1
|
Meedecha P, Srisang N, Eawsakul K, Ongtanasup T, Tambunlertchai S, Sokjabok S, Chungcharoen T, Srisang S, Limmun W. Preparation and evaluation of blend polymer films for wound dressing using vancomycin-loaded polycaprolactone and carboxymethyl cellulose via crosslinking methods: Effect of mechanical strength, antibacterial activity, and cytotoxicity. J Mech Behav Biomed Mater 2024; 151:106339. [PMID: 38184930 DOI: 10.1016/j.jmbbm.2023.106339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
Polycaprolactone (PCL) and carboxymethyl cellulose (CMC) are two materials with beneficial properties for wound healing applications. Here, the simple preparation of PCL/CMC polymer films via the crosslinking method was demonstrated for the first time. The polymer films represented the suitable properties of liquid absorption and tensile strength to be used as a wound dressing. The blend polymer films can also load the vancomycin, which prolongs the drug release for effectiveness against S. aureus. The trifluoroethanol showed less toxicity in comparison with other crosslinking agents. This process can also be applied further in other medical devices and wound healing applications.
Collapse
Affiliation(s)
- Paweena Meedecha
- Department of Engineering, King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon Campus, Chumphon 86160, Thailand
| | - Naruebodee Srisang
- Department of Engineering, King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon Campus, Chumphon 86160, Thailand
| | - Komgrit Eawsakul
- Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Tassanee Ongtanasup
- Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Supreeda Tambunlertchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Siwakon Sokjabok
- Department of Engineering, King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon Campus, Chumphon 86160, Thailand
| | - Thatchapol Chungcharoen
- Department of Engineering, King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon Campus, Chumphon 86160, Thailand
| | - Siriwan Srisang
- Department of Engineering, King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon Campus, Chumphon 86160, Thailand.
| | - Warunee Limmun
- Department of Engineering, King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon Campus, Chumphon 86160, Thailand
| |
Collapse
|
2
|
Parvanda R, Kala P, Sharma V. Bibliometric Analysis-Based Review of Fused Deposition Modeling 3D Printing Method (1994-2020). 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:383-405. [PMID: 38389670 PMCID: PMC10880680 DOI: 10.1089/3dp.2021.0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
This study aimed at the detailed bibliometric analysis (BA) of fused deposition modeling (FDM) to understand the trend and research area. Web of Science database was used for extracting data using keywords, and 2793 documents were analyzed. From the analysis, the most influential and productive authors, countries, sources, and so on were identified and corresponding interrelations were represented by a three-field plot. Lotka's law was derived for author productivity and its reliability was verified by the Kolmogorov-Smirnov (K-S) test. Bradford's law was used for identifying the core sources contributing to the field of FDM. From the trend topic analysis, it was found that initially the research was focused upon removing error related to deposition as well as part orientation, but with the course of time, it diversified to include topics such as optimization of printing parameters, materials, and applications. Based on the inferences from BA, the article also discusses on current research trend and highlights certain future areas for research work.
Collapse
Affiliation(s)
- Rishi Parvanda
- Mechanical Engineering Department, BITS Pilani, Pilani, India
| | - Prateek Kala
- Mechanical Engineering Department, BITS Pilani, Pilani, India
| | - Varun Sharma
- Mechanical and Industrial Engineering Department, IIT Roorkee, Roorkee, India
| |
Collapse
|
3
|
Rahimkhoei V, Padervand M, Hedayat M, Seidi F, Dawi EA, Akbari A. Biomedical applications of electrospun polycaprolactone-based carbohydrate polymers: A review. Int J Biol Macromol 2023; 253:126642. [PMID: 37657575 DOI: 10.1016/j.ijbiomac.2023.126642] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Carbohydrate used in biomedical applications is influenced by numerous factors. One of the most appealing characteristic of carbohydrates is their ability to reproduce from natural resources which makes them ecologically friendly. Due to their abundance, biocompatibility, and no contamination by residual initiators, the desire for polysaccharides in medical uses is growing. Research on fiber-based materials, with a variety of medical applications including bio-functional scaffolds, continues to yield novel and intriguing findings. Almost all biopolymers of diverse structural compositions are electrospun to fulfill biomedical usage criteria, and the electrospinning technique is widely employed in biomedical technologies for both in-vivo and in-vitro therapies. Due to its biocompatibility and biodegradability, polycaprolactone (PCL) is employed in medical applications like tissue engineering and drug delivery. Although PCL nanofibers have established effects in vitro, more research is needed before their potential therapeutic application in the clinic. Here we tried to focus mainly on the carbohydrate incorporated PCL-based nanofibers production techniques, structures, morphology, and physicochemical properties along with their usage in biomedicine.
Collapse
Affiliation(s)
- Vahid Rahimkhoei
- Solid Tumor Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohsen Padervand
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O Box 55181-83111, Maragheh, Iran
| | - Mohaddeseh Hedayat
- Department of Phramacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - E A Dawi
- Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman, P.O. Box 346, United Arab Emirates
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
4
|
Jiang Z, Sun K, Wu H, Dong W, Ma J, Jiang M. Preparation and Characterization of a Novel Morphosis of Dextran and Its Derivatization with Polyethyleneimine. Molecules 2023; 28:7210. [PMID: 37894689 PMCID: PMC10609354 DOI: 10.3390/molecules28207210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Dextran, a variant of α-glucan with a significant proportion of α-(1,6) bonds, exhibits remarkable solubility in water. Nonetheless, the precipitation of dextran has been observed in injection vials during storage. The present study aimed to establish a technique for generating insoluble dextran and analyze its structural properties. Additionally, the potential for positively ionizing IS-dextran with polyethyleneimine was explored, with the ultimate objective of utilizing IS-dextran-PEI as a promising support for enzyme immobilization. As a result, IS-dextran was obtained by the process of slow evaporation with an average molecular weight of 6555 Da and a yield exceeding 60%. The calculated crystallinity of IS-dextran, which reaches 93.62%, is indicative of its irregular and dense structure, thereby accounting for its water insolubility. Furthermore, positive charge modification of IS-dextran, coupled with the incorporation of epichlorohydrin, resulted in all zeta potentials of IS-dextran-PEIs exceeding 30 mV, making it a promising supporting factor for enzyme immobilization.
Collapse
Affiliation(s)
| | | | | | | | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | | |
Collapse
|
5
|
Pahwa R, Ahuja M. Nanocellulose-gellan cross-linked scaffolds for vaginal delivery of fluconazole. Int J Biol Macromol 2023; 229:668-683. [PMID: 36592850 DOI: 10.1016/j.ijbiomac.2022.12.273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/09/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
The objective of this research is to formulate lyophilized fluconazole-loaded nanocellulose-gellan scaffolds cross-linked using trisodium trimetaphosphate as a vaginal drug delivery system. The effect of polymers (nanocellulose and gellan gum) and cross-linking agents on drug release and mucoadhesive strength were determined by approaching a two-factor three-level central composite experimental design. The optimal formulation of the fluconazole-loaded cross-linked rice or wheat nanocellulose-gellan based scaffolds comprised of the concentration of polymers (4.91 % w/v or 4.99 % w/v) and trisodium trimetaphosphate (16.43 % w/v or 15.83 % w/v), respectively. The infrared spectra confirmed the cross-linking of nanocellulose and gellan gum while the thermal graph revealed the higher thermal stability of cross-linked scaffolds. The diffractogram of the scaffolds unveiled their amorphous nature while the electron micrographs depict the porous nature of the fluconazole-loaded nanocellulose-gellan scaffolds. The phosphorylated cross-linked nanocellulose-gellan scaffolds represent more swelling (8-fold higher), porosity (>83 %), tensile strength (>34 MPa), and mucoadhesive strength (>1940 mN), and less enzymatic degradation rate over the non cross-linked scaffolds. The optimal batch of cross-linked nanocellulose-gellan scaffolds provided a sustained release of 99 % of fluconazole over 24 h with 1.19-fold higher ex-vivo vaginal permeation over the native scaffolds. In addition, the phosphorylated nanocellulose-gellan based scaffolds exhibit improved antifungal activity and non-cytotoxicity.
Collapse
Affiliation(s)
- Rimpy Pahwa
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Munish Ahuja
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India.
| |
Collapse
|
6
|
Cordeiro R, Alvites RD, Sousa AC, Lopes B, Sousa P, Maurício AC, Alves N, Moura C. Cellulose-Based Scaffolds: A Comparative Study for Potential Application in Articular Cartilage. Polymers (Basel) 2023; 15:781. [PMID: 36772083 PMCID: PMC9919712 DOI: 10.3390/polym15030781] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Osteoarthritis is a highly prevalent disease worldwide that leads to cartilage loss. Tissue engineering, involving scaffolds, cells, and stimuli, has shown to be a promising strategy for its repair. Thus, this study aims to manufacture and characterise different scaffolds with poly(ε-caprolactone) (PCL) with commercial cellulose (microcrystalline (McC) and methyl cellulose (MC) or cellulose from agro-industrial residues (corncob (CcC)) and at different percentages, 1%, 2%, and 3%. PCL scaffolds were used as a control. Morphologically, the produced scaffolds presented porosities within the desired for cell incorporation (57% to 65%). When submitted to mechanical tests, the incorporation of cellulose affects the compression resistance of the majority of scaffolds. Regarding tensile strength, McC2% showed the highest values. It was proven that all manufactured scaffolds suffered degradation after 7 days of testing because of enzymatic reactions. This degradation may be due to the dissolution of PCL in the organic solvent. Biological tests revealed that PCL, CcC1%, and McC3% are the best materials to combine with human dental pulp stem/stromal cells. Overall, results suggest that cellulose incorporation in PCL scaffolds promotes cellular adhesion/proliferation. Methyl cellulose scaffolds demonstrated some advantageous compressive properties (closer to native cartilaginous tissue) to proceed to further studies for application in cartilage repair.
Collapse
Affiliation(s)
- Rachel Cordeiro
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Rui D. Alvites
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Ana C. Sousa
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Bruna Lopes
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Patrícia Sousa
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Ana C. Maurício
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), 4050-313 Porto, Portugal
| | - Carla Moura
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), 4050-313 Porto, Portugal
- Applied Research Institute (i2A), Polytechnic Institute of Coimbra, Rua da Misericórdia, Lagar dos Cortiços–S. Martinho do Bispo, 3045-093 Coimbra, Portugal
| |
Collapse
|
7
|
Janmohammadi M, Nazemi Z, Salehi AOM, Seyfoori A, John JV, Nourbakhsh MS, Akbari M. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioact Mater 2023; 20:137-163. [PMID: 35663339 PMCID: PMC9142858 DOI: 10.1016/j.bioactmat.2022.05.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Natural bone constitutes a complex and organized structure of organic and inorganic components with limited ability to regenerate and restore injured tissues, especially in large bone defects. To improve the reconstruction of the damaged bones, tissue engineering has been introduced as a promising alternative approach to the conventional therapeutic methods including surgical interventions using allograft and autograft implants. Bioengineered composite scaffolds consisting of multifunctional biomaterials in combination with the cells and bioactive therapeutic agents have great promise for bone repair and regeneration. Cellulose and its derivatives are renewable and biodegradable natural polymers that have shown promising potential in bone tissue engineering applications. Cellulose-based scaffolds possess numerous advantages attributed to their excellent properties of non-toxicity, biocompatibility, biodegradability, availability through renewable resources, and the low cost of preparation and processing. Furthermore, cellulose and its derivatives have been extensively used for delivering growth factors and antibiotics directly to the site of the impaired bone tissue to promote tissue repair. This review focuses on the various classifications of cellulose-based composite scaffolds utilized in localized bone drug delivery systems and bone regeneration, including cellulose-organic composites, cellulose-inorganic composites, cellulose-organic/inorganic composites. We will also highlight the physicochemical, mechanical, and biological properties of the different cellulose-based scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Mahsa Janmohammadi
- Faculty of New Sciences and Technologies, Semnan University, Semnan, P.O.Box: 19111-35131, Iran
| | - Zahra Nazemi
- Faculty of New Sciences and Technologies, Semnan University, Semnan, P.O.Box: 19111-35131, Iran
| | | | - Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Johnson V. John
- Terasaki Institute for Biomedical Innovations, Los Angeles, CA, 90050, USA
| | - Mohammad Sadegh Nourbakhsh
- Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, P.O.Box: 19111-35131, Iran
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Terasaki Institute for Biomedical Innovations, Los Angeles, CA, 90050, USA
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| |
Collapse
|
8
|
Wang B, Qiu S, Chen Z, Hu Y, Shi G, Zhuo H, Zhang H, Zhong L. Assembling nanocelluloses into fibrous materials and their emerging applications. Carbohydr Polym 2023; 299:120008. [PMID: 36876760 DOI: 10.1016/j.carbpol.2022.120008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022]
Abstract
Nanocelluloses, derived from various plants or specific bacteria, represent the renewable and sophisticated nano building blocks for emerging functional materials. Especially, the assembly of nanocelluloses as fibrous materials can mimic the structural organization of their natural counterparts to integrate various functions, thus holding great promise for potential applications in various fields, such as electrical device, fire retardance, sensing, medical antibiosis, and drug release. Due to the advantages of nanocelluloses, a variety of fibrous materials have been fabricated with the assistance of advanced techniques, and their applications have attracted great interest in the past decade. This review begins with an overview of nanocellulose properties followed by the historical development of assembling processes. There will be a focus on assembling techniques, including traditional methods (wet spinning, dry spinning, and electrostatic spinning) and advanced methods (self-assembly, microfluidic, and 3D printing). In particular, the design rules and various influencing factors of assembling processes related to the structure and function of fibrous materials are introduced and discussed in detail. Then, the emerging applications of these nanocellulose-based fibrous materials are highlighted. Finally, some perspectives, key opportunities, and critical challenges on future research trends within this field are proposed.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shuting Qiu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zehong Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yijie Hu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ge Shi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Hao Zhuo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huili Zhang
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China.
| | - Linxin Zhong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
9
|
Eldeeb AE, Salah S, Elkasabgy NA. Biomaterials for Tissue Engineering Applications and Current Updates in the Field: A Comprehensive Review. AAPS PharmSciTech 2022; 23:267. [PMID: 36163568 PMCID: PMC9512992 DOI: 10.1208/s12249-022-02419-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/09/2022] [Indexed: 01/10/2023] Open
Abstract
Tissue engineering has emerged as an interesting field nowadays; it focuses on accelerating the auto-healing mechanism of tissues rather than organ transplantation. It involves implanting an In Vitro cultured initiative tissue or a scaffold loaded with tissue regenerating ingredients at the damaged area. Both techniques are based on the use of biodegradable, biocompatible polymers as scaffolding materials which are either derived from natural (e.g. alginates, celluloses, and zein) or synthetic sources (e.g. PLGA, PCL, and PLA). This review discusses in detail the recent applications of different biomaterials in tissue engineering highlighting the targeted tissues besides the in vitro and in vivo key findings. As well, smart biomaterials (e.g. chitosan) are fascinating candidates in the field as they are capable of elucidating a chemical or physical transformation as response to external stimuli (e.g. temperature, pH, magnetic or electric fields). Recent trends in tissue engineering are summarized in this review highlighting the use of stem cells, 3D printing techniques, and the most recent 4D printing approach which relies on the use of smart biomaterials to produce a dynamic scaffold resembling the natural tissue. Furthermore, the application of advanced tissue engineering techniques provides hope for the researchers to recognize COVID-19/host interaction, also, it presents a promising solution to rejuvenate the destroyed lung tissues.
Collapse
Affiliation(s)
- Alaa Emad Eldeeb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Salwa Salah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
10
|
Cordeiro R, Henriques M, Silva JC, Antunes F, Alves N, Moura C. Corncob Cellulose Scaffolds: A New Sustainable Temporary Implant for Cartilage Replacement. J Funct Biomater 2022; 13:63. [PMID: 35645271 PMCID: PMC9149862 DOI: 10.3390/jfb13020063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 01/16/2023] Open
Abstract
Tissue engineering using scaffolds is a promising strategy to repair damaged articular cartilage, whose self-repair is inefficient. Cellulose properties have been recognized for their application in the biomedical field. The aim of this study was to fabricate and characterize novel scaffolds based on poly(ɛ-caprolactone) (PCL) and sustainable cellulose. Thus, the performance of corncob-derived cellulose (CC) in scaffolds as an alternative to wood cellulose (WC) was also investigated to reduce the environmental footprint. Two concentrations of CC in scaffolds were tested, 1% and 2% (w/w), and commercial WC using the same concentrations, as a control. Morphologically, all the developed scaffolds presented pore sizes of ~300 µm, 10 layers, a circular shape and well-dispersed cellulose. Thus, all of these characteristics and properties provide the manufactured scaffolds suitable for use in cartilage-replacement strategies. The use of 2% CC results in higher porosity (54.24%), which promotes cell infiltration/migration and nutrient exchange, and has similar mechanical properties to WC. As for the effects of enzymatic degradation of the scaffolds, no significant changes (p > 0.05) were observed in resistance over time. However, the obtained compressive modulus of the scaffold with 2% CC was similar to that of WC. Overall, our results suggest that the integration of 2% corncob cellulose in PCL scaffolds could be a novel way to replace wood-cellulose-containing scaffolds, highlighting its potential for cartilage-replacement strategies.
Collapse
Affiliation(s)
- Rachel Cordeiro
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal; (R.C.); (J.C.S.); (N.A.)
| | - Marta Henriques
- Polytechnic Institute of Coimbra, Coimbra Agriculture School, 3045-601 Coimbra, Portugal;
- Research Centre for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Coimbra, 3045-601 Coimbra, Portugal
| | - João C. Silva
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal; (R.C.); (J.C.S.); (N.A.)
- IBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Filipe Antunes
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
- Science 351, Instituto Pedro Nunes, Ed C, 3030-199 Coimbra, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal; (R.C.); (J.C.S.); (N.A.)
| | - Carla Moura
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal; (R.C.); (J.C.S.); (N.A.)
| |
Collapse
|
11
|
Grivet-Brancot A, Boffito M, Ciardelli G. Use of Polyesters in Fused Deposition Modeling for Biomedical Applications. Macromol Biosci 2022; 22:e2200039. [PMID: 35488769 DOI: 10.1002/mabi.202200039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Indexed: 11/09/2022]
Abstract
In recent years, 3D printing techniques experienced a growing interest in several sectors, including the biomedical one. Their main advantage resides in the possibility to obtain complex and personalized structures in a cost-effective way impossible to achieve with traditional production methods. This is especially true for Fused Deposition Modeling (FDM), one of the most diffused 3D printing methods. The easy customization of the final products' geometry, composition and physico-chemical properties is particularly interesting for the increasingly personalized approach adopted in modern medicine. Thermoplastic polymers are the preferred choice for FDM applications, and a wide selection of biocompatible and biodegradable materials is available to this aim. Moreover, these polymers can also be easily modified before and after printing to better suit the body environment and the mechanical properties of biological tissues. This review focuses on the use of thermoplastic aliphatic polyesters for FDM applications in the biomedical field. In detail, the use of poly(ε-caprolactone), poly(lactic acid), poly(lactic-co-glycolic acid), poly(hydroxyalkanoate)s, thermo-plastic poly(ester urethane)s and their blends has been thoroughly surveyed, with particular attention to their main features, applicability and workability. The state-of-the-art is presented and current challenges in integrating the additive manufacturing technology in the medical practice are discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Arianna Grivet-Brancot
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy.,Department of Surgical Sciences, Università di Torino, Corso Dogliotti 14, Torino, 10126, Italy
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy
| |
Collapse
|
12
|
Debnath B, Haldar D, Purkait MK. A critical review on the techniques used for the synthesis and applications of crystalline cellulose derived from agricultural wastes and forest residues. Carbohydr Polym 2021; 273:118537. [PMID: 34560949 DOI: 10.1016/j.carbpol.2021.118537] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022]
Abstract
In order to meet the growing energy crisis of the 21st century, the utilization of bio-based materials has become a field of high research endeavour. In view of that, the present review paper is focused on different techniques that are frequently explored for the synthesis of value-added crystalline derivatives of cellulose like MCC and NCC from agricultural wastes and forest residues. Moreover, a comparative analysis between thermochemical and biochemical methods is carried out for such valorization of biomass considering the mechanism involved with various reactions. Further, a critical analysis is performed on various individual techniques specifically used for the applications of MCC and NCC in different fields including environmental, polymer industry, pharmaceutical and other emerging sectors. This article will assist the readers not only to explore new biomass sources but also provides an in-depth insight on various green and cost-effective methods for sustainable production of crystalline cellulose.
Collapse
Affiliation(s)
- Banhisikha Debnath
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dibyajyoti Haldar
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
13
|
Yahya EB, Amirul AA, H.P.S. AK, Olaiya NG, Iqbal MO, Jummaat F, A.K. AS, Adnan AS. Insights into the Role of Biopolymer Aerogel Scaffolds in Tissue Engineering and Regenerative Medicine. Polymers (Basel) 2021; 13:1612. [PMID: 34067569 PMCID: PMC8156123 DOI: 10.3390/polym13101612] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
The global transplantation market size was valued at USD 8.4 billion in 2020 and is expected to grow at a compound annual growth rate of 11.5% over the forecast period. The increasing demand for tissue transplantation has inspired researchers to find alternative approaches for making artificial tissues and organs function. The unique physicochemical and biological properties of biopolymers and the attractive structural characteristics of aerogels such as extremely high porosity, ultra low-density, and high surface area make combining these materials of great interest in tissue scaffolding and regenerative medicine applications. Numerous biopolymer aerogel scaffolds have been used to regenerate skin, cartilage, bone, and even heart valves and blood vessels by growing desired cells together with the growth factor in tissue engineering scaffolds. This review focuses on the principle of tissue engineering and regenerative medicine and the role of biopolymer aerogel scaffolds in this field, going through the properties and the desirable characteristics of biopolymers and biopolymer tissue scaffolds in tissue engineering applications. The recent advances of using biopolymer aerogel scaffolds in the regeneration of skin, cartilage, bone, and heart valves are also discussed in the present review. Finally, we highlight the main challenges of biopolymer-based scaffolds and the prospects of using these materials in regenerative medicine.
Collapse
Affiliation(s)
- Esam Bashir Yahya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - A. A. Amirul
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Abdul Khalil H.P.S.
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Niyi Gideon Olaiya
- Department of Industrial and Production Engineering, Federal University of Technology, PMB 704 Akure, Nigeria;
| | - Muhammad Omer Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China;
| | - Fauziah Jummaat
- Management & Science University Medical Centre, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia; (F.J.); (A.S.A.)
| | - Atty Sofea A.K.
- Hospital Seberang Jaya, Jalan Tun Hussein Onn, Seberang Jaya, Permatang Pauh 13700, Malaysia;
| | - A. S. Adnan
- Management & Science University Medical Centre, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia; (F.J.); (A.S.A.)
| |
Collapse
|
14
|
Experimental Analysis of the Enzymatic Degradation of Polycaprolactone: Microcrystalline Cellulose Composites and Numerical Method for the Prediction of the Degraded Geometry. MATERIALS 2021; 14:ma14092460. [PMID: 34068502 PMCID: PMC8125986 DOI: 10.3390/ma14092460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022]
Abstract
The degradation rate of polycaprolactone (PCL) is a key issue when using this material in Tissue Engineering or eco-friendly packaging sectors. Although different PCL-based composite materials have been suggested in the literature and extensively tested in terms of processability by material extrusion additive manufacturing, little attention has been paid to the influence of the fillers on the mechanical properties of the material during degradation. This work analyses the possibility of tuning the degradation rate of PCL-based filaments by the introduction of microcrystalline cellulose into the polymer matrix. The enzymatic degradation of the composite and pure PCL materials were compared in terms of mass loss, mechanical properties, morphology and infrared spectra. The results showed an increased degradation rate of the composite material due to the presence of the filler (enhanced interaction with the enzymes). Additionally, a new numerical method for the prediction of the degraded geometry was developed. The method, based on the Monte Carlo Method in an iterative process, adjusts the degradation probability according to the exposure of each discretized element to the degradation media. This probability is also amplified depending on the corresponding experimental mass loss, thus allowing a good fit to the experimental data in relatively few iterations.
Collapse
|
15
|
Sta. Agueda JRH, Chen Q, Maalihan RD, Ren J, da Silva ÍGM, Dugos NP, Caldona EB, Advincula RC. 3D printing of biomedically relevant polymer materials and biocompatibility. MRS COMMUNICATIONS 2021; 11:197-212. [PMID: 33936866 PMCID: PMC8075026 DOI: 10.1557/s43579-021-00038-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/08/2021] [Indexed: 05/06/2023]
Abstract
ABSTRACT Research on polymer materials for additive manufacturing technology in biomedical applications is as promising as it is numerous, but biocompatibility of printable materials still remains a big challenge. Changes occurring during the 3D-printing processes itself may have adverse effects on the compatibility of the completed print. This prospective will put emphasis on the different additives and processes that can have a direct impact on biocompatibility during and after 3D printing of polymer materials. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Joseph Rey H. Sta. Agueda
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Manufacturing Engineering and Management, De La Salle University, 1004 Manila, Philippines
- Department of Chemical Engineering, De La Salle University, 1004 Manila, Philippines
| | - Qiyi Chen
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Center for Nanophase Materials and Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Reymark D. Maalihan
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Chemical and Food Engineering and Material Testing and Calibration Center, Batangas State University, 4200 Batangas City, Philippines
| | - Jingbo Ren
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Ítalo G. M. da Silva
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
| | - Nathaniel P. Dugos
- Department of Chemical Engineering, De La Salle University, 1004 Manila, Philippines
| | - Eugene B. Caldona
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Chemical and Biomolecular Engineering and Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN 37996 USA
| | - Rigoberto C. Advincula
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Chemical and Biomolecular Engineering and Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN 37996 USA
- Center for Nanophase Materials and Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| |
Collapse
|
16
|
Micro and nanocrystalline cellulose derivatives of lignocellulosic biomass: A review on synthesis, applications and advancements. Carbohydr Polym 2020; 250:116937. [DOI: 10.1016/j.carbpol.2020.116937] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022]
|
17
|
Murizan NIS, Mustafa NS, Ngadiman NHA, Mohd Yusof N, Idris A. Review on Nanocrystalline Cellulose in Bone Tissue Engineering Applications. Polymers (Basel) 2020; 12:E2818. [PMID: 33261121 PMCID: PMC7761060 DOI: 10.3390/polym12122818] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022] Open
Abstract
Nanocrystalline cellulose is an abundant and inexhaustible organic material on Earth. It can be derived from many lignocellulosic plants and also from agricultural residues. They endowed exceptional physicochemical properties, which have promoted their intensive exploration in biomedical application, especially for tissue engineering scaffolds. Nanocrystalline cellulose has been acknowledged due to its low toxicity and low ecotoxicological risks towards living cells. To explore this field, this review provides an overview of nanocrystalline cellulose in designing materials of bone scaffolds. An introduction to nanocrystalline cellulose and its isolation method of acid hydrolysis are discussed following by the application of nanocrystalline cellulose in bone tissue engineering scaffolds. This review also provides comprehensive knowledge and highlights the contribution of nanocrystalline cellulose in terms of mechanical properties, biocompatibility and biodegradability of bone tissue engineering scaffolds. Lastly, the challenges for future scaffold development using nanocrystalline cellulose are also included.
Collapse
Affiliation(s)
- Nur Ilyana Sahira Murizan
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia; (N.I.S.M.); (N.S.M.); (N.M.Y.)
| | - Nur Syahirah Mustafa
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia; (N.I.S.M.); (N.S.M.); (N.M.Y.)
| | - Nor Hasrul Akhmal Ngadiman
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia; (N.I.S.M.); (N.S.M.); (N.M.Y.)
| | - Noordin Mohd Yusof
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia; (N.I.S.M.); (N.S.M.); (N.M.Y.)
| | - Ani Idris
- c/o Institute of Bioproduct Development, School of Chemical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia;
| |
Collapse
|
18
|
Khalil HPSA, Jummaat F, Yahya EB, Olaiya NG, Adnan AS, Abdat M, N. A. M. N, Halim AS, Kumar USU, Bairwan R, Suriani AB. A Review on Micro- to Nanocellulose Biopolymer Scaffold Forming for Tissue Engineering Applications. Polymers (Basel) 2020; 12:E2043. [PMID: 32911705 PMCID: PMC7565330 DOI: 10.3390/polym12092043] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022] Open
Abstract
Biopolymers have been used as a replacement material for synthetic polymers in scaffold forming due to its biocompatibility and nontoxic properties. Production of scaffold for tissue repair is a major part of tissue engineering. Tissue engineering techniques for scaffold forming with cellulose-based material is at the forefront of present-day research. Micro- and nanocellulose-based materials are at the forefront of scientific development in the areas of biomedical engineering. Cellulose in scaffold forming has attracted a lot of attention because of its availability and toxicity properties. The discovery of nanocellulose has further improved the usability of cellulose as a reinforcement in biopolymers intended for scaffold fabrication. Its unique physical, chemical, mechanical, and biological properties offer some important advantages over synthetic polymer materials. This review presents a critical overview of micro- and nanoscale cellulose-based materials used for scaffold preparation. It also analyses the relationship between the method of fabrication and properties of the fabricated scaffold. The review concludes with future potential research on cellulose micro- and nano-based scaffolds. The review provides an up-to-date summary of the status and future prospective applications of micro- and nanocellulose-based scaffolds for tissue engineering.
Collapse
Affiliation(s)
- H. P. S. Abdul Khalil
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (N.G.O.); (U.S.U.K.)
| | - Fauziah Jummaat
- Management Science University Medical Centre, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Selangor, Malaysia;
| | - Esam Bashir Yahya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (N.G.O.); (U.S.U.K.)
| | - N. G. Olaiya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (N.G.O.); (U.S.U.K.)
| | - A. S. Adnan
- Management Science University Medical Centre, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Selangor, Malaysia;
- CKD Resource Centre, School of Medical Sciences, Health Campus, USM, Kubang Kerian 16150, Kelantan, Malaysia
| | - Munifah Abdat
- Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh 23311, Indonesia;
| | - Nasir N. A. M.
- Reconstructive Sciences Unit, School of Medical Sciences, Health Campus USM, Kubang Kerian 16150, Kelantan, Malaysia; (N.N.A.M.); (A.S.H.)
| | - Ahmad Sukari Halim
- Reconstructive Sciences Unit, School of Medical Sciences, Health Campus USM, Kubang Kerian 16150, Kelantan, Malaysia; (N.N.A.M.); (A.S.H.)
| | - U. Seeta Uthaya Kumar
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (N.G.O.); (U.S.U.K.)
| | - Rahul Bairwan
- Department of Aeronautical engineering, School of Aeronautics, Neemrana 301705, Rajasthan, India;
| | - A. B. Suriani
- Nanotechnology Research Centre, Faculty of Science and Mathematics, UPSI, Tanjung Malim 35900, Perak, Malaysia;
| |
Collapse
|
19
|
Mohan D, Teong ZK, Bakir AN, Sajab MS, Kaco H. Extending Cellulose-Based Polymers Application in Additive Manufacturing Technology: A Review of Recent Approaches. Polymers (Basel) 2020; 12:E1876. [PMID: 32825377 PMCID: PMC7563372 DOI: 10.3390/polym12091876] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
The materials for additive manufacturing (AM) technology have grown substantially over the last few years to fulfill industrial needs. Despite that, the use of bio-based composites for improved mechanical properties and biodegradation is still not fully explored. This limits the universal expansion of AM-fabricated products due to the incompatibility of the products made from petroleum-derived resources. The development of naturally-derived polymers for AM materials is promising with the increasing number of studies in recent years owing to their biodegradation and biocompatibility. Cellulose is the most abundant biopolymer that possesses many favorable properties to be incorporated into AM materials, which have been continuously focused on in recent years. This critical review discusses the development of AM technologies and materials, cellulose-based polymers, cellulose-based three-dimensional (3D) printing filaments, liquid deposition modeling of cellulose, and four-dimensional (4D) printing of cellulose-based materials. Cellulose-based AM material applications and the limitations with future developments are also reviewed.
Collapse
Affiliation(s)
- Denesh Mohan
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (D.M.); (Z.K.T.); (A.N.B.)
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Zee Khai Teong
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (D.M.); (Z.K.T.); (A.N.B.)
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Afifah Nabilah Bakir
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (D.M.); (Z.K.T.); (A.N.B.)
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Mohd Shaiful Sajab
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (D.M.); (Z.K.T.); (A.N.B.)
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Hatika Kaco
- Kolej GENIUS Insan, Universiti Sains Islam Malaysia, Bandar Baru Nilai, Nilai 71800, Negeri Sembilan, Malaysia;
| |
Collapse
|
20
|
Wang B, Liu J, Chen K, Wang Y, Shao Z. Three‐Dimensional Printing of Methacrylic Grafted Cellulose Nanocrystal‐Reinforced Nanocomposites With Improved Properties. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bo Wang
- Beijing Engineering Research Centre of Cellulose and Its DerivativesSchool of Materials Science and Engineering, Beijing Institute of Technology 100081 Beijing People's Republic of China
| | - Jianxin Liu
- Beijing Engineering Research Centre of Cellulose and Its DerivativesSchool of Materials Science and Engineering, Beijing Institute of Technology 100081 Beijing People's Republic of China
| | - Ken Chen
- Beijing Engineering Research Centre of Cellulose and Its DerivativesSchool of Materials Science and Engineering, Beijing Institute of Technology 100081 Beijing People's Republic of China
| | - Yongzhi Wang
- Beijing Engineering Research Centre of Cellulose and Its DerivativesSchool of Materials Science and Engineering, Beijing Institute of Technology 100081 Beijing People's Republic of China
| | - Ziqiang Shao
- Beijing Engineering Research Centre of Cellulose and Its DerivativesSchool of Materials Science and Engineering, Beijing Institute of Technology 100081 Beijing People's Republic of China
| |
Collapse
|
21
|
Cengiz IF, Maia FR, da Silva Morais A, Silva-Correia J, Pereira H, Canadas RF, Espregueira-Mendes J, Kwon IK, Reis RL, Oliveira JM. Entrapped in cage (EiC) scaffolds of 3D-printed polycaprolactone and porous silk fibroin for meniscus tissue engineering. Biofabrication 2020; 12:025028. [PMID: 32069441 DOI: 10.1088/1758-5090/ab779f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The meniscus has critical functions in the knee joint kinematics and homeostasis. Injuries of the meniscus are frequent, and the lack of a functional meniscus between the femur and tibial plateau can cause articular cartilage degeneration leading to osteoarthritis development and progression. Regeneration of meniscus tissue has outstanding challenges to be addressed. In the current study, novel Entrapped in cage (EiC) scaffolds of 3D-printed polycaprolactone (PCL) and porous silk fibroin were proposed for meniscus tissue engineering. As confirmed by micro-structural analysis the entrapment of silk fibroin was successful, and all scaffolds had excellent interconnectivity (≥99%). The EiC scaffolds had more favorable micro-structure compared with the PCL cage scaffolds by improving the pore size while keeping the interconnectivity almost the same. When compared with the PCL cage, the entrapment of porous silk fibroin into the PCL cage decreased the high compressive modulus in a favorable matter in the wet state thanks to the silk fibroin's high swelling properties. The in vitro studies with human stem cells or meniscocytes seeded constructs, demonstrated that the EiC scaffolds had superior cell adhesion, metabolic activity, and proliferation compared to the PCL cage scaffolds. Upon subcutaneous implantation of scaffolds in nude mice, all groups were free of adverse incidents, and mildly invaded by inflammatory cells with neovascularization, while the EiC scaffolds showed better tissue infiltration. The results of this work indicated that the EiC scaffolds of PCL and silk fibroin are favorable for meniscus tissue engineering, and the findings are encouraging for further studies using a larger animal model.
Collapse
Affiliation(s)
- Ibrahim Fatih Cengiz
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fan D, Staufer U, Accardo A. Engineered 3D Polymer and Hydrogel Microenvironments for Cell Culture Applications. Bioengineering (Basel) 2019; 6:E113. [PMID: 31847117 PMCID: PMC6955903 DOI: 10.3390/bioengineering6040113] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/13/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022] Open
Abstract
The realization of biomimetic microenvironments for cell biology applications such as organ-on-chip, in vitro drug screening, and tissue engineering is one of the most fascinating research areas in the field of bioengineering. The continuous evolution of additive manufacturing techniques provides the tools to engineer these architectures at different scales. Moreover, it is now possible to tailor their biomechanical and topological properties while taking inspiration from the characteristics of the extracellular matrix, the three-dimensional scaffold in which cells proliferate, migrate, and differentiate. In such context, there is therefore a continuous quest for synthetic and nature-derived composite materials that must hold biocompatible, biodegradable, bioactive features and also be compatible with the envisioned fabrication strategy. The structure of the current review is intended to provide to both micro-engineers and cell biologists a comparative overview of the characteristics, advantages, and drawbacks of the major 3D printing techniques, the most promising biomaterials candidates, and the trade-offs that must be considered in order to replicate the properties of natural microenvironments.
Collapse
Affiliation(s)
| | | | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands; (D.F.); (U.S.)
| |
Collapse
|
23
|
Comparison between calcium carbonate and β‐tricalcium phosphate as additives of 3D printed scaffolds with polylactic acid matrix. J Tissue Eng Regen Med 2019; 14:272-283. [DOI: 10.1002/term.2990] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/18/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022]
|
24
|
Khattab MM, Dahman Y. Synthesis and characterization of cellulose nanowhisker‐reinforced‐poly(
ε
‐caprolactone) scaffold for tissue‐engineering applications. J Appl Polym Sci 2019. [DOI: 10.1002/app.48481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Yaser Dahman
- Department of Chemical EngineeringRyerson University Toronto Ontario M5B 2K3 Canada
| |
Collapse
|
25
|
Advances in tissue engineering of nanocellulose-based scaffolds: A review. Carbohydr Polym 2019; 224:115144. [PMID: 31472870 DOI: 10.1016/j.carbpol.2019.115144] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/08/2019] [Accepted: 07/29/2019] [Indexed: 01/12/2023]
Abstract
Scaffolds based on nanocellulose (NC) have crucial applications in tissue engineering (TE) owing to the biocompatibility, water absorption, water retention, optical transparency, and chemo-mechanical properties. In this review, we summarize the scaffolds based on nanocellulose, including nanocrystalline cellulose and nanofibrillated cellulose. We compare four representative methods to prepare NC-based scaffolds, containing electrospinning, freeze-drying, 3D printing, and solvent casting. We outline the characteristics of scaffolds obtained by different methods. Our focus is on the applications of NC-based scaffolds to repair, improve or replace damaged tissues and organs, including skin, blood vessel, nerve, skeletal muscle, heart, liver, and ophthalmology. NC-based scaffolds are attractive materials for regeneration of different tissues and organs due to the remarkable features. Finally, we propose the challenges and potentials of NC-based TE scaffolds.
Collapse
|
26
|
Polycaprolactone–carboxymethyl cellulose composites for manufacturing porous scaffolds by material extrusion. Biodes Manuf 2018. [DOI: 10.1007/s42242-018-0024-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|