductive properties of the scaffold. This review focuses on the bone defects treatments and on the research of scaffolds for bone regeneration. Moreover, it summarizes the latest progress in the development of coatings used in bone tissue engineering. Despite the interesting advances which include the development of hybrid scaffolds, there are still important challenges that need to be addressed in order to fasten translation of scaffolds into the clinical scenario. Finally, we must reflect on the main challenges for bone tissue regeneration. There is a need to achieve a proper mechanical properties to bear the load of movements; have a scaffolds with a structure that fit the bone anatomy.
Collapse
Affiliation(s)
- Helena Filipa Pereira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
- Center for Micro-Electro Mechanical Systems, University of Minho, Azurém Campus, 4800-058, Guimarães, Portugal.
| | - Ibrahim Fatih Cengiz
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, Barco, 4805-017, Guimarães, Portugal
| | - Filipe Samuel Silva
- Center for Micro-Electro Mechanical Systems, University of Minho, Azurém Campus, 4800-058, Guimarães, Portugal
| | - Rui Luís Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, Barco, 4805-017, Guimarães, Portugal
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, Barco, 4805-017, Guimarães, Portugal
| |
Collapse
|
20
|
Fabrication and characterization of dextran/nanocrystalline β-tricalcium phosphate nanocomposite hydrogel scaffolds. Int J Biol Macromol 2020; 148:434-448. [PMID: 31953173 DOI: 10.1016/j.ijbiomac.2020.01.112] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 01/02/2023]
Abstract
Design of bioactive three-dimensional scaffolds to support bone tissue repair and regeneration become a key area of research in tissue engineering. Herein, porous hybrid hydrogels composed of dextran incorporated with nanocrystalline β-tricalcium phosphate (β-TCP) particles were tailor made as scaffolds for bone tissue engineering. β-TCP was successfully introduced within the dextran networks crosslinked through intermolecular ionic interactions and hydrogen bonding confirmed by FTIR spectroscopy. The effect of β-TCP content on equilibrium water uptake and swelling kinetics of composite hydrogels was investigated. It was found that the homogeneous distribution of β-TCP nanoparticles through the hydrogel matrix contributes to higher porosity and swelling capacity. In depth swelling measurements revealed that while in the early stage of swelling, water diffusion follows the Fick's law, for longer time swelling behavior of hydrogels undergo the second order kinetics. XRD measurements represented the formation of apatite layer on the surface of nanocomposite hydrogels after immersion in the SBF solution, which implies their bioactivity. Cell culture assays confirmed biocompatibility of the developed hybrid hydrogels in vitro. The obtained results converge to offer dextran/β-TCP nanocomposite hydrogels as promising scaffolds for bone regeneration applications.
Collapse
|
21
|
Xing F, Duan X, Liu M, Chen J, Long C, Chen R, Sun J, Wu S, Chen L, Xiang Z. [Construction and preliminary study on biological characteristics of composite cell sheets of mesenchymal stem cells and endothelial progenitor cells derived from peripheral blood]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:109-115. [PMID: 31939245 DOI: 10.7507/1002-1892.201901087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To separate peripheral blood mesenchymal stem cells (PBMSC) and peripheral blood endothelial progenitor cells (PBEPC) from peripheral blood, and investigate the biological characteristics of composite cell sheets of PBMSC and PBEPC. Methods The peripheral blood of healthy adult New Zealand white rabbits was extracted and PBMSC and PBEPC were separated by density gradient centrifugation. Morphological observation and identification of PBMSC and PBEPC were performed. The 3rd generation of PBMSC and PBEPC were used to construct a composite cell sheet at a ratio of 1∶1, and the 3rd generation of PBMSC was used to construct a single cell sheet as control. The distributions of cells in two kinds of cell sheets were observed by HE staining. In addition, the expression of alkaline phosphatase (ALP), osteocalcin (OCN), and vascular endothelial growth factor (VEGF) in the supernatants of cell sheets were observed by ELISA at 1, 5, and 10 days after osteogenic induction. Results The morphology of PBMSC was spindle-shaped or polygonal, and PBMSC had good abilities of osteogenic and adipogenic differentiation. The morphology of PBEPC was paved stone-like, and the tube-forming test of PBEPC was positive. Two kinds of cell sheets were white translucent. The results of HE staining showed that the composite cell sheet had more cell layers and higher cell density than the single cell sheet. The expressions of ALP, OCN, and VEGF in the supernatant of the two groups of cell sheets increased with the time of induction. The expression of OCN in the group of composite cell sheet was significantly higher than that in the group of single cell sheet on the 5th and 10th day, ALP on the 10th day was significantly higher than that in the group of single cell sheet, VEGF expression on the 1st, 5th, and 10th day was significantly higher than that in the group of single cell sheet, all showing significant differences ( P<0.05), and there was no significant difference between the two groups at other time points ( P>0.05). Conclusion PBMSC have stable differentiation ability, and they have good application prospects because of their minimally invasive access. Composite cell membranes constructed by co-culture of two kinds of cells and induction of membrane formation provides a new idea and exploration for tissue defect repair.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Xin Duan
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Ming Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Jialei Chen
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Cheng Long
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Ran Chen
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Jiachen Sun
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Shuang Wu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Li Chen
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Zhou Xiang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
22
|
Fahimipour F, Bastami F, Khoshzaban A, Jahangir S, Eslaminejad MB, Khayyatan F, Safiaghdam H, Sadooghi Y, Safa M, Jafarzadeh Kashi TS, Dashtimoghadam E, Tayebi L. Critical-sized bone defects regeneration using a bone-inspired 3D bilayer collagen membrane in combination with leukocyte and platelet-rich fibrin membrane (L-PRF): An in vivo study. Tissue Cell 2019; 63:101326. [PMID: 32223953 DOI: 10.1016/j.tice.2019.101326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 11/18/2022]
Abstract
OBJECTIVES We aim to develop a 3D-bilayer collagen (COL) membrane reinforced with nano beta-tricalcium-phosphate (nβ-TCP) particles and to evaluate its bone regeneration in combination with leukocyte-platelet-rich fibrin (L-PRF) in vivo. BACKGROUND DATA L-PRF has exhibited promising results as a cell carrier in bone regeneration in a number of clinical studies, however there are some studies that did not confirm the positive results of L-PRF application. METHODS Mechanical & physiochemical characteristics of the COL/nβ-TCP membrane (1/2 & 1/4) were tested. Proliferation and osteogenic differentiation of seeded cells on bilayer collagen/nβ-TCP thick membrane was examined. Then, critical-sized calvarial defects in 8 white New Zealand rabbits were filled with either Col, Col/nβ-TCP, Col/nβ-TCP combined with L-PRF membrane, or left empty. New bone formation (NBF) was measured histomorphometrically 4 & 8 weeks postoperatively. RESULTS Compressive modulus increases while porosity decreases with higher β-TCP concentrations. Mechanical properties improve, with 89 % porosity (pore size ∼100 μm) in the bilayer-collagen/nβ-TCP membrane. The bilayer design also enhances the proliferation and ALP activity. In vivo study shows no significant difference among test groups at 4 weeks, but Col/nβ-TCP + L-PRF demonstrates more NBF compared to others (P < 0.05) after 8 weeks. CONCLUSION The bilayer-collagen/nβ-TCP thick membrane shows promising physiochemical in vitro results and significant NBF, as ¾ of the defect is filled with lamellar bone when combined with L-PRF membrane.
Collapse
Affiliation(s)
- Farahnaz Fahimipour
- Dental Biomaterials Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran; Marquette University School of Dentistry, Milwaukee, WI 53233, USA; Department of Chemistry, University of North Carolina at Chapel Hill, NC, USA
| | - Farshid Bastami
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Oral and Maxillofacial Surgery Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahad Khoshzaban
- Dental Biomaterials Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran; Iranian Tissue Bank and Research Center, Imam Khomeini Medical Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran; Arcazistsazeh Research Center& Industry complex, Tehran, Iran
| | - Shahrbanoo Jahangir
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fahimeh Khayyatan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hannaneh Safiaghdam
- Students Research Committee, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yeganeh Sadooghi
- Dental Biomaterials Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Safa
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh S Jafarzadeh Kashi
- Dental Biomaterials Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran; Iranian Tissue Bank and Research Center, Imam Khomeini Medical Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Erfan Dashtimoghadam
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA; Department of Chemistry, University of North Carolina at Chapel Hill, NC, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| |
Collapse
|
23
|
Farshadi M, Johari B, Erfani Ezadyar E, Gholipourmalekabadi M, Azami M, Madanchi H, Haramshahi SMA, Yari A, Karimizade A, Nekouian R, Samadikuchaksaraei A. Nanocomposite scaffold seeded with mesenchymal stem cells for bone repair. Cell Biol Int 2019; 43:1379-1392. [PMID: 30811084 DOI: 10.1002/cbin.11124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/23/2019] [Indexed: 01/24/2023]
Abstract
The mechanical property of bone tissue scaffolds is one of the most important aspects in bone tissue engineering that has remained problematic. In our previous study, we fabricated a three-dimensional scaffold from nano-hydroxyapatite/gelatin (nHA/Gel) and investigated its efficiency in promoting bone regeneration both in vitro and in vivo. In the present study, the effect of adding silicon carbide (SiC) on the mechanical and biological behaviors of the nHA/Gel/SiC and bone regeneration in vivo were determined. nHA and SiC were synthesized and characterized by the X-ray diffraction pattern and transmission electron microscope image. Layer solvent casting, freeze drying, and lamination techniques were applied to prepare these scaffolds. Then, the biocompatibility and cell adhesion behavior of the synthesized nHA/Gel/SiC scaffolds were investigated. For in vivo studies, rats were categorized into three groups: blank defect, blank scaffold, and rat bone marrow mesenchymal stem cells (rBM-MSCs)/scaffold. After 1, 4, and 12 weeks post-injury, the rats were sacrificed and the calvaria were harvested. Sections with a thickness of 5 µm thickness were prepared and stained with hematoxylin-eosin and Masson's Trichrome, and immunohistochemistry was performed. Our results showed that SiC effectively increased the mechanical properties of the nHA/Gel/SiC scaffold. No significant differences were observed in biocompatibility, cell adhesion, and cytotoxicity of the nHA/Gel/SiC in comparison with the nHA/Gel nanocomposite. Based on histological and immunohistochemical studies, both osteogenesis and collagenization were significantly higher in the rBM-MSCs/scaffold group, quantitatively and qualitatively. The present study strongly suggests the potential of SiC as an alternative strategy to improve the mechanical and biological properties of bone tissue engineering scaffolds, and shows that the pre-seeded nHA/Gel/SiC scaffold with rBM-MSCs improves osteogenesis in the engineered bone implant.
Collapse
Affiliation(s)
- Maryam Farshadi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behrooz Johari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Erfani Ezadyar
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Madanchi
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed Mohammad Amin Haramshahi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abazar Yari
- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Ayoob Karimizade
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Nekouian
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.,Pediatrics Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Science, Tehran, Iran
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal Stem Cells for Regenerative Medicine. Cells 2019; 8:E886. [PMID: 31412678 PMCID: PMC6721852 DOI: 10.3390/cells8080886] [Citation(s) in RCA: 654] [Impact Index Per Article: 130.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
In recent decades, the biomedical applications of mesenchymal stem cells (MSCs) have attracted increasing attention. MSCs are easily extracted from the bone marrow, fat, and synovium, and differentiate into various cell lineages according to the requirements of specific biomedical applications. As MSCs do not express significant histocompatibility complexes and immune stimulating molecules, they are not detected by immune surveillance and do not lead to graft rejection after transplantation. These properties make them competent biomedical candidates, especially in tissue engineering. We present a brief overview of MSC extraction methods and subsequent potential for differentiation, and a comprehensive overview of their preclinical and clinical applications in regenerative medicine, and discuss future challenges.
Collapse
Affiliation(s)
- Yu Han
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Xuezhou Li
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yanbo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | - Yuping Han
- Department of Urology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
25
|
Yang Q, Pinto VMR, Duan W, Paxton EE, Dessauer JH, Ryan W, Lopez MJ. In vitro Characteristics of Heterogeneous Equine Hoof Progenitor Cell Isolates. Front Bioeng Biotechnol 2019; 7:155. [PMID: 31355191 PMCID: PMC6637248 DOI: 10.3389/fbioe.2019.00155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/10/2019] [Indexed: 12/12/2022] Open
Abstract
Damage to an ectodermal-mesodermal interface like that in the equine hoof and human finger nail bed can permanently alter tissue structure and associated function. The purpose of this study was to establish and validate in vitro culture of primary progenitor cell isolates from the ectodermal-mesodermal tissue junction in equine hooves, the stratum internum, with and without chronic inflammation known to contribute to lifelong tissue defects. The following were evaluated in hoof stratum internum cell isolates up to 5 cell passages (P): expansion capacity by cell doublings and doubling time; plasticity with multi-lineage differentiation and colony-forming unit (CFU) frequency percentage; immunophenotype with immunocytochemistry and flow cytometry; gene expression with RT-PCR; and ultrastructure with transmission electron microscopy. The presence of keratin (K)14, 15 and K19 as well as cluster of differentiation (CD)44 and CD29 was determined in situ with immunohistochemistry. To confirm in vivo extracellular matrix (ECM) formation, cell-scaffold (polyethylene glycol/poly-L-lactic acid and tricalcium phosphate/hydroxyapatite) constructs were evaluated with scanning electron microscopy 9 weeks after implantation in athymic mice. Cultured cells had characteristic progenitor cell morphology, expansion, CFU frequency percentage and adipocytic, osteoblastic, and neurocytic differentiation capacity. CD44, CD29, K14, K15 and K19 proteins were present in native hoof stratum internum. Cultured cells also expressed K15, K19 and desmogleins 1 and 3. Gene expression of CD105, CD44, K14, K15, sex determining region Y-box 2 (SOX2) and octamer-binding transcription factor 4 (OCT4) was confirmed in vitro. Cultured cells had large, eccentric nuclei, elongated mitochondria, and intracellular vacuoles. Scaffold implants with cells contained fibrous ECM 9 weeks after implantation compared to little or none on acellular scaffolds. In vitro expansion and plasticity and in vivo ECM deposition of heterogeneous, immature cell isolates from the ectodermal-mesodermal tissue interface of normal and chronically inflamed hooves are typical of primary cell isolates from other adult tissues, and they appear to have both mesodermal and ectodermal qualities in vitro. These results establish a unique cell culture model to target preventative and restorative therapies for ectodermal-mesodermal tissue junctions.
Collapse
Affiliation(s)
- Qingqiu Yang
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Vanessa Marigo Rocha Pinto
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Wei Duan
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Erica E Paxton
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Jenna H Dessauer
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - William Ryan
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Mandi J Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
26
|
Fahimipour F, Dashtimoghadam E, Mahdi Hasani-Sadrabadi M, Vargas J, Vashaee D, Lobner DC, Jafarzadeh Kashi TS, Ghasemzadeh B, Tayebi L. Enhancing cell seeding and osteogenesis of MSCs on 3D printed scaffolds through injectable BMP2 immobilized ECM-Mimetic gel. Dent Mater 2019; 35:990-1006. [PMID: 31027908 PMCID: PMC7193177 DOI: 10.1016/j.dental.2019.04.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Design of bioactive scaffolds with osteogenic capacity is a central challenge in cell-based patient-specific bone tissue engineering. Efficient and spatially uniform seeding of (stem) cells onto such constructs is vital to attain functional tissues. Herein we developed heparin functionalized collagen gels supported by 3D printed bioceramic scaffolds, as bone extracellular matrix (ECM)-mimetic matrices. These matrices were designed to enhance cell seeding efficiency of mesenchymal stem cells (MSCs) as well as improve their osteogenic differentiation through immobilized bone morphogenic protein 2 (BMP2) to be used for personalized bone regeneration. METHODS A 3D gel based on heparin-conjugated collagen matrix capable of immobilizing recombinant human bone morphogenic protein 2 (BMP2) was synthesized. Isolated dental pulp Mesenchymal stem cells (MSCs) were then encapsulated into the bone ECM microenvironment to efficiently and uniformly seed a bioactive ceramic-based scaffold fabricated using additive manufacturing technique. The designed 3D cell-laden constructs were comprehensively investigated trough in vitro assays and in vivo study. RESULTS In-depth rheological characterizations of heparin-conjugated collagen gel revealed that elasticity of the matrix is significantly improved compared with freely incorporated heparin. Investigation of the MSCs laden collagen-heparin hydrogels revealed their capability to provide spatiotemporal bioavailability of BMP2 while suppressing the matrix contraction over time. The in vivo histology and real-time polymerase chain reaction (qPCR) analysis showed that the designed construct supported the osteogenic differentiation of MSCs and induced the ectopic bone formation in rat model. SIGNIFICANCE The presented hybrid constructs combine bone ECM chemical cues with mechanical function providing an ideal 3D microenvironment for patient-specific bone tissue engineering and cell therapy applications. The implemented methodology in design of ECM-mimetic 3D matrix capable of immobilizing BMP2 to improve seeding efficiency of customized scaffolds can be exploited for other bioactive molecules.
Collapse
Affiliation(s)
- Farahnaz Fahimipour
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA; Dental Biomaterials Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Mahdi Hasani-Sadrabadi
- Parker H. Petit Institute for Bioengineering and Bioscience, G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prothodontics, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Jessica Vargas
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Daryoosh Vashaee
- Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606, USA
| | - Douglas C Lobner
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Tahereh S Jafarzadeh Kashi
- Dental Biomaterials Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Ghasemzadeh
- Department of Biomedical Sciences, Integrative Neuroscience Research Center, Marquette University, Milwaukee, WI 53201, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA.
| |
Collapse
|
27
|
Purohit SD, Bhaskar R, Singh H, Yadav I, Gupta MK, Mishra NC. Development of a nanocomposite scaffold of gelatin–alginate–graphene oxide for bone tissue engineering. Int J Biol Macromol 2019; 133:592-602. [DOI: 10.1016/j.ijbiomac.2019.04.113] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 12/27/2022]
|
28
|
Akhlaghi F, Hesami N, Rad MR, Nazeman P, Fahimipour F, Khojasteh A. Improved bone regeneration through amniotic membrane loaded with buccal fat pad-derived MSCs as an adjuvant in maxillomandibular reconstruction. J Craniomaxillofac Surg 2019; 47:1266-1273. [PMID: 31337570 DOI: 10.1016/j.jcms.2019.03.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/29/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Human amniotic membranes (HAMs), as a biological membrane with healing, osteogenic, and cell therapy potential, has been in the spotlight to enhance the outcomes of treating bone defects. Present study aims to clinically assess the potential of HAM loaded with buccal fat pad-derived stem cells (BFSCs) as an osteogenic coverage for onlay bone grafts to maxillomandibular bone defects. MATERIALS AND METHODS Nine patients with jaw bone defects were enrolled in the present study. The patients were allocated to two study groups: Iliac crest bone graft with HAM coverage (n = 5), and Iliac bone grafts covered with HAM loaded with BFSCs (n = 4). Five months following the grafting and prior to implant placement, cone beam computed tomography was performed for radiomorphometric analysis. RESULTS The mean increase in bone width was found to be significantly greater in the HAM + BFSCs group (4.42 ± 1.03 mm versus 3.07 ± 0.73 mm, p < 0.05). Further, the changes in vertical dimension were greater in the HAM + BFSCs group (4.66 ± 1.06 mm versus 4.14 ± 1.03 mm, p > 0.05). CONCLUSION Combined use of HAM with mesenchymal stem cells may enhance bone regeneration specifically in the horizontal dimension. Moreover, this methodology reduces the amount of harvested autogenous bone and diminish secondary bone resorption.
Collapse
Affiliation(s)
- Fahimeh Akhlaghi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Hesami
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezai Rad
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pantea Nazeman
- Department of Periodontics, University of Washington, Seattle, WA, USA
| | - Farahnaz Fahimipour
- Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Arash Khojasteh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Is Impregnation of Xenograft with Caffeine Effective on Bone Healing Rate in Mandibular Defects? A Pilot Histological Animal Study. J Maxillofac Oral Surg 2019; 19:85-92. [PMID: 31988569 DOI: 10.1007/s12663-019-01221-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/23/2019] [Indexed: 10/27/2022] Open
Abstract
Introduction and Aim The aim of this study was to evaluate the effect of two concentrations of caffeine (1.5% and 3%) powder added to Bio-Oss xenograft on bone healing rate of iatrogenic mandibular defects in dogs. Materials and Method The researchers implemented a pilot study on ten male adult mongrel dogs. Two 4-mm circular critical-sized defects were trephined on each side of the mandibular body (a total of 4 defects for each dog). One of the defects remained empty as a control group. The other three defects in each case were randomly filled with 1.5% or 3% caffeinated Bio-Oss or pure Bio-Oss. The mandible specimens were sent for histological and histomorphometric assessments, 4 months postoperatively. Our predictor variable was the type of bone substitute. The study outcomes were new bone formation, angiogenesis, and fibrosis. The p value was set at 0.05 using SPSS 16. Results The histological assessment showed that the administration of 1.5% caffeinated Bio-Oss to mandibular defects caused more angiogenesis and more new bone formation as well as less fibrosis compared to the other groups (p < 0.05). Conclusion This study suggested that the application of 1.5% caffeinated Bio-Oss in bone defects of dogs resulted in the higher new bone formation. However, further clinical trials are needed to support its relevancy.
Collapse
|
30
|
Nikpour P, Salimi-Kenari H, Fahimipour F, Rabiee SM, Imani M, Dashtimoghadam E, Tayebi L. Dextran hydrogels incorporated with bioactive glass-ceramic: Nanocomposite scaffolds for bone tissue engineering. Carbohydr Polym 2018; 190:281-294. [DOI: 10.1016/j.carbpol.2018.02.083] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/13/2018] [Accepted: 02/26/2018] [Indexed: 12/22/2022]
|
31
|
Regenerative Medicine Applications of Mesenchymal Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1089:115-141. [PMID: 29767289 DOI: 10.1007/5584_2018_213] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A major research challenge is to develop therapeutics that assist with healing damaged tissues and organs because the human body has limited ability to restore the majority of these tissues and organs to their original state. Tissue engineering (TE) and regenerative medicine (RM) promises to offer efficient therapeutic biological strategies that use mesenchymal stem cells (MSCs). MSCs possess the capability for self-renewal, multilineage differentiation, and immunomodulatory properties that make them attractive for clinical applications. They have been extensively investigated in numerous preclinical and clinical settings in an attempt to overcome their challenges and promote tissue regeneration and repair. This review explores the exciting opportunities afforded by MSCs, their desirable properties as cellular therapeutics in RM, and implicates their potential use in clinical practice. Here, we attempt to identify challenges and issues that determine the clinical efficacy of MSCs as treatment for skeletal and non-skeletal tissues.
Collapse
|
32
|
Collagenous matrix supported by a 3D-printed scaffold for osteogenic differentiation of dental pulp cells. Dent Mater 2017; 34:209-220. [PMID: 29054688 DOI: 10.1016/j.dental.2017.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/24/2017] [Accepted: 10/02/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVE A systematic characterization of hybrid scaffolds, fabricated based on combinatorial additive manufacturing technique and freeze-drying method, is presented as a new platform for osteoblastic differentiation of dental pulp cells (DPCs). METHODS The scaffolds were consisted of a collagenous matrix embedded in a 3D-printed beta-tricalcium phosphate (β-TCP) as the mineral phase. The developed construct design was intended to achieve mechanical robustness owing to 3D-printed β-TCP scaffold, and biologically active 3D cell culture matrix pertaining to the Collagen extracellular matrix. The β-TCP precursor formulations were investigated for their flow-ability at various temperatures, which optimized for fabrication of 3D printed scaffolds with interconnected porosity. The hybrid constructs were characterized by 3D laser scanning microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and compressive strength testing. RESULTS The in vitro characterization of scaffolds revealed that the hybrid β-TCP/Collagen constructs offer superior DPCs proliferation and alkaline phosphatase (ALP) activity compared to the 3D-printed β-TCP scaffold over three weeks. Moreover, it was found that the incorporation of TCP into the Collagen matrix improves the ALP activity. SIGNIFICANCE The presented results converge to suggest the developed 3D-printed β-TCP/Collagen hybrid constructs as a new platform for osteoblastic differentiation of DPCs for craniomaxillofacial bone regeneration.
Collapse
|
33
|
Fahimipour F, Rasoulianboroujeni M, Dashtimoghadam E, Khoshroo K, Tahriri M, Bastami F, Lobner D, Tayebi L. 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering. Dent Mater 2017; 33:1205-1216. [PMID: 28882369 DOI: 10.1016/j.dental.2017.06.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/28/2017] [Accepted: 06/22/2017] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Vascularization is a critical process during bone regeneration/repair and the lack of tissue vascularization is recognized as a major challenge in applying bone tissue engineering methods for cranial and maxillofacial surgeries. The aim of our study is to fabricate a vascular endothelial growth factor (VEGF)-loaded gelatin/alginate/β-TCP composite scaffold by 3D printing method using a computer-assisted design (CAD) model. METHODS The paste, composed of (VEGF-loaded PLGA)-containing gelatin/alginate/β-TCP in water, was loaded into standard Nordson cartridges and promptly employed for printing the scaffolds. Rheological characterization of various gelatin/alginate/β-TCP formulations led to an optimized paste as a printable bioink at room temperature. RESULTS The in vitro release kinetics of the loaded VEGF revealed that the designed scaffolds fulfill the bioavailability of VEGF required for vascularization in the early stages of tissue regeneration. The results were confirmed by two times increment of proliferation of human umbilical vein endothelial cells (HUVECs) seeded on the scaffolds after 10 days. The compressive modulus of the scaffolds, 98±11MPa, was found to be in the range of cancellous bone suggesting their potential application for craniofacial tissue engineering. Osteoblast culture on the scaffolds showed that the construct supports cell viability, adhesion and proliferation. It was found that the ALP activity increased over 50% using VEGF-loaded scaffolds after 2 weeks of culture. SIGNIFICANCE The 3D printed gelatin/alginate/β-TCP scaffold with slow releasing of VEGF can be considered as a potential candidate for regeneration of craniofacial defects.
Collapse
Affiliation(s)
- F Fahimipour
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | | | - E Dashtimoghadam
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - K Khoshroo
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - M Tahriri
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - F Bastami
- Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - D Lobner
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - L Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA; Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK.
| |
Collapse
|
34
|
Shanbhag S, Pandis N, Mustafa K, Nyengaard JR, Stavropoulos A. Cell Cotransplantation Strategies for Vascularized Craniofacial Bone Tissue Engineering: A Systematic Review and Meta-Analysis of Preclinical In Vivo Studies. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:101-117. [PMID: 27733094 DOI: 10.1089/ten.teb.2016.0283] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The regenerative potential of tissue-engineered bone constructs may be enhanced by in vitro coculture and in vivo cotransplantation of vasculogenic and osteogenic (progenitor) cells. The objective of this study was to systematically review the literature to answer the focused question: In animal models, does cotransplantation of osteogenic and vasculogenic cells enhance bone regeneration in craniofacial defects, compared with solely osteogenic cell-seeded constructs? Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, electronic databases were searched for controlled animal studies reporting cotransplantation of endothelial cells (ECs) with mesenchymal stem cells (MSCs) or osteoblasts in craniofacial critical size defect (CSD) models. Twenty-two studies were included comparing outcomes of MSC/scaffold versus MSC+EC/scaffold (co)transplantation in calvarial (n = 15) or alveolar (n = 7) CSDs of small (rodents, rabbits) and large animal (minipigs, dogs) models. On average, studies presented with an unclear to high risk of bias. MSCs were derived from autologous, allogeneic, xenogeneic, or human (bone marrow, adipose tissue, periosteum) sources; in six studies, ECs were derived from MSCs by endothelial differentiation. In most studies, MSCs and ECs were cocultured in vitro (2-17 days) before implantation. Coculture enhanced MSC osteogenic differentiation and an optimal MSC:EC seeding ratio of 1:1 was identified. Alloplastic copolymer or composite scaffolds were most often used for in vivo implantation. Random effects meta-analyses were performed for histomorphometric and radiographic new bone formation (%NBF) and vessel formation in rodents' calvarial CSDs. A statistically significant benefit in favor of cotransplantation versus MSC-only transplantation for radiographic %NBF was observed in rat calvarial CSDs (weighted mean difference 7.80% [95% confidence interval: 1.39-14.21]); results for histomorphometric %NBF and vessel formation were inconclusive. Overall, heterogeneity in the meta-analyses was high (I2 > 80%). In summary, craniofacial bone regeneration is enhanced by cotransplantation of vasculogenic and osteogenic cells. Although the direction of treatment outcome is in favor of cotransplantation strategies, the magnitude of treatment effect does not seem to be of relevance, unless proven otherwise in clinical studies.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- 1 Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen , Bergen, Norway .,2 Department of Periodontology, Faculty of Odontology, Malmö University , Malmö, Sweden
| | - Nikolaos Pandis
- 3 Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern , Bern, Switzerland
| | - Kamal Mustafa
- 1 Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen , Bergen, Norway
| | - Jens R Nyengaard
- 4 Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, Aarhus University , Aarhus, Denmark
| | - Andreas Stavropoulos
- 2 Department of Periodontology, Faculty of Odontology, Malmö University , Malmö, Sweden
| |
Collapse
|
35
|
Kagami H. Potential application of tissue engineering for the reconstruction of facial bones. Oral Dis 2016; 23:689-691. [DOI: 10.1111/odi.12581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- H Kagami
- Department of Oral and Maxillofacial Surgery; School of Dentistry; Matsumoto Dental University; Shiojiri
- Department of Advanced Medical Science; IMSUT Hospital; The Institute of Medical Science; The University of Tokyo; Tokyo Japan
| |
Collapse
|