1
|
Skinner J, Langley N, Fahrenholtz S, Shanavas Y, Waletzki B, Brown R, Herrick J, Shyamsunder L, Goguen P, Rajan S. Microscopic characteristics of peri- and postmortem fracture surfaces. Forensic Sci Int 2024; 365:112223. [PMID: 39437525 DOI: 10.1016/j.forsciint.2024.112223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/07/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024]
Abstract
This study investigated if microscopic surface features captured with a scanning electron microscope (SEM) effectively discriminate fracture timing. We hypothesized that microscopic fracture characteristics, including delamination, osteon pullout, and microcracks, may vary as bone elasticity decreases, elucidating perimortem and postmortem events more reliably than macroscopic analyses. Thirty-seven unembalmed, defleshed human femoral shafts from males (n=18) and females (n=2) aged 33-81 years were fractured at experimentally simulated postmortem intervals (PMIs) ranging from 1 to 60 warm weather days (250-40,600 ADH). A gravity convection oven was used to approximate tissue decomposition at 37 C and 27 C, and the resulting heat-time unit (accumulated degree hours, or ADH) was used to examine fractures in elastic/wet versus brittle/dry bone. The bones were fractured with a drop test frame using a three-point bending setup, sensors were used to calculate fracture energy, and high-speed photography documented fracture events. The following data were collected to relate fracture appearance to the biomechanical properties of bone: PMI (postmortem interval) length in ADH, temperature, humidity, collagen percentage, water loss, bone mineral density, cortical bone thickness, fracture energy, age, sex, cause of death, and microscopic fracture feature scores. SEM micrographs were collected from the primary tension zones of each fracture surface, and three microscopic fracture characteristics were scored from a region of interest in the center of the tension zone: percentage of delaminated osteons, percent osteon pullout, and number of microcracks. Multiple linear regression showed that microscopic fracture surface features are strong predictors of ADH (adjusted R-squared=0.67 for the 0 - 40,000 ADH samples; adjusted R-squared=0.92 for the 0-16,000 ADH samples). Osteon pullout is the single best predictor of ADH. Additionally, water loss is the primary driver of bone elasticity changes in low ADH samples, while collagen fibers appear to remain intact until later in the postmortem interval (approximately 40,000 ADH in this study). The results of this study indicate microscopic fracture surface analysis detects the biomechanical effects of decreased elasticity more reliably and with greater sensitivity than macroscopic analysis.
Collapse
Affiliation(s)
- Jessica Skinner
- Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ 85259, USA.
| | - Natalie Langley
- Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ 85259, USA
| | | | - Yuktha Shanavas
- State University of New York Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA
| | - Brian Waletzki
- MilliporeSigma, 900 Middlesex Turnpike, Billerica, MA 01821, USA
| | - Robert Brown
- Mayo Clinic Rochester, 200 1st St SW, Rochester, MN 55902, USA
| | - James Herrick
- Mayo Clinic Rochester, 200 1st St SW, Rochester, MN 55902, USA
| | | | - Peter Goguen
- Arizona State University, 850 S McAllister Ave, Tempe, AZ 85281, USA
| | - Subramaniam Rajan
- Arizona State University, 850 S McAllister Ave, Tempe, AZ 85281, USA
| |
Collapse
|
2
|
Jerban S, Barrere V, Namiranian B, Wu Y, Alenezi S, Dorthe E, Dlima D, Shah SB, Chung CB, Du J, Andre MP, Chang EY. Ultrasound attenuation of cortical bone correlates with biomechanical, microstructural, and compositional properties. Eur Radiol Exp 2024; 8:21. [PMID: 38316687 PMCID: PMC10844174 DOI: 10.1186/s41747-023-00418-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/09/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND We investigated the relationship of two commonly used quantitative ultrasound (QUS) parameters, speed of sound (SoS) and attenuation coefficient (α), with water and macromolecular contents of bovine cortical bone strips as measured with ultrashort echo time (UTE) magnetic resonance imaging (MRI). METHODS SoS and α were measured in 36 bovine cortical bone strips utilizing a single-element transducer with nominal 5 MHz center frequency based on the time of flight principles after accommodating for reflection losses. Specimens were then scanned using UTE MRI to measure total, bound, and pore water proton density (TWPD, BWPD, and PWPD) as well as macromolecular proton fraction and macromolecular transverse relaxation time (T2-MM). Specimens were also scanned using microcomputed tomography (μCT) at 9-μm isometric voxel size to measure bone mineral density (BMD), porosity, and pore size. The elastic modulus (E) of each specimen was measured using a 4-point bending test. RESULTS α demonstrated significant positive Spearman correlations with E (R = 0.69) and BMD (R = 0.44) while showing significant negative correlations with porosity (R = -0.41), T2-MM (R = -0.47), TWPD (R = -0.68), BWPD (R = -0.67), and PWPD (R = -0.45). CONCLUSIONS The negative correlation between α and T2-MM is likely indicating the relationship between QUS and collagen matrix organization. The higher correlations of α with BWPD than with PWPD may indicate that water organized in finer structure (bound to matrix) provides lower acoustic impedance than water in larger pores, which is yet to be investigated thoroughly. RELEVANCE STATEMENT This study highlights the importance of future investigations exploring the relationship between QUS measures and all major components of the bone, including the collagenous matrix and water. Investigating the full potential of QUS and its validation facilitates a more affordable and accessible tool for bone health monitoring in clinics. KEY POINTS • Ultrasound attenuation demonstrated significant positive correlations with bone mechanics and mineral density. • Ultrasound attenuation demonstrated significant negative correlations with porosity and bone water contents. • This study highlights the importance of future investigations exploring the relationship between QUS measures and all major components of the bone.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.
| | - Victor Barrere
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Behnam Namiranian
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Yuanshan Wu
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Salem Alenezi
- Research and Laboratories Sector, Saudi Food and Drug Authority, Riyadh, Kingdom of Saudi Arabia
| | - Erik Dorthe
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Darryl Dlima
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Sameer B Shah
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
| | - Michael P Andre
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.
| |
Collapse
|
3
|
Jerban S, Jang H, Chang EY, Bukata S, Du J, Chung CB. Bone Biomarkers Based on Magnetic Resonance Imaging. Semin Musculoskelet Radiol 2024; 28:62-77. [PMID: 38330971 DOI: 10.1055/s-0043-1776431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Magnetic resonance imaging (MRI) is increasingly used to evaluate the microstructural and compositional properties of bone. MRI-based biomarkers can characterize all major compartments of bone: organic, water, fat, and mineral components. However, with a short apparent spin-spin relaxation time (T2*), bone is invisible to conventional MRI sequences that use long echo times. To address this shortcoming, ultrashort echo time MRI sequences have been developed to provide direct imaging of bone and establish a set of MRI-based biomarkers sensitive to the structural and compositional changes of bone. This review article describes the MRI-based bone biomarkers representing total water, pore water, bound water, fat fraction, macromolecular fraction in the organic matrix, and surrogates for mineral density. MRI-based morphological bone imaging techniques are also briefly described.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, La Jolla, California
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Susan Bukata
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Jiang Du
- Department of Radiology, University of California, San Diego, La Jolla, California
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, La Jolla, California
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
4
|
He T, Pang Z, Yin Y, Xue H, Pang Y, Song H, Li J, Bai R, Qin A, Kong X. Micron-resolution Imaging of Cortical Bone under 14 T Ultrahigh Magnetic Field. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300959. [PMID: 37339792 PMCID: PMC10460861 DOI: 10.1002/advs.202300959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/11/2023] [Indexed: 06/22/2023]
Abstract
Compact, mineralized cortical bone tissues are often concealed on magnetic resonance (MR) images. Recent development of MR instruments and pulse techniques has yielded significant advances in acquiring anatomical and physiological information from cortical bone despite its poor 1 H signals. This work demonstrates the first MR research on cortical bones under an ultrahigh magnetic field of 14 T. The 1 H signals of different mammalian species exhibit multi-exponential decays of three characteristic T2 or T2 * values: 0.1-0.5 ms, 1-4 ms, and 4-8 ms. Systematic sample comparisons attribute these T2 /T2 * value ranges to collagen-bound water, pore water, and lipids, respectively. Ultrashort echo time (UTE) imaging under 14 T yielded spatial resolutions of 20-80 microns, which resolves the 3D anatomy of the Haversian canals. The T2 * relaxation characteristics further allow spatial classifications of collagen, pore water and lipids in human specimens. The study achieves a record of the spatial resolution for MR imaging in bone and shows that ultrahigh-field MR has the unique ability to differentiate the soft and organic compartments in bone tissues.
Collapse
Affiliation(s)
- Tian He
- Department of ChemistryZhejiang UniversityHangzhou310027China
| | - Zhenfeng Pang
- Department of ChemistryZhejiang UniversityHangzhou310027China
| | - Yu Yin
- Department of ChemistryZhejiang UniversityHangzhou310027China
| | - Huadong Xue
- Department of ChemistryZhejiang UniversityHangzhou310027China
- Department of RehabilitationSir Run Run Shaw HospitalCollege of MedicineZhejiang UniversityHangzhou310016China
| | - Yichuan Pang
- Shanghai Key Laboratory of Orthopedic ImplantsDepartment of OrthopaedicsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Haixin Song
- Department of RehabilitationSir Run Run Shaw HospitalCollege of MedicineZhejiang UniversityHangzhou310016China
| | - Jianhua Li
- Department of RehabilitationSir Run Run Shaw HospitalCollege of MedicineZhejiang UniversityHangzhou310016China
| | - Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT)College of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhou310027China
- School of MedicineZhejiang UniversityHangzhou310058China
| | - An Qin
- Shanghai Key Laboratory of Orthopedic ImplantsDepartment of OrthopaedicsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Xueqian Kong
- Department of ChemistryZhejiang UniversityHangzhou310027China
- Department of RehabilitationSir Run Run Shaw HospitalCollege of MedicineZhejiang UniversityHangzhou310016China
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghai200240China
| |
Collapse
|
5
|
Jones BC, Wehrli FW, Kamona N, Deshpande RS, Vu BTD, Song HK, Lee H, Grewal RK, Chan TJ, Witschey WR, MacLean MT, Josselyn NJ, Iyer SK, Al Mukaddam M, Snyder PJ, Rajapakse CS. Automated, calibration-free quantification of cortical bone porosity and geometry in postmenopausal osteoporosis from ultrashort echo time MRI and deep learning. Bone 2023; 171:116743. [PMID: 36958542 PMCID: PMC10121925 DOI: 10.1016/j.bone.2023.116743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND Assessment of cortical bone porosity and geometry by imaging in vivo can provide useful information about bone quality that is independent of bone mineral density (BMD). Ultrashort echo time (UTE) MRI techniques of measuring cortical bone porosity and geometry have been extensively validated in preclinical studies and have recently been shown to detect impaired bone quality in vivo in patients with osteoporosis. However, these techniques rely on laborious image segmentation, which is clinically impractical. Additionally, UTE MRI porosity techniques typically require long scan times or external calibration samples and elaborate physics processing, which limit their translatability. To this end, the UTE MRI-derived Suppression Ratio has been proposed as a simple-to-calculate, reference-free biomarker of porosity which can be acquired in clinically feasible acquisition times. PURPOSE To explore whether a deep learning method can automate cortical bone segmentation and the corresponding analysis of cortical bone imaging biomarkers, and to investigate the Suppression Ratio as a fast, simple, and reference-free biomarker of cortical bone porosity. METHODS In this retrospective study, a deep learning 2D U-Net was trained to segment the tibial cortex from 48 individual image sets comprised of 46 slices each, corresponding to 2208 training slices. Network performance was validated through an external test dataset comprised of 28 scans from 3 groups: (1) 10 healthy, young participants, (2) 9 postmenopausal, non-osteoporotic women, and (3) 9 postmenopausal, osteoporotic women. The accuracy of automated porosity and geometry quantifications were assessed with the coefficient of determination and the intraclass correlation coefficient (ICC). Furthermore, automated MRI biomarkers were compared between groups and to dual energy X-ray absorptiometry (DXA)- and peripheral quantitative CT (pQCT)-derived BMD. Additionally, the Suppression Ratio was compared to UTE porosity techniques based on calibration samples. RESULTS The deep learning model provided accurate labeling (Dice score 0.93, intersection-over-union 0.88) and similar results to manual segmentation in quantifying cortical porosity (R2 ≥ 0.97, ICC ≥ 0.98) and geometry (R2 ≥ 0.82, ICC ≥ 0.75) parameters in vivo. Furthermore, the Suppression Ratio was validated compared to established porosity protocols (R2 ≥ 0.78). Automated parameters detected age- and osteoporosis-related impairments in cortical bone porosity (P ≤ .002) and geometry (P values ranging from <0.001 to 0.08). Finally, automated porosity markers showed strong, inverse Pearson's correlations with BMD measured by pQCT (|R| ≥ 0.88) and DXA (|R| ≥ 0.76) in postmenopausal women, confirming that lower mineral density corresponds to greater porosity. CONCLUSION This study demonstrated feasibility of a simple, automated, and ionizing-radiation-free protocol for quantifying cortical bone porosity and geometry in vivo from UTE MRI and deep learning.
Collapse
Affiliation(s)
- Brandon C Jones
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Felix W Wehrli
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Nada Kamona
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Rajiv S Deshpande
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Brian-Tinh Duc Vu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Hee Kwon Song
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Hyunyeol Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; School of Electronics Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea.
| | - Rasleen Kaur Grewal
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Trevor Jackson Chan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Walter R Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Matthew T MacLean
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Nicholas J Josselyn
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Data Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States of America.
| | - Srikant Kamesh Iyer
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America
| | - Mona Al Mukaddam
- Department of Medicine, Division of Endocrinology, Perelman School of Medicine, University of Pennsylvania, Perelman Center for Advanced Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States of America.
| | - Peter J Snyder
- Department of Medicine, Division of Endocrinology, Perelman School of Medicine, University of Pennsylvania, Perelman Center for Advanced Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States of America.
| | - Chamith S Rajapakse
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
6
|
Ketsiri T, Uppuganti S, Harkins KD, Gochberg DF, Nyman JS, Does MD. T 1 relaxation of bound and pore water in cortical bone. NMR IN BIOMEDICINE 2023; 36:e4878. [PMID: 36418236 DOI: 10.1002/nbm.4878] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
MRI measures of bound and/or pore water concentration in cortical bone offer potential diagnostics of bone fracture risk. The transverse relaxation characteristics of both bound and pore water are relatively well understood and have been used to design clinical MRI pulse sequences to image each water pool quantitatively. However, these methods are also sensitive to longitudinal relaxation characteristics, which have been less well studied. Here, spectroscopic relaxometry measurements of 31 human cortical bone specimens provided a more detailed picture of T 1 of both bound and pore water. The results included mean, standard deviation, and range of T 1 spectra from both bound and pore water, as well as novel presentations of the 2D T 1 - T 2 distribution of pore water. Importantly, for each sample the pore water T 1 spectrum was found to span more than one order of magnitude and varied substantially across the 31 sample studies. Because many existing methods assume pore water T 1 to be mono-exponential and constant across individuals, the results were used to compute the potential effect neglecting this intra- and intersample T 1 variation on accurate MRI measurement of both bound and pore water concentrations. The greatest effect was found for adiabatic inversion recovery (AIR) based measurements of bound water concentration, which showed an average of 8.8% and as much as 37% error when using a common mono-exponential assumption of pore water T 1 . Despite these errors, the simulated AIR measurements were still moderately well correlated with the bound water concentrations derived from the spectroscopic data.
Collapse
Affiliation(s)
- Thammathida Ketsiri
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sasidhar Uppuganti
- Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kevin D Harkins
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel F Gochberg
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeffry S Nyman
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark D Does
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Electrical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Jerban S, Ma Y, Alenezi S, Moazamian D, Athertya J, Jang H, Dorthe E, Dlima D, Woods G, Chung CB, Chang EY, Du J. Ultrashort Echo Time (UTE) MRI porosity index (PI) and suppression ratio (SR) correlate with the cortical bone microstructural and mechanical properties: Ex vivo study. Bone 2023; 169:116676. [PMID: 36657630 PMCID: PMC9987215 DOI: 10.1016/j.bone.2023.116676] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/19/2022] [Accepted: 01/08/2023] [Indexed: 01/18/2023]
Abstract
Ultrashort echo time (UTE) MRI can image and consequently enable quantitative assessment of cortical bone. UTE-MRI-based evaluation of bone is largely underutilized due to the high cost and time demands of MRI in general. The signal ratio in dual-echo UTE imaging, known as porosity index (PI), as well as the signal ratio between UTE and inversion recovery UTE (IR-UTE) imaging, known as the suppression ratio (SR), are two rapid UTE-based bone evaluation techniques (∼ 5 mins scan time each), which can potentially reduce the time demand and cost in future clinical studies. This study aimed to investigate the correlations of PI and SR measures with cortical bone microstructural and mechanical properties. Cortical bone strips (n = 135) from tibial and femoral midshafts of 37 donors (61 ± 24 years old) were scanned using a dual-echo 3D Cones UTE sequence and a 3D Cones IR-UTE sequence for PI and SR calculations, respectively. Average bone mineral density, porosity, and pore size were measured using microcomputed tomography (μCT). Bone mechanical properties were measured using 4-point bending tests. The μCT measures showed significant correlations with PI (moderate to strong, R = 0.68-0.71) and SR (moderate, R = 0.58-0.68). Young's modulus, yield stress, and ultimate stress demonstrated significant moderate correlations with PI and SR (R = 0.52-0.62) while significant strong correlations with μCT measures (R > 0.7). PI and SR can potentially serve as fast and noninvasive (non-ionizing radiation) biomarkers for evaluating cortical bone in various bone diseases.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA; Department of Orthopedic Surgery, University of California, San Diego, La Jolla, CA, USA.
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Salem Alenezi
- Research and Laboratories Sector, Saudi Food and Drug Authority, Riyadh, Kingdom of Saudi Arabia
| | - Dina Moazamian
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Jiyo Athertya
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Erik Dorthe
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Darryl Dlima
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Gina Woods
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Liu J, Chen JD, Li P, Liao JW, Feng JX, Chen ZY, Cai ZY, Li W, Chen XJ, Su ZH, Lu H, Li SL, Ma YJ. Comprehensive assessment of osteoporosis in lumbar spine using compositional MR imaging of trabecular bone. Eur Radiol 2022; 33:3995-4006. [PMID: 36571604 DOI: 10.1007/s00330-022-09368-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/27/2022]
Abstract
OBJECTIVES To comprehensively assess osteoporosis in the lumbar spine, a compositional MR imaging technique is proposed to quantify proton fractions for all the water components as well as fat in lumbar vertebrae measured by a combination of a 3D short repetition time adiabatic inversion recovery prepared ultrashort echo time (STAIR-UTE) MRI and IDEAL-IQ. METHODS A total of 182 participants underwent MRI, quantitative CT, and DXA. Lumbar collagen-bound water proton fraction (CBWPF), free water proton fraction (FWPF), total water proton fraction (TWPF), bone mineral density (BMD), and T-score were calculated in three vertebrae (L2-L4) for each subject. The correlations of the CBWPF, FWPF, and TWPF with BMD and T-score were investigated respectively. A comprehensive diagnostic model combining all the water components and clinical characteristics was established. The performances of all the water components and the comprehensive diagnostic model to discriminate between normal, osteopenia, and osteoporosis cohorts were also evaluated using receiver operator characteristic (ROC). RESULTS The CBWPF showed strong correlations with BMD (r = 0.85, p < 0.001) and T-score (r = 0.72, p < 0.001), while the FWPF and TWPF showed moderate correlations with BMD (r = 0.65 and 0.68, p < 0.001) and T-score (r = 0.47 and 0.49, p < 0.001). The high area under the curve values obtained from ROC analysis demonstrated that CBWPF, FWPF, and TWPF have the potential to differentiate the normal, osteopenia, and osteoporosis cohorts. At the same time, the comprehensive diagnostic model shows the best performance. CONCLUSIONS The compositional MRI technique, which quantifies CBWPF, FWPF, and TWPF in trabecular bone, is promising in the assessment of bone quality. KEY POINTS • Compositional MR imaging technique is able to quantify proton fractions for all the water components (i.e., collagen-bound water proton fraction (CBWPF), free water proton fraction (FWPF), and total water proton fraction (TWPF)) in the human lumbar spine. • The biomarkers derived from the compositional MR imaging technique showed moderate to high correlations with bone mineral density (BMD) and T-score and showed good performance in distinguishing people with different bone mass. • The comprehensive diagnostic model incorporating CBWPF, FWPF, TWPF, and clinical characteristics showed the highest clinical diagnostic capability for the assessment of osteoporosis.
Collapse
Affiliation(s)
- Jin Liu
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Jian-Di Chen
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jian-Wei Liao
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Jia-Xin Feng
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Zi-Yang Chen
- Department of Spinal Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Zhi-Yuan Cai
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Wei Li
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Xiao-Jun Chen
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Zhi-Hai Su
- Department of Spinal Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Hai Lu
- Department of Spinal Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Shao-Lin Li
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China. .,Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| | - Ya-Jun Ma
- Department of Radiology, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, 92037, USA
| |
Collapse
|
9
|
Surowiec RK, Allen MR, Wallace JM. Bone hydration: How we can evaluate it, what can it tell us, and is it an effective therapeutic target? Bone Rep 2022; 16:101161. [PMID: 35005101 PMCID: PMC8718737 DOI: 10.1016/j.bonr.2021.101161] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/22/2022] Open
Abstract
Water constitutes roughly a quarter of the cortical bone by volume yet can greatly influence mechanical properties and tissue quality. There is a growing appreciation for how water can dynamically change due to age, disease, and treatment. A key emerging area related to bone mechanical and tissue properties lies in differentiating the role of water in its four different compartments, including free/pore water, water loosely bound at the collagen/mineral interfaces, water tightly bound within collagen triple helices, and structural water within the mineral. This review summarizes our current knowledge of bone water across the four functional compartments and discusses how alterations in each compartment relate to mechanical changes. It provides an overview on the advent of- and improvements to- imaging and spectroscopic techniques able to probe nano-and molecular scales of bone water. These technical advances have led to an emerging understanding of how bone water changes in various conditions, of which aging, chronic kidney disease, diabetes, osteoporosis, and osteogenesis imperfecta are reviewed. Finally, it summarizes work focused on therapeutically targeting water to improve mechanical properties.
Collapse
Affiliation(s)
- Rachel K. Surowiec
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Matthew R. Allen
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| |
Collapse
|
10
|
Dwivedi N, Dubey R, Srivastava S, Sinha N. Unraveling Water-Mediated 31P Relaxation in Bone Mineral. ACS OMEGA 2022; 7:16678-16688. [PMID: 35601291 PMCID: PMC9118412 DOI: 10.1021/acsomega.2c01133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/15/2022] [Indexed: 06/09/2023]
Abstract
Bone is a dynamic tissue composed of organic proteins (mainly type I collagen), inorganic components (hydroxyapatite), lipids, and water that undergoes a continuous rebuilding process over the lifespan of human beings. Bone mineral is mainly composed of a crystalline apatitic core surrounded by an amorphous surface layer. The supramolecular arrangement of different constituents gives rise to its unique mechanical properties, which become altered in various bone-related disease conditions. Many of the interactions among the different components are poorly understood. Recently, solid-state nuclear magnetic resonance (ssNMR) has become a popular spectroscopic tool for studying bone. In this article, we present a study probing the interaction of water molecules with amorphous and crystalline parts of the bone mineral through 31P ssNMR relaxation parameters (T 1 and T 2) and dynamics (correlation time). The method was developed to selectively measure the 31P NMR relaxation parameters and dynamics of the crystalline apatitic core and the amorphous surface layer of the bone mineral. The measured 31P correlation times (in the range of 10-6-10-7 s) indicated the different dynamic behaviors of both the mineral components. Additionally, we observed that dehydration affected the apatitic core region more significantly, while H-D exchange showed changes in the amorphous surface layer to a greater extent. Overall, the present work provides a significant understanding of the relaxation and dynamics of bone mineral components inside the bone matrix.
Collapse
Affiliation(s)
- Navneet Dwivedi
- Centre
of Biomedical Research, Sanjay Gandhi Postgraduate
Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
- Department
of Physics, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Richa Dubey
- Centre
of Biomedical Research, Sanjay Gandhi Postgraduate
Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| | - Seema Srivastava
- Department
of Physics, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Neeraj Sinha
- Centre
of Biomedical Research, Sanjay Gandhi Postgraduate
Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| |
Collapse
|
11
|
Liu J, Liao JW, Li W, Chen XJ, Feng JX, Yao L, Huang PH, Su ZH, Lu H, Liao YT, Li SL, Ma YJ. Assessment of Osteoporosis in Lumbar Spine: In Vivo Quantitative MR Imaging of Collagen Bound Water in Trabecular Bone. Front Endocrinol (Lausanne) 2022; 13:801930. [PMID: 35250862 PMCID: PMC8888676 DOI: 10.3389/fendo.2022.801930] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
AIM Bone collagen matrix makes a crucial contribution to the mechanical properties of bone by imparting tensile strength and elasticity. The collagen content of bone is accessible via quantification of collagen bound water (CBW) indirectly. We prospectively study the performance of the CBW proton density (CBWPD) measured by a 3D short repetition time adiabatic inversion recovery prepared ultrashort echo time (STAIR-UTE) magnetic resonance imaging (MRI) sequence in the diagnosis of osteoporosis in human lumbar spine. METHODS A total of 189 participants with a mean age of 56 (ranged from 50 to 86) years old were underwent MRI, quantitative computed tomography (QCT), and dual-energy X-ray absorptiometry (DXA) in lumbar spine. Major fracture risk was also evaluated for all participants using Fracture Risk Assessment Tool (FRAX). Lumbar CBWPD, bone marrow fat fraction (BMFF), bone mineral density (BMD) and T score values were calculated in three vertebrae (L2-L4) for each subject. Both the CBWPD and BMFF were correlated with BMD, T score, and FRAX score for comparison. The abilities of the CBWPD and BMFF to discriminate between three different cohorts, which included normal subjects, patients with osteopenia, and patients with osteoporosis, were also evaluated and compared using receiver operator characteristic (ROC) analysis. RESULTS The CBWPD showed strong correlation with standard BMD (R2 = 0.75, P < 0.001) and T score (R2 = 0.59, P < 0.001), as well as a moderate correlation with FRAX score (R2 = 0.48, P < 0.001). High area under the curve (AUC) values (≥ 0.84 using QCT as reference; ≥ 0.76 using DXA as reference) obtained from ROC analysis demonstrated that the CBWPD was capable of well differentiating between the three different subject cohorts. Moreover, the CBWPD had better correlations with BMD, T score, and FRAX score than BMFF, and also performed better in cohort discrimination. CONCLUSION The STAIR-UTE-measured CBWPD is a promising biomarker in the assessment of bone quality and fracture risk.
Collapse
Affiliation(s)
- Jin Liu
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Jian-Wei Liao
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Wei Li
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Xiao-Jun Chen
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Jia-Xin Feng
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Lin Yao
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Pan-Hui Huang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Zhi-Hai Su
- Department of Spinal Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Hai Lu
- Department of Spinal Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | | | - Shao-Lin Li
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Ya-Jun Ma
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
12
|
Hua R, Jiang JX. Small leucine-rich proteoglycans in physiological and biomechanical function of bone. Matrix Biol Plus 2021; 11:100063. [PMID: 34435181 PMCID: PMC8377002 DOI: 10.1016/j.mbplus.2021.100063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
Proteoglycans (PGs) and glycosaminoglycans (GAGs) play vital roles in key signaling pathways to regulate bone homeostasis. The highly negatively charged GAGs are crucial in retaining bound water and modulating mechanical properties of bone. Age-related changes of PGs, GAGs, and bound water contribute to deterioration of bone quality during aging.
Proteoglycans (PGs) contain long unbranched glycosaminoglycan (GAG) chains attached to core proteins. In the bone extracellular matrix, PGs represent a class of non-collagenous proteins, and have high affinity to minerals and collagen. Considering the highly negatively charged character of GAGs and their interfibrillar positioning interconnecting with collagen fibrils, PGs and GAGs play pivotal roles in maintaining hydrostatic and osmotic pressure in the matrix. In this review, we will discuss the role of PGs, especially the small leucine-rich proteoglycans, in regulating the bioactivity of multiple cytokines and growth factors, and the bone turnover process. In addition, we focus on the coupling effects of PGs and GAGs in the hydration status of bone extracellular matrix, thus modulating bone biomechanical properties under physiological and pathological conditions.
Collapse
Affiliation(s)
- Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
13
|
Vaissier Welborn V. Environment-controlled water adsorption at hydroxyapatite/collagen interfaces. Phys Chem Chem Phys 2021; 23:13789-13796. [PMID: 33942041 DOI: 10.1039/d1cp01028j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Water contributes to the structure of bone by coupling hydroxyapatite to collagen over the hierarchical levels of tissue organization. Bone water exists in two states, bound or mobile, each accomplishing different roles. Although many experimental studies show that the amount of bound water correlates with bone strength, a molecular understanding of the interactions between hydroxyapatite, collagen and water is missing. In this work, we unveil the water adsorption properties of bone tissues at the nanoscale using advanced density functional theory methods. We demonstrate that environmental factors such as collagen conformation or degree of confinement, rather than the surface itself, dictate the adsorption mode, strength and density of water on hydroxyapatite. While the results derived in this paper come from a simplified model of bone tissues, they are consistent with experimental observations and constitute a reasonable starting point for more realistic models of bone tissues. For example, we show that environmental changes expected in aging bone lead to reduced water adsorption capabilities, which is consistent with weaker bones at the macroscale. Our findings provide a new interpretation of molecular interactions in bone tissues with the potential to impact bone repair strategies.
Collapse
|
14
|
Uttry A, Mal S, van Gemmeren M. Late-Stage β-C(sp 3)-H Deuteration of Carboxylic Acids. J Am Chem Soc 2021; 143:10895-10901. [PMID: 34279928 DOI: 10.1021/jacs.1c06474] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carboxylic acids are highly abundant in bioactive molecules. In this study, we describe the late-stage β-C(sp3)-H deuteration of free carboxylic acids. On the basis of the finding that C-H activation with our catalysts is reversible, the de-deuteration process was first optimized. The resulting method uses ethylenediamine-based ligands and can be used to achieve the desired deuteration when using a deuterated solvent. The reported method allows for the functionalization of a wide range of free carboxylic acids with diverse substitution patterns, as well as the late-stage deuteration of bioactive molecules and related frameworks and enables the functionalization of nonactivated methylene β-C(sp3)-H bonds for the first time.
Collapse
Affiliation(s)
- Alexander Uttry
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Sourjya Mal
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Manuel van Gemmeren
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
15
|
Barbieri M, Fantazzini P, Testa C, Bortolotti V, Baruffaldi F, Kogan F, Brizi L. Characterization of Structural Bone Properties through Portable Single-Sided NMR Devices: State of the Art and Future Perspectives. Int J Mol Sci 2021; 22:7318. [PMID: 34298936 PMCID: PMC8303251 DOI: 10.3390/ijms22147318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
Nuclear Magnetic Resonance (NMR) is a well-suited methodology to study bone composition and structural properties. This is because the NMR parameters, such as the T2 relaxation time, are sensitive to the chemical and physical environment of the 1H nuclei. Although magnetic resonance imaging (MRI) allows bone structure assessment in vivo, its cost limits the suitability of conventional MRI for routine bone screening. With difficulty accessing clinically suitable exams, the diagnosis of bone diseases, such as osteoporosis, and the associated fracture risk estimation is based on the assessment of bone mineral density (BMD), obtained by the dual-energy X-ray absorptiometry (DXA). However, integrating the information about the structure of the bone with the bone mineral density has been shown to improve fracture risk estimation related to osteoporosis. Portable NMR, based on low-field single-sided NMR devices, is a promising and appealing approach to assess NMR properties of biological tissues with the aim of medical applications. Since these scanners detect the signal from a sensitive volume external to the magnet, they can be used to perform NMR measurement without the need to fit a sample inside a bore of a magnet, allowing, in principle, in vivo application. Techniques based on NMR single-sided devices have the potential to provide a high impact on the clinical routine because of low purchasing and running costs and low maintenance of such scanners. In this review, the development of new methodologies to investigate structural properties of trabecular bone exploiting single-sided NMR devices is reviewed, and current limitations and future perspectives are discussed.
Collapse
Affiliation(s)
- Marco Barbieri
- Department of Radiology, Stanford University, Stanford, CA 94395, USA;
- Department of Physics and Astronomy “Augusto Righi”, University of Bologna, 40127 Bologna, Italy; (P.F.); (C.T.)
| | - Paola Fantazzini
- Department of Physics and Astronomy “Augusto Righi”, University of Bologna, 40127 Bologna, Italy; (P.F.); (C.T.)
| | - Claudia Testa
- Department of Physics and Astronomy “Augusto Righi”, University of Bologna, 40127 Bologna, Italy; (P.F.); (C.T.)
- IRCCS Istituto delle Scienze Neurologiche Bologna, Functional and Molecular Neuroimaging Unit, 40139 Bologna, Italy
| | - Villiam Bortolotti
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, 40134 Bologna, Italy;
| | - Fabio Baruffaldi
- Medical Technology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Feliks Kogan
- Department of Radiology, Stanford University, Stanford, CA 94395, USA;
| | - Leonardo Brizi
- Department of Physics and Astronomy “Augusto Righi”, University of Bologna, 40127 Bologna, Italy; (P.F.); (C.T.)
| |
Collapse
|
16
|
Penet MF, Kakkad S, Wildes F, Bhujwalla ZM. Water and Collagen Content Are High in Pancreatic Cancer: Implications for Quantitative Metabolic Imaging. Front Oncol 2021; 10:599204. [PMID: 33585215 PMCID: PMC7873637 DOI: 10.3389/fonc.2020.599204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/08/2020] [Indexed: 01/22/2023] Open
Abstract
In magnetic resonance metabolic imaging, signal from the water content is frequently used for normalization to derive quantitative or semi-quantitative values of metabolites in vivo or ex vivo tumors and tissues. Ex vivo high-resolution metabolic characterization of tumors with magnetic resonance spectroscopy (MRS) provides valuable information that can be used to drive the development of noninvasive MRS biomarkers and to identify metabolic therapeutic targets. Variability in the water content between tumor and normal tissue can result in over or underestimation of metabolite concentrations when assuming a constant water content. Assuming a constant water content can lead to masking of differences between malignant and normal tissues both in vivo and ex vivo. There is a critical need to develop biomarkers to detect pancreatic cancer and to develop novel treatments. Our purpose here was to determine the differences in water content between pancreatic tumors and normal pancreatic tissue as well as other organs to accurately quantify metabolic differences when using the water signal for normalization. Our data identify the importance of factoring the differences in water content between tumors and organs. High-resolution proton spectra of tumors and pancreatic tissue extracts normalized to the water signal, assuming similar water content, did not reflect the significantly increased total choline observed in tumors in vivo without factoring the differences in water content. We identified significant differences in the collagen 1 content between Panc1 and BxPC3 pancreatic tumors and the pancreas that can contribute to the differences in water content that were observed.
Collapse
Affiliation(s)
- Marie-France Penet
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Samata Kakkad
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Flonné Wildes
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Ma YJ, Jerban S, Jang H, Chang D, Chang EY, Du J. Quantitative Ultrashort Echo Time (UTE) Magnetic Resonance Imaging of Bone: An Update. Front Endocrinol (Lausanne) 2020; 11:567417. [PMID: 33071975 PMCID: PMC7531487 DOI: 10.3389/fendo.2020.567417] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
Bone possesses a highly complex hierarchical structure comprised of mineral (~45% by volume), organic matrix (~35%) and water (~20%). Water exists in bone in two forms: as bound water (BW), which is bound to bone mineral and organic matrix, or as pore water (PW), which resides in Haversian canals as well as in lacunae and canaliculi. Magnetic resonance (MR) imaging has been increasingly used for assessment of cortical and trabecular bone. However, bone appears as a signal void on conventional MR sequences because of its short T2*. Ultrashort echo time (UTE) sequences with echo times (TEs) 100-1,000 times shorter than those of conventional sequences allow direct imaging of BW and PW in bone. A series of quantitative UTE MRI techniques has been developed for bone evaluation. UTE and adiabatic inversion recovery prepared UTE (IR-UTE) sequences have been developed to quantify BW and PW. UTE magnetization transfer (UTE-MT) sequences have been developed to quantify collagen backbone protons, and UTE quantitative susceptibility mapping (UTE-QSM) sequences have been developed to assess bone mineral.
Collapse
Affiliation(s)
- Ya-Jun Ma
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Douglas Chang
- Department of Orthopedic Surgery, University of California, San Diego, San Diego, CA, United States
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| | - Jiang Du
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
18
|
Jerban S, Ma Y, Wei Z, Jang H, Chang EY, Du J. Quantitative Magnetic Resonance Imaging of Cortical and Trabecular Bone. Semin Musculoskelet Radiol 2020; 24:386-401. [PMID: 32992367 DOI: 10.1055/s-0040-1710355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bone is a composite material consisting of mineral, organic matrix, and water. Water in bone can be categorized as bound water (BW), which is bound to bone mineral and organic matrix, or as pore water (PW), which resides in Haversian canals as well as in lacunae and canaliculi. Bone is generally classified into two types: cortical bone and trabecular bone. Cortical bone is much denser than trabecular bone that is surrounded by marrow and fat. Magnetic resonance (MR) imaging has been increasingly used for noninvasive assessment of both cortical bone and trabecular bone. Bone typically appears as a signal void with conventional MR sequences because of its short T2*. Ultrashort echo time (UTE) sequences with echo times 100 to 1,000 times shorter than those of conventional sequences allow direct imaging of BW and PW in bone. This article summarizes several quantitative MR techniques recently developed for bone evaluation. Specifically, we discuss the use of UTE and adiabatic inversion recovery prepared UTE sequences to quantify BW and PW, UTE magnetization transfer sequences to quantify collagen backbone protons, UTE quantitative susceptibility mapping sequences to assess bone mineral, and conventional sequences for high-resolution imaging of PW as well as the evaluation of trabecular bone architecture.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, California
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, California
| | - Zhao Wei
- Department of Radiology, University of California, San Diego, California
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, California
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, California.,Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Jiang Du
- Department of Radiology, University of California, San Diego, California
| |
Collapse
|
19
|
Abstract
It is well known that bone loss accompanies aging in both men and women and contributes to skeletal fragility in the older population, but changes that occur to the bone tissue matrix itself are less well known. These changes in bone quality aggravate the skeletal fragility associated with loss of bone mass. Bone tissue quality is affected by age-related changes in bone mineral, collagen and its cross-linking profiles, water compartments and even non-collagenous proteins. It is commonly assumed that greater tissue mineralization accompanies aging as bone turnover slows down in elderly individuals, but the data for this are weak. However, there may be changes in the quality of the mineral crystals, and the substitutions found within the crystal. Both enzymatically-mediated and non-enzymatically-mediated collagen cross-links multiply with age. The former tend to make the bone stiffer and stronger, but the latter, while making the bone stiffer can also make it more brittle and more likely to fracture. Bone pore water that is not bound to collagen or mineral increases with age as bone mass is lost, but water that is bound to collagen and mineral declines with age. These changes contribute to skeletal fragility by reducing the amount that bone can deform before fracturing. Finally, non-collagenous proteins have physical properties that can alter matrix mechanical properties and can also have molecular signaling functions that regulate bone remodeling. Whether these change with age, how they change, and how this affects skeletal fragility with aging is still largely a black box, and requires much more investigation. The roles of any of these factors in skeletal fragility are difficult to assess clinically as there is no easy or economical way to evaluate them, but a picture of fragility in the aging skeleton is incomplete without them.
Collapse
Affiliation(s)
- David B Burr
- Dept. of Anatomy and Cell Biology, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, United States of America; Dept. of Biomedical Engineering, Indiana University-Purdue University, Indianapolis (IUPUI), United States of America.
| |
Collapse
|
20
|
Yamashita T, Nishikawa H, Kawamoto T. Scale-up synthesis of a deuterium-labeled cis-cyclobutane-1,3-Dicarboxylic acid derivative using continuous photo flow chemistry. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.12.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Bevilacqua G, Biancalana V, Dancheva Y, Vigilante A, Donati A, Rossi C. Simultaneous Detection of H and D NMR Signals in a Micro-Tesla Field. J Phys Chem Lett 2017; 8:6176-6179. [PMID: 29211488 DOI: 10.1021/acs.jpclett.7b02854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present NMR spectra of remote-magnetized deuterated water, detected in an unshielded environment by means of a differential atomic magnetometer. The measurements are performed in a μT field, while pulsed techniques are applied-following the sample displacement-in a 100 μT field, to tip both D and H nuclei by controllable amounts. The broad-band nature of the detection system enables simultaneous detection of the two signals and accurate evaluation of their decay times. The outcomes of the experiment demonstrate the potential of ultra-low-field NMR spectroscopy in important applications where the correlation between proton and deuteron spin-spin relaxation rates as a function of external parameters contains significant information.
Collapse
Affiliation(s)
- Giuseppe Bevilacqua
- Department of Information Engineering and Mathematics (DIISM), University of Siena , 53100 Siena, Italy
| | - Valerio Biancalana
- Department of Information Engineering and Mathematics (DIISM), University of Siena , 53100 Siena, Italy
| | - Yordanka Dancheva
- Department of Physical Sciences, Earth and Environment (DSFTA), University of Siena , 53100 Siena, Italy
| | - Antonio Vigilante
- Department of Physical Sciences, Earth and Environment (DSFTA), University of Siena , 53100 Siena, Italy
| | - Alessandro Donati
- Department of Biotechnology, Chemistry and Pharmacy (DBCF), University of Siena , 53100 Siena, Italy
| | - Claudio Rossi
- Department of Biotechnology, Chemistry and Pharmacy (DBCF), University of Siena , 53100 Siena, Italy
| |
Collapse
|
22
|
Michelotti A, Rodrigues F, Roche M. Development and Scale-Up of Stereoretentive α-Deuteration of Amines. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.7b00227] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | - Fabien Rodrigues
- CortecNet, 15-17 Rue des Tilleuls, 78960 Voisins-le-Bretonneux, France
| | - Maxime Roche
- CortecNet, 15-17 Rue des Tilleuls, 78960 Voisins-le-Bretonneux, France
| |
Collapse
|
23
|
Rajapakse CS, Padalkar MV, Yang HJ, Ispiryan M, Pleshko N. Non-destructive NIR spectral imaging assessment of bone water: Comparison to MRI measurements. Bone 2017; 103:116-124. [PMID: 28666972 PMCID: PMC5572678 DOI: 10.1016/j.bone.2017.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/07/2017] [Accepted: 06/21/2017] [Indexed: 01/22/2023]
Abstract
Bone fracture risk increases with age, disease states, and with use of certain therapeutics, such as acid-suppressive drugs, steroids and high-dose bisphosphonates. Historically, investigations into factors that underlie bone fracture risk have focused on evaluation of bone mineral density (BMD). However, numerous studies have pointed to factors other than BMD that contribute to fragility, including changes in bone collagen and water. The goal of this study is to investigate the feasibility of using near infrared spectral imaging (NIRSI) to determine the spatial distribution and relative amount of water and organic components in whole cross-sections of bone, and to compare those results to those obtained using magnetic resonance imaging (MRI) methods. Cadaver human whole-section tibiae samples harvested from 18 donors of ages 27-97years underwent NIRSI and ultrashort echo time (UTE) MRI. As NIRSI data is comprised of broad absorbances, second derivative processing was evaluated as a means to narrow peaks and obtain compositional information. The (inverted) second derivative peak heights of the NIRSI absorbances correlated significantly with the mean peak integration of the water, collagen and fat NIR absorbances, respectively, indicating that either processing method could be used for compositional assessment. The 5797cm-1 absorbance was validated as arising from the fat present in bone marrow, as it completely disappeared after ultrasonication. The MRI UTE-determined bound water content in tibial cortical bone samples ranged from 62 to 91%. The NIRSI water peaks at 5152cm-1 and at 7008cm-1 correlated significantly with the UTE data, with r=0.735, p=0.016, and r=0.71, p=0.0096, respectively. There was also a strong correlation between the intensity of the NIRSI water peak at 7008cm-1 and the intensity of the collagen peak at 4608cm-1 (r=0.69, p=0.004). Since NIRSI requires minimal to no sample preparation, this approach has great potential to become a gold standard modality for the investigation of changes in water content, distribution, and environment in pre-clinical studies of bone pathology and therapeutics.
Collapse
Affiliation(s)
- Chamith S Rajapakse
- Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Mugdha V Padalkar
- Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, USA
| | - Hee Jin Yang
- Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, USA
| | - Mikayel Ispiryan
- Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Ma YJ, Tadros A, Du J, Chang EY. Quantitative two-dimensional ultrashort echo time magnetization transfer (2D UTE-MT) imaging of cortical bone. Magn Reson Med 2017; 79:1941-1949. [PMID: 28776754 DOI: 10.1002/mrm.26846] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 01/19/2023]
Abstract
PURPOSE To investigate quantitative 2D ultrashort echo time magnetization transfer (UTE-MT) imaging in ex vivo bovine cortical bone and in vivo human tibial cortical bone. METHODS Data were acquired from five fresh bovine cortical bone samples and five healthy volunteer tibial cortical bones using a 2D UTE-MT sequence on a clinical 3T scanner. The 2D UTE-MT sequence used four or five MT powers with five frequency offsets. Results were analyzed with a two-pool quantitative MT model, providing measurements of macromolecular fraction (f), macromolecular proton transverse relaxation times (T2m ), proton exchange rates from water/macromolecular to the macromolecular/water pool (RM0m /RM0w ), and spin-lattice relaxation rate of water pool (R1w ). A sequential air-drying study for a small bovine cortical bone chip was used to investigate whether above MT modeling parameters were sensitive to the water loss. RESULTS Mean fresh bovine cortical bone values for f, T2m , R1w , RM0m , and RM0w were 59.9 ± 7.3%, 14.6 ± 0.3 μs, 9.9 ± 2.4 s-1 , 17.9 ± 3.6 s-1 , and 11.8 ± 2.0 s-1 , respectively. Mean in vivo human cortical bone values for f, T2m , R1w , RM0m and RM0w were 54.5 ± 4.9%, 15.4 ± 0.6 μs, 8.9 ± 1.1 s-1 , 11.5 ± 3.5 s-1 , and 9.5 ± 1.9 s-1 , respectively. The sequential air-drying study shows that f, RM0m , and R1w were increased with longer drying time. CONCLUSION UTE-MT two-pool modeling provides novel and useful quantitative information for cortical bone. Magn Reson Med 79:1941-1949, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Ya-Jun Ma
- Department of Radiology, University of California, San Diego, San Diego, California, USA
| | - Anthony Tadros
- Department of Radiology, University of California, San Diego, San Diego, California, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, San Diego, California, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, San Diego, California, USA.,Radiology Service, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
25
|
Abbasi-Rad S, Saligheh Rad H. Quantification of Human Cortical Bone Bound and Free Water in Vivo with Ultrashort Echo Time MR Imaging: A Model-based Approach. Radiology 2017; 283:862-872. [DOI: 10.1148/radiol.2016160780] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Brizi L, Barbieri M, Baruffaldi F, Bortolotti V, Fersini C, Liu H, Nogueira d'Eurydice M, Obruchkov S, Zong F, Galvosas P, Fantazzini P. Bone volume-to-total volume ratio measured in trabecular bone by single-sided NMR devices. Magn Reson Med 2017; 79:501-510. [PMID: 28394083 DOI: 10.1002/mrm.26697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 12/15/2022]
Abstract
PURPOSE Reduced bone strength is associated with a loss of bone mass, usually evaluated by dual-energy X-ray absorptiometry, although it is known that the bone microstructure also affects the bone strength. Here, a method is proposed to measure (in laboratory) the bone volume-to-total volume ratio by single-sided NMR scanners, which is related to the microstructure of the trabecular bone. METHODS Three single-sided scanners were used on animal bone samples. These low-field, mobile, low-cost devices are able to detect the NMR signal, regardless of the sample sizes, without the use of ionizing radiations, with the further advantage of signal localization offered by their intrinsic magnetic field gradients. RESULTS The performance of the different single-sided scanners have been discussed. The results have been compared with bone volume-to-total volume ratio by micro CT and MRI, obtaining consistent values. CONCLUSIONS Our results demonstrate the feasibility of the method for laboratory analyses, which are useful for measurements like porosity on bone specimens. This can be considered as the first step to develop an NMR method based on the use of a mobile single-sided device, for the diagnosis of osteoporosis, through the acquisition of the signal from the appendicular skeleton, allowing for low-cost, wide screening campaigns. Magn Reson Med 79:501-510, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Leonardo Brizi
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy.,Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Roma, Italy
| | - Marco Barbieri
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | | | | | | | - Huabing Liu
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Marcel Nogueira d'Eurydice
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Sergei Obruchkov
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Fangrong Zong
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Petrik Galvosas
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Paola Fantazzini
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy.,Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Roma, Italy
| |
Collapse
|
27
|
Manhard MK, Nyman JS, Does MD. Advances in imaging approaches to fracture risk evaluation. Transl Res 2017; 181:1-14. [PMID: 27816505 PMCID: PMC5357194 DOI: 10.1016/j.trsl.2016.09.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/19/2016] [Accepted: 09/27/2016] [Indexed: 01/23/2023]
Abstract
Fragility fractures are a growing problem worldwide, and current methods for diagnosing osteoporosis do not always identify individuals who require treatment to prevent a fracture and may misidentify those not a risk. Traditionally, fracture risk is assessed using dual-energy X-ray absorptiometry, which provides measurements of areal bone mineral density at sites prone to fracture. Recent advances in imaging show promise in adding new information that could improve the prediction of fracture risk in the clinic. As reviewed herein, advances in quantitative computed tomography (QCT) predict hip and vertebral body strength; high-resolution HR-peripheral QCT (HR-pQCT) and micromagnetic resonance imaging assess the microarchitecture of trabecular bone; quantitative ultrasound measures the modulus or tissue stiffness of cortical bone; and quantitative ultrashort echo-time MRI methods quantify the concentrations of bound water and pore water in cortical bone, which reflect a variety of mechanical properties of bone. Each of these technologies provides unique characteristics of bone and may improve fracture risk diagnoses and reduce prevalence of fractures by helping to guide treatment decisions.
Collapse
Affiliation(s)
- Mary Kate Manhard
- Biomedical Engineering, Vanderbilt University, Nashville, TN; Vanderbilt University Institute of Imaging Science, Nashville, TN
| | - Jeffry S Nyman
- Biomedical Engineering, Vanderbilt University, Nashville, TN; Vanderbilt University Institute of Imaging Science, Nashville, TN; Orthopaedic Surgery and Rehabilitation, Vanderbilt University, Nashville, TN; Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN
| | - Mark D Does
- Biomedical Engineering, Vanderbilt University, Nashville, TN; Vanderbilt University Institute of Imaging Science, Nashville, TN; Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN; Electrical Engineering, Vanderbilt University, Nashville, TN.
| |
Collapse
|
28
|
Abstract
Beyond bone mineral density (BMD), bone quality designates the mechanical integrity of bone tissue. In vivo images based on X-ray attenuation, such as CT reconstructions, provide size, shape, and local BMD distribution and may be exploited as input for finite element analysis (FEA) to assess bone fragility. Further key input parameters of FEA are the material properties of bone tissue. This review discusses the main determinants of bone mechanical properties and emphasizes the added value, as well as the important assumptions underlying finite element analysis. Bone tissue is a sophisticated, multiscale composite material that undergoes remodeling but exhibits a rather narrow band of tissue mineralization. Mechanically, bone tissue behaves elastically under physiologic loads and yields by cracking beyond critical strain levels. Through adequate cell-orchestrated modeling, trabecular bone tunes its mechanical properties by volume fraction and fabric. With proper calibration, these mechanical properties may be incorporated in quantitative CT-based finite element analysis that has been validated extensively with ex vivo experiments and has been applied increasingly in clinical trials to assess treatment efficacy against osteoporosis.
Collapse
Affiliation(s)
- Dieter H Pahr
- Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Vienna, Austria
| | - Philippe K Zysset
- Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland.
| |
Collapse
|
29
|
Marcon M, Keller D, Wurnig MC, Eberhardt C, Weiger M, Eberli D, Boss A. Separation of collagen-bound and porous bone water transverse relaxation in mice: proposal of a multi-step approach. NMR IN BIOMEDICINE 2016; 29:866-872. [PMID: 27116654 DOI: 10.1002/nbm.3533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/15/2016] [Accepted: 03/12/2016] [Indexed: 06/05/2023]
Abstract
The separation and quantification of collagen-bound water (CBW) and pore water (PW) components of the cortical bone signal are important because of their different contribution to bone mechanical properties. Ultrashort TE (UTE) imaging can be used to exploit the transverse relaxation from CBW and PW, allowing their quantification. We tested, for the first time, the feasibility of UTE measurements in mice for the separation and quantification of the transverse relaxation of CBW and PW in vivo using three different approaches for T2 * determination. UTE sequences were acquired at 4.7 T in six mice with 10 different TEs (50-5000 μs). The transverse relaxation time T2 * of CBW (T2 *cbw ) and PW (T2 *pw ) and the CBW fraction (bwf) were computed using a mono-exponential (i), a standard bi-exponential (ii) and a new multi-step bi-exponential (iii) approach. Regions of interest were drawn at multiple levels of the femur and vertebral body cortical bone for each mouse. The sum of the normalized squared residuals (Res) and the homogeneity of variance were tested to compare the different methods. In the femur, approach (i) yielded mean T2 * ± standard deviation (SD) of 657 ± 234 μs. With approach (ii), T2 *cbw , T2 *pw and bwf were 464 ± 153 μs, 15 777 ± 10 864 μs and 57.6 ± 9.9%, respectively. For approach (iii), T2 *cbw , T2 *pw and bwf were 387 ± 108 μs, 7534 ± 2765 μs and 42.5 ± 6.2%, respectively. Similar values were obtained from vertebral bodies. Res with approach (ii) was lower than with the two other approaches (p < 0.007), but T2 *pw and bwf variance was lower with approach (iii) than with approach (ii) (p < 0.048). We demonstrated that the separation and quantification of cortical bone water components with UTE sequences is feasible in vivo in mouse models. The direct bi-exponential approach exhibited the best approximation to the measured signal curve with the lowest residuals; however, the newly proposed multi-step algorithm resulted in substantially lower variability of the computed parameters. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Magda Marcon
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Daniel Keller
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Moritz C Wurnig
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Christian Eberhardt
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Markus Weiger
- Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute for Technology, Zurich, Switzerland
| | - Daniel Eberli
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Andreas Boss
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Abstract
Magnetic resonance imaging (MRI) plays a pivotal role for assessment of the musculoskeletal system. It is currently the clinical modality of choice for evaluation of soft tissues including cartilage, ligaments, tendons, muscle, and bone marrow. By comparison, the study of calcified tissue by MRI is still in its infancy. In this article, we review the potential of the modality for assessment of cortical bone properties known to be affected in degenerative bone disease, with focus on parameters related to matrix and mineral densities, and porosity, by means of emerging solid-state (1)H and (31)P MRI techniques. In contrast to soft tissues, the MRI signal in calcified tissues has very short lifetime, on the order of 100 μs to a few milliseconds, demanding customized imaging approaches that allow capture of the signal almost immediately after excitation. The technologies described are suited for quantitatively imaging human cortical bone in specimens as well as in vivo in patients on standard clinical imagers, yielding either concentrations in absolute units when measured against a reference standard, or more simply, in the form of surrogate biomarkers. The two major water fractions in cortical bone are those of collagen-bound and pore water occurring at an approximately 3:1 ratio. Collagen-bound water density provides a direct quantitative measure of osteoid density. While at an earlier stage of development, quantification of mineral phosphorus by (31)P MRI yields mineral density and, together with knowledge of matrix density, should allow quantification of the degree of bone mineralization.
Collapse
Affiliation(s)
- Alan C Seifert
- Laboratory for Structural, Physiologic, and Functional Imaging, Department of Radiology, University of Pennsylvania Medical Center, MRI Education Center, 1st Floor Founders, 3400 Spruce St., Philadelphia, PA, 19104, USA
| | - Felix W Wehrli
- Laboratory for Structural, Physiologic, and Functional Imaging, Department of Radiology, University of Pennsylvania Medical Center, MRI Education Center, 1st Floor Founders, 3400 Spruce St., Philadelphia, PA, 19104, USA.
| |
Collapse
|
31
|
Marcon M, Keller D, Wurnig MC, Weiger M, Kenkel D, Eberhardt C, Eberli D, Boss A. Separation of collagen-bound and porous bone-water longitudinal relaxation in mice using a segmented inversion recovery zero-echo-time sequence. Magn Reson Med 2016; 77:1909-1915. [PMID: 27221236 DOI: 10.1002/mrm.26277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/18/2016] [Accepted: 04/23/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE Cortical bone mechanical properties are related to the collagen-bound water (CBW) and pore water (PW) components of cortical bone. The study evaluates the feasibility of zero-echo-time imaging in mice in vivo for longitudinal relaxation time (T1) measurements in cortical bone and separation of CBW and PW components. METHODS Zero-echo-time data were acquired at 4.7 Tesla in six mice with 14 different inversion times (0-2,600 ms). Region-of-interest analysis was performed at level of femur diaphysis. The T1 of cortical bone and of CBW (T1cbw) and PW (T1pw) as well as the CBW fraction (cbwf) was computed using a mono-exponential and a bi-exponential fitting approach, respectively. The sum of the squared residuals (Res) to the fit was provided for both approaches. RESULTS For the mono-exponential model, mean T1 ± standard deviation (SD) was 1,057 ± 160 ms. The bi-exponential approach provided a reliable separation of two different bone-water components, with a mean T1cbw of 213 ± 95 ms, T1pw of 2,152 ± 894 ms, and cbwf of 7.4 ± 2.7 %. Lower Res was obtained with bi-exponential approach (P < 0.001), and Res mean values ± SD were 0.016 ± 0.007 (bi-exponential) and 0.033 ± 0.016 (mono-exponential). CONCLUSION Zero-echo-time imaging allows for longitudinal relaxation measurements of cortical bone in vivo in mice models, with a reliable separation of PW and CBW components using a bi-exponential curve fitting approach. Magn Reson Med 77:1909-1915, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Magda Marcon
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland
| | - Daniel Keller
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland.,Department of Urology, University Hospital Zurich, Switzerland
| | - Moritz C Wurnig
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland
| | - Markus Weiger
- Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute for Technology, Zurich, Switzerland
| | - David Kenkel
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland
| | - Christian Eberhardt
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland
| | - Daniel Eberli
- Department of Urology, University Hospital Zurich, Switzerland
| | - Andreas Boss
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland
| |
Collapse
|
32
|
Seifert AC, Li C, Wehrli SL, Wehrli FW. A Surrogate Measure of Cortical Bone Matrix Density by Long T2 -Suppressed MRI. J Bone Miner Res 2015; 30:2229-38. [PMID: 26085307 PMCID: PMC4683123 DOI: 10.1002/jbmr.2580] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/05/2015] [Accepted: 06/14/2015] [Indexed: 11/06/2022]
Abstract
Magnetic resonance has the potential to image and quantify two pools of water within bone: free water within the Haversian pore system (transverse relaxation time, T2 > 1 ms), and water hydrogen-bonded to matrix collagen (T2 ∼ 300 to 400 μs). Although total bone water concentration quantified by MRI has been shown to scale with porosity, greater insight into bone matrix density and porosity may be gained by relaxation-based separation of bound and pore water fractions. The objective of this study was to evaluate a recently developed surrogate measurement for matrix density, single adiabatic inversion recovery (SIR) zero echo-time (ZTE) MRI, in human bone. Specimens of tibial cortical bone from 15 donors (aged 27 to 97 years; 8 female and 7 male) were examined at 9.4T field strength using two methods: (1) (1)H ZTE MRI, to capture total (1)H signal, and (2) (1)H SIR-ZTE MRI, to selectively image matrix-associated (1)H signal. Total water, bone matrix, and bone mineral densities were also quantified gravimetrically, and porosity was measured by micro-CT. ZTE apparent total water (1)H concentration was 32.7 ± 3.2 M (range 28.5 to 40.3 M), and was correlated positively with porosity (R(2) = 0.80) and negatively with matrix and mineral densities (R(2) = 0.90 and 0.82, respectively). SIR-ZTE apparent bound water (1)H concentration was 32.9 ± 3.9 M (range 24.4 to 39.8 M), and its correlations were opposite to those of apparent total water: negative with porosity (R(2) = 0.73) and positive with matrix density (R(2) = 0.74) and mineral density (R(2) = 0.72). Porosity was strongly correlated with gravimetric matrix density (R(2) = 0.91, negative) and total water density (R(2) = 0.92, positive). The strong correlations of SIR-ZTE-derived apparent bound water (1)H concentration with ground-truth measurements suggest that this quantitative solid-state MRI method provides a nondestructive surrogate measure of bone matrix density.
Collapse
Affiliation(s)
- Alan C Seifert
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Cheng Li
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Suzanne L Wehrli
- NMR Core Facility, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Felix W Wehrli
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
33
|
Gul-E-Noor F, Singh C, Papaioannou A, Sinha N, Boutis GS. The Behavior of Water in Collagen and Hydroxyapatite Sites of Cortical Bone: Fracture, Mechanical Wear, and Load Bearing Studies. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2015; 119:21528-21537. [PMID: 26659838 PMCID: PMC4675148 DOI: 10.1021/acs.jpcc.5b06285] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The mechanical properties of cortical bone, which is largely comprised of collagen, hydroxyapatite, and water, are known to hinge on hydration. Recently, the characteristics of water in bone have drawn attention as potential markers of bone quality. We report on the dynamics, diffusion, population, and exchange of water in cortical bone by NMR relaxation and diffusion methodologies. Relaxation measurements over timescales ranging from 0.001 to 4.2 s reveal two distinguishable water environments. Systematic exposure to ethylenediaminetetraacetic acid or collagenase reveals one peak in our 2D relaxation map belonging to water present in the hydroxyapatite rich environment, and a second peak with shorter relaxation times arising from a collagen rich site. Diffusion-T2 measurements allowed for direct measurement of the diffusion coefficient of water in all observable reservoirs. Further, deuterium relaxation methods were applied to study cortical bone under an applied force, following mechanical wear or fracture. The tumbling correlation times of water reduce in all three cases, indicating that water dynamics may be used as a probe of bone quality. Lastly, changes in the relative populations and correlation times of water in bone under an applied force suggest that load bearing occurs largely in the collagen rich environment and is reversible.
Collapse
Affiliation(s)
- Farhana Gul-E-Noor
- Department of Physics, Brooklyn College of The City University of New York, Brooklyn, New York 11210, United States
| | - Chandan Singh
- Center of Biomedical Research, SGPGIMS Campus, Raibarelly Road, Lucknow 226014, India
- School of Biotechnology, Banaras Hindu University, Varanasi 221005 India
| | - Antonios Papaioannou
- The Graduate Center of The City University of New York, Department of Physics, New York, United States
| | - Neeraj Sinha
- Center of Biomedical Research, SGPGIMS Campus, Raibarelly Road, Lucknow 226014, India
| | - Gregory S. Boutis
- Department of Physics, Brooklyn College of The City University of New York, Brooklyn, New York 11210, United States
- The Graduate Center of The City University of New York, Department of Physics, New York, United States
| |
Collapse
|
34
|
Bala Y, Seeman E. Bone's Material Constituents and their Contribution to Bone Strength in Health, Disease, and Treatment. Calcif Tissue Int 2015; 97:308-26. [PMID: 25712256 DOI: 10.1007/s00223-015-9971-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/11/2015] [Indexed: 12/24/2022]
Abstract
Type 1 collagen matrix volume, its degree of completeness of its mineralization, the extent of collagen crosslinking and water content, and the non-collagenous proteins like osteopontin and osteocalcin comprise the main constituents of bone's material composition. Each influences material strength and change in different ways during advancing age, health, disease, and drug therapy. These traits are not quantifiable using bone densitometry and their plurality is better captured by the term bone 'qualities' than 'quality'. These qualities are the subject of this manuscript.
Collapse
Affiliation(s)
- Y Bala
- Laboratoire Vibrations Acoustique, Institut National des Sciences Appliquées de Lyon, Campus LyonTech la Doua, Villeurbanne, France
| | | |
Collapse
|
35
|
Granke M, Does MD, Nyman JS. The Role of Water Compartments in the Material Properties of Cortical Bone. Calcif Tissue Int 2015; 97:292-307. [PMID: 25783011 PMCID: PMC4526331 DOI: 10.1007/s00223-015-9977-5] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 02/27/2015] [Indexed: 12/22/2022]
Abstract
Comprising ~20% of the volume, water is a key determinant of the mechanical behavior of cortical bone. It essentially exists in two general compartments: within pores and bound to the matrix. The amount of pore water-residing in the vascular-lacunar-canalicular space-primarily reflects intracortical porosity (i.e., open spaces within the matrix largely due to Haversian canals and resorption sites) and as such is inversely proportional to most mechanical properties of bone. Movement of water according to pressure gradients generated during dynamic loading likely confers hydraulic stiffening to the bone as well. Nonetheless, bound water is a primary contributor to the mechanical behavior of bone in that it is responsible for giving collagen the ability to confer ductility or plasticity to bone (i.e., allows deformation to continue once permanent damage begins to form in the matrix) and decreases with age along with fracture resistance. Thus, dehydration by air-drying or by solvents with less hydrogen bonding capacity causes bone to become brittle, but interestingly, it also increases stiffness and strength across the hierarchical levels of organization. Despite the importance of matrix hydration to fracture resistance, little is known about why bound water decreases with age in hydrated human bone. Using (1)H nuclear magnetic resonance (NMR), both bound and pore water concentrations in bone can be measured ex vivo because the proton relaxation times differ between the two water compartments, giving rise to two distinct signals. There are also emerging techniques to measure bound and pore water in vivo with magnetic resonance imaging (MRI). The NMR/MRI-derived bound water concentration is positively correlated with both the strength and toughness of hydrated bone and may become a useful clinical marker of fracture risk.
Collapse
Affiliation(s)
- Mathilde Granke
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Mark D. Does
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232
- Department of Electrical Engineering, Vanderbilt University, Nashville, TN 37232
| | - Jeffry S. Nyman
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212
| |
Collapse
|
36
|
Chang EY, Bae WC, Shao H, Biswas R, Li S, Chen J, Patil S, Healey R, D’Lima DD, Chung CB, Du J. Ultrashort echo time magnetization transfer (UTE-MT) imaging of cortical bone. NMR IN BIOMEDICINE 2015; 28:873-80. [PMID: 25981914 PMCID: PMC4652942 DOI: 10.1002/nbm.3316] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/20/2015] [Accepted: 04/06/2015] [Indexed: 05/24/2023]
Abstract
Magnetization transfer (MT) imaging is one way to indirectly assess pools of protons with fast transverse relaxation. However, conventional MT imaging sequences are not applicable to short T2 tissues such as cortical bone. Ultrashort echo time (UTE) sequences with TE values as low as 8 µs can detect signals from different water components in cortical bone. In this study we aim to evaluate two-dimensional UTE-MT imaging of cortical bone and its application in assessing cortical bone porosity as measured by micro-computed tomography (μCT) and biomechanical properties. In total, 38 human cadaveric distal femur and proximal tibia bones were sectioned to produce 122 rectangular pieces of cortical bone for quantitative UTE-MT MR imaging, μCT, and biomechanical testing. Off-resonance saturation ratios (OSRs) with a series of MT pulse frequency offsets (Δf) were calculated and compared with porosity assessed with μCT, as well as elastic (modulus, yield stress, and strain) and failure (ultimate stress, failure strain, and energy) properties, using Pearson correlation and linear regression. A moderately strong negative correlation was observed between OSR and μCT porosity (R(2) = 0.46-0.51), while a moderate positive correlation was observed between OSR and yield stress (R(2) = 0.25-0.30) and failure stress (R(2) = 0.31-0.35), and a weak positive correlation (R(2) = 0.09-0.12) between OSR and Young's modulus at all off-resonance saturation frequencies. OSR determined with the UTE-MT sequence provides quantitative information on cortical bone and is sensitive to μCT porosity and biomechanical function.
Collapse
Affiliation(s)
- Eric Y Chang
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA
- Department of Radiology, University of California, San Diego, CA
| | - Won C Bae
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA
| | - Hongda Shao
- Department of Radiology, University of California, San Diego, CA
| | - Reni Biswas
- Department of Radiology, University of California, San Diego, CA
| | - Shihong Li
- Department of Radiology, University of California, San Diego, CA
| | - Jun Chen
- Department of Radiology, University of California, San Diego, CA
| | - Shantanu Patil
- Shiley Center for Orthopaedic Research & Education, Scripps Clinic, La Jolla, CA
| | - Robert Healey
- Department of Radiology, University of California, San Diego, CA
| | - Darryl D D’Lima
- Shiley Center for Orthopaedic Research & Education, Scripps Clinic, La Jolla, CA
| | - Christine B Chung
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA
- Department of Radiology, University of California, San Diego, CA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA
| |
Collapse
|
37
|
Seifert AC, Wehrli SL, Wehrli FW. Bi-component T2 * analysis of bound and pore bone water fractions fails at high field strengths. NMR IN BIOMEDICINE 2015; 28:861-72. [PMID: 25981785 PMCID: PMC4478152 DOI: 10.1002/nbm.3305] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/05/2015] [Accepted: 03/15/2015] [Indexed: 05/26/2023]
Abstract
Osteoporosis involves the degradation of the bone's trabecular architecture, cortical thinning and enlargement of cortical pores. Increased cortical porosity is a major cause of the decreased strength of osteoporotic bone. The majority of cortical pores, however, are below the resolution limit of MRI. Recent work has shown that porosity can be evaluated by MRI-based quantification of bone water. Bi-exponential T2 * fitting and adiabatic inversion preparation are the two most common methods purported to distinguish bound and pore water in order to quantify matrix density and porosity. To assess the viability of T2 * bi-component analysis as a method for the quantification of bound and pore water fractions, we applied this method to human cortical bone at 1.5, 3, 7 and 9.4 T, and validated the resulting pool fractions against micro-computed tomography-derived porosity and gravimetrically determined bone densities. We also investigated alternative methods: two-dimensional T1 -T2 * bi-component fitting by incorporation of saturation recovery, one- and two-dimensional fitting of Carr-Purcell-Meiboom-Gill (CPMG) echo amplitudes, and deuterium inversion recovery. The short-T2 * pool fraction was moderately correlated with porosity (R(2) = 0.70) and matrix density (R(2) = 0.63) at 1.5 T, but the strengths of these associations were found to diminish rapidly as the field strength increased, falling below R(2) = 0.5 at 3 T. The addition of the T1 dimension to bi-component analysis only slightly improved the strengths of these correlations. T2 *-based bi-component analysis should therefore be used with caution. The performance of deuterium inversion recovery at 9.4 T was also poor (R(2) = 0.50 vs porosity and R(2) = 0.46 vs matrix density). The CPMG-derived short-T2 fraction at 9.4 T, however, was highly correlated with porosity (R(2) = 0.87) and matrix density (R(2) = 0.88), confirming the utility of this method for independent validation of bone water pools.
Collapse
Affiliation(s)
- Alan C Seifert
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Suzanne L Wehrli
- NMR Core Facility, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Felix W Wehrli
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
38
|
Granke M, Makowski AJ, Uppuganti S, Does MD, Nyman JS. Identifying Novel Clinical Surrogates to Assess Human Bone Fracture Toughness. J Bone Miner Res 2015; 30:1290-300. [PMID: 25639628 PMCID: PMC4478129 DOI: 10.1002/jbmr.2452] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/06/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022]
Abstract
Fracture risk does not solely depend on strength but also on fracture toughness; ie, the ability of bone material to resist crack initiation and propagation. Because resistance to crack growth largely depends on bone properties at the tissue level, including collagen characteristics, current X-ray based assessment tools may not be suitable to identify age-related, disease-related, or treatment-related changes in fracture toughness. To identify useful clinical surrogates that could improve the assessment of fracture resistance, we investigated the potential of (1)H nuclear magnetic resonance spectroscopy (NMR) and reference point indentation (RPI) to explain age-related variance in fracture toughness. Harvested from cadaveric femurs (62 human donors), single-edge notched beam (SENB) specimens of cortical bone underwent fracture toughness testing (R-curve method). NMR-derived bound water showed the strongest correlation with fracture toughness properties (r = 0.63 for crack initiation, r = 0.35 for crack growth, and r = 0.45 for overall fracture toughness; p < 0.01). Multivariate analyses indicated that the age-related decrease in different fracture toughness properties were best explained by a combination of NMR properties including pore water and RPI-derived tissue stiffness with age as a significant covariate (adjusted R(2) = 53.3%, 23.9%, and 35.2% for crack initiation, crack growth, and overall toughness, respectively; p < 0.001). These findings reflect the existence of many contributors to fracture toughness and emphasize the utility of a multimodal assessment of fracture resistance. Exploring the mechanistic origin of fracture toughness, glycation-mediated nonenzymatic collagen crosslinks and intracortical porosity are possible determinants of bone fracture toughness and could explain the sensitivity of NMR to changes in fracture toughness. Assuming fracture toughness is clinically important to the ability of bone to resist fracture, our results suggest that improvements in fracture risk assessment could potentially be achieved by accounting for water distribution (quantitative ultrashort echo time magnetic resonance imaging) and by a local measure of tissue resistance to indentation, RPI.
Collapse
Affiliation(s)
- Mathilde Granke
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander J Makowski
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mark D Does
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Electrical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
39
|
Manhard MK, Horch RA, Gochberg DF, Nyman JS, Does MD. In Vivo Quantitative MR Imaging of Bound and Pore Water in Cortical Bone. Radiology 2015; 277:221-9. [PMID: 26020434 DOI: 10.1148/radiol.2015140336] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To translate and evaluate an in vivo magnetic resonance (MR) imaging protocol for quantitative mapping of collagen-bound and pore water concentrations in cortical bone that involves relaxation-selective ultrashort echo time (UTE) methods. MATERIALS AND METHODS All HIPAA-compliant studies were performed with institutional review board approval and written informed consent. UTE imaging sequences were implemented on a clinical 3.0-T MR imaging unit and were used for in vivo imaging of bound and pore water in cortical bone. Images of the lower leg and wrist were acquired in five volunteers each (lower leg: two men and three women aged 24, 24, 49, 30, and 26 years; wrist: two men and three women aged 31, 23, 25, 24, and 26 years) to generate bound and pore water concentration maps of the tibia and radius. Each volunteer was imaged three times, and the standard error of the measurements at the region-of-interest (ROI) level was computed as the standard deviation across studies, pooled across volunteers and ROIs. RESULTS Quantitative bound and pore water maps in the tibia and radius, acquired in 8-14 minutes, had per-voxel signal-to-noise ratios of 18 (bound water) and 14 (pore water) and inter-study standard errors of approximately 2 mol (1)H per liter of bone at the ROI level. CONCLUSION The results of this study demonstrate the feasibility of quantitatively mapping bound and pore water in vivo in human cortical bone with practical human MR imaging constraints.
Collapse
Affiliation(s)
- Mary Kate Manhard
- From the Departments of Biomedical Engineering (M.K.H., M.D.D.), Radiology (R.A.H., D.F.G.), and Orthopedic Surgery and Rehabilitation (J.S.N.), Vanderbilt University, 1161 21st Ave S, AA-1105 MCN, Nashville, TN 37232-2310
| | - R Adam Horch
- From the Departments of Biomedical Engineering (M.K.H., M.D.D.), Radiology (R.A.H., D.F.G.), and Orthopedic Surgery and Rehabilitation (J.S.N.), Vanderbilt University, 1161 21st Ave S, AA-1105 MCN, Nashville, TN 37232-2310
| | - Daniel F Gochberg
- From the Departments of Biomedical Engineering (M.K.H., M.D.D.), Radiology (R.A.H., D.F.G.), and Orthopedic Surgery and Rehabilitation (J.S.N.), Vanderbilt University, 1161 21st Ave S, AA-1105 MCN, Nashville, TN 37232-2310
| | - Jeffry S Nyman
- From the Departments of Biomedical Engineering (M.K.H., M.D.D.), Radiology (R.A.H., D.F.G.), and Orthopedic Surgery and Rehabilitation (J.S.N.), Vanderbilt University, 1161 21st Ave S, AA-1105 MCN, Nashville, TN 37232-2310
| | - Mark D Does
- From the Departments of Biomedical Engineering (M.K.H., M.D.D.), Radiology (R.A.H., D.F.G.), and Orthopedic Surgery and Rehabilitation (J.S.N.), Vanderbilt University, 1161 21st Ave S, AA-1105 MCN, Nashville, TN 37232-2310
| |
Collapse
|
40
|
Rai RK, Singh C, Sinha N. Predominant role of water in native collagen assembly inside the bone matrix. J Phys Chem B 2014; 119:201-11. [PMID: 25530228 DOI: 10.1021/jp511288g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bone is one of the most intriguing biomaterials found in nature consisting of bundles of collagen helixes, hydroxyapatite, and water, forming an exceptionally tough, yet lightweight material. We present here an experimental tool to map water-dependent subtle changes in triple helical assembly of collagen protein in its absolute native environment. Collagen being the most abundant animal protein has been subject of several structural studies in last few decades, mostly on an extracted, overexpressed, and synthesized form of collagen protein. Our method is based on a (1)H detected solid-state nuclear magnetic resonance (ssNMR) experiment performed on native collagen protein inside intact bone matrix. Recent development in (1)H homonuclear decoupling sequences has made it possible to observe specific atomic resolution in a large complex system. The method consists of observing a natural-abundance two-dimensional (2D) (1)H/(13)C heteronuclear correlation (HETCOR) and(1)H double quantum-single quantum (DQ-SQ) correlation ssNMR experiment. The 2D NMR experiment maps three-dimensional assembly of native collagen protein and shows that extracted form of collagen protein is significantly different from protein in the native state. The method also captures native collagen subtle changes (of the order of ∼1.0 Å) due to dehydration and H/D exchange, giving an experimental tool to map small changes. The method has the potential to be of wide applicability to other collagen containing biomaterials.
Collapse
Affiliation(s)
- Ratan Kumar Rai
- Centre of Biomedical Research , SGPGIMS Campus, Raibarelly Road, Lucknow 226014, India
| | | | | |
Collapse
|
41
|
Unal M, Yang S, Akkus O. Molecular spectroscopic identification of the water compartments in bone. Bone 2014; 67:228-36. [PMID: 25065717 DOI: 10.1016/j.bone.2014.07.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 11/25/2022]
Abstract
Matrix bound water is a correlate of bone's fracture resistance and assessment of bound water is emerging as a novel measure of bone's mechanical integrity. Raman spectroscopy is one of the few nondestructive modalities to assess the hydration status in bone; however, it has not been used to study the OH-band in bone. A sequential dehydration protocol was developed to replace unbound (heat drying) and bound (ethanol or deuterium) water in bone. Raman spectra were collected serially to track the OH-band during dehydration. Spectra of synthetic hydroxyapatite, demineralized bone and bulk water were collected to identify mineral and collagen contributions to the OH-band. Band assignments were supported by computational simulations of the molecular vibrations of Gly-Pro-Hyp amino acid sequence. Experimentally and theoretically obtained spectra were interpreted for band-assignments. Water loss was measured gravimetrically and correlated to Raman intensities. Four peaks were identified to be sensitive to dehydration: 3220cm(-1) (water), 3325cm(-1) (NH and water), 3453cm(-1) (hydroxyproline and water), and 3584cm(-1) (mineral and water). These peaks were differentially sensitive to deuterium treatment such that some water peaks were replaced with deuterium oxide faster than the rest. Specifically, the peaks at 3325 and 3584cm(-1) were more tightly bound to the matrix than the remaining bands. Comparison of dehydration in mineralized and demineralized bone revealed a volume of water that may be locked in the matrix by mineral crystals. The OH-range of bone was dominated by collagen and the water since the spectral profile of dehydrated demineralized bone was similar to that of the mineralized bone. Furthermore, water associates to bone mainly by collagen as findings of experimentally and theoretically spectra. The current work is among the first thorough analysis of the Raman OH stretch band in bone and such spectral information may be used to understand the involvement of water in the fragility of aging and in diseased bone.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Shan Yang
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Orthopaedics, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
42
|
Abstract
This review describes new technologies for the diagnosis and treatment, including fracture risk prediction, of postmenopausal osteoporosis. Four promising technologies and their potential for clinical translation and basic science studies are discussed. These include reference point indentation (RPI), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and magnetic resonance imaging (MRI). While each modality exploits different physical principles, the commonality is that none of them require use of ionizing radiation. To provide context for the new developments, brief summaries are provided for the current state of biomarker assays, fracture risk assessment (FRAX), and other fracture risk prediction algorithms and quantitative ultrasound (QUS) measurements.
Collapse
Affiliation(s)
- Bo Gong
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | | | |
Collapse
|
43
|
Seifert AC, Li C, Rajapakse CS, Bashoor-Zadeh M, Bhagat YA, Wright AC, Zemel BS, Zavaliangos A, Wehrli FW. Bone mineral (31)P and matrix-bound water densities measured by solid-state (31)P and (1)H MRI. NMR IN BIOMEDICINE 2014; 27:739-748. [PMID: 24846186 PMCID: PMC4077547 DOI: 10.1002/nbm.3107] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/20/2014] [Accepted: 03/08/2014] [Indexed: 06/02/2023]
Abstract
Bone is a composite material consisting of mineral and hydrated collagen fractions. MRI of bone is challenging because of extremely short transverse relaxation times, but solid-state imaging sequences exist that can acquire the short-lived signal from bone tissue. Previous work to quantify bone density via MRI used powerful experimental scanners. This work seeks to establish the feasibility of MRI-based measurement on clinical scanners of bone mineral and collagen-bound water densities, the latter as a surrogate of matrix density, and to examine the associations of these parameters with porosity and donors' age. Mineral and matrix-bound water images of reference phantoms and cortical bone from 16 human donors, aged 27-97 years, were acquired by zero-echo-time 31-phosphorus ((31)P) and 1-hydrogen ((1)H) MRI on whole body 7T and 3T scanners, respectively. Images were corrected for relaxation and RF inhomogeneity to obtain density maps. Cortical porosity was measured by micro-computed tomography (μCT), and apparent mineral density by peripheral quantitative CT (pQCT). MRI-derived densities were compared to X-ray-based measurements by least-squares regression. Mean bone mineral (31)P density was 6.74 ± 1.22 mol/l (corresponding to 1129 ± 204 mg/cc mineral), and mean bound water (1)H density was 31.3 ± 4.2 mol/l (corresponding to 28.3 ± 3.7 %v/v). Both (31)P and bound water (BW) densities were correlated negatively with porosity ((31)P: R(2) = 0.32, p < 0.005; BW: R(2) = 0.63, p < 0.0005) and age ((31)P: R(2) = 0.39, p < 0.05; BW: R(2) = 0.70, p < 0.0001), and positively with pQCT density ((31)P: R(2) = 0.46, p < 0.05; BW: R(2) = 0.50, p < 0.005). In contrast, the bone mineralization ratio (expressed here as the ratio of (31)P density to bound water density), which is proportional to true bone mineralization, was found to be uncorrelated with porosity, age or pQCT density. This work establishes the feasibility of image-based quantification of bone mineral and bound water densities using clinical hardware.
Collapse
Affiliation(s)
- Alan C Seifert
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Guda T, Labella C, Chan R, Hale R. Quality of bone healing: Perspectives and assessment techniques. Wound Repair Regen 2014; 22 Suppl 1:39-49. [DOI: 10.1111/wrr.12167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 01/28/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Teja Guda
- Dental Trauma Research Detachment; US Army Institute of Surgical Research; Fort Sam Houston
- Wake Forest Institute for Regenerative Medicine; Winston-Salem North Carolina
- Biomedical Engineering; University of Texas at San Antonio; San Antonio Texas
| | - Carl Labella
- Dental Trauma Research Detachment; US Army Institute of Surgical Research; Fort Sam Houston
| | - Rodney Chan
- Dental Trauma Research Detachment; US Army Institute of Surgical Research; Fort Sam Houston
| | - Robert Hale
- Dental Trauma Research Detachment; US Army Institute of Surgical Research; Fort Sam Houston
| |
Collapse
|
45
|
Li C, Seifert AC, Rad HS, Bhagat YA, Rajapakse CS, Sun W, Lam SCB, Wehrli FW. Cortical bone water concentration: dependence of MR imaging measures on age and pore volume fraction. Radiology 2014; 272:796-806. [PMID: 24814179 DOI: 10.1148/radiol.14132585] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE To quantify bulk bone water to test the hypothesis that bone water concentration (BWC) is negatively correlated with bone mineral density (BMD) and is positively correlated with age, and to propose the suppression ratio (SR) (the ratio of signal amplitude without to that with long-T2 suppression) as a potentially stronger surrogate measure of porosity, which is evaluated ex vivo and in vivo. MATERIALS AND METHODS Human subject studies were conducted in compliance with institutional review board and HIPAA regulations. Healthy men and women (n = 72; age range, 20-80 years) were examined with a hybrid radial ultrashort echo time magnetic resonance (MR) imaging sequence at 3.0 T, and BWC was determined in the tibial midshaft. In a subset of 40 female subjects, the SR was measured with a similar sequence. Cortical volumetric BMD (vBMD) was measured by means of peripheral quantitative computed tomography (CT). The method was validated against micro-CT-derived porosity in 13 donor human cortical bone specimens. Associations among parameters were evaluated by using standard statistical tools. RESULTS BWC was positively correlated with age (r = 0.52; 95% confidence interval [CI]: 0.22, 0.73; P = .002) and negatively correlated with vBMD at the same location (r = -0.57; 95% CI: -0.76, -0.29; P < .001). Data were suggestive of stronger associations with SR (r = 0.64, 95% CI: 0.39, 0.81, P < .001 for age; r = -0.67, 95% CI: -0.82, -0.43, P < .001 for vBMD; P < .001 for both), indicating that SR may be a more direct measure of porosity. This interpretation was supported by ex vivo measurements showing SR to be strongly positively correlated with micro-CT porosity (r = 0.88; 95% CI: 0.64, 0.96; P < .001) and with age (r = 0.87; 95% CI: 0.62, 0.96; P < .001). CONCLUSION The MR imaging-derived SR may serve as a biomarker for cortical bone porosity that is potentially superior to BWC, but corroboration in larger cohorts is indicated.
Collapse
Affiliation(s)
- Cheng Li
- From the Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania School of Medicine, 1 Founders Building, MRI Education Center, 3400 Spruce St, Philadelphia, PA 19104
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Seifert AC, Wright AC, Wehrli SL, Ong HH, Li C, Wehrli FW. 31P NMR relaxation of cortical bone mineral at multiple magnetic field strengths and levels of demineralization. NMR IN BIOMEDICINE 2013; 26:1158-66. [PMID: 23505120 PMCID: PMC3715596 DOI: 10.1002/nbm.2930] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 05/10/2023]
Abstract
Recent work has shown that solid-state (1) H and (31) P MRI can provide detailed insight into bone matrix and mineral properties, thereby potentially enabling differentiation of osteoporosis from osteomalacia. However, (31) P MRI of bone mineral is hampered by unfavorable relaxation properties. Hence, accurate knowledge of these properties is critical to optimizing MRI of bone phosphorus. In this work, (31) P MRI signal-to-noise ratio (SNR) was predicted on the basis of T1 and T2 * (effective transverse relaxation time) measured in lamb bone at six field strengths (1.5-11.7 T) and subsequently verified by 3D ultra-short echo-time and zero echo-time imaging. Further, T1 was measured in deuterium-exchanged bone and partially demineralized bone. (31) P T2 * was found to decrease from 220.3 ± 4.3 µs to 98.0 ± 1.4 µs from 1.5 to 11.7 T, and T1 to increase from 12.8 ± 0.5 s to 97.3 ± 6.4 s. Deuteron substitution of exchangeable water showed that 76% of the (31) P longitudinal relaxation rate is due to (1) H-(31) P dipolar interactions. Lastly, hypomineralization was found to decrease T1, which may have implications for (31) P MRI based mineralization density quantification. Despite the steep decrease in the T2 */T1 ratio, SNR should increase with field strength as B0 (0.4) for sample-dominated noise and as B0 (1.1) for coil-dominated noise. This was confirmed by imaging experiments.
Collapse
Affiliation(s)
- Alan C Seifert
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
47
|
Manhard MK, Horch RA, Harkins KD, Gochberg DF, Nyman JS, Does MD. Validation of quantitative bound- and pore-water imaging in cortical bone. Magn Reson Med 2013; 71:2166-71. [PMID: 23878027 DOI: 10.1002/mrm.24870] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/23/2013] [Accepted: 06/12/2013] [Indexed: 12/22/2022]
Abstract
PURPOSE To implement and validate a previously proposed ultra-short echo time method for measuring collagen-bound- and pore-water concentrations in bone based on their T2 differences. METHODS Clinically compatible ultra-short echo time image sequences for quantitative T2 -based bound and pore-water imaging in bone were implemented and validated on a 3T human scanner and a 4.7T small bore system. Bound- and pore-water images were generating using T2 -selective adiabatic pulses. In both cases, the magnetization preparation was integrated into a three-dimensional ultra-short echo time acquisition, with 16 radial spokes acquired per preparation. Images were acquired from human cadaveric femoral mid-shafts from which isolated bone samples were subsequently extracted for nonimaging analysis using T2 spectroscopic measurements. RESULTS A strong correlation was found between imaging-derived concentrations of bound and pore water and those determined from the isolated bone samples. CONCLUSIONS These studies demonstrate the translation of the previously developed approaches for distinguishing bound and pore water from human cortical bone using practical human MRI constraints of gradient performance and radiofrequency power deposition.
Collapse
Affiliation(s)
- Mary Kate Manhard
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
48
|
Currey JD, Shahar R. Cavities in the compact bone in tetrapods and fish and their effect on mechanical properties. J Struct Biol 2013; 183:107-22. [PMID: 23664869 DOI: 10.1016/j.jsb.2013.04.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 01/12/2023]
Abstract
Bone includes cavities in various length scales, from nanoporosities occurring between the collagen fibrils and the mineral crystals all the way to macrocavities like the medullary cavity. In particular, bone is permeated by a vast number of channels (the lacunar-canalicular system), that reduce the stiffness and, more importantly, the strength of the bone that they permeate. These consequences are presumably a price worth paying for the ability of the lacunar-canalicular system to detect changes in the strain environment within the bone material and, when deleterious, to trigger processes like modeling or remodeling which 'rectify' it. Here we review the size and density of the various types of cavities in bone, and discuss their effect on the mechanical properties of cortical bone. In this respect the bones of advanced teleost fish species (probably the majority of all vertebrate species) are an unsolved conundrum because they lack bone cells (and therefore lacunae and canaliculi) in their skeleton. Yet, despite being acellular, some of these fish can undergo considerable remodeling in at least some parts of their skeleton. We address, but do not solve this mystery.
Collapse
Affiliation(s)
- John D Currey
- Department of Biology, University of York, York YO10 5DD, UK.
| | | |
Collapse
|
49
|
Du J, Bydder GM. Qualitative and quantitative ultrashort-TE MRI of cortical bone. NMR IN BIOMEDICINE 2013; 26:489-506. [PMID: 23280581 PMCID: PMC4206448 DOI: 10.1002/nbm.2906] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 10/19/2012] [Accepted: 11/18/2012] [Indexed: 05/08/2023]
Abstract
Osteoporosis causes over 1.5 million fractures per year, costing about $15 billion annually in the USA. Current guidelines utilize bone mineral density (BMD) to assess fracture risk; however, BMD alone only accounts for 30-50% of fractures. The other two major components of bone, organic matrix and water, contribute significantly to bone mechanical properties, but cannot be assessed with conventional imaging techniques in spite of the fact that they make up about 57% of cortical bone by volume. Conventional clinical MRI usually detects signals from water in tissues without difficulty, but cannot detect the water bound to the organic matrix, or the free water in the microscopic pores of the Haversian and the lacunar-canalicular system of cortical bone, because of their very short apparent transverse relaxation times (T2 *). In recent years, a new class of sequences, ultrashort-TE (UTE) sequences, with nominal TEs of less than 100 µs, which are much shorter than the TEs available with conventional sequences, have received increasing interest. These sequences can detect water signals from within cortical bone and provide an opportunity to study disease of this tissue in a new way. This review summarizes the recent developments in qualitative UTE imaging (techniques and contrast mechanisms to produce bone images with high contrast) and quantitative UTE imaging (techniques to quantify the MR properties, including T1 , T2 * and the magnetization transfer ratio, and tissue properties, including bone perfusion, as well as total, bound and free water content) of cortical bone in vitro and in vivo. The limitations of the current techniques for clinical applications and future directions are also discussed.
Collapse
Affiliation(s)
- Jiang Du
- Department of Radiology, University of California, San Diego, CA 92103-8226, USA.
| | | |
Collapse
|
50
|
Wehrli FW. Magnetic resonance of calcified tissues. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 229:35-48. [PMID: 23414678 PMCID: PMC4746726 DOI: 10.1016/j.jmr.2012.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 05/06/2023]
Abstract
MRI of the human body is largely made possible by the favorable relaxation properties of protons of water and triacyl glycerides prevalent in soft tissues. Hard tissues--key among them bone--are generally less amenable to measurement with in vivo MR imaging techniques, not so much as a result of the lower proton density but rather due to the extremely short life-times of the proton signal in water bound to solid-like entities, typically collagen, or being trapped in micro-pores. Either mechanism can enhance T2 relaxation by up to three orders of magnitude relative to their soft-tissue counterparts. Detection of these protons requires solid-state techniques that have emerged in recent years and that promise to add a new dimension to the study of hard tissues. Alternative approaches to probe calcified tissues exploit their characteristic magnetic properties. Bone, teeth and extra-osseous calcium-containing biomaterials are unique in that they are more diamagnetic than all other tissues and thus yield information indirectly by virtue of the induced magnetic fields present in their vicinity. Progress has also been made in methods allowing very high-resolution structural imaging of trabecular and cortical bone relying on detection of the surrounding soft-tissues. This brief review, much of it drawn from work conducted in the author's laboratory, seeks to highlight opportunities with focus on early-stage developments for image-based assessment of structure, function, physiology and mechanics of calcified tissues in humans via liquid and solid-state approaches, including proton, deuteron and phosphorus NMR and MRI.
Collapse
Affiliation(s)
- Felix W Wehrli
- Laboratory for Structural NMR Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, USA.
| |
Collapse
|