1
|
Fandzloch M, Augustyniak AW, Trzcińska-Wencel J, Golińska P, Roszek K. A new MOF@bioactive glass composite reinforced with silver nanoparticles - a new approach to designing antibacterial biomaterials. Dalton Trans 2024; 53:10928-10937. [PMID: 38888155 DOI: 10.1039/d4dt01190b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Multifunctional materials that combine antimicrobial properties with the ability to stimulate bone formation are needed to overcome the problem of infected bone defects. As a novel approach, a new composite based on bioactive glass nanoparticles in a simple system of SiO2-CaO (BG) coated with NH4[Cu3(μ3-OH)(μ3-4-carboxypyrazolato)3] (Cu-MOF) with additionally anchored silver nanoparticles (AgNPs) was proposed. Ag@Cu-MOF@BG obtained by the spin coating approach in the form of a disc was characterized using PXRD, ATR-FTIR, XPS, ICP-OES, and TEM. Importantly, the material retained its bioactivity, although ion exchange in the bioactive glass administered as a disc is limited. Hydroxyapatite (HA) formation was identified in TEM images after 7 days of immersion of the composite in a physiological-like buffer (pH 7.4, 37 °C). The Cu and Ag contents of Ag@Cu-MOF@BG were as low as 0.013 and 0.018 wt% respectively, but the slow release of the AgNPs ensured its antibacterial nature. Ag@Cu-MOF@BG exhibited antibacterial activity against all tested bacteria (E. coli, S. aureus, P. aeruginosa, and K. pneumoniae) with the diameter of the inhibition zones of their growth between 8 and 10 mm and the reduction index determined to be ≥3. Moreover, the biocompatibility of the new composite has been demonstrated, as shown by cell culture assays with human dermal fibroblasts (HDFs). The results from the migration test also proved that the HDF cell's phenotypic properties were not changed, and the cell adhesion and migration ability were the same as in control indirect assays.
Collapse
Affiliation(s)
- Marzena Fandzloch
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422, Wrocław, Poland.
| | - Adam W Augustyniak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Joanna Trzcińska-Wencel
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
| | - Patrycja Golińska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
| | - Katarzyna Roszek
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
2
|
Ji Y, Mao Y, Lin H, Wang Y, Zhao P, Guo Y, Gu L, Fu C, Chen X, Lv Z, Wang N, Li Q, Bei C. Acceleration of bone repairation by BMSCs overexpressing NGF combined with NSA and allograft bone scaffolds. Stem Cell Res Ther 2024; 15:194. [PMID: 38956719 PMCID: PMC11218317 DOI: 10.1186/s13287-024-03807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Repairation of bone defects remains a major clinical problem. Constructing bone tissue engineering containing growth factors, stem cells, and material scaffolds to repair bone defects has recently become a hot research topic. Nerve growth factor (NGF) can promote osteogenesis of bone marrow mesenchymal stem cells (BMSCs), but the low survival rate of the BMSCs during transplantation remains an unresolved issue. In this study, we investigated the therapeutic effect of BMSCs overexpression of NGF on bone defect by inhibiting pyroptosis. METHODS The relationship between the low survival rate and pyroptosis of BMSCs overexpressing NGF in localized inflammation of fractures was explored by detecting pyroptosis protein levels. Then, the NGF+/BMSCs-NSA-Sca bone tissue engineering was constructed by seeding BMSCs overexpressing NGF on the allograft bone scaffold and adding the pyroptosis inhibitor necrosulfonamide(NSA). The femoral condylar defect model in the Sprague-Dawley (SD) rat was studied by micro-CT, histological, WB and PCR analyses in vitro and in vivo to evaluate the regenerative effect of bone repair. RESULTS The pyroptosis that occurs in BMSCs overexpressing NGF is associated with the nerve growth factor receptor (P75NTR) during osteogenic differentiation. Furthermore, NSA can block pyroptosis in BMSCs overexpression NGF. Notably, the analyses using the critical-size femoral condylar defect model indicated that the NGF+/BMSCs-NSA-Sca group inhibited pyroptosis significantly and had higher osteogenesis in defects. CONCLUSION NGF+/BMSCs-NSA had strong osteogenic properties in repairing bone defects. Moreover, NGF+/BMSCs-NSA-Sca mixture developed in this study opens new horizons for developing novel tissue engineering constructs.
Collapse
Affiliation(s)
- Ying Ji
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China
| | - Yongkang Mao
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China
| | - Honghu Lin
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China
| | - Ye Wang
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China
| | - Peishuai Zhao
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China
| | - Yong Guo
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, China
| | - Lantao Gu
- Key Laboratory of Medical Biotechnology and Translational Medicine, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, China
| | - Can Fu
- Key Laboratory of Medical Biotechnology and Translational Medicine, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, China
| | - Ximiao Chen
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China
| | - Zheng Lv
- Department of Radiology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China
| | - Ning Wang
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China
| | - Qiang Li
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China.
| | - Chaoyong Bei
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China.
| |
Collapse
|
3
|
Hsieh MK, Wang CY, Kao FC, Su HT, Chen MF, Tsai TT, Lai PL. Local application of zoledronate inhibits early bone resorption and promotes bone formation. JBMR Plus 2024; 8:ziae031. [PMID: 38606146 PMCID: PMC11008729 DOI: 10.1093/jbmrpl/ziae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/14/2024] [Accepted: 03/03/2024] [Indexed: 04/13/2024] Open
Abstract
Nonunion resulting from early bone resorption is common after bone transplantation surgery. In these patients, instability or osteoporosis causes hyperactive catabolism relative to anabolism, leading to graft resorption instead of fusion. Systemic zoledronate administration inhibits osteoclastogenesis and is widely used to prevent osteoporosis; however, evidence on local zoledronate application is controversial due to osteoblast cytotoxicity, uncontrolled dosing regimens, and local release methods. We investigated the effects of zolendronate on osteoclastogenesis and osteogenesis and explored the corresponding signaling pathways. In vitro cytotoxicity and differentiation of MC3T3E1 cells, rat bone marrow stromal cells (BMSCs) and preosteoclasts (RAW264.7 cells) were evaluated with different zolendronate concentrations. In vivo bone regeneration ability was tested by transplanting different concentrations of zolendronate with β-tricalcium phosphate (TCP) bone substitute into rat femoral critical-sized bone defects. In vitro, zolendronate concentrations below 2.5 × 10-7 M did not compromise viability in the three cell lines and did not promote osteogenic differentiation in MC3T3E1 cells and BMSCs. In RAW264.7 cells, zoledronate inhibited extracellular regulated protein kinases and c-Jun n-terminal kinase signaling, downregulating c-Fos and NFATc1 expression, with reduced expression of fusion-related dendritic cell‑specific transmembrane protein and osteoclast-specific Ctsk and tartrate-resistant acid phosphatase (. In vivo, histological staining revealed increased osteoid formation and neovascularization and reduced fibrotic tissue with 500 μM and 2000 μM zolendronate. More osteoclasts were found in the normal saline group after 6 weeks, and sequential osteoclast formation occurred after zoledronate treatment, indicating inhibition of bone resorption during early callus formation without inhibition of late-stage bone remodeling. In vivo, soaking β-TCP artificial bone with 500 μM or 2000 μM zoledronate is a promising approach for bone regeneration, with potential applications in bone transplantation.
Collapse
Affiliation(s)
- Ming-Kai Hsieh
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Linkou, Taiwan and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chi-Yun Wang
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, Taishan Dist, New Taipei City 243303, Taiwan
| | - Fu-Cheng Kao
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Linkou, Taiwan and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Hui-Ting Su
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Linkou, Taiwan and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Mei-Feng Chen
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Linkou, Taiwan and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Linkou, Taiwan and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Po-Liang Lai
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Linkou, Taiwan and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
4
|
Alizadeh S, Mahboobi L, Nasiri M, Khosrowpour Z, Khosravimelal S, Asgari F, Gholipour-Malekabadi M, Taghi Razavi-Toosi SM, Singh Chauhan NP, Ghobadi F, Nasiri H, Gholipourmalekabadi M. Decellularized Placental Sponge Seeded with Human Mesenchymal Stem Cells Improves Deep Skin Wound Healing in the Animal Model. ACS APPLIED BIO MATERIALS 2024; 7:2140-2152. [PMID: 38470456 DOI: 10.1021/acsabm.3c00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Skin injuries lead to a large burden of morbidity. Although numerous clinical and scientific strategies have been investigated to repair injured skin, optimal regeneration therapy still poses a considerable obstacle. To address this challenge, decellularized extracellular matrix-based scaffolds recellularized with stem cells offer significant advancements in skin regeneration and wound healing. Herein, a decellularized human placental sponge (DPS) was fabricated using the decellularization and freeze-drying technique and then recellularized with human adipose-derived mesenchymal cells (MSCs). The biological and biomechanical properties and skin full-thickness wound healing capacity of the stem cells-DPS constructs were investigated in vitro and in vivo. The DPS exhibited a uniform 3D microstructure with an interconnected pore network, 89.21% porosity, a low degradation rate, and good mechanical properties. The DPS and MSCs-DPS constructs were implanted in skin full-thickness wound models in mice. An accelerated wound healing was observed in the wounds implanted with the MSCs-DPS construct when compared to DPS and control (wounds with no treatment) during 7 and 21 days postimplantation follow-up. In the MSCs-DPS group, the wound was completely re-epithelialized, the epidermis layer was properly organized, and the dermis and epidermis' bilayer structures were restored after 7 days. Our findings suggest that DPS is an excellent carrier for MSC culture and delivery to skin wounds and now promises to proceed with clinical evaluations.
Collapse
Affiliation(s)
- Sanaz Alizadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 14535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Leila Mahboobi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 14535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Modara Nasiri
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran 19585, Iran
- Research Company Located in Islamic Azad University Science and Technology Park, Araz Fidar Azma, Tehran, 1477893855, Iran
| | - Zahra Khosrowpour
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 14535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Sadjad Khosravimelal
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 14535, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Fatemeh Asgari
- Avicenna Infertility Clinic, Avicenna Research Institute, ACECR, Tehran 1985743413, Iran
| | | | - Seyyed Mohammad Taghi Razavi-Toosi
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht 41887-94755, Iran
- Medical Biotechnology Research Center, Guilan University of Medical Sciences, Rasht 41887-94755, Iran
| | - Narendra Pal Singh Chauhan
- Department of Chemistry, Faculty of Science, Bhupal Nobles' University, Udaipur, Rajasthan 313001, India
| | - Faezeh Ghobadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Hajar Nasiri
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 14535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 14535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| |
Collapse
|
5
|
Maroquenne M, Bourguignon M, Larochette N, El-Hafci H, Margottin M, Potier E, Logeart-Avramoglou D. The Lower in Vivo Osteogenicity of Adipose Tissue-Derived Stem Cells Correlates with a Higher Innate Immune Response. Stem Cell Rev Rep 2023; 19:2869-2885. [PMID: 37642900 DOI: 10.1007/s12015-023-10614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Adipose tissue-derived mesenchymal stem cells (ATSCs) have been used as an alternative to bone marrow-derived mesenchymal stem cells (BMSCs) for bone tissue engineering applications. The ability of ATSCs to promote new bone formation remains lower than that of BMSCs. This study aimed to investigate the mechanisms underlying osteogenicity differences between human ATSCs and BMSCs in ceramic constructs, focusing on the effects of inflammation on this process. In contrast to ATSC-containing constructs, which did not induce bone formation in an ectopic mouse model, BMSC constructs consistently did so. Gene expression analysis revealed that human BMSCs, concomitantly with host murine progenitors, differentiated into the osteogenic lineage early post-implantation. In contrast, ATSCs differentiated later, when few implanted viable cells remained post-implantation, while the host murine cells did not differentiate. Comparison of the inflammatory profile in the cell constructs indicated concomitant upregulation of some human and murine inflammatory genes in the ATSC-constructs compared to the BMSC-constructs during the first-week post-implantation. The high level of chemokine production by the ATSCs was confirmed at the gene and protein levels before implantation. The immune cell recruitment within the constructs was then explored post-implantation. Higher numbers of TRAP-/ MRC1 (CD206) + multinucleated giant cells, NOS2 + M1, and ARG1 + M2 macrophages were present in the ATSC constructs than in the BMSC constructs. These results proved that ATSCs are a transient source of inflammatory cytokines promoting a transient immune response post-implantation; this milieu correlates with impaired osteogenic differentiation of both the implanted ATSCs and the host osteoprogenitor cells.
Collapse
Affiliation(s)
- Manon Maroquenne
- Université Paris Cité, CNRS, INSERM, ENVA, Paris, B3OA, F-75010, France
| | | | | | - Hanane El-Hafci
- Université Paris Cité, CNRS, INSERM, ENVA, Paris, B3OA, F-75010, France
| | - Morgane Margottin
- Université Paris Cité, CNRS, INSERM, ENVA, Paris, B3OA, F-75010, France
| | - Esther Potier
- Université Paris Cité, CNRS, INSERM, ENVA, Paris, B3OA, F-75010, France
| | - Delphine Logeart-Avramoglou
- Université Paris Cité, CNRS, INSERM, ENVA, Paris, B3OA, F-75010, France.
- Laboratoire de Biologie, Bioingénierie et Bioimagerie Ostéo-articulaires, Université Paris Cité, 10 Avenue de Verdun, Paris, F-75010, France.
| |
Collapse
|
6
|
Vidane AS, Nunes FC, Ferreira JA, Fukumasu H, Freitas SH, Pallone EMJA, Ambrósio CE. Biocompatibility and interaction of porous alumina-zirconia scaffolds with adipose-derived mesenchymal stem cells for bone tissue regeneration. Heliyon 2023; 9:e20128. [PMID: 37809419 PMCID: PMC10559935 DOI: 10.1016/j.heliyon.2023.e20128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Replacement of bone defects with bone graft or implant is an important therapeutic strategy that has been used in routine practice. However, the identification of biomaterials that can mimic natural bone properties and serve as bone substitutes remains a major challenge. In this context, alumina-zirconia (Al2O3/ZrO2) nanocomposites emerge as potential alternatives for biomedical applications, owing to their high mechanical strength, wear resistance, and biocompatibility. In this sense, in this study, we prepared porous Al2O3/ZrO2 nanocomposites (scaffolds) using the gelcasting method and biomimetically coated them with calcium phosphate (CaP). We evaluated the biocompatibility of the scaffolds using the quantitative MTT cytotoxicity test in L929 cells. Moreover, rabbit adipose-derived mesenchymal stem cells (rADMSCs) were seeded with CaP-containing and CaP-free porous samples to evaluate cell proliferation and cell-scaffold interaction in vitro. Our results showed that the Al2O3/ZrO2 scaffolds were non-cytotoxic, and there were no significant differences between CaP-containing and CaP-free scaffolds in terms of cell growth and adhesion. In contrast, when co-cultured with rADMSCs, the scaffolds enhanced cell proliferation and cell adhesion. The rADMSCs adhered and migrated through the pores of the scaffold and anchored to different poles with differentiated elongated structures. These results suggest osteogenic differentiation of rADMSCs in response to mechanical loading of Al2O3/ZrO2 scaffolds. Therefore, we conclude that Al2O3/ZrO2 scaffolds have demonstrated significant implications in bone tissue engineering and are valuable biomaterials for bone replacement.
Collapse
Affiliation(s)
- Atanasio S. Vidane
- Department of Clinics, Veterinary Faculty, Eduardo Mondlane University, Maputo, Mozambique
| | - Fabio C. Nunes
- Department of Biosystems Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - Julieta A. Ferreira
- Department of Biosystems Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - Heidge Fukumasu
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - Silvio H. Freitas
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - Eliria MJA. Pallone
- Department of Biosystems Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - Carlos E. Ambrósio
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Melzer M, Burk J, Guest DJ, Dudhia J. Influence of Rho/ROCK inhibitor Y-27632 on proliferation of equine mesenchymal stromal cells. Front Vet Sci 2023; 10:1154987. [PMID: 37346276 PMCID: PMC10279950 DOI: 10.3389/fvets.2023.1154987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Mesenchymal stromal cells (MSC) isolated form bone marrow and adipose tissue are the most common cells used for cell therapy of orthopedic diseases. MSC derived from different tissues show differences in terms of their proliferation, differentiation potential and viability in prolonged cell culture. This suggests that there may be subtle differences in intracellular signaling pathways that modulate these cellular characteristics. The Rho/ROCK signaling pathway is essential for many cellular functions. Targeting of this pathway by the ROCK inhibitor Y-27632 has been shown to be beneficial for cell viability and proliferation of different cell types. The aim of this study was to investigate the effects of Rho/ROCK inhibition on equine MSC proliferation using bone marrow-derived MSC (BMSC) and adipose-derived MSC (ASC). Primary ASC and BMSC were stimulated with or without 10 ng/mL TGF-β3 or 10 μM Y-27632, as well as both in combination. Etoposide at 10 μM was used as a positive control for inhibition of cell proliferation. After 48 h of stimulation, cell morphology, proliferation activity and gene expression of cell senescence markers p53 and p21 were assessed. ASC showed a trend for higher basal proliferation than BMSC, which was sustained following stimulation with TGF-β3. This included a higher proliferation with TGF-β3 stimulation compared to Y-27632 stimulation (p < 0.01), but not significantly different to the no treatment control when used in combination. Expression of p21 and p53 was not altered by stimulation with TGF-β3 and/or Y-27632 in either cell type. In summary, the Rho/ROCK inhibitor Y-27632 had no effect on proliferation activity and did not induce cell senescence in equine ASC and BMSC.
Collapse
Affiliation(s)
- Michaela Melzer
- Equine Clinic (Surgery, Orthopedics), Faculty of Veterinary Medicine, Justus Liebig University, Giessen, Germany
| | - Janina Burk
- Equine Clinic (Surgery, Orthopedics), Faculty of Veterinary Medicine, Justus Liebig University, Giessen, Germany
| | - Deborah J. Guest
- Department of Clinical Sciences and Services, Royal Veterinary College, Hertfordshire, United Kingdom
| | - Jayesh Dudhia
- Department of Clinical Sciences and Services, Royal Veterinary College, Hertfordshire, United Kingdom
| |
Collapse
|
8
|
Barreto da Silva T, Dias EA, Cardoso LMDF, Gama JFG, Alves LA, Henriques-Pons A. Magnetic Nanostructures and Stem Cells for Regenerative Medicine, Application in Liver Diseases. Int J Mol Sci 2023; 24:ijms24119293. [PMID: 37298243 DOI: 10.3390/ijms24119293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The term "liver disease" refers to any hepatic condition that leads to tissue damage or altered hepatic function and can be induced by virus infections, autoimmunity, inherited genetic mutations, high consumption of alcohol or drugs, fat accumulation, and cancer. Some types of liver diseases are becoming more frequent worldwide. This can be related to increasing rates of obesity in developed countries, diet changes, higher alcohol intake, and even the coronavirus disease 2019 (COVID-19) pandemic was associated with increased liver disease-related deaths. Although the liver can regenerate, in cases of chronic damage or extensive fibrosis, the recovery of tissue mass is impossible, and a liver transplant is indicated. Because of reduced organ availability, it is necessary to search for alternative bioengineered solutions aiming for a cure or increased life expectancy while a transplant is not possible. Therefore, several groups were studying the possibility of stem cells transplantation as a therapeutic alternative since it is a promising strategy in regenerative medicine for treating various diseases. At the same time, nanotechnological advances can contribute to specifically targeting transplanted cells to injured sites using magnetic nanoparticles. In this review, we summarize multiple magnetic nanostructure-based strategies that are promising for treating liver diseases.
Collapse
Affiliation(s)
- Tatiane Barreto da Silva
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil
| | - Evellyn Araújo Dias
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil
| | | | - Jaciara Fernanda Gomes Gama
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil
| | - Luiz Anastácio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil
| | - Andrea Henriques-Pons
- Laboratory of Innovations in Therapies, Education, and Bioproducts, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-361, Brazil
| |
Collapse
|
9
|
Intravenously Administered Human Umbilical Cord-Derived Mesenchymal Stem Cell (HucMSC) Improves Cardiac Performance following Infarction via Immune Modulation. Stem Cells Int 2023; 2023:6256115. [PMID: 36970596 PMCID: PMC10038737 DOI: 10.1155/2023/6256115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/19/2023] Open
Abstract
Overactive inflammatory responses contribute to progressive cardiac dysfunction after myocardial infarction (MI). Mesenchymal stem cell (MSC) has generated significant interest as potent immune modulators that can regulate excessive immune responses. We hypothesized that intravenous (iv) administration of human umbilical cord-derived MSC (HucMSC) exerts systemic and local anti-inflammation effects, leading to improved heart function after MI. In murine MI models, we confirmed that single iv administration of HucMSC (
) improved cardiac performance and prevented adverse remodeling after MI. A small proportion of HucMSC is trafficked to the heart, preferentially in the infarcted region. HucMSC administration increased CD3+ T cell proportion in the periphery while decreased T cell proportion in both infarcted heart and mediastinal lymph nodes (med-LN) at 7-day post-MI, indicating a systematic and local T cell interchange mediated by HucMSC. The inhibitory effects of HucMSC on T cell infiltration in the infarcted heart and med-LN sustained to 21-day post-MI. Our findings suggested that iv administration of HucMSC fostered systemic and local immunomodulatory effects that contributed to the improvement of cardiac performance after MI.
Collapse
|
10
|
Zhang M, He Y, Zhang X, Gan S, Xie X, Zheng Z, Liao J, Chen W. Engineered cell-overexpression of circular RNA hybrid hydrogels promotes healing of calvarial defects. Biomater Sci 2023; 11:1665-1676. [PMID: 36472132 DOI: 10.1039/d2bm01472f] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Craniomaxillofacial bone defects seriously affect the physical and mental health of patients. Bone marrow mesenchymal stem cells (BMSCs) are "gold standard" cells used for bone repair. However, the collection of BMSCs is invasive, and the osteogenic capacity is limited with age. Human umbilical cord mesenchymal stem cells (hUCMSCs) are promising alternative seed cells for bone tissue engineering. Our group previously used high-throughput sequencing technology and bioinformatics methods to detect circ-CTTN (hsa-circ_0003376) molecules, which may play an essential role in the osteogenic differentiation of hUCMSCs. In this study, osteogenic induction in vitro showed that the overexpressing circ-CTTN (OE group) exhibits a more pronounced osteogenic phenotype. The levels of osteogenesis-related genes in the OE group were highly expressed. The gelatin-methacrylate (GelMA) hydrogel possessed excellent biocompatibility and was used to load hUCMSCs. In the rat calvarial defect, the OE group presented a larger bone healing volume and denser bone trabecular distribution than other groups. So far, the overexpression of circ-CTTN could enhance the osteogenic differentiation of hUCMSCs and accelerate bone reconstruction. Our research could provide a new strategy and a strong theoretical basis for promoting hUCMSC clinical application in bone tissue engineering.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China. .,Department of Oral Prosthodontics & Jinjiang out-patient section, West China Hospital of Stomatology, Sichuan University, China
| | - Yanjing He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China. .,Department of Oral Prosthodontics & Jinjiang out-patient section, West China Hospital of Stomatology, Sichuan University, China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China.
| | - Shuaiqi Gan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China. .,Department of Oral Prosthodontics & Jinjiang out-patient section, West China Hospital of Stomatology, Sichuan University, China
| | - Xi Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China.
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China. .,Department of Oral Prosthodontics & Jinjiang out-patient section, West China Hospital of Stomatology, Sichuan University, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China.
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China. .,Department of Oral Prosthodontics & Jinjiang out-patient section, West China Hospital of Stomatology, Sichuan University, China
| |
Collapse
|
11
|
Scaffold Production and Bone Tissue Healing Using Electrospinning: Trends and Gap of Knowledge. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Kim S, Lee H, Kim JA, Park TH. Prevention of collagen hydrogel contraction using polydopamine-coating and alginate outer shell increases cell contractile force. BIOMATERIALS ADVANCES 2022; 136:212780. [PMID: 35929298 DOI: 10.1016/j.bioadv.2022.212780] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/07/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Collagen is the most abundant protein in the extracellular matrix of mammals and has a great effect on various cell behaviors including adhesion, differentiation, and migration. However, it is difficult to utilize collagen gel as a physical scaffold in vitro because of its severe contraction. Decrease in the overall hydrogel volume induces changes in cell distribution, and mass transfer within the gel. Uncontrolled mechanical and physiological factors in the fibrous matrix result in uncontrolled cell behaviors in the surrounding cells. In this study, two strategies were used to minimize the contraction of collagen gel. A disk-shaped frame made of polydopamine-coated polydimethylsiloxane (PDMS) prevented horizontal contraction at the edge of the hydrogel. The sequentially cross-linked collagen gel with alginate outer shell (CA-shell) structure inhibited the vertical gel contraction. The combined method synergistically prevented the hydrogel from shrinkage in long-term 3D cell culture. We observed the shift in balance of differentiation from adipogenesis to osteogenesis in mesenchymal stem cells under the environment where gel contraction was prevented, and confirmed that this phenomenon is closely associated with the mechanotransduction based on Yes-associated protein (YAP) localization. Development of this contraction inhibition platform made it possible to investigate the influence of regulation of cellular microenvironments. The physical properties of the hydrogel fabricated in this study were similar to that of pure collagen gel but completely changed the cell behavior within the gel by inhibition of gel contraction. The platform can be used to broaden our understanding of the fundamental mechanism underlying cell-matrix interactions and reproduce extracellular matrix in vivo.
Collapse
Affiliation(s)
- Seulha Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Haein Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Jeong Ah Kim
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju, Chungbuk 28119, Republic of Korea.
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; BioMAX/N-Bio Institute, Institute of BioEngineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
13
|
Gholami L, Khorsandi K, Taghdiri Nooshabadi V, Shahabi S, Jazaeri M, Esfahani H, Rabiei Faradonbeh D, Veisi Malekshahi Z, Afsartala Z, Mostafa N. Effect of Photobiomodulation on Structure and Function of Extracellular Vesicle Secreted from Mesenchymal Stem Cells. Photochem Photobiol 2022; 98:1447-1458. [DOI: 10.1111/php.13633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/02/2022] [Accepted: 04/03/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Leila Gholami
- Department of periodontics, Dental Research Center Hamadan University of Medical Sciences Hamadan Iran
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry University of British Columbia Canada
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center Yara Institute ACECR Tehran Iran
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences The George Washington University Washington DC 20037 USA
| | - Vajihe Taghdiri Nooshabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine Semnan University of Medical Science Iran
| | - Shiva Shahabi
- Student Research Committee, School of Dentistry Hamadan University of Medical Sciences Iran
| | - Marzieh Jazaeri
- Student Research Committee, School of Dentistry Hamadan University of Medical Sciences Iran
| | - HomaSadat Esfahani
- Department of Photodynamic, Medical Laser Research Center Yara Institute ACECR Tehran Iran
| | - Davood Rabiei Faradonbeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| | - Zohreh Afsartala
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute Tehran University of Medical Science Tehran Iran
| | - Nesrine Mostafa
- Department of Oral Health Sciences, Faculty of Dentistry University of British Columbia Canada
| |
Collapse
|
14
|
Wickramasinghe ML, Dias GJ, Premadasa KMGP. A novel classification of bone graft materials. J Biomed Mater Res B Appl Biomater 2022; 110:1724-1749. [DOI: 10.1002/jbm.b.35029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Maduni L. Wickramasinghe
- Department of Biomedical Engineering General Sir John Kotelawala Defense University Ratmalana Sri Lanka
| | - George J. Dias
- Department of Anatomy, School of Medical Sciences University of Otago Dunedin New Zealand
| | | |
Collapse
|
15
|
Kargozar S, Milan PB, Amoupour M, Kermani F, Gorgani S, Nazarnezhad S, Hooshmand S, Baino F. Osteogenic Potential of Magnesium (Mg)-Doped Multicomponent Bioactive Glass: In Vitro and In Vivo Animal Studies. MATERIALS 2022; 15:ma15010318. [PMID: 35009464 PMCID: PMC8745928 DOI: 10.3390/ma15010318] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023]
Abstract
The use of bioactive glasses (BGs) has been quite fruitful in hard tissue engineering due to the capability of these materials to bond to living bone. In this work, a melt-derived magnesium (Mg)-doped BG (composition: 45SiO2–3P2O5–26CaO–15Na2O–7MgO–4K2O (mol.%)) was synthesized for being used in bone reconstruction. The prepared BGs were then manufactured as three-dimensional (3D) scaffolds by using the sponge replica approach. The microstructure of the samples was assessed by X-ray diffraction (XRD) and the surface morphology was observed by using scanning electron microscopy (SEM). The in vitro bioactivity and the release of osteo-stimulatory Mg2+ ions from the prepared samples were investigated over 7 days of incubation in simulated body fluids (SBF). In vitro cellular analyses revealed the compatibility of the Mg-doped BGs with human osteosarcoma cells (MG-63 cell line). Moreover, the Mg-doped BGs could induce bone nodule formation in vitro and improve the migratory ability of human umbilical vein endothelial cells (HUVECs). In vivo osteogenic capacity was further evaluated by implanting the BG-derived scaffolds into surgically-created critical-size bone defects in rats. Histological and immunohistological observations revealed an appropriate bone regeneration in the animals receiving the glass-based scaffolds after 12 weeks of surgery. In conclusion, our study indicates the effectiveness of the Mg-doped BGs in stimulating osteogenesis in both in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran; (S.G.); (S.N.)
- Correspondence: (S.K.); (P.B.M.); (F.B.)
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran 144961-4535, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 144961-4535, Iran
- Correspondence: (S.K.); (P.B.M.); (F.B.)
| | - Moein Amoupour
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 144961-4535, Iran;
| | - Farzad Kermani
- Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Azadi Sq., Mashhad 917794-8564, Iran;
| | - Sara Gorgani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran; (S.G.); (S.N.)
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran; (S.G.); (S.N.)
| | - Sara Hooshmand
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
| | - Francesco Baino
- Department of Applied Science and Technology (DISAT), Institute of Materials Physics and Engineering, Politecnico di Torino, 10129 Torino, Italy
- Correspondence: (S.K.); (P.B.M.); (F.B.)
| |
Collapse
|
16
|
Shafiee S, Shariatzadeh S, Zafari A, Majd A, Niknejad H. Recent Advances on Cell-Based Co-Culture Strategies for Prevascularization in Tissue Engineering. Front Bioeng Biotechnol 2021; 9:745314. [PMID: 34900955 PMCID: PMC8655789 DOI: 10.3389/fbioe.2021.745314] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, the fabrication of a functional vascular network to maintain the viability of engineered tissues is a major bottleneck in the way of developing a more advanced engineered construct. Inspired by vasculogenesis during the embryonic period, the in vitro prevascularization strategies have focused on optimizing communications and interactions of cells, biomaterial and culture conditions to develop a capillary-like network to tackle the aforementioned issue. Many of these studies employ a combination of endothelial lineage cells and supporting cells such as mesenchymal stem cells, fibroblasts, and perivascular cells to create a lumenized endothelial network. These supporting cells are necessary for the stabilization of the newly developed endothelial network. Moreover, to optimize endothelial network development without impairing biomechanical properties of scaffolds or differentiation of target tissue cells, several other factors, including target tissue, endothelial cell origins, the choice of supporting cell, culture condition, incorporated pro-angiogenic factors, and choice of biomaterial must be taken into account. The prevascularization method can also influence the endothelial lineage cell/supporting cell co-culture system to vascularize the bioengineered constructs. This review aims to investigate the recent advances on standard cells used in in vitro prevascularization methods, their co-culture systems, and conditions in which they form an organized and functional vascular network.
Collapse
Affiliation(s)
- Sepehr Shafiee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Zafari
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Majd
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Effect of Artemisinin-Loaded Mesoporous Cerium-Doped Calcium Silicate Nanopowder on Cell Proliferation of Human Periodontal Ligament Fibroblasts. NANOMATERIALS 2021; 11:nano11092189. [PMID: 34578505 PMCID: PMC8465982 DOI: 10.3390/nano11092189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023]
Abstract
Ion doping has rendered mesoporous structures important materials in the field of tissue engineering, as apart from drug carriers, they can additionally serve as regenerative materials. The purpose of the present study was the synthesis, characterization and evaluation of the effect of artemisinin (ART)-loaded cerium-doped mesoporous calcium silicate nanopowders (NPs) on the hemocompatibility and cell proliferation of human periodontal ligament fibroblasts (hPDLFs). Mesoporous NPs were synthesized in a basic environment via a surfactant assisted cooperative self-assembly process and were characterized using Scanning Electron Microscopy (SEM), X-ray Fluorescence Spectroscopy (XRF), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction Analysis (XRD) and N2 Porosimetry. The loading capacity of NPs was evaluated using Ultrahigh Performance Liquid Chromatography/High resolution Mass Spectrometry (UHPLC/HRMS). Their biocompatibility was evaluated with the MTT assay, and the analysis of reactive oxygen species was performed using the cell-permeable ROS-sensitive probe 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA). The synthesized NPs presented a mesoporous structure with a surface area ranging from 1312 m2/g for undoped silica to 495 m2/g for the Ce-doped NPs, excellent bioactivity after a 1-day immersion in c-SBF, hemocompatibility and a high loading capacity (around 80%). They presented ROS scavenging properties, and both the unloaded and ART-loaded NPs significantly promoted cell proliferation even at high concentrations of NPs (125 μg/mL). The ART-loaded Ce-doped NPs with the highest amount of cerium slightly restricted cell proliferation after 7 days of culture, but the difference was not significant compared with the control untreated cells.
Collapse
|
18
|
Characterization of Osteogenesis and Chondrogenesis of Human Decellularized Allogeneic Bone with Mesenchymal Stem Cells Derived from Bone Marrow, Adipose Tissue, and Wharton's Jelly. Int J Mol Sci 2021; 22:ijms22168987. [PMID: 34445692 PMCID: PMC8396436 DOI: 10.3390/ijms22168987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
Allogeneic bone grafts are a promising material for bone implantation due to reduced operative trauma, reduced blood loss, and no donor-site morbidity. Although human decellularized allogeneic bone (hDCB) can be used to fill bone defects, the research of revitalizing hDCB blocks with human mesenchymal stem cells (hMSCs) for osteochondral regeneration is missing. The hMSCs derived from bone marrow, adipose tissue, and Wharton’s jelly (BMMSCs, ADMSCs, and UMSCs, respectively) are potential candidates for bone regeneration. This study characterized the potential of hDCB as a scaffold for osteogenesis and chondrogenesis of BMMSCs, ADMSCs, and UMSCs. The pore sizes and mechanical strength of hDCB were characterized. Cell survival and adhesion of hMSCs were investigated using MTT assay and F-actin staining. Alizarin Red S and Safranin O staining were conducted to demonstrate calcium deposition and proteoglycan production of hMSCs after osteogenic and chondrogenic differentiation, respectively. A RT-qPCR was performed to analyze the expression levels of osteogenic and chondrogenic markers in hMSCs. Results indicated that BMMSCs and ADMSCs exhibited higher osteogenic potential than UMSCs. Furthermore, ADMSCs and UMSCs had higher chondrogenic potential than BMMSCs. This study demonstrated that chondrogenic ADMSCs- or UMSCs-seeded hDCB might be potential osteochondral constructs for osteochondral regeneration.
Collapse
|
19
|
He J, Lin Z, Hu X, Xing L, Liang G, Chen D, An J, Xiong C, Zhang X, Zhang L. Biocompatible and biodegradable scaffold based on polytrimethylene carbonate-tricalcium phosphate microspheres for tissue engineering. Colloids Surf B Biointerfaces 2021; 204:111808. [DOI: 10.1016/j.colsurfb.2021.111808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/14/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022]
|
20
|
Zuo W, Yu L, Zhang H, Fei Q. Mineralized collagen scaffold bone graft accelerate the osteogenic process of HASCs in proper concentration. Regen Ther 2021; 18:161-167. [PMID: 34277898 PMCID: PMC8254075 DOI: 10.1016/j.reth.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose To investigate the feasibility and the optimum condition of human adipose-derived stem cells cultured on the mineralized collagen material; and to further explore the mechanism of osteogenic differentiation of the human Adipose-derived stem cells stimulated by the mineralized collagen material. Methods Primary human adipose-derived stem cells (HADSCs) were isolated from human adipose tissue using centrifugal stratification, which had been passed repeatedly to later generations and purified. Human adipose-derived stem cells were cultured on the bone graft material and the optimum concentration was explored by Alamar blue colorimetric method. The rest experiment was conducted according to the result. The experimental groups are shown below: group A (HADSCs + bone graft material); group B (HADSCs). Morphological observation was taken by scanning electronic microscope (SEM). Alkaline phosphatase activities were tested by histochemical method. Calcium deposition was investigated by alizarin red staining. The quantity access of osteogenic-related mRNA: ALP (alkaline phosphatase), BMP2 (bone morphogenetic protein 2) and RUNX2 (runt-related transcription factor 2) were detected using RT-PCR. Results The cultured cells grew stably and proliferated rapidly. The optimum condition was 0.5 mg/cm2 bone graft material coated on the bottom of medium. After culturing on the material 14 days, the alizarin red staining showed that more calcium deposition was detected in group A and alkaline phosphatase activities of group A was higher than group B (p ˃ 0.05). Similarly, after culturing for 14 days, the ALP, BMP2 and RUNX2 transcription activity of group A was higher than group B (p ˃ 0.05). Conclusion Human adipose-derived stem cells cultured on bone graft material were dominantly differentiated into osteoblast in vitro. Thus it provided a new choice for bone tissue engineering.
Collapse
Affiliation(s)
- Weiyang Zuo
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, 100050, China
| | - Lingjia Yu
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, 100050, China
| | - Haiyan Zhang
- Municipal Laboratory for Liver Protection and Regulation of Regeneration, Department of Cell Biology, Capital Medical University, Beijing, China
| | - Qi Fei
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, 100050, China
| |
Collapse
|
21
|
Li C, Mills Z, Zheng Z. Novel cell sources for bone regeneration. MedComm (Beijing) 2021; 2:145-174. [PMID: 34766140 PMCID: PMC8491221 DOI: 10.1002/mco2.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023] Open
Abstract
A plethora of both acute and chronic conditions, including traumatic, degenerative, malignant, or congenital disorders, commonly induce bone disorders often associated with severe persisting pain and limited mobility. Over 1 million surgical procedures involving bone excision, bone grafting, and fracture repair are performed each year in the U.S. alone, resulting in immense levels of public health challenges and corresponding financial burdens. Unfortunately, the innate self-healing capacity of bone is often inadequate for larger defects over a critical size. Moreover, as direct transplantation of committed osteoblasts is hindered by deficient cell availability, limited cell spreading, and poor survivability, an urgent need for novel cell sources for bone regeneration is concurrent. Thanks to the development in stem cell biology and cell reprogramming technology, many multipotent and pluripotent cells that manifest promising osteogenic potential are considered the regenerative remedy for bone defects. Considering these cells' investigation is still in its relative infancy, each of them offers their own particular challenges that must be conquered before the large-scale clinical application.
Collapse
Affiliation(s)
- Chenshuang Li
- Department of Orthodontics, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Zane Mills
- College of DentistryUniversity of OklahomaOklahoma CityOklahomaUSA
| | - Zhong Zheng
- Division of Growth and Development, School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
- Department of Surgery, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
22
|
Mende W, Götzl R, Kubo Y, Pufe T, Ruhl T, Beier JP. The Role of Adipose Stem Cells in Bone Regeneration and Bone Tissue Engineering. Cells 2021; 10:cells10050975. [PMID: 33919377 PMCID: PMC8143357 DOI: 10.3390/cells10050975] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Bone regeneration is a complex process that is influenced by tissue interactions, inflammatory responses, and progenitor cells. Diseases, lifestyle, or multiple trauma can disturb fracture healing, which might result in prolonged healing duration or even failure. The current gold standard therapy in these cases are bone grafts. However, they are associated with several disadvantages, e.g., donor site morbidity and availability of appropriate material. Bone tissue engineering has been proposed as a promising alternative. The success of bone-tissue engineering depends on the administered cells, osteogenic differentiation, and secretome. Different stem cell types offer advantages and drawbacks in this field, while adipose-derived stem or stromal cells (ASCs) are in particular promising. They show high osteogenic potential, osteoinductive ability, and immunomodulation properties. Furthermore, they can be harvested through a noninvasive process in high numbers. ASCs can be induced into osteogenic lineage through bioactive molecules, i.e., growth factors and cytokines. Moreover, their secretome, in particular extracellular vesicles, has been linked to fracture healing. The aim of this review is a comprehensive overview of ASCs for bone regeneration and bone tissue engineering.
Collapse
Affiliation(s)
- Wolfgang Mende
- Hand Surgery-Burn Center, Department of Plastic Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Rebekka Götzl
- Hand Surgery-Burn Center, Department of Plastic Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Yusuke Kubo
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Tim Ruhl
- Hand Surgery-Burn Center, Department of Plastic Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Justus P Beier
- Hand Surgery-Burn Center, Department of Plastic Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| |
Collapse
|
23
|
Cuesta-Gomez N, Graham GJ, Campbell JDM. Chemokines and their receptors: predictors of the therapeutic potential of mesenchymal stromal cells. J Transl Med 2021; 19:156. [PMID: 33865426 PMCID: PMC8052819 DOI: 10.1186/s12967-021-02822-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) are promising cellular therapeutics for the treatment of inflammatory and degenerative disorders due to their anti-inflammatory, immunomodulatory and regenerative potentials. MSCs can be sourced from a variety of tissues within the body, but bone marrow is the most frequently used starting material for clinical use. The chemokine family contains many regulators of inflammation, cellular function and cellular migration-all critical factors in understanding the potential potency of a novel cellular therapeutic. In this review, we focus on expression of chemokine receptors and chemokine ligands by MSCs isolated from different tissues. We discuss the differential migratory, angiogenetic and immunomodulatory potential to understand the role that tissue source of MSC may play within a clinical context. Furthermore, this is strongly associated with leukocyte recruitment, immunomodulatory potential and T cell inhibition potential and we hypothesize that chemokine profiling can be used to predict the in vivo therapeutic potential of MSCs isolated from new sources and compare them to BM MSCs.
Collapse
Affiliation(s)
- Nerea Cuesta-Gomez
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Gerard J Graham
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - John D M Campbell
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK. .,Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, The Jack Copland Centre, Research Avenue North, Edinburgh, UK.
| |
Collapse
|
24
|
Toyota A, Shinagawa R, Mano M, Tokioka K, Suda N. Regeneration in Experimental Alveolar Bone Defect Using Human Umbilical Cord Mesenchymal Stem Cells. Cell Transplant 2021; 30:963689720975391. [PMID: 33573392 PMCID: PMC7883160 DOI: 10.1177/0963689720975391] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cleft lip and palate is a congenital disorder including cleft lip, and/or cleft palate, and/or alveolar cleft, with high incidence.The alveolar cleft causes morphological and functional abnormalities. To obtain bone bridge formation and continuous structure between alveolar clefts, surgical interventions are performed from infancy to childhood. However, desirable bone bridge formation is not obtained in many cases. Regenerative medicine using mesenchymal stem cells (MSCs) is expected to be a useful strategy to obtain sufficient bone bridge formation between alveolar clefts. In this study, we examined the effect of human umbilical cord-derived MSCs by transplantation into a rat experimental alveolar cleft model. Human umbilical cords were digested enzymatically and the isolated cells were collected (UC-EZ cells). Next, CD146-positive cells were enriched from UC-EZ cells by magnetic-activated cell sorting (UC-MACS cells). UC-EZ and UC-MACS cells showed MSC gene/protein expression, in vitro. Both cells had multipotency and could differentiate to osteogenic, chondrogenic, and adipogenic lineages under the differentiation-inducing media. However, UC-EZ cells lacked Sox2 expression and showed the lower ratio of MSCs than UC-MACS cells. Thus, UC-MACS cells were transplanted with hydroxyapatite and collagen (HA + Col) into alveolar cleft model to evaluate bone formation in vivo. The results of micro computed tomography and histological staining showed that UC-MACS cells with HA + Col induced more abundant bone formation between the experimental alveolar clefts than HA + Col implantation only. Cells immunopositive for osteopontin were accumulated along the bone surface and some of them were embedded in the bone. Cells immunopositive for human-specific mitochondria were aligned along the newly formed bone surface and in the new bone, suggesting that UC-MACS cells contributed to the bone bridge formation between alveolar clefts. These findings indicate that human umbilical cords are reliable bioresource and UC-MACS cells are useful for the alveolar cleft regeneration.
Collapse
Affiliation(s)
- Akiko Toyota
- Division of Orthodontics, Department of Human Development and Fostering, Meikai University School of Dentistry, Saitama, Japan
| | - Rei Shinagawa
- Division of Orthodontics, Department of Human Development and Fostering, Meikai University School of Dentistry, Saitama, Japan
| | - Mikiko Mano
- Division of Orthodontics, Department of Human Development and Fostering, Meikai University School of Dentistry, Saitama, Japan
| | - Kazuyuki Tokioka
- Department of Plastic and Reconstructive Surgery, Saitama Medical University, Saitama, Japan
| | - Naoto Suda
- Division of Orthodontics, Department of Human Development and Fostering, Meikai University School of Dentistry, Saitama, Japan
| |
Collapse
|
25
|
Liang W, Wu X, Dong Y, Shao R, Chen X, Zhou P, Xu F. In vivo behavior of bioactive glass-based composites in animal models for bone regeneration. Biomater Sci 2021; 9:1924-1944. [PMID: 33506819 DOI: 10.1039/d0bm01663b] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This review presents the recent advances and the current state-of-the-art of bioactive glass-based composite biomaterials intended for bone regeneration. Composite materials comprise two (or more) constituents at the nanometre scale, in which typically, one constituent is organic and functions as the matrix phase and the other constituent is inorganic and behaves as the reinforcing phase. Such materials, thereby, more closely resemble natural bio-nanocomposites such as bone. Various glass compositions in combination with a wide range of natural and synthetic polymers have been evaluated in vivo under experimental conditions ranging from unloaded critical-sized defects to mechanically-loaded, weight-bearing sites with highly favourable outcomes. Additional possibilities include controlled release of anti-osteoporotic drugs, ions, antibiotics, pro-angiogenic substances and pro-osteogenic substances. Histological and morphological evaluations suggest the formation of new, highly vascularised bone that displays signs of remodelling over time. With the possibility to tailor the mechanical and chemical properties through careful selection of individual components, as well as the overall geometry (from mesoporous particles and micro-/nanospheres to 3D scaffolds and coatings) through innovative manufacturing processes, such biomaterials present exciting new avenues for bone repair and regeneration.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, Zhejiang Province, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
26
|
de la Torre P, Flores AI. Current Status and Future Prospects of Perinatal Stem Cells. Genes (Basel) 2020; 12:genes12010006. [PMID: 33374593 PMCID: PMC7822425 DOI: 10.3390/genes12010006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 02/05/2023] Open
Abstract
The placenta is a temporary organ that is discarded after birth and is one of the most promising sources of various cells and tissues for use in regenerative medicine and tissue engineering, both in experimental and clinical settings. The placenta has unique, intrinsic features because it plays many roles during gestation: it is formed by cells from two individuals (mother and fetus), contributes to the development and growth of an allogeneic fetus, and has two independent and interacting circulatory systems. Different stem and progenitor cell types can be isolated from the different perinatal tissues making them particularly interesting candidates for use in cell therapy and regenerative medicine. The primary source of perinatal stem cells is cord blood. Cord blood has been a well-known source of hematopoietic stem/progenitor cells since 1974. Biobanked cord blood has been used to treat different hematological and immunological disorders for over 30 years. Other perinatal tissues that are routinely discarded as medical waste contain non-hematopoietic cells with potential therapeutic value. Indeed, in advanced perinatal cell therapy trials, mesenchymal stromal cells are the most commonly used. Here, we review one by one the different perinatal tissues and the different perinatal stem cells isolated with their phenotypical characteristics and the preclinical uses of these cells in numerous pathologies. An overview of clinical applications of perinatal derived cells is also described with special emphasis on the clinical trials being carried out to treat COVID19 pneumonia. Furthermore, we describe the use of new technologies in the field of perinatal stem cells and the future directions and challenges of this fascinating and rapidly progressing field of perinatal cells and regenerative medicine.
Collapse
|
27
|
Mohamed-Ahmed S, Yassin MA, Rashad A, Espedal H, Idris SB, Finne-Wistrand A, Mustafa K, Vindenes H, Fristad I. Comparison of bone regenerative capacity of donor-matched human adipose-derived and bone marrow mesenchymal stem cells. Cell Tissue Res 2020; 383:1061-1075. [PMID: 33242173 PMCID: PMC7960590 DOI: 10.1007/s00441-020-03315-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/28/2020] [Indexed: 12/22/2022]
Abstract
Adipose-derived stem cells (ASC) have been used as an alternative to bone marrow mesenchymal stem cells (BMSC) for bone tissue engineering. However, the efficacy of ASC in bone regeneration in comparison with BMSC remains debatable, since inconsistent results have been reported. Comparing ASC with BMSC obtained from different individuals might contribute to this inconsistency in results. Therefore, this study aimed to compare the bone regenerative capacity of donor-matched human ASC and BMSC seeded onto poly(l-lactide-co-ε-caprolactone) scaffolds using calvarial bone defects in nude rats. First, donor-matched ASC and BMSC were seeded onto the co-polymer scaffolds to evaluate their in vitro osteogenic differentiation. Seeded scaffolds and scaffolds without cells (control) were then implanted in calvarial defects in nude rats. The expression of osteogenesis-related genes was examined after 4 weeks. Cellular activity was investigated after 4 and 12 weeks. Bone formation was evaluated radiographically and histologically after 4, 12, and 24 weeks. In vitro, ASC and BMSC demonstrated mineralization. However, BMSC showed higher alkaline phosphatase activity than ASC. In vivo, human osteogenesis–related genes Runx2 and collagen type I were expressed in defects with scaffold/cells. Defects with scaffold/BMSC had higher cellular activity than defects with scaffold/ASC. Moreover, bone formation in defects with scaffold/BMSC was greater than in defects with scaffold/ASC, especially at the early time-point. These results suggest that although ASC have the potential to regenerate bone, the rate of bone regeneration with ASC may be slower than with BMSC. Accordingly, BMSC are more suitable for bone regenerative applications.
Collapse
Affiliation(s)
- Samih Mohamed-Ahmed
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Mohammed A Yassin
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Ahmad Rashad
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Heidi Espedal
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Shaza B Idris
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Hallvard Vindenes
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department for Plastic, Hand and Reconstructive Surgery, National Fire Damage Center, Bergen, Norway
| | - Inge Fristad
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
28
|
Copper-containing bioactive glasses and glass-ceramics: From tissue regeneration to cancer therapeutic strategies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111741. [PMID: 33579436 DOI: 10.1016/j.msec.2020.111741] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
Copper is one of the most used therapeutic metallic elements in biomedicine, ranging from antibacterial approaches to cancer theranostics. This element could be easily incorporated into different types of biomaterials; specifically, copper-doped bioactive glasses (BGs) provide great opportunities for biomedical engineers and clinicians as regards their excellent biocompatibility and regenerative potential. Although copper-incorporated BGs are mostly used in bone tissue engineering, accelerated soft tissue healing is achievable, too, with interesting potentials in wound treatment and skin repair. Copper can modulate the physico-chemical properties of BGs (e.g., reactivity with bio-fluids) and improve their therapeutic potential. Improving cell proliferation, promoting angiogenesis, reducing or even prohibiting bacterial growth are counted as prominent biological features of copper-doped BGs. Recent studies have also suggested the suitability of copper-doped BGs in cancer photothermal therapy (PTT). However, more research is needed to determine the extent to which copper-doped BGs are actually applicable for tissue engineering and regenerative medicine strategies in the clinic. Moreover, copper-doped BGs in combination with polymers may be considered in the future to produce relatively soft, pliable composites and printable inks for use in biofabrication.
Collapse
|
29
|
Cun X, Hosta-Rigau L. Topography: A Biophysical Approach to Direct the Fate of Mesenchymal Stem Cells in Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2070. [PMID: 33092104 PMCID: PMC7590059 DOI: 10.3390/nano10102070] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022]
Abstract
Tissue engineering is a promising strategy to treat tissue and organ loss or damage caused by injury or disease. During the past two decades, mesenchymal stem cells (MSCs) have attracted a tremendous amount of interest in tissue engineering due to their multipotency and self-renewal ability. MSCs are also the most multipotent stem cells in the human adult body. However, the application of MSCs in tissue engineering is relatively limited because it is difficult to guide their differentiation toward a specific cell lineage by using traditional biochemical factors. Besides biochemical factors, the differentiation of MSCs also influenced by biophysical cues. To this end, much effort has been devoted to directing the cell lineage decisions of MSCs through adjusting the biophysical properties of biomaterials. The surface topography of the biomaterial-based scaffold can modulate the proliferation and differentiation of MSCs. Presently, the development of micro- and nano-fabrication techniques has made it possible to control the surface topography of the scaffold precisely. In this review, we highlight and discuss how the main topographical features (i.e., roughness, patterns, and porosity) are an efficient approach to control the fate of MSCs and the application of topography in tissue engineering.
Collapse
Affiliation(s)
| | - Leticia Hosta-Rigau
- DTU Health Tech, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark;
| |
Collapse
|
30
|
Wu S, Lei L, Zhang H, Liu J, Weir MD, Schneider A, Zhao L, Liu J, Xu HH. Nanographene oxide‐calcium phosphate to inhibit
Staphylococcus aureus
infection and support stem cells for bone tissue engineering. J Tissue Eng Regen Med 2020; 14:1779-1791. [PMID: 33025745 DOI: 10.1002/term.3139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Shizhou Wu
- Department of Orthopedic Surgery, West China Hospital Sichuan University Chengdu China
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics University of Maryland Dental School Baltimore MD USA
| | - Lei Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Hui Zhang
- Department of Orthopedic Surgery, West China Hospital Sichuan University Chengdu China
| | - Jin Liu
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics University of Maryland Dental School Baltimore MD USA
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shannxi Province for Dental and Maxillofacial Diseases, College of Stomatology Xi'an Jiaotong University Xi'an China
| | - Michael D. Weir
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics University of Maryland Dental School Baltimore MD USA
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences University of Maryland School of Dentistry Baltimore MD USA
| | - Liang Zhao
- Department of Orthopedic Surgery, Nanfang Hospital Southern Medical University Guangzhou China
| | - Jun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Hockin H.K. Xu
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics University of Maryland Dental School Baltimore MD USA
- Marlene and Stewart Greenebaum Cancer Center University of Maryland School of Medicine Baltimore MD USA
- Center for Stem Cell Biology and Regenerative Medicine University of Maryland School of Medicine Baltimore MD USA
| |
Collapse
|
31
|
Zheng S, Chen H, Zhang T, Yao Y, Chen Y, Zhang S, Bai B. Gene-modified BMSCs encapsulated with carboxymethyl cellulose facilitate osteogenesis in vitro and in vivo. J Biomater Appl 2020; 35:814-822. [PMID: 32777971 DOI: 10.1177/0885328220948030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Critical size bone defects are one of the most serious complications in orthopedics due to the lack of effective osteogenesis treatment. We fabricated carboxymethyl cellulose with phenol moieties (CMC-ph) microcapsules loaded with gene-modified rat bone mesenchymal stem cells (rBMSCs) that secrete hBMP2 following doxycycline (DOX) induction. The results showed that the morphology of microcapsules was spherical, and their diameters have equally distributed in the range of 100-150 μm; the viability of rBMSCs was unchanged over time. Through real-time PCR and Western blot analyses, the rBMSCs in microcapsules were found to secrete hBMP2 and to have upregulated mRNA and protein expression of osteogenesis-related genes in vitro and in vivo. Furthermore, the in vivo results suggested that the group with the middle concentration of cells expressed the highest amount of osteogenic protein over time. In this study, we showed that gene-modified rBMSCs in CMC-ph microcapsules had good morphology and viability. The BMP2-BMSCs/CMC-Ph microcapsule system could upregulate osteogenic mRNA and protein in vitro and in vivo. Further analysis demonstrated that the medium concentration of cells had a suitable density for transplantation in nude mice. Therefore, BMP2-BMSCs/CMC-Ph microcapsule constructs have potential for bone regeneration in vivo.
Collapse
Affiliation(s)
- Shicong Zheng
- Department of Orthopedics, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, The First Affiliated Hospital of 26468Guangzhou Medical University, Guangzhou, China
| | - Hanzheng Chen
- Department of Orthopedics, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, The First Affiliated Hospital of 26468Guangzhou Medical University, Guangzhou, China
| | - Tingshuai Zhang
- Department of Orthopedics, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, The First Affiliated Hospital of 26468Guangzhou Medical University, Guangzhou, China
| | - Yongchang Yao
- Department of Orthopedics, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, The First Affiliated Hospital of 26468Guangzhou Medical University, Guangzhou, China
| | - Yi Chen
- Department of Orthopedics, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, The First Affiliated Hospital of 26468Guangzhou Medical University, Guangzhou, China
| | - Shujiang Zhang
- Department of Orthopedics, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, The First Affiliated Hospital of 26468Guangzhou Medical University, Guangzhou, China
| | - Bo Bai
- Department of Orthopedics, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, The First Affiliated Hospital of 26468Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
32
|
Kwon S, Kim SH, Khang D, Lee JY. Potential Therapeutic Usage of Nanomedicine for Glaucoma Treatment. Int J Nanomedicine 2020; 15:5745-5765. [PMID: 32821099 PMCID: PMC7418176 DOI: 10.2147/ijn.s254792] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022] Open
Abstract
Glaucoma is a group of diseases characterized by progressive degeneration of retinal ganglion cells, leading to irreversible blindness. Currently, intraocular pressure reduction is the only established treatment available for glaucoma. With this treatment, the progression of the disease can only be delayed and there is no recovery. In addition, the commercially available eye drops have the disadvantage of low compliance and short therapeutic time, while glaucoma surgery always has the risk of failure due to wound fibrosis. Nanotechnology can overcome the limitations of the current treatment through the encapsulation and conjugation of drugs used for lowering intraocular pressure and antifibrotic agents using biodegradable or biocompatible nanoparticles for the sustained release of the drugs to protect the damaged ocular cells. Furthermore, using nanotechnology, treatment can be administered in various forms, including eye drops, contact lens, and ocular inserts, according to the convenience of the patients. Despite the promising results of delaying the progression of glaucoma, the regeneration of damaged ocular cells, including trabecular meshwork and retinal ganglion cells, is another critical hurdle to overcome. Bone marrow-derived mesenchymal stem cells and Müller glia cells can secrete neurogenic factors that trigger the regeneration of associated cells, including trabecular meshwork and retinal ganglion cells. In conclusion, this review highlights the potential therapeutic applications of nanotechnology- and stem cell-based methods that can be employed for the protection and regeneration of ocular cells.
Collapse
Affiliation(s)
- Song Kwon
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea
| | - Sung Hyun Kim
- Department of Ophthalmology, Gil Medical Center, Gachon University, College of Medicine, Incheon 21565, South Korea
| | - Dongwoo Khang
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea.,Department of Gachon Advanced Institute for Health Science & Technology (GAIHST), Gachon University, Incheon 21999, South Korea.,Department of Physiology, School of Medicine, Gachon University, Incheon 21999, South Korea
| | - Jong Yeon Lee
- Department of Ophthalmology, Gil Medical Center, Gachon University, College of Medicine, Incheon 21565, South Korea
| |
Collapse
|
33
|
Evaluation of a cell-based osteogenic formulation compliant with good manufacturing practice for use in tissue engineering. Mol Biol Rep 2020; 47:5145-5154. [PMID: 32562174 DOI: 10.1007/s11033-020-05588-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/11/2020] [Indexed: 01/07/2023]
Abstract
Proper bony tissue regeneration requires mechanical stabilization, an osteogenic biological activity and appropriate scaffolds. The latter two elements can be combined in a hydrogel format for effective delivery, so it can readily adapt to the architecture of the defect. We evaluated a Good Manufacturing Practice-compliant formulation composed of bone marrow-derived mesenchymal stromal cells in combination with bone particles (Ø = 0.25 to 1 µm) and fibrin, which can be readily translated into the clinical setting for the treatment of bone defects, as an alternative to bone tissue autografts. Remarkably, cells survived with unaltered phenotype (CD73+, CD90+, CD105+, CD31-, CD45-) and retained their osteogenic capacity up to 48 h after being combined with hydrogel and bone particles, thus demonstrating the stability of their identity and potency. Moreover, in a subchronic toxicity in vivo study, no toxicity was observed upon subcutaneous administration in athymic mice and signs of osteogenesis and vascularization were detected 2 months after administration. The preclinical data gathered in the present work, in compliance with current quality and regulatory requirements, demonstrated the feasibility of formulating an osteogenic cell-based tissue engineering product with a defined profile including identity, purity and potency (in vitro and in vivo), and the stability of these attributes, which complements the preclinical package required prior to move towards its use of prior to its clinical use.
Collapse
|
34
|
Pajares-Chamorro N, Chatzistavrou X. Bioactive Glass Nanoparticles for Tissue Regeneration. ACS OMEGA 2020; 5:12716-12726. [PMID: 32548455 PMCID: PMC7288353 DOI: 10.1021/acsomega.0c00180] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Sol-gel-derived bioactive glass nanoparticles have attracted special interest due to their potential as novel therapeutic and regenerative agents. Significant challenges are yet to be addressed. The fabrication of sol-gel-derived nanoparticles in binary and ternary systems with an actual composition that meets the nominal has to be achieved. This work addresses this challenge and delivers nanoparticles in a ternary system with tailored composition and particle size. It also studies how specific steps in the fabrication process can affect the incorporation of the metallic ions, nanoparticle size, and mesoporosity. Sol-gel-derived bioactive glass nanoparticles in the 62 SiO2-34.5 CaO-3.2 P2O5 (mol %) system have been fabricated and characterized for their structural, morphological, and elemental characteristics using Fourier transform infrared spectroscopy, X-ray diffraction analysis, scanning electron microscopy associated with elemental analysis, transmission electron microscopy, and solid-state nuclear magnetic resonance. The fabricated nanoparticles were additionally observed to form the apatite phase when immersed in simulated body fluid. This work highlights the effect of the different processing variables, such as the nature of the solvent, the order in which reagents are added, stirring time, and the concentrations in the catalytic solution on the controlled incorporation of specific ions (e.g., P and Ca) in the nanoparticle network and particle size.
Collapse
|
35
|
Ranmuthu CDS, Ranmuthu CKI, Russell JC, Singhania D, Khan WS. Evaluating the Effect of Non-cellular Bioactive Glass-Containing Scaffolds on Osteogenesis and Angiogenesis in in vivo Animal Bone Defect Models. Front Bioeng Biotechnol 2020; 8:430. [PMID: 32478053 PMCID: PMC7240009 DOI: 10.3389/fbioe.2020.00430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
The use of bone scaffolds to replace injured or diseased bone has many advantages over the currently used autologous and allogeneic options in clinical practice. This systematic review evaluates the current evidence for non-cellular scaffolds containing bioactive glass on osteogenesis and angiogenesis in animal bone defect models. Studies that reported results of osteogenesis via micro-CT and results of angiogenesis via Microfil perfusion or immunohistochemistry were included in the review. A literature search of PubMed, EMBASE and Scopus was carried out in November 2019 from which nine studies met the inclusion and exclusion criteria. Despite the significant heterogeneity in the composition of the scaffolds used in each study, it could be concluded that scaffolds containing bioactive glass improve bone regeneration in these models, both by osteogenic and angiogenic measures. Incorporation of additional elements into the glass network, using additives, and using biochemical factors generally had a beneficial effect. Comparing the different compositions of non-cellular bioactive glass containing scaffolds is however difficult due to the heterogeneity in bioactive glass compositions, fabrication methods and biochemical additives used.
Collapse
Affiliation(s)
| | | | - Jodie C. Russell
- Cambridge Clinical School, University of Cambridge, Cambridge, United Kingdom
| | - Disha Singhania
- Cambridge Clinical School, University of Cambridge, Cambridge, United Kingdom
| | - Wasim S. Khan
- Division of Trauma and Orthopaedics, Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
36
|
An excellent nanofibrous matrix based on gum tragacanth-poly (Ɛ-caprolactone)-poly (vinyl alcohol) for application in diabetic wound healing. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109105] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Deshmukh K, Kovářík T, Křenek T, Docheva D, Stich T, Pola J. Recent advances and future perspectives of sol–gel derived porous bioactive glasses: a review. RSC Adv 2020; 10:33782-33835. [PMID: 35519068 PMCID: PMC9056785 DOI: 10.1039/d0ra04287k] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
Sol–gel derived bioactive glasses have been extensively explored as a promising and highly porous scaffold materials for bone tissue regeneration applications owing to their exceptional osteoconductivity, osteostimulation and degradation rates.
Collapse
Affiliation(s)
- Kalim Deshmukh
- New Technologies – Research Center
- University of West Bohemia
- Plzeň
- Czech Republic
| | - Tomáš Kovářík
- New Technologies – Research Center
- University of West Bohemia
- Plzeň
- Czech Republic
| | - Tomáš Křenek
- New Technologies – Research Center
- University of West Bohemia
- Plzeň
- Czech Republic
| | - Denitsa Docheva
- Experimental Trauma Surgery
- Department of Trauma Surgery
- University Regensburg Medical Centre
- Regensburg
- Germany
| | - Theresia Stich
- Experimental Trauma Surgery
- Department of Trauma Surgery
- University Regensburg Medical Centre
- Regensburg
- Germany
| | - Josef Pola
- New Technologies – Research Center
- University of West Bohemia
- Plzeň
- Czech Republic
| |
Collapse
|
38
|
General Study and Gene Expression Profiling of Endotheliocytes Cultivated on Electrospun Materials. MATERIALS 2019; 12:ma12244082. [PMID: 31817735 PMCID: PMC6947544 DOI: 10.3390/ma12244082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/20/2019] [Accepted: 12/03/2019] [Indexed: 12/27/2022]
Abstract
Endothelization of the luminal surface of vascular grafts is required for their long-term functioning. Here, we have cultivated human endothelial cells (HUVEC) on different 3D matrices to assess cell proliferation, gene expression and select the best substrate for endothelization. 3D matrices were produced by electrospinning from solutions of poly(D,L-lactide-co-glycolide) (PLGA), polycaprolactone (PCL), and blends of PCL with gelatin (Gl) in hexafluoroisopropanol. Structure and surface properties of 3D matrices were characterized by SEM, AFM, and sessile drop analysis. Cell adhesion, viability, and proliferation were studied by SEM, Alamar Blue staining, and 5-ethynyl-2’-deoxyuridine (EdU) assay. Gene expression profiling was done on an Illumina HiSeq 2500 platform. Obtained data indicated that 3D matrices produced from PCL with Gl and treated with glutaraldehyde provide the most suitable support for HUVEC adhesion and proliferation. Transcriptome sequencing has demonstrated a minimal difference of gene expression profile in HUVEC cultivated on the surface of these matrices as compared to tissue culture plastic, thus confirming these matrices as the best support for endothelization.
Collapse
|
39
|
Farshadi M, Johari B, Erfani Ezadyar E, Gholipourmalekabadi M, Azami M, Madanchi H, Haramshahi SMA, Yari A, Karimizade A, Nekouian R, Samadikuchaksaraei A. Nanocomposite scaffold seeded with mesenchymal stem cells for bone repair. Cell Biol Int 2019; 43:1379-1392. [PMID: 30811084 DOI: 10.1002/cbin.11124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/23/2019] [Indexed: 01/24/2023]
Abstract
The mechanical property of bone tissue scaffolds is one of the most important aspects in bone tissue engineering that has remained problematic. In our previous study, we fabricated a three-dimensional scaffold from nano-hydroxyapatite/gelatin (nHA/Gel) and investigated its efficiency in promoting bone regeneration both in vitro and in vivo. In the present study, the effect of adding silicon carbide (SiC) on the mechanical and biological behaviors of the nHA/Gel/SiC and bone regeneration in vivo were determined. nHA and SiC were synthesized and characterized by the X-ray diffraction pattern and transmission electron microscope image. Layer solvent casting, freeze drying, and lamination techniques were applied to prepare these scaffolds. Then, the biocompatibility and cell adhesion behavior of the synthesized nHA/Gel/SiC scaffolds were investigated. For in vivo studies, rats were categorized into three groups: blank defect, blank scaffold, and rat bone marrow mesenchymal stem cells (rBM-MSCs)/scaffold. After 1, 4, and 12 weeks post-injury, the rats were sacrificed and the calvaria were harvested. Sections with a thickness of 5 µm thickness were prepared and stained with hematoxylin-eosin and Masson's Trichrome, and immunohistochemistry was performed. Our results showed that SiC effectively increased the mechanical properties of the nHA/Gel/SiC scaffold. No significant differences were observed in biocompatibility, cell adhesion, and cytotoxicity of the nHA/Gel/SiC in comparison with the nHA/Gel nanocomposite. Based on histological and immunohistochemical studies, both osteogenesis and collagenization were significantly higher in the rBM-MSCs/scaffold group, quantitatively and qualitatively. The present study strongly suggests the potential of SiC as an alternative strategy to improve the mechanical and biological properties of bone tissue engineering scaffolds, and shows that the pre-seeded nHA/Gel/SiC scaffold with rBM-MSCs improves osteogenesis in the engineered bone implant.
Collapse
Affiliation(s)
- Maryam Farshadi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behrooz Johari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Erfani Ezadyar
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Madanchi
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed Mohammad Amin Haramshahi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abazar Yari
- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Ayoob Karimizade
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Nekouian
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.,Pediatrics Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Science, Tehran, Iran
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Strategy for the Generation of Engineered Bone Constructs Based on Umbilical Cord Mesenchymal Stromal Cells Expanded with Human Platelet Lysate. Stem Cells Int 2019; 2019:7198215. [PMID: 31885622 PMCID: PMC6914958 DOI: 10.1155/2019/7198215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/05/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
Umbilical cord mesenchymal stromal cells (UC-MSC) are promising candidates for cell therapy due to their potent multilineage differentiation, enhanced self-renewal capacity, and immediate availability for clinical use. Clinical experience has demonstrated satisfactory biosafety profiles and feasibility of UC-MSC application in the allogeneic setting. However, the use of UC-MSC for bone regeneration has not been fully established. A major challenge in the generation of successful therapeutic strategies for bone engineering lies on the combination of highly functional proosteogenic MSC populations and bioactive matrix scaffolds. To address that, in this study we proposed a new approach for the generation of bone-like constructs based on UC-MSC expanded in human platelet lysate (hPL) and evaluated its potential to induce bone structures in vivo. In order to obtain UC-MSC for potential clinical use, we first assessed parameters such as the isolation method, growth supplementation, microbiological monitoring, and cryopreservation and performed full characterization of the cell product including phenotype, growth performance, tree-lineage differentiation, and gene expression. Finally, we evaluated bone-like constructs based on the combination of stimulated UC-MSC and collagen microbeads for in vivo bone formation. UC-MSC were successfully cultured from 100% of processed UC donors, and efficient cell derivation was observed at day 14 ± 3 by the explant method. UC-MSC maintained mesenchymal cell morphology, phenotype, high cell growth performance, and probed multipotent differentiation capacity. No striking variations between donors were recorded. As expected, UC-MSC showed tree-lineage differentiation and gene expression profiles similar to bone marrow- and adipose-derived MSC. Importantly, upon osteogenic and endothelial induction, UC-MSC displayed strong proangiogenic and bone formation features. The combination of hPL-expanded MSC and collagen microbeads led to bone/vessel formation following implantation into an immune competent mouse model. Collectively, we developed a high-performance UC-MSC-based cell manufacturing bioprocess that fulfills the requirements for human application and triggers the potency and effectivity of cell-engineered scaffolds for bone regeneration.
Collapse
|
41
|
Kargozar S, Lotfibakhshaeish N, Ebrahimi-Barough S, Nazari B, Hill RG. Stimulation of Osteogenic Differentiation of Induced Pluripotent Stem Cells (iPSCs) Using Bioactive Glasses: An in vitro Study. Front Bioeng Biotechnol 2019; 7:355. [PMID: 31850324 PMCID: PMC6901961 DOI: 10.3389/fbioe.2019.00355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 11/08/2019] [Indexed: 11/13/2022] Open
Abstract
Selection and use of an optimal cell source for bone tissue engineering (BTE) remain a challenging issue; the invention of induced pluripotent stem cells (iPSCs) have created new hopes on this regard. At the present study, we attempted to show the usability of iPSCs in combination with bioactive glasses (BGs) for bone regeneration applications. For this aim, iPSCs were cultured and incubated with the strontium and cobalt-containing BGs for different intervals (1, 5, and 7 days). The cell cytotoxicity and attachment were assessed using MTT assay and scanning electron microscopy (SEM), respectively. Moreover, the osteogenic differentiation of iPSCs seeded onto the glasses was evaluated using alkaline phosphatase (ALP) activity assay and real-time PCR. The obtained results clarified that although the cell viability is decreased during a 7 day period, the iPSCs could adhere and expand onto the BGs particles and over-express the osteogenic markers, including osteocalcin, osteonectin, and Runx2. Based on the data, we conclude that iPSCs in a combination of BGs can be considered as a potential candidate for BTE strategies.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group, Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nasrin Lotfibakhshaeish
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Nazari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Robert G. Hill
- Unit of Dental Physical Sciences, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
42
|
Iaquinta MR, Mazzoni E, Bononi I, Rotondo JC, Mazziotta C, Montesi M, Sprio S, Tampieri A, Tognon M, Martini F. Adult Stem Cells for Bone Regeneration and Repair. Front Cell Dev Biol 2019; 7:268. [PMID: 31799249 PMCID: PMC6863062 DOI: 10.3389/fcell.2019.00268] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
The regeneration of bone fractures, resulting from trauma, osteoporosis or tumors, is a major problem in our super-aging society. Bone regeneration is one of the main topics of concern in regenerative medicine. In recent years, stem cells have been employed in regenerative medicine with interesting results due to their self-renewal and differentiation capacity. Moreover, stem cells are able to secrete bioactive molecules and regulate the behavior of other cells in different host tissues. Bone regeneration process may improve effectively and rapidly when stem cells are used. To this purpose, stem cells are often employed with biomaterials/scaffolds and growth factors to accelerate bone healing at the fracture site. Briefly, this review will describe bone structure and the osteogenic differentiation of stem cells. In addition, the role of mesenchymal stem cells for bone repair/regrowth in the tissue engineering field and their recent progress in clinical applications will be discussed.
Collapse
Affiliation(s)
- Maria Rosa Iaquinta
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Ilaria Bononi
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Mazziotta
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Monica Montesi
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Simone Sprio
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Mauro Tognon
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
43
|
J Hill M, Qi B, Bayaniahangar R, Araban V, Bakhtiary Z, Doschak M, Goh B, Shokouhimehr M, Vali H, Presley J, Zadpoor A, Harris M, Abadi P, Mahmoudi M. Nanomaterials for bone tissue regeneration: updates and future perspectives. Nanomedicine (Lond) 2019; 14:2987-3006. [DOI: 10.2217/nnm-2018-0445] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Joint replacement and bone reconstructive surgeries are on the rise globally. Current strategies for implants and bone regeneration are associated with poor integration and healing resulting in repeated surgeries. A multidisciplinary approach involving basic biological sciences, tissue engineering, regenerative medicine and clinical research is required to overcome this problem. Considering the nanostructured nature of bone, expertise and resources available through recent advancements in nanobiotechnology enable researchers to design and fabricate devices and drug delivery systems at the nanoscale to be more compatible with the bone tissue environment. The focus of this review is to present the recent progress made in the rationale and design of nanomaterials for tissue engineering and drug delivery relevant to bone regeneration.
Collapse
Affiliation(s)
- Michael J Hill
- Department of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA
| | - Baowen Qi
- Center for Nanomedicine & Department of Anesthesiology, Brigham & Women's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - Rasoul Bayaniahangar
- Department of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA
| | - Vida Araban
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Zahra Bakhtiary
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Doschak
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Brian C Goh
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mohammadreza Shokouhimehr
- Department of Materials Science & Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hojatollah Vali
- Department of Anatomy & Cell Biology & Facility for Electron Microscopy Research, McGill University, Montreal, QC H3A 0G4, Canada
| | - John F Presley
- Department of Anatomy & Cell Biology & Facility for Electron Microscopy Research, McGill University, Montreal, QC H3A 0G4, Canada
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands
| | - Mitchel B Harris
- Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Parisa PSS Abadi
- Department of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA
| | - Morteza Mahmoudi
- Precision Health Program & Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
44
|
Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal Stem Cells for Regenerative Medicine. Cells 2019; 8:E886. [PMID: 31412678 PMCID: PMC6721852 DOI: 10.3390/cells8080886] [Citation(s) in RCA: 634] [Impact Index Per Article: 126.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
In recent decades, the biomedical applications of mesenchymal stem cells (MSCs) have attracted increasing attention. MSCs are easily extracted from the bone marrow, fat, and synovium, and differentiate into various cell lineages according to the requirements of specific biomedical applications. As MSCs do not express significant histocompatibility complexes and immune stimulating molecules, they are not detected by immune surveillance and do not lead to graft rejection after transplantation. These properties make them competent biomedical candidates, especially in tissue engineering. We present a brief overview of MSC extraction methods and subsequent potential for differentiation, and a comprehensive overview of their preclinical and clinical applications in regenerative medicine, and discuss future challenges.
Collapse
Affiliation(s)
- Yu Han
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Xuezhou Li
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yanbo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | - Yuping Han
- Department of Urology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
45
|
Hsieh MK, Wu CJ, Su XC, Chen YC, Tsai TT, Niu CC, Lai PL, Wu SC. Bone regeneration in Ds-Red pig calvarial defect using allogenic transplantation of EGFP-pMSCs - A comparison of host cells and seeding cells in the scaffold. PLoS One 2019; 14:e0215499. [PMID: 31318872 PMCID: PMC6638893 DOI: 10.1371/journal.pone.0215499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
Background Cells, scaffolds, and factors are the triad of regenerative engineering; however, it is difficult to distinguish whether cells in the regenerative construct are from the seeded cells or host cells via the host blood supply. We performed a novel in vivo study to transplant enhanced green fluorescent pig mesenchymal stem cells (EGFP-pMSCs) into calvarial defect of DsRed pigs. The cell distribution and proportion were distinguished by the different fluorescent colors through the whole regenerative period. Method/Results Eight adult domestic Ds-Red pigs were treated with five modalities: empty defects without scaffold (group 1); defects filled only with scaffold (group 2); defects filled with osteoinduction medium-loaded scaffold (group 3); defects filled with 5 x 103 cells/scaffold (group 4); and defects filled with 5 x 104 cells/scaffold (group 5). The in vitro cell distribution, morphology, osteogenic differentiation, and fluorescence images of groups 4 and 5 were analyzed. Two animals were sacrificed at 1, 2, 3, and 4 weeks after transplantation. The in vivo fluorescence imaging and quantification data showed that EGFP-pMSCs were represented in the scaffolds in groups 4 and 5 throughout the whole regenerative period. A higher seeded cell density resulted in more sustained seeded cells in bone regeneration compared to a lower seeded cell density. Host cells were recruited by seeded cells if enough space was available in the scaffold. Host cells in groups 1 to 3 did not change from the 1st week to 4th week, which indicates that the scaffold without seeded cells cannot recruit host cells even when enough space is available for cell ingrowth. The histological and immunohistochemical data showed that more cells were involved in osteogenesis in scaffolds with seeded cells. Conclusion Our in vivo results showed that more seeded cells recruit more host cells and that both cell types participate in osteogenesis. These results suggest that scaffolds without seeded cells may not be effective in bone transplantation.
Collapse
Affiliation(s)
- Ming-Kai Hsieh
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Jung Wu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Xuan-Chun Su
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Chen Chen
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Chien Niu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Liang Lai
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- * E-mail: (PLL); (SCW)
| | - Shinn-Chih Wu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan
- * E-mail: (PLL); (SCW)
| |
Collapse
|
46
|
Genetically Engineered-MSC Therapies for Non-unions, Delayed Unions and Critical-size Bone Defects. Int J Mol Sci 2019; 20:ijms20143430. [PMID: 31336890 PMCID: PMC6678255 DOI: 10.3390/ijms20143430] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/21/2022] Open
Abstract
The normal bone regeneration process is a complex and coordinated series of events involving different cell types and molecules. However, this process is impaired in critical-size/large bone defects, with non-unions or delayed unions remaining a major clinical problem. Novel strategies are needed to aid the current therapeutic approaches. Mesenchymal stem/stromal cells (MSCs) are able to promote bone regeneration. Their beneficial effects can be improved by modulating the expression levels of specific genes with the purpose of stimulating MSC proliferation, osteogenic differentiation or their immunomodulatory capacity. In this context, the genetic engineering of MSCs is expected to further enhance their pro-regenerative properties and accelerate bone healing. Herein, we review the most promising molecular candidates (protein-coding and non-coding transcripts) and discuss the different methodologies to engineer and deliver MSCs, mainly focusing on in vivo animal studies. Considering the potential of the MSC secretome for bone repair, this topic has also been addressed. Furthermore, the promising results of clinical studies using MSC for bone regeneration are discussed. Finally, we debate the advantages and limitations of using MSCs, or genetically-engineered MSCs, and their potential as promoters of bone fracture regeneration/repair.
Collapse
|
47
|
Park J, Jun EK, Son D, Hong W, Jang J, Yun W, Yoon BS, Song G, Kim IY, You S. Overexpression of Nanog in amniotic fluid-derived mesenchymal stem cells accelerates dermal papilla cell activity and promotes hair follicle regeneration. Exp Mol Med 2019; 51:1-15. [PMID: 31273189 PMCID: PMC6802618 DOI: 10.1038/s12276-019-0266-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/12/2019] [Accepted: 03/06/2019] [Indexed: 12/17/2022] Open
Abstract
Alopecia, one of the most common chronic diseases, can seriously affect a patient's psychosocial life. Dermal papilla (DP) cells serve as essential signaling centers in the regulation of hair growth and regeneration and are associated with crosstalk between autocrine/paracrine factors and the surrounding environment. We previously demonstrated that amniotic fluid-derived mesenchymal stem cell-conditioned medium (AF-MSC-CM) accelerates hair regeneration and growth. The present study describes the effects of overexpression of a reprogramming factor, Nanog, on MSC properties, the paracrine effects on DP cells, and in vivo hair regrowth. First, we examined the in vitro proliferation and lifespan of AF-MSCs overexpressing reprogramming factors, including Oct4, Nanog, and Lin28, alone or in combination. Among these factors, Nanog was identified as a key factor in maintaining the self-renewal capability of AF-MSCs by delaying cellular senescence, increasing the endogenous expression of Oct4 and Sox2, and preserving stemness. Next, we evaluated the paracrine effects of AF-MSCs overexpressing Nanog (AF-N-MSCs) by monitoring secretory molecules related to hair regeneration and growth (IGF, PDGF, bFGF, and Wnt7a) and proliferation of DP cells. In vivo studies revealed that CM derived from AF-N-MSCs (AF-N-CM) accelerated the telogen-to-anagen transition in hair follicles (HFs) and increased HF density. The expression of DP and HF stem cell markers and genes related to hair induction were higher in AF-N-CM than in CM from AF-MSCs (AF-CM). This study suggests that the secretome from autologous MSCs overexpressing Nanog could be an excellent candidate as a powerful anagen inducer and hair growth stimulator for the treatment of alopecia.
Collapse
Affiliation(s)
- Junghyun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Eun Kyoung Jun
- Institute of Regenerative Medicine, STEMLAB, Inc., Seoul, 02841, Republic of Korea
| | - Daryeon Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Wonjun Hong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jihoon Jang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Wonjin Yun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Byung Sun Yoon
- Institute of Regenerative Medicine, STEMLAB, Inc., Seoul, 02841, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea.
| | - In Yong Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea. .,Department of Neurosurgery, College of Medicine, Korea University, Seoul, 02841, South Korea.
| | - Seungkwon You
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea. .,Institute of Animal Molecular Biotechnology, Korea University, Seoul, 136-701, South Korea.
| |
Collapse
|
48
|
|
49
|
Naruphontjirakul P, Tsigkou O, Li S, Porter AE, Jones JR. Human mesenchymal stem cells differentiate into an osteogenic lineage in presence of strontium containing bioactive glass nanoparticles. Acta Biomater 2019; 90:373-392. [PMID: 30910622 DOI: 10.1016/j.actbio.2019.03.038] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 02/08/2023]
Abstract
While bioactive glass and ions released during its dissolution are known to stimulate osteoblast cells, the effect bioactive glass has on human stem cells is not clear. Here, we show that spherical monodispersed strontium containing bioactive nanoparticles (Sr-BGNPs) of composition 90.6 mol% SiO2, 5.0 mol% CaO, 4.4% mol% SrO (4.4%Sr-BGNPs) and 88.8 mol% SiO2, 1.8 mol% CaO, and 9.4 mol% SrO (9.4%Sr-BGNPs) stimulate bone marrow derived human stem cell (hMSC) differentiation down an osteogenic pathway without osteogenic supplements. The particles were synthesised using a modified Stӧber process and had diameters of 90 ± 10 nm. Previous work on similar particles that did not contain Sr (80 mol% SiO2, 20 mol% CaO) showed stem cells did not differentiate when exposed to the particles. Here, both compositions of the Sr-BGNPs (up to concentration of 250 μg/mL) stimulated the early-, mid-, and late-stage markers of osteogenic differentiation and accelerated mineralisation in the absence of osteogenic supplements. Sr ions play a key role in osteogenic stem cell differentiation. Sr-BGNP dissolution products did not adversely affect hMSC viability and no significant differences in viability were measured between each particle composition. Confocal and transmission electron microscopy (TEM) demonstrated that monodispersed Sr-BGNPs were internalised and localised within vesicles in the cytoplasm of hMSCs. Degradation of particles inside the cells was observed, whilst maintaining effective cations (Ca and Sr) in their silica network after 24 h in culture. The uptake of Sr-BGNPs by hMSCs was reduced by inhibitors of specific routes of endocytosis, indicating that the Sr-BGNPs uptake by hMSCs was probably via mixed endocytosis mechanisms. Sr-BGNPs have potential as injectable therapeutic devices for bone regeneration or treatment of conditions such as osteoporosis, because of their ability deliver a sustained release of osteogenic inorganic cations, e.g. calcium (Ca) or and strontium (Sr), through particle degradation locally to cells. STATEMENT OF SIGNIFICANCE: Here, we show that 90 nm spherical strontium containing bioactive nanoparticles of stimulate bone marrow derived human stem cell (hMSC) differentiation down an osteogenic pathway without the use of osteogenic supplements. While bioactive glass and its dissolution products are known to promote excellent bone regeneration in vivo and to stimulate osteoblast cells to produce bone matrix in vitro, their effect on human stem cells is not clear. Previously our nanoparticles that contained only SiO2 and CaO did not provoke human bone marrow or adipose derived stem cell differentiation.
Collapse
|
50
|
Kargozar S, Hamzehlou S, Baino F. Can bioactive glasses be useful to accelerate the healing of epithelial tissues? MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:1009-1020. [DOI: 10.1016/j.msec.2019.01.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 12/27/2018] [Accepted: 01/07/2019] [Indexed: 11/28/2022]
|