1
|
Yang J, Han Y, Zhang L, Ding Q, Sun S, Zhang S, Wang Y, Wang N, Wei H, Yu T, Liu W, Ding C. Taxifolin-loaded cellulose/l-arginine-chitosan hydrogel promoting bone defect repair through osteogenesis and angiogenesis. Int J Biol Macromol 2024; 283:137843. [PMID: 39566786 DOI: 10.1016/j.ijbiomac.2024.137843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Bone defects have always been a difficult problem in clinical practice. Taxifolin (TAX) is beneficial to bone regeneration. In order to obtain more attractive biomaterials, we extracted cellulose (LC) from larch sawdust and prepared a TAX-loaded hydrogel (DCT) together with L-arginine chitosan (CA). The hydrogel had a uniform porous structure and good mechanical properties. After drug loading, the adhesion, antibacterial, and antioxidant properties of the hydrogel were improved. In addition, DCT has good biocompatibility. In vitro cell experiment results showed that DCT can promote cell proliferation and migration, and DCT has a certain ability to promote the osteogenic activity and enhance the expression of osteoblastic factors (OCN and Osx) and vascular endothelial growth factor (VEGF) in MC3T3-E1 cells. In addition, in vivo studies showed that the DCT treatment could promote bone regeneration by increasing the levels of osteogenic markers (OPN, OCN, and Osx) and VEGF. Transcriptome analysis showed that DCT intervention affected the hematopoiesis function in bone tissue. Meanwhile, KEGG analysis showed that DCT promoted bone regeneration mainly by activating the PI3K/AKT signaling pathway, which was verified by a western blot. Therefore, DCT is a good material for bone repair.
Collapse
Affiliation(s)
- Jiali Yang
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yuanyuan Han
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Lifeng Zhang
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yue Wang
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Ning Wang
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Hewei Wei
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Taojing Yu
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China.
| | - Chuanbo Ding
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| |
Collapse
|
2
|
Qu X, Pan P, Cao S, Ma Y, Yang J, Gao H, Pei X, Yang Y. Immp2l Deficiency Induced Granulosa Cell Senescence Through STAT1/ATF4 Mediated UPR mt and STAT1/(ATF4)/HIF1α/BNIP3 Mediated Mitophagy: Prevented by Enocyanin. Int J Mol Sci 2024; 25:11122. [PMID: 39456903 PMCID: PMC11508440 DOI: 10.3390/ijms252011122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Dysfunctional mitochondria producing excessive ROS are the main factors that cause ovarian aging. Immp2l deficiency causes mitochondrial dysfunction and excessive ROS production, leading to ovarian aging, which is attributed to granulosa cell senescence. The pathway controlling mitochondrial proteostasis and mitochondrial homeostasis of the UPRmt and mitophagy are closely related with the ROS and cell senescence. Our results suggest that Immp2l knockout led to granulosa cell senescence, and enocyanin treatment alleviated Immp2l deficiency-induced granulosa cell senescence, which was accompanied by improvements in mitochondrial function and reduced ROS levels. Interestingly, redox-related protein modifications, including S-glutathionylation and S-nitrosylation, were markedly increased in Immp2l-knockout granulosa cells, and were markedly reduced by enocyanin treatment. Furthermore, STAT1 was significantly increased in Immp2l-knockout granulosa cells and reduced by enocyanin treatment. The co-IP results suggest that the expression of STAT1 was controlled by S-glutathionylation and S-nitrosylation, but not phosphorylation. The UPRmt was impaired in Immp2l-deficient granulosa cells, and unfolded and misfolded proteins aggregated in mitochondria. Then, the HIF1α/BNIP3-mediated mitophagy pathway was activated, but mitophagy was impaired due to the reduced fusion of mitophagosomes and lysosomes. The excessive aggregation of mitochondria increased ROS production, leading to senescence. Hence, Enocyanin treatment alleviated granulosa cell senescence through STAT1/ATF4-mediated UPRmt and STAT1/(ATF4)/HIF1α/BNIP3-mediated mitophagy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiuying Pei
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (X.Q.); (P.P.); (S.C.); (Y.M.); (J.Y.); (H.G.)
| | - Yanzhou Yang
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (X.Q.); (P.P.); (S.C.); (Y.M.); (J.Y.); (H.G.)
| |
Collapse
|
3
|
Zhang N, Nao J, Zhang S, Dong X. Novel insights into the activating transcription factor 4 in Alzheimer's disease and associated aging-related diseases: Mechanisms and therapeutic implications. Front Neuroendocrinol 2024; 74:101144. [PMID: 38797197 DOI: 10.1016/j.yfrne.2024.101144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Ageing is inherent to all human beings, most mechanistic explanations of ageing results from the combined effects of various physiological and pathological processes. Additionally, aging pivotally contributes to several chronic diseases. Activating transcription factor 4 (ATF4), a member of the ATF/cAMP response element-binding protein family, has recently emerged as a pivotal player owing to its indispensable role in the pathophysiological processes of Alzheimer's disease and aging-related diseases. Moreover, ATF4 is integral to numerous biological processes. Therefore, this article aims to comprehensively review relevant research on the role of ATF4 in the onset and progression of aging-related diseases, elucidating its potential mechanisms and therapeutic approaches. Our objective is to furnish scientific evidence for the early identification of risk factors in aging-related diseases and pave the way for new research directions for their treatment. By elucidating the signaling pathway network of ATF4 in aging-related diseases, we aspire to gain a profound understanding of the molecular and cellular mechanisms, offering novel strategies for addressing aging and developing related therapeutics.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, the Seventh Clinical College of China Medical University, No. 24 Central Street, Xinfu District, Fushun 113000, Liaoning, China.
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| | - Shun Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| |
Collapse
|
4
|
Dong H, Jia W, Meng W, Zhang R, Qi Z, Chen Z, Xie S, Min J, Liu L, Shen J. DAB2IP inhibits glucose uptake by modulating HIF-1α ubiquitination under hypoxia in breast cancer. Oncogenesis 2024; 13:20. [PMID: 38862467 PMCID: PMC11166643 DOI: 10.1038/s41389-024-00523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Metabolic reprogramming has become increasingly important in tumor biology research. The glucose metabolic pathway is a major energy source and is often dysregulated in breast cancer. DAB2IP is widely reported to be a tumor suppressor that acts as a scaffold protein to suppress tumor malignancy in breast cancer. Interestingly, DAB2IP has also been found to be a potential regulator of glucose uptake; however, the exact mechanism remains unclear. In this study, we found that DAB2IP inhibited glucose uptake under hypoxia conditions in breast cancer cells by suppressing HIF-1α signals. Mechanically, DAB2IP interacted with the E3 ubiquitin ligase STUB1 via its PER domain, thus triggering STUB1 mediated HIF-1α ubiquitylation and degradation, and inhibit glucose metabolism and tumor progression. Deleting the PER domain abrogated the DAB2IP-related inhibitory effects on glucose uptake, intracellular ATP production, and lactic acid production in breast cancer cells. These findings elucidate the biological roles of DAB2IP in cancer-related glucose metabolism as well as a novel mechanism by which STUB1-driven HIF-1α ubiquitylated degradation is regulated in breast cancer.
Collapse
Affiliation(s)
- Hongliang Dong
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiyi Jia
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Science & Education, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Weijian Meng
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Zhang
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhihong Qi
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhuo Chen
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sophia Xie
- Wuhan Britain-China School, Wuhan, 430030, China
| | - Jiang Min
- Gastrointestinal Surgery Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40000, China
| | - Liang Liu
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jie Shen
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Jin X, Sun Y, Bai R, Shi J, Zhai L, Jiang Y, Jiang M, He J, Li J, Wang T, Li S, Chen W. Zhuang-Gu-Fang intervenes vasculogenic and osteogenic coupling in GK rats through Notch1/Noggin/VEGF pathway. Heliyon 2024; 10:e28014. [PMID: 38524608 PMCID: PMC10958413 DOI: 10.1016/j.heliyon.2024.e28014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
Background Zhuang-Gu-Fang (ZGF) has been proved to treat osteoporosis in ovariectomized rats by increasing osteogenic related factors Leptin, Ghrelin and Peptide YY(PYY). However, the mechanism of ZGF in the treatment of diabetic osteoporosis (DOP) remains unclear. The aim of this study was to explore the therapeutic effect of ZGF on DOP and its potential molecular mechanism. Methods Using GK rats as models, the pharmacodynamic effects of ZGF on bone loss were evaluated by hematoxylin-eosin (H&E) staining and micro-computed.tomography (micro-CT). The expression levels of CD31 and endomucin (Emcn) were detected by immunofluorescence to assess the role of ZGF in angiogenic osteogenic coupling. Finally, real-time quantitative PCR (RT-PCR) and Western Blot (WB)were used to detect the expression levels of osteogenic and angiogenesis-related genes and proteins Notch1, Noggin and vascular endothelial growth factor (VEGF). Results Administration of ZGF demonstrated a significant mitigation of bone loss attributable to elevated glucose levels. H&E staining and micro-CT showed that ZGF notably improved the integrity of the trabecular and cortical bone microarchitecture. Moreover, ZGF was found to augment the density of type H vessels within the bone tissue, alongside elevating the expression levels of Osterix, a transcription factor pivotal for bone formation. Furthermore, our findings suggest that ZGF facilitates the activation of the Notch1/Noggin/VEGF pathway, indicating a potential mechanism through which ZGF exerts its osteoprotective effects. Conclusion Our results suggest that ZGF potentially facilitates the formation of type H vessels through the Notch1/Noggin/VEGF pathway. This action not only enhances angiogenic-osteogenic coupling but also contributes to the improvement of bone structure and density. Consequently, ZGF emerges as a promising therapeutic agent for the prevention and management of DOP, offering a novel approach by leveraging angiogenesis-dependent osteogenesis.
Collapse
Affiliation(s)
- Xinyan Jin
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Yuyu Sun
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Rui Bai
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 530001, China
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, 530299, China
| | - Jun Shi
- School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Linna Zhai
- Department of Endocrine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, China
| | - Yunxia Jiang
- Department of Endocrine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, China
| | - Mengchun Jiang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Jiali He
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Junyu Li
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Ting Wang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Shuanglei Li
- Department of Endocrine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, China
| | - Wenhui Chen
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 530001, China
- Department of Endocrine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, China
| |
Collapse
|
6
|
Singh G, O-Sullivan I, Natarajan Anbazhagan A, Ranjan K C, Farooqui Z, Ma K, Wang J, Mwale F, Votta-Velis G, Bruce B, Ronald Kahn C, van Wijnen AJ, Im HJ. Loss of PKCδ/Prkcd prevents cartilage degeneration in joints but exacerbates hyperalgesia in an experimental osteoarthritis mouse model. Gene 2024; 893:147920. [PMID: 37890601 DOI: 10.1016/j.gene.2023.147920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Pain is the prime symptom of osteoarthritis (OA) that directly affects the quality of life. Protein kinase Cδ (PKCδ/Prkcd) plays a critical role in OA pathogenesis; however, its significance in OA-related pain is not entirely understood. The present study investigated the functional role of PKCδ in OA pain sensation. OA was surgically induced in control (Prkcdfl/fl), global- (Prkcdfl/fl; ROSACreERT2), and sensory neuron-specific conditional knockout (cKO) mice (Prkcdfl/fl; NaV1.8/Scn10aCreERT2) followed by comprehensive analysis of longitudinal behavioral pain, histopathology and immunofluorescence studies. GlobalPrkcd cKO mice prevented cartilage deterioration by inhibiting matrix metalloproteinase-13 (MMP13) in joint tissues but significantly increased OA pain. Sensory neuron-specificdeletion of Prkcd in mice did not protect cartilage from degeneration but worsened OA-associated pain. Exacerbated pain sensitivity observed in global- and sensory neuron-specific cKO of Prkcd was corroborated with markedly increased specific pain mediators in knee synovium and dorsal root ganglia (DRG). These specific pain markers include nerve growth factor (NGF) and vascular endothelial growth factor (VEGF), and their cognate receptors, including tropomyosin receptor kinase A (TrkA) and vascular endothelial growth factor receptor-1 (VEGFR1). The increased levels of NGF/TrkA and VEGF/VEGFR1 were comparable in both global- and sensory neuron-specific cKO groups. These data suggest that the absence of Prkcd gene expression in the sensory neurons is strongly associated with OA hyperalgesia independent of cartilage protection. Thus, inhibition of PKCδ may be beneficial for cartilage homeostasis but could aggravate OA-related pain symptoms.
Collapse
Affiliation(s)
- Gurjit Singh
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - InSug O-Sullivan
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | - Zeba Farooqui
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Kaige Ma
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jun Wang
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Fackson Mwale
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital and Department of Surgery, McGill University, Montreal, QC H3T 1E2, Canada.
| | - Gina Votta-Velis
- Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Benjamin Bruce
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - C Ronald Kahn
- Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, 02215, MA, USA.
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA.
| | - Hee-Jeong Im
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
7
|
Zhou J, Tang CK. Cytoplasmic Polyadenylation Element Binding Protein 1 and Atherosclerosis: Prospective Target and New Insights. Curr Vasc Pharmacol 2024; 22:95-105. [PMID: 38284693 DOI: 10.2174/0115701611258090231221082502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
The ribonucleic acid (RNA)-binding protein Cytoplasmic Polyadenylation Element Binding Protein 1 (CPEB1), a key member of the CPEB family, is essential in controlling gene expression involved in both healthy physiological and pathological processes. CPEB1 can bind to the 3'- untranslated regions (UTR) of substrate messenger ribonucleic acid (mRNA) and regulate its translation. There is increasing evidence that CPEB1 is closely related to the pathological basis of atherosclerosis. According to recent investigations, many pathological processes, including inflammation, lipid metabolism, endothelial dysfunction, angiogenesis, oxidative stress, cellular senescence, apoptosis, and insulin resistance, are regulated by CPEB1. This review considers the prevention and treatment of atherosclerotic heart disease in relation to the evolution of the physiological function of CPEB1, recent research breakthroughs, and the potential participation of CPEB1 in atherosclerosis.
Collapse
Affiliation(s)
- Jing Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
8
|
Xiao Y, Xie X, Chen Z, Yin G, Kong W, Zhou J. Advances in the roles of ATF4 in osteoporosis. Biomed Pharmacother 2023; 169:115864. [PMID: 37948991 DOI: 10.1016/j.biopha.2023.115864] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Osteoporosis (OP) is characterized by reduced bone mass, decreased strength, and enhanced bone fragility fracture risk. Activating transcription factor 4 (ATF4) plays a role in cell differentiation, proliferation, apoptosis, redox balance, amino acid uptake, and glycolipid metabolism. ATF4 induces the differentiation of bone marrow mesenchymal stem cells (BM-MSCs) into osteoblasts, increases osteoblast activity, and inhibits osteoclast formation, promoting bone formation and remodeling. In addition, ATF4 mediates the energy metabolism in osteoblasts and promotes angiogenesis. ATF4 is also involved in the mediation of adipogenesis. ATF4 can selectively accumulate in osteoblasts. ATF4 can directly interact with RUNT-related transcription factor 2 (RUNX2) and up-regulate the expression of osteocalcin (OCN) and osterix (Osx). Several upstream factors, such as Wnt/β-catenin and BMP2/Smad signaling pathways, have been involved in ATF4-mediated osteoblast differentiation. ATF4 promotes osteoclastogenesis by mediating the receptor activator of nuclear factor κ-B (NF-κB) ligand (RANKL) signaling. Several agents, such as parathyroid (PTH), melatonin, and natural compounds, have been reported to regulate ATF4 expression and mediate bone metabolism. In this review, we comprehensively discuss the biological activities of ATF4 in maintaining bone homeostasis and inhibiting OP development. ATF4 has become a therapeutic target for OP treatment.
Collapse
Affiliation(s)
- Yaosheng Xiao
- Department of Orthopaetics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xunlu Xie
- Department of Pathology, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Zhixi Chen
- Department of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Guoqiang Yin
- Ganzhou Hospital Affiliated to Nanchang University, Ganzhou 341000, China
| | - Weihao Kong
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China.
| |
Collapse
|
9
|
Liu T, Wen Z, Shao L, Cui Y, Tang X, Miao H, Shi J, Jiang L, Feng S, Zhao Y, Zhang H, Liang Q, Chen D, Zhang Y, Wang C. ATF4 knockdown in macrophage impairs glycolysis and mediates immune tolerance by targeting HK2 and HIF-1α ubiquitination in sepsis. Clin Immunol 2023; 254:109698. [PMID: 37481013 DOI: 10.1016/j.clim.2023.109698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Strengthened glycolysis is crucial for the macrophage pro-inflammatory response during sepsis. Activating transcription factor 4 (ATF4) plays an important role in regulating glucose and lipid metabolic homeostasis in hepatocytes and adipocytes. However, its immunometabolic role in macrophage during sepsis remains largely unknown. In the present study, we found that the expression of ATF4 in peripheral blood mononuclear cells (PBMCs) was increased and associated with glucose metabolism in septic patients. Atf4 knockdown specifically decreased LPS-induced spleen macrophages and serum pro-inflammatory cytokines levels in mice. Moreover, Atf4 knockdown partially blocked LPS-induced pro-inflammatory cytokines, lactate accumulation and glycolytic capacity in RAW264.7. Mechanically, ATF4 binds to the promoter region of hexokinase II (HK2), and interacts with hypoxia inducible factor-1α (HIF-1α) and stabilizes HIF-1α through ubiquitination modification in response to LPS. Furthermore, ATF4-HIF-1α-HK2-glycolysis axis launches pro-inflammatory response in macrophage depending on the activation of mammalian target of rapamycin (mTOR). Importantly, Atf4 overexpression improves the decreased level of pro-inflammatory cytokines and lactate secretion and HK2 expression in LPS-induced tolerant macrophages. In conclusion, we propose a novel function of ATF4 as a crucial glycolytic activator contributing to pro-inflammatory response and improving immune tolerant in macrophage involved in sepsis. So, ATF4 could be a potential new target for immunotherapy of sepsis.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China
| | - Zhenliang Wen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Lujing Shao
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China
| | - Yun Cui
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Institute of Pediatric Critical Care, Shanghai Jiao Tong University, 200062, Shanghai, China
| | - Xiaomeng Tang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China
| | - Huijie Miao
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Institute of Pediatric Critical Care, Shanghai Jiao Tong University, 200062, Shanghai, China
| | - Jingyi Shi
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Institute of Pediatric Critical Care, Shanghai Jiao Tong University, 200062, Shanghai, China
| | - Linlin Jiang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Shuyun Feng
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China
| | - Yilin Zhao
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Qiming Liang
- Research Center of Translational Medicine, Shanghai Institute of Immunology, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China..
| | - Yucai Zhang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Institute of Pediatric Critical Care, Shanghai Jiao Tong University, 200062, Shanghai, China.
| | - Chunxia Wang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Institute of Pediatric Critical Care, Shanghai Jiao Tong University, 200062, Shanghai, China.
| |
Collapse
|
10
|
Wu T, Jiang Y, Shi W, Wang Y, Li T. Endoplasmic reticulum stress: a novel targeted approach to repair bone defects by regulating osteogenesis and angiogenesis. J Transl Med 2023; 21:480. [PMID: 37464413 PMCID: PMC10353205 DOI: 10.1186/s12967-023-04328-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Bone regeneration therapy is clinically important, and targeted regulation of endoplasmic reticulum (ER) stress is important in regenerative medicine. The processing of proteins in the ER controls cell fate. The accumulation of misfolded and unfolded proteins occurs in pathological states, triggering ER stress. ER stress restores homeostasis through three main mechanisms, including protein kinase-R-like ER kinase (PERK), inositol-requiring enzyme 1ɑ (IRE1ɑ) and activating transcription factor 6 (ATF6), collectively known as the unfolded protein response (UPR). However, the UPR has both adaptive and apoptotic effects. Modulation of ER stress has therapeutic potential for numerous diseases. Repair of bone defects involves both angiogenesis and bone regeneration. Here, we review the effects of ER stress on osteogenesis and angiogenesis, with emphasis on ER stress under high glucose (HG) and inflammatory conditions, and the use of ER stress inducers or inhibitors to regulate osteogenesis and angiogenesis. In addition, we highlight the ability for exosomes to regulate ER stress. Recent advances in the regulation of ER stress mediated osteogenesis and angiogenesis suggest novel therapeutic options for bone defects.
Collapse
Affiliation(s)
- Tingyu Wu
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Yaping Jiang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Weipeng Shi
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Yingzhen Wang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Tao Li
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China.
| |
Collapse
|
11
|
Zheng XQ, Huang J, Lin JL, Song CL. Pathophysiological mechanism of acute bone loss after fracture. J Adv Res 2023; 49:63-80. [PMID: 36115662 PMCID: PMC10334135 DOI: 10.1016/j.jare.2022.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND Acute bone loss after fracture is associated with various effects on the complete recovery process and a risk of secondary fractures among patients. Studies have reported similarities in pathophysiological mechanisms involved in acute bone loss after fractures and osteoporosis. However, given the silence nature of bone loss and bone metabolism complexities, the actual underlying pathophysiological mechanisms have yet to be fully elucidated. AIM OF REVIEW To elaborate the latest findings in basic research with a focus on acute bone loss after fracture. To briefly highlight potential therapeutic targets and current representative drugs. To arouse researchers' attention and discussion on acute bone loss after fracture. KEY SCIENTIFIC CONCEPTS OF REVIEW Bone loss after fracture is associated with immobilization, mechanical unloading, blood supply damage, sympathetic nerve regulation, and crosstalk between musculoskeletals among other factors. Current treatment strategies rely on regulation of osteoblasts and osteoclasts, therefore, there is a need to elucidate on the underlying mechanisms of acute bone loss after fractures to inform the development of efficacious and safe drugs. In addition, attention should be paid towards ensuring long-term skeletal health.
Collapse
Affiliation(s)
- Xuan-Qi Zheng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Jie Huang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Jia-Liang Lin
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Chun-Li Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Spinal Disease Research, Beijing, China.
| |
Collapse
|
12
|
Haussler MR, Haussler CA, Jurutka PW. Genomically anchored vitamin D receptor mediates an abundance of bioprotective actions elicited by its 1,25-dihydroxyvitamin D hormonal ligand. VITAMINS AND HORMONES 2023; 123:313-383. [PMID: 37717990 DOI: 10.1016/bs.vh.2022.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The nuclear vitamin D receptor (VDR) mediates the actions of its physiologic 1,25-dihydroxyvitamin D3 (1,25D) ligand produced in kidney and at extrarenal sites during times of physiologic and cellular stress. The ligand-receptor complex transcriptionally controls genes encoding factors that regulate calcium and phosphate sensing/transport, bone remodeling, immune function, and nervous system maintenance. With the aid of parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23), 1,25D/VDR primarily participates in an intricate network of feedback controls that govern extracellular calcium and phosphate concentrations, mainly influencing bone formation and mineralization, ectopic calcification, and indirectly supporting many fundamental roles of calcium. Beyond endocrine and intracrine effects, 1,25D/VDR signaling impacts multiple biochemical phenomena that potentially affect human health and disease, including autophagy, carcinogenesis, cell growth/differentiation, detoxification, metabolic homeostasis, and oxidative stress mitigation. Several health advantages conferred by 1,25D/VDR appear to be promulgated by induction of klotho, an anti-aging renal peptide hormone which functions as a co-receptor for FGF23 and, like 1,25D, regulates nrf2, foxo, mTOR and other cellular protective pathways. Among hundreds of genes for which expression is modulated by 1,25D/VDR either primarily or secondarily in a cell-specific manner, the resulting gene products (in addition to those expressed in the classic skeletal mineral regulatory tissues kidney, intestine, and bone), fall into multiple biochemical categories including apoptosis, cholesterol homeostasis, glycolysis, hypoxia, inflammation, p53 signaling, unfolded protein response and xenobiotic metabolism. Thus, 1,25D/VDR is a bone mineral control instrument that also signals the maintenance of multiple cellular processes in the face of environmental and genetic challenges.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States.
| | - Carol A Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Peter W Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| |
Collapse
|
13
|
Ruan H, Li YZ, Zhang Q, Wang BR, Wu R, Li SS, Ran X. IDENTIFICATION AND CLINICAL VALIDATION OF HYPOXIA-INDUCIBLE FACTOR 1α PROTEIN AS THE POTENTIAL BIOMARKER IN PATIENTS WITH SEPSIS. Shock 2023; 59:855-863. [PMID: 37001918 PMCID: PMC10227947 DOI: 10.1097/shk.0000000000002122] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
ABSTRACT Objective: Sepsis is a complex disease characterized by an inflammatory response and tissue hypoxia. Hypoxia-inducible factor 1α (HIF-1α) expression level is regulated by hypoxia and inflammation. This study aimed to explore the correlation between HIF-1α expression level and sepsis by bioinformatics analysis and clinical investigation. Methods: Bioinformatics tools were used to identify differentially expressed genes between sepsis and nonsepsis groups using the Gene Expression Omnibus data set. A clinical investigation was carried out to validate HIF-1α protein level in 54 nonseptic patients and 173 septic patients who were followed up for 28 days. Results: Bioinformatics analysis revealed that HIF-1α messenger RNA level was significantly different between septic and nonseptic patients ( P < 0.05). Consistent with the study hypothesis, higher HIF-1α levels in plasma were found in septic patients compared with those in nonseptic patients. The diagnostic accuracy for sepsis, as quantified by the area under the curve, was 0.926 (0.885-0.968) for HIF-1α expression level combined with oxygen saturation to fraction of inspired oxygen (SpO 2 /FiO 2 ), white blood cell, and blood urea nitrogen. The HIF-1α expression level was also significantly correlated with the severity of the disease. The results of the restricted cubic splines model indicated a U-shaped relationship between HIF-1α expression level and intensive care unit (ICU) mortality. Univariate and multivariate linear regression analyses indicated that septic patients with the elevated HIF-1α expression levels had shorter length of ICU stay versus those with the lower HIF-1α expression levels. Conclusion: Hypoxia-inducible factor 1α expression level can be used for diagnosing disease, assessing severity, and predicting length of ICU stay in septic patients.
Collapse
Affiliation(s)
- Hang Ruan
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao-zhuo Li
- School of Public Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Qin Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin-ran Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongxue Wu
- Department of Biological Sciences Division — Cardiology, University of Chicago, Chicago, USA
| | - Shu-sheng Li
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Ran
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Gu L, Wang Z, Gu H, Wang H, Liu L, Zhang WB. Atf4 regulates angiogenic differences between alveolar bone and long bone macrophages by regulating M1 polarization, based on single-cell RNA sequencing, RNA-seq and ATAC-seq analysis. J Transl Med 2023; 21:193. [PMID: 36918894 PMCID: PMC10012539 DOI: 10.1186/s12967-023-04046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
In the repair of maxillofacial bone defects, autogenous craniofacial bone can often provide superior clinical results over long bone grafts. Most current studies have focused on the osteogenic differences between alveolar bone marrow (ABM) and long bone marrow (LBM), however, studies about the angiogenic differences between the two are currently lacking. We downloaded single-cell RNA sequencing (scRNA-seq) of mouse ABM and LBM respectively from the public database, and the data were processed by using Seurat package. CellphoneDB2 results showed that macrophages had the strongest interaction with mesenchymal stem cells (MSCs) and endothelial cells (ECs). ELISA results confirmed that ABM macrophages secreted a higher level of vascular endothelial growth factor A (Vegfa) compared to LBM macrophages, which further promoted angiogenesis of ECs and MSCs. Using SCENIC package, six key transcription factors (TFs) were identified to regulate the difference between ABM and LBM macrophages, and activating transcription factor 4 (Atf4) was confirmed to be more expressed in ABM macrophages by polymerase chain reaction (PCR) and western blot (WB), with predicted target genes including Vegfa. Besides, the result of scRNA-seq implied ABM macrophages more in M1 status than LBM macrophages, which was confirmed by the following experiments. From the results of another assay for transposase accessible chromatin sequencing (ATAC-seq) and RNA-seq about M1 macrophages, Atf4 was also confirmed to regulate the M1 polarization. So, we suspected that Atf4 regulated the different expression of Vegfa between ABM and LBM macrophages by activating M1 polarization. After knocking down Atf4, the expression of M1 polarization markers and Vegfa were downregulated and vasculogenic differences were eliminated, which were subsequently reversed by the addition of LPS/IFN-γ. Our study might provide a new idea to improve the success rate of autologous bone grafting and treatment of oral diseases.
Collapse
Affiliation(s)
- Lanxin Gu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Zhongyuan Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hong Gu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210029, China
| | - Hua Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China.
| | - Luwei Liu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China.
| | - Wei-Bing Zhang
- Department of Stomatology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China.
- Department of Stomatology, Medical Center of Soochow University, Suzhou, China.
- Department of Stomatology, Suzhou Dushu Lake Hospital, Suzhou, China.
| |
Collapse
|
15
|
Wang J, Zhao B, Che J, Shang P. Hypoxia Pathway in Osteoporosis: Laboratory Data for Clinical Prospects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3129. [PMID: 36833823 PMCID: PMC9963321 DOI: 10.3390/ijerph20043129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 05/29/2023]
Abstract
The hypoxia pathway not only regulates the organism to adapt to the special environment, such as short-term hypoxia in the plateau under normal physiological conditions, but also plays an important role in the occurrence and development of various diseases such as cancer, cardiovascular diseases, osteoporosis. Bone, as a special organ of the body, is in a relatively low oxygen environment, in which the expression of hypoxia-inducible factor (HIF)-related molecules maintains the necessary conditions for bone development. Osteoporosis disease with iron overload endangers individuals, families and society, and bone homeostasis disorder is linked to some extent with hypoxia pathway abnormality, so it is urgent to clarify the hypoxia pathway in osteoporosis to guide clinical medication efficiently. Based on this background, using the keywords "hypoxia/HIF, osteoporosis, osteoblasts, osteoclasts, osteocytes, iron/iron metabolism", a matching search was carried out through the Pubmed and Web Of Science databases, then the papers related to this review were screened, summarized and sorted. This review summarizes the relationship and regulation between the hypoxia pathway and osteoporosis (also including osteoblasts, osteoclasts, osteocytes) by arranging the references on the latest research progress, introduces briefly the application of hyperbaric oxygen therapy in osteoporosis symptoms (mechanical stimulation induces skeletal response to hypoxic signal activation), hypoxic-related drugs used in iron accumulation/osteoporosis model study, and also puts forward the prospects of future research.
Collapse
Affiliation(s)
- Jianping Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Bin Zhao
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jingmin Che
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Peng Shang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen 518057, China
| |
Collapse
|
16
|
Assadiasl S, Rajabinejad M, Soleimanifar N, Makiyan F, Azizi E, Rezaiemanesh A, Nicknam MH. MicroRNAs-mediated regulation pathways in rheumatic diseases. Inflammopharmacology 2023; 31:129-144. [PMID: 36469219 DOI: 10.1007/s10787-022-01097-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/29/2022] [Indexed: 12/09/2022]
Abstract
Rheumatoid arthritis (RA) and ankylosing spondylitis (AS) are two common rheumatic disorders marked by persistent inflammatory joint disease. Patients with RA have osteodestructive symptoms, but those with AS have osteoproliferative manifestations. Ligaments, joints, tendons, bones, and muscles are all affected by rheumatic disorders. In recent years, many epigenetic factors contributing to the pathogenesis of rheumatoid disorders have been studied. MicroRNAs (miRNAs) are small, non-coding RNA molecules implicated as potential therapeutic targets or biomarkers in rheumatic diseases. MiRNAs play a critical role in the modulation of bone homeostasis and joint remodeling by controlling fibroblast-like synoviocytes (FLSs), chondrocytes, and osteocytes. Several miRNAs have been shown to be dysregulated in rheumatic diseases, including miR-10a, 16, 17, 18a, 19, 20a, 21, 27a, 29a, 34a, 103a, 125b, 132, 137, 143, 145, 146a, 155, 192, 203, 221, 222, 301a, 346, and 548a.The major molecular pathways governed by miRNAs in these cells are Wnt, bone-morphogenic protein (BMP), nuclear factor (NF)-κB, receptor activator of NF-κB (RANK)-RANK ligand (RANKL), and macrophage colony-stimulating factor (M-CSF) receptor pathway. This review aimed to provide an overview of the most important signaling pathways controlled by miRNAs in rheumatic diseases.
Collapse
Affiliation(s)
- Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Misagh Rajabinejad
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Narjes Soleimanifar
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Makiyan
- Division of Nanobiotechnology, Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Esfandiar Azizi
- Department of Immunology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, PO-Box: 6714869914, Bākhtarān, Iran.
| | | |
Collapse
|
17
|
A novel sprayable thermosensitive hydrogel coupled with zinc modified metformin promotes the healing of skin wound. Bioact Mater 2023; 20:610-626. [PMID: 35846848 PMCID: PMC9256661 DOI: 10.1016/j.bioactmat.2022.06.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/16/2022] Open
Abstract
A novel sprayable adhesive is established (ZnMet-PF127) by the combination of a thermosensitive hydrogel (Pluronic F127, PF127) and a coordination complex of zinc and metformin (ZnMet). Here we demonstrate that ZnMet-PF127 potently promotes the healing of traumatic skin defect and burn skin injury by promoting cell proliferation, angiogenesis, collagen formation. Furthermore, we find that ZnMet could inhibit reactive oxygen species (ROS) production through activation of autophagy, thereby protecting cell from oxidative stress induced damage and promoting healing of skin wound. ZnMet complex exerts better effects on promoting skin wound healing than ZnCl2 or metformin alone. ZnMet complex also displays excellent antibacterial activity against Staphylococcus aureus or Escherichia coli, which could reduce the incidence of skin wound infections. Collectively, we demonstrate that sprayable PF127 could be used as a new drug delivery system for treatment of skin injury. The advantages of this sprayable system are obvious: (1) It is convenient to use; (2) The hydrogel can cover irregular skin defect sites evenly in a liquid state. In combination with this system, we establish a novel sprayable adhesive (ZnMet-PF127) and demonstrate that it is a potential clinical treatment for traumatic skin defect and burn skin injury.
Collapse
|
18
|
FTY720 Attenuates LPS-Induced Inflammatory Bone Loss by Inhibiting Osteoclastogenesis via the NF- κB and HDAC4/ATF Pathways. J Immunol Res 2023; 2023:8571649. [PMID: 36644540 PMCID: PMC9839404 DOI: 10.1155/2023/8571649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
Osteoclast (OC) abnormalities lead to many osteolytic diseases, such as osteoporosis, inflammatory bone erosion, and tumor-induced osteolysis. Exploring effective strategies to remediate OCs dysregulation is essential. FTY720, also known as fingolimod, has been approved for the treatment of multiple sclerosis and has anti-inflammatory and immunosuppressive effects. Here, we found that FTY720 inhibited osteoclastogenesis and OC function by inhibiting nuclear factor kappa-B (NF-κB) signaling. Interestingly, we also found that FTY720 inhibited osteoclastogenesis by upregulating histone deacetylase 4 (HDAC4) expression levels and downregulating activating transcription factor 4 (ATF4) expression levels. In vivo, FTY720 treatment prevented lipopolysaccharide- (LPS-) induced calvarial osteolysis and significantly reduced the number of tartrate-resistant acid phosphatase- (TRAP-) positive OCs. Taken together, these results demonstrate that FTY720 can inhibit osteoclastogenesis and ameliorate inflammation-induced bone loss. Which may provide evidence of a new therapeutic target for skeletal diseases caused by OC abnormalities.
Collapse
|
19
|
Gil TH, Zheng H, Lee HG, Shin JW, Hwang SW, Jang KM, Jeon OH. Senolytic drugs relieve pain by reducing peripheral nociceptive signaling without modifying joint tissue damage in spontaneous osteoarthritis. Aging (Albany NY) 2022; 14:6006-6027. [PMID: 35951358 PMCID: PMC9417227 DOI: 10.18632/aging.204204] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022]
Abstract
Aging is a risk factor for the development of osteoarthritis (OA), a progressive joint disease leading to cartilage damage, pain, and loss of function. In a mouse model of OA, senolytic drugs to selectively clear senescent cells (SnCs) that accumulate with injury or aging yielded a chondroprotective effect; however, this therapeutic benefit was limited in aged mice. Due to inconsistency between cartilage destruction and pain-associated symptoms, we studied the therapeutic effect of senolytics on joint pain in spontaneous OA. We orally treated 21- and 22-month old mice with an ABT263 and Dasatinib and Quercetin (D+Q) drug combination. Selective elimination of the SnCs that accumulated in the articular cartilage and synovium by these two drugs did not alter cartilage degeneration and abnormal bone changes during spontaneous OA progression. Treatment reduced thermal and mechanical hyperalgesia associated with OA and peripheral sensitization through decreased expression of axon guidance proteins (nerve growth factor NGF/TrkA) and nociceptive neuron (calcitonin gene-related peptide, CGRP) projection to the synovium, subchondral bone marrow, and dorsal root ganglion, and knee joint angiogenesis. Selective removal of the SnCs from in vitro cultures of synovial cells from human OA patients also decreased expression of senescent markers, axonal growth-promoting factors, such as NGF, and angiogenesis markers. We suggest that systemic administration of ABT263 and D+Q is an exciting therapeutic approach to age-related OA pain.
Collapse
Affiliation(s)
- Tae-Hwan Gil
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Haiyan Zheng
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea.,Department of Physiology, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Hyo Gyeong Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Ji-Won Shin
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea.,Department of Physiology, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Ki-Mo Jang
- Department of Orthopaedic Surgery, Anam Hospital, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Ok Hee Jeon
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
20
|
Chen YQ, Hu WH, Dong ZC, Dong SW. Multi-functional osteoclasts in matrix-based tissue engineering bone. Chin J Traumatol 2022; 25:132-137. [PMID: 34969539 PMCID: PMC9125721 DOI: 10.1016/j.cjtee.2021.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 09/30/2021] [Accepted: 11/05/2021] [Indexed: 02/04/2023] Open
Abstract
The repair of bone defects, especially for the large segment of bone defects, has always been an urgent problem in orthopedic clinic and attracted researchers' attention. Nowadays, the application of tissue engineering bone in the repair of bone defects has become the research hotspot. With the rapid development of tissue engineering, the novel and functional scaffold materials for bone repair have emerged. In this review, we have summarized the multi-functional roles of osteoclasts in bone remodeling. The development of matrix-based tissue engineering bone has laid a theoretical foundation for further investigation about the novel bone regeneration materials which could perform high bioactivity. From the point of view on preserving pre-osteoclasts and targeting mature osteoclasts, this review introduced the novel matrix-based tissue engineering bone based on osteoclasts in the field of bone tissue engineering, which provides a potential direction for the development of novel scaffold materials for the treatment of bone defects.
Collapse
Affiliation(s)
- Yue-Qi Chen
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Wen-Hui Hu
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zi-Cai Dong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shi-Wu Dong
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China,Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China,Corresponding author. Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
21
|
Role of Activating Transcription Factor 4 in Murine Choroidal Neovascularization Model. Int J Mol Sci 2021; 22:ijms22168890. [PMID: 34445595 PMCID: PMC8396241 DOI: 10.3390/ijms22168890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/04/2022] Open
Abstract
Neovascular age-related macular degeneration (nAMD) featuring choroidal neovascularization (CNV) is the principal cause of irreversible blindness in elderly people in the world. Integrated stress response (ISR) is one of the intracellular signals to be adapted to various stress conditions including endoplasmic reticulum (ER) stress. ISR signaling results in the upregulation of activating transcription factor 4 (ATF4), which is a mediator of ISR. Although recent studies have suggested ISR contributes to the progression of some age-related disorders, the effects of ATF4 on the development of CNV remain unclear. Here, we performed a murine model of laser-induced CNV and found that ATF4 was highly expressed in endothelial cells of the blood vessels of the CNV lesion site. Exposure to integrated stress inhibitor (ISRIB) reduced CNV formation, vascular leakage, and the upregulation of vascular endothelial growth factor (VEGF) in retinal pigment epithelium (RPE)-choroid-sclera complex. In human retinal microvascular endothelial cells (HRMECs), ISRIB reduced the level of ATF4 and VEGF induced by an ER stress inducer, thapsigargin, and recombinant human VEGF. Moreover, ISRIB decreased the VEGF-induced cell proliferation and migration of HRMECs. Collectively, our findings showed that pro-angiogenic effects of ATF4 in endothelial cells may be a potentially therapeutic target for patients with nAMD.
Collapse
|
22
|
Chen L, Liu X, Zhou H, Li G, Huang F, Zhang J, Xia T, Lei W, Zhao J, Li C, Chen M. Activating transcription factor 4 regulates angiogenesis under lipid overload via methionine adenosyltransferase 2A-mediated endothelial epigenetic alteration. FASEB J 2021; 35:e21612. [PMID: 33948996 DOI: 10.1096/fj.202100233r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/19/2021] [Accepted: 04/06/2021] [Indexed: 02/05/2023]
Abstract
Lipid overload is intimately connected with the change of endothelial epigenetic status which impacts cellular signaling activities and endothelial function. Activating transcription factor 4 (ATF4) is involved in the regulation of lipid metabolism and meanwhile an epigenetic modifier. However, the role of ATF4 in the angiogenesis under lipid overload is not well understood. Here, to induce lipid overload status, we employed high-fat diet (HFD)-induced obese mouse model in vivo and palmitic acid (PA) to stimulate endothelial cells in vitro. Compared with mice fed with normal chow diet (NCD), HFD-induced obese mice showed angiogenic defects evidenced by decline in (1) blood flow recovery after hind limb ischemia, (2) wound healing speed after skin injury, (3) capillary density in injured tissues and matrigel plugs, and (4) endothelial sprouts of aortic ring. ATF4 deficiency aggravated above angiogenic defects in mice while ATF4 overexpression improved the blunted angiogenic response. Mechanistically, lipid overload lowered the H3K4 methylation levels at the regulatory regions of NOS3 and ERK1 genes, leading to reduced angiogenic signaling activity. Methionine adenosyltransferase 2A (MAT2A) is identified as a target of ATF4 and formed complex with ATF4 to direct lysine methyltransferase 2A (MLL1) to the regulatory regions of both genes for the maintenance of the H3K4 methylation level and angiogenic signaling activity. Here, we uncovered a novel metabolic-epigenetic coupling orchestrated by the ATF4-MAT2A axis for angiogenesis. The ATF4-MAT2A axis links lipid overload milieu to altered epigenetic status of relevant angiogenic signaling in endothelial cells, suggesting a potential therapeutic target for angiogenesis impaired by lipid overload.
Collapse
Affiliation(s)
- Li Chen
- Laboratory of Cardiovascular Disease, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Disease, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hao Zhou
- Laboratory of Cardiovascular Disease, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Guoyong Li
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Fangyang Huang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jialiang Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Tianli Xia
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Wenhua Lei
- Laboratory of Cardiovascular Disease, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jiahao Zhao
- Laboratory of Cardiovascular Disease, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Changming Li
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
23
|
Wang Y, Chen Y, Lin Y, Quan Y, Xiao X, Zhang R. TRIM22 inhibits respiratory syncytial virus replication by targeting JAK-STAT1/2 signaling. J Med Virol 2021; 93:3412-3419. [PMID: 32803897 DOI: 10.1002/jmv.26436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/08/2020] [Indexed: 01/06/2023]
Abstract
Respiratory syncytial virus (RSV) infection is a major cause of lower respiratory tract disease. Although RSV causes major economic losses every year, effective treatments have not been found so far. Recent studies have shown that the tripartite motif-containing (TRIM) superfamily plays an essential role in the immune response. In this study, we found that TRIM22 had an inhibitory effect on RSV infection, and downregulation of TRIM22 moderately enhanced RSV replication. Our data further demonstrated that RSV infection induced TRIM22 expression through the activation of JAK-STAT1/2 signaling. RSV infection also induced TRIM22 expression. Taken together, these data points showed that the TRIM family member, TRIM22, had an essential role in resisting RSV infection, and this effect was closely related to the JAK-STAT1/2 pathway. Our results provide promising evidence for a novel target for the prevention and treatment of RSV.
Collapse
Affiliation(s)
- Yishu Wang
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
- Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Yiling Chen
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Ying Lin
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yingqin Quan
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Xiaoping Xiao
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Renli Zhang
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| |
Collapse
|
24
|
Ma M, Yang W, Cai Z, Wang P, Li H, Mi R, Jiang Y, Xie Z, Sui P, Wu Y, Shen H. SMAD-specific E3 ubiquitin ligase 2 promotes angiogenesis by facilitating PTX3 degradation in MSCs from patients with ankylosing spondylitis. STEM CELLS (DAYTON, OHIO) 2021; 39:581-599. [PMID: 33547700 PMCID: PMC8248389 DOI: 10.1002/stem.3332] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 11/18/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Dysregulated angiogenesis of mesenchymal stem cells (MSCs) is closely related to inflammation and disrupted bone metabolism in patients with various autoimmune diseases. However, the role of MSCs in the development of abnormal angiogenesis in patients with ankylosing spondylitis (AS) remains unclear. In this study, we cultured human umbilical vein endothelial cells (HUVECs) with bone marrow-derived MSCs from patients with AS (ASMSCs) or healthy donors (HDMSCs) in vitro. Then, the cocultured HUVECs were assayed using a cell counting kit-8 (CCK-8) to evaluate the cell proliferation. A wound healing assay was performed to investigate cell migration, and a tube formation assay was conducted to determine the angiogenesis efficiency. ASMSCs exhibited increased angiogenesis, and increased expression of SMAD-specific E3 ubiquitin ligase 2 (Smurf2) in MSCs was the main cause of abnormal angiogenesis in patients with AS. Downregulation of Smurf2 in ASMSCs blocked angiogenesis, whereas overexpression of Smurf2 in HDMSCs promoted angiogenesis. The pro-angiogenic effect of Smurf2 was confirmed by the results of a Matrigel plug assay in vivo. By functioning as an E3 ubiquitin ligase in MSCs, Smurf2 regulated the levels of pentraxin 3 (PTX3), which has been shown to suppress angiogenesis through the PTX3-fibroblast growth factor 2 pathway. Moreover, Smurf2 transcription was regulated by activating transcription factor 4-induced endoplasmic reticulum stress. In conclusion, these results identify novel roles of Smurf2 in negatively regulating PTX3 stability and promoting angiogenesis in ASMSCs.
Collapse
Affiliation(s)
- Mengjun Ma
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Wen Yang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Zhaopeng Cai
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Hongyu Li
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Rujia Mi
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Yuhang Jiang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Pengfei Sui
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China.,Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
25
|
Datta Chaudhuri R, Banerjee D, Banik A, Sarkar S. Severity and duration of hypoxic stress differentially regulates HIF-1α-mediated cardiomyocyte apoptotic signaling milieu during myocardial infarction. Arch Biochem Biophys 2020; 690:108430. [PMID: 32473132 DOI: 10.1016/j.abb.2020.108430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/30/2020] [Accepted: 05/21/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND The severity and duration of hypoxia is known to determine apoptotic fate in heart; however, its implication during myocardial infarction (MI) remains unaddressed. Therefore the aim of the study was to determine apoptotic regulation in cardiomyocytes under varied hypoxic intensity and duration and to unravel the role of HIF-1α in such modulation. METHODS Treatment of cardiomyocytes to varied hypoxic intensity and duration was carried out in vitro, which was mimicked in vivo by dose-dependent Isoproterenol hydrochloride treatment for varied time-points. Myocardium-targeted HIF-1α knockdown in vivo was performed to decipher its role in cardiomyocyte apoptosis under varied stress. Signaling intermediates were analyzed by RT-PCR, immunoblotting and co-immunoprecipitation. DCFDA-based ROS assay, Griess assay for NO release and biochemical assays for estimating caspase activity were performed. RESULTS Severe stress resulted in cardiomyocyte apoptosis in both shorter and longer time-points. Moderate stress, on the other hand, induced apoptosis only in the shorter time-point which was downregulated in the longer time-point. ROS activity was upregulated under severe hypoxic stress for both time-points and only in the early time-point under moderate hypoxia. Increased ROS accumulation activated ERK-1/2 which stabilized nuclear HIF-1α, promoting bnip3-mediated apoptosis. Stable HSP90-IRE-1 association in such cells caused elevated endoplasmic reticulum stress-related caspase-12 activity. Sustained moderate hypoxia caused decline in ROS activity, but upregulated NFκB-dependent NO generation. NO-stabilized HIF-1α was predominantly cytosolic, since low ROS levels downregulated ERK-1/2 activity, thereby suppressing bnip3 expression. Cytosolic HIF-1α in such cells sequestered HSP90 from IRE-1, downregulating caspase-12 activity due to proteasomal degradation of IRE-1. Accordingly, myocardium-specific in vivo silencing of HIF-1α was beneficial at both time-points under severe stress as also for lesser duration of moderate stress. However, silencing of HIF-1α aggravated apoptotic injury during sustained moderate stress. CONCLUSION ROS-mediated HIF-1α stabilization promotes cardiomyocyte apoptosis on one hand while NO-mediated stabilization of HIF-1α disrupts apoptosis depending upon the severity and duration of hypoxia. Therefore the outcome of modulation of cardiac HIF-1α activity is regulated by both the severity and duration of ischemic stress.
Collapse
Affiliation(s)
- Ratul Datta Chaudhuri
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| | - Durba Banerjee
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| | - Anirban Banik
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| | - Sagartirtha Sarkar
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
26
|
Guo Q, Yang J, Chen Y, Jin X, Li Z, Wen X, Xia Q, Wang Y. Salidroside improves angiogenesis-osteogenesis coupling by regulating the HIF-1α/VEGF signalling pathway in the bone environment. Eur J Pharmacol 2020; 884:173394. [PMID: 32730833 DOI: 10.1016/j.ejphar.2020.173394] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022]
Abstract
Angiogenesis is essential for bone formation during skeletal development. HIF-1α and the HIF-responsive gene VEGF (vascular endothelial growth factor) are reported to be a key mechanism for coupling osteogenesis and angiogenesis. Salidroside (SAL), a major biologically active compound of Rhodiola rosea L., possesses diverse pharmacological effects. However, whether SAL can protect against bone loss via the HIF-1α/VEGF pathway, specifically by inducing angiogenesis-osteogenesis coupling in vivo, remains unknown. Therefore, in the present study, we employed primary human umbilical vein endothelial cells (HUVECs) and the permanent EA.hy926 human endothelial cell line to determine the cellular and molecular effects of SAL on vascular endothelial cells and the HIF-1α-VEGF signalling pathway in the coupling of angiogenesis-osteogenesis. The in vitro study revealed that the HUVECs and EA.hy926 cells treated with conditioned medium from osteoblast cells (MG-63 cells) treated with SAL or treated directly with SAL showed enhanced proliferation, migration and capillary structure formation. However, supplementation with an anti-VEGF antibody during the treatment of endothelial cells (ECs) significantly reversed the pro-angiogenic effect of SAL. Moreover, SAL upregulated HIF-1α expression and increased its transcriptional activity, consequently upregulating VEGF expression at the mRNA and protein levels. In addition, our in vivo analysis demonstrated that SAL can stimulate endothelial sprouting from metatarsal bones. Thus, our mechanistic study demonstrated that the pro-angiogenic effects of SAL involve HIF-1α-VEGF signalling by coordinating the coupling of angiogenesis-osteogenesis in the bone environment. Therefore, we have discovered an ideal molecule that simultaneously enhances angiogenesis and osteogenesis and thereby accelerates bone healing.
Collapse
Affiliation(s)
- Qiaoyun Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, 300309, China
| | - Jing Yang
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, 300309, China
| | - Yumeng Chen
- College of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xin Jin
- Department of Pharmacology, Logistics College of Chinese People's Armed Police Forces, Tianjin, 300309, China
| | - Zongmin Li
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, 300309, China; Department of Clinical Laboratory, Shanghai Crops Hospital of Chinese People's Armed Police Forces, Shanghai, China
| | - Xiaochang Wen
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, 300309, China
| | - Qun Xia
- Department of Orthopaedics, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China.
| | - Yue Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, 300309, China.
| |
Collapse
|
27
|
Li X, Zhang Q, Nasser MI, Xu L, Zhang X, Zhu P, He Q, Zhao M. Oxygen homeostasis and cardiovascular disease: A role for HIF? Biomed Pharmacother 2020; 128:110338. [PMID: 32526454 DOI: 10.1016/j.biopha.2020.110338] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 12/17/2022] Open
Abstract
Hypoxia, the decline of tissue oxygen stress, plays a role in mediating cellular processes. Cardiovascular disease, relatively widespread with increased mortality, is closely correlated with oxygen homeostasis regulation. Besides, hypoxia-inducible factor-1(HIF-1) is reported to be a crucial component in regulating systemic hypoxia-induced physiological and pathological modifications like oxidative stress, damage, angiogenesis, vascular remodeling, inflammatory reaction, and metabolic remodeling. In addition, HIF1 controls the movement, proliferation, apoptosis, differentiation and activity of numerous core cells, such as cardiomyocytes, endothelial cells (ECs), smooth muscle cells (SMCs), and macrophages. Here we review the molecular regulation of HIF-1 in cardiovascular diseases, intended to improve therapeutic approaches for clinical diagnoses. Better knowledge of the oxygen balance control and the signal mechanisms involved is important to advance the development of hypoxia-related diseases.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan Province 410013, China
| | - Quyan Zhang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan Province 410013, China
| | - M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Linyong Xu
- Xiangya School of Life Science, Central South University, Changsha, Hunan Province 410013, China
| | - Xueyan Zhang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan Province 410013, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China.
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, China.
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, China.
| |
Collapse
|
28
|
Cao H, Yan Q, Wang D, Lai Y, Zhou B, Zhang Q, Jin W, Lin S, Lei Y, Ma L, Guo Y, Wang Y, Wang Y, Bai X, Liu C, Feng JQ, Wu C, Chen D, Cao X, Xiao G. Focal adhesion protein Kindlin-2 regulates bone homeostasis in mice. Bone Res 2020; 8:2. [PMID: 31934494 PMCID: PMC6946678 DOI: 10.1038/s41413-019-0073-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/03/2019] [Accepted: 07/25/2019] [Indexed: 12/23/2022] Open
Abstract
Our recent studies demonstrate that the focal adhesion protein Kindlin-2 is critical for chondrogenesis and early skeletal development. Here, we show that deleting Kindlin-2 from osteoblasts using the 2.3-kb mouse Col1a1-Cre transgene minimally impacts bone mass in mice, but deleting Kindlin-2 using the 10-kb mouse Dmp1-Cre transgene, which targets osteocytes and mature osteoblasts, results in striking osteopenia in mice. Kindlin-2 loss reduces the osteoblastic population but increases the osteoclastic and adipocytic populations in the bone microenvironment. Kindlin-2 loss upregulates sclerostin in osteocytes, downregulates β-catenin in osteoblasts, and inhibits osteoblast formation and differentiation in vitro and in vivo. Upregulation of β-catenin in the mutant cells reverses the osteopenia induced by Kindlin-2 deficiency. Kindlin-2 loss additionally increases the expression of RANKL in osteocytes and increases osteoclast formation and bone resorption. Kindlin-2 deletion in osteocytes promotes osteoclast formation in osteocyte/bone marrow monocyte cocultures, which is significantly blocked by an anti-RANKL-neutralizing antibody. Finally, Kindlin-2 loss increases osteocyte apoptosis and impairs osteocyte spreading and dendrite formation. Thus, we demonstrate an important role of Kindlin-2 in the regulation of bone homeostasis and provide a potential target for the treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Huiling Cao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Qinnan Yan
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Dong Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001 China
| | - Yumei Lai
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612 USA
| | - Bo Zhou
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Wenfei Jin
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Simin Lin
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Yiming Lei
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Liting Ma
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Yuxi Guo
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Yishu Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Yilin Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Chuanju Liu
- Department of Orthopedic Surgery, New York University School of Medicine, New York, NY 10003 USA
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016 USA
| | - Jian Q. Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246 USA
| | - Chuanyue Wu
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612 USA
| | - Xu Cao
- Department of Orthopedic Surgery, The Johns Hopkins University, Baltimore, MD 21205 USA
| | - Guozhi Xiao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612 USA
| |
Collapse
|
29
|
Wang Y, Yan Q, Zhao Y, Liu X, Lin S, Zhang P, Ma L, Lai Y, Bai X, Liu C, Wu C, Feng JQ, Chen D, Cao H, Xiao G. Focal adhesion proteins Pinch1 and Pinch2 regulate bone homeostasis in mice. JCI Insight 2019; 4:131692. [PMID: 31723057 DOI: 10.1172/jci.insight.131692] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022] Open
Abstract
Mammalian focal adhesion proteins Pinch1 and Pinch2 regulate integrin activation and cell-extracellular matrix adhesion and migration. Here, we show that deleting Pinch1 in osteocytes and mature osteoblasts using the 10-kb mouse Dmp1-Cre and Pinch2 globally (double KO; dKO) results in severe osteopenia throughout life, while ablating either gene does not cause bone loss, suggesting a functional redundancy of both factors in bone. Pinch deletion in osteocytes and mature osteoblasts generates signals that inhibit osteoblast and bone formation. Pinch-deficient osteocytes and conditioned media from dKO bone slice cultures contain abundant sclerostin protein and potently suppress osteoblast differentiation in primary BM stromal cells (BMSC) and calvarial cultures. Pinch deletion increases adiposity in the BM cavity. Primary dKO BMSC cultures display decreased osteoblastic but enhanced adipogenic, differentiation capacity. Pinch loss decreases expression of integrin β3, integrin-linked kinase (ILK), and α-parvin and increases that of active caspase-3 and -8 in osteocytes. Pinch loss increases osteocyte apoptosis in vitro and in bone. Pinch loss upregulates expression of both Rankl and Opg in the cortical bone and does not increase osteoclast formation and bone resorption. Finally, Pinch ablation exacerbates hindlimb unloading-induced bone loss and impairs active ulna loading-stimulated bone formation. Thus, we establish a critical role of Pinch in control of bone homeostasis.
Collapse
Affiliation(s)
- Yishu Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and.,Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Qinnan Yan
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and.,Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Yiran Zhao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and.,Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Xin Liu
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and.,Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Simin Lin
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and.,Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Peijun Zhang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and.,Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Liting Ma
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and.,Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Yumei Lai
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chuanju Liu
- Department of Orthopedic Surgery and.,Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Huiling Cao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and.,Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Guozhi Xiao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and.,Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, China.,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
30
|
Tunneling nanotubes mediate intercellular communication between endothelial progenitor cells and osteoclast precursors. J Mol Histol 2019; 50:483-491. [PMID: 31463584 DOI: 10.1007/s10735-019-09842-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/21/2019] [Indexed: 01/01/2023]
Abstract
Tunneling nanotube (TNT)-mediated cell communication play pivotal roles in a series of physiological and pathological processes in multicellular organism. This study was designed to investigate the existence of TNTs between EPCs and osteoclast precursors and evaluate their effects on the differentiation of osteoclast precursors. For these purposes, EPCs and osteoclast precursors (RAW264.7 cells) were stained with different fluorescent dyes before direct co-culture; then, the co-cultured cells were sorted by fluorescence activated cell sorter (FACS), and the differentiation of co-cultured RAW264.7 cells was evaluated. The results showed that the differentiation potential of RAW264.7 cells was significantly inhibited after their co-culture with EPCs. Additionally, the expression of macrophage migration inhibitory factor (MIF) was up-regulated in RAW264.7 cells after co-culture. Moreover, the MIF inhibitor ISO-1 could rescue the formation of TRAP-positive multinuclear osteoclasts and the expression of osteoclastogenesis-associated genes in the co-cultured RAW264.7 cells. The present study demonstrates that EPCs can affect the differentiation of osteoclast precursors through the TNT-like structures formed across these two types of cells and might inform new therapeutic strategies for osteolytic diseases.
Collapse
|
31
|
Li X, Liu D, Li J, Yang S, Xu J, Yokota H, Zhang P. Wnt3a involved in the mechanical loading on improvement of bone remodeling and angiogenesis in a postmenopausal osteoporosis mouse model. FASEB J 2019; 33:8913-8924. [PMID: 31017804 DOI: 10.1096/fj.201802711r] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoporosis is a major health problem, making bones fragile and susceptible to fracture. Previous works showed that mechanical loading stimulated bone formation and accelerated fracture healing. Focusing on the role of Wnt3a (wingless/integrated 3a), this study was aimed to assess effects of mechanical loading to the spine, using ovariectomized (OVX) mice as a model of osteoporosis. Two-week daily application of this novel loading (4 N, 10 Hz, 5 min/d) altered bone remodeling with an increase in Wnt3a. Spinal loading promoted osteoblast differentiation, endothelial progenitor cell migration, and tube formation and inhibited osteoclast formation, migration, and adhesion. A transient silencing of Wnt3a altered the observed loading effects. Spinal loading significantly increased bone mineral density, bone mineral content, and bone area per tissue area. The loaded OVX group showed a significant increase in the number of osteoblasts and reduction in osteoclast surface/bone surface. Though expression of osteoblastic genes was increased, the levels of osteoclastic genes were decreased by loading. Spinal loading elevated a microvascular volume as well as VEGF expression. Collectively, this study supports the notion that Wnt3a-mediated signaling involves in the effect of spinal loading on stimulating bone formation, inhibiting bone resorption, and promoting angiogenesis in OVX mice. It also suggests that Wnt3a might be a potential therapeutic target for osteoporosis treatment.-Li, X., Liu, D., Li, J., Yang, S., Xu, J., Yokota, H., Zhang, P. Wnt3a involved in the mechanical loading on improvement of bone remodeling and angiogenesis in a postmenopausal osteoporosis mouse model.
Collapse
Affiliation(s)
- Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China; and
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China; and
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shuang Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jinfeng Xu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indiana, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China; and.,Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indiana, USA
| |
Collapse
|
32
|
Zhang K, Wang M, Li Y, Li C, Tang S, Qu X, Feng N, Wu Y. The PERK-EIF2α-ATF4 signaling branch regulates osteoblast differentiation and proliferation by PTH. Am J Physiol Endocrinol Metab 2019; 316:E590-E604. [PMID: 30668150 DOI: 10.1152/ajpendo.00371.2018] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Parathyroid hormone (PTH) and its related peptide (PTH-related peptide 1-34) are two of the Food and Drug Administration-approved bone-promoting drugs for age-related osteoporosis. Treatment with PTH stimulates bone formation. However, the molecular mechanisms of PTH-mediated osteoblast differentiation and cell proliferation are still not completely understood. In this study, we showed that PTH induced endoplasmic reticulum (ER) stress in osteoblasts through the PKR-like endoplasmic reticulum kinase (PERK)-eukaryotic initiation factor 2α (EIF2α)-activating transcription factor 4 (ATF4)-signaling pathway. After separately blocking PERK-EIF2α-ATF4 signaling with two different inhibitors [AMG'44 and integrated stress response inhibitor (ISRIB)] or specific small interfering RNA for PERK and ATF4, the following targets were all downregulated: expression of osteoblast differentiation markers [runt-related transcription factor 2 (Runx2), alkaline phosphatase (Alp), type I collagen (Col1a1), and osteocalcin (Ocn)], cell proliferation markers (CyclinE, CyclinD, and CDC2), amino acid import (Glyt1), and metabolism-related genes (Asns). Additionally, Alp-positive staining cells, Alp activity, matrix mineralization, Ocn secretion, and cell proliferation indexes were inhibited. Interestingly, we found that salubrinal enhanced PTH-induced osteoblast differentiation and proliferation by maintenance of phosphorylation of EIF2α. Furthermore, we observed that PTH increased the association between heat shock protein 90 (HSP90) and PERK and maintained PERK protein stabilization in the early stages of PTH-induced ER stress. Treatment of MC3T3-E1 cells with geldanamycin, an HSP90 inhibitor, decreased PERK protein expression and inhibited osteoblast differentiation and cell proliferation upon PTH treatment. Taken together, our data demonstrate that PTH regulates osteoblast differentiation and cell proliferation, partly by activating the HSP90-dependent PERK-EIF2α-ATF4 signaling pathway.
Collapse
Affiliation(s)
- Kefan Zhang
- Lab of Molecular and Cellular Biology, Wuxi Medical School, Jiangnan University , Wuxi, Jiangsu , China
| | - Miaomiao Wang
- Department of Occupational Health, Wuxi Center for Disease Control and Prevention , Wuxi, Jiangsu , China
| | - Yingjiang Li
- The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Nanjing Medical University, Jiangsu, China
| | - Chunping Li
- Department of Occupational Health, Wuxi Center for Disease Control and Prevention , Wuxi, Jiangsu , China
| | - Shaidi Tang
- Lab of Molecular and Cellular Biology, Wuxi Medical School, Jiangnan University , Wuxi, Jiangsu , China
| | - Xiuxia Qu
- Lab of Molecular and Cellular Biology, Wuxi Medical School, Jiangnan University , Wuxi, Jiangsu , China
| | - Ninghan Feng
- The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Nanjing Medical University, Jiangsu, China
| | - Yu Wu
- Lab of Molecular and Cellular Biology, Wuxi Medical School, Jiangnan University , Wuxi, Jiangsu , China
- Public Health Research Center, Jiangnan University , Wuxi, Jiangsu , China
| |
Collapse
|
33
|
Calvo N, Carriere P, Martín MJ, Gigola G, Gentili C. PTHrP treatment of colon cancer cells promotes tumor associated-angiogenesis by the effect of VEGF. Mol Cell Endocrinol 2019; 483:50-63. [PMID: 30639585 DOI: 10.1016/j.mce.2019.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/30/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
We showed that Parathyroid Hormone-related Peptide (PTHrP) induces proliferation, migration, survival and chemoresistance via MAPKs and PI3K/AKT pathways in colorectal cancer (CRC) cells. The objective of this study was to investigate if PTHrP is also involved in tumor angiogenesis. PTHrP increased VEGF expression and the number of structures with characteristics of neoformed vessels in xenografts tumor. Also, PTHrP increased mRNA levels of VEGF, HIF-1α and MMP-9 via ERK1/2 and PI3K/Akt pathways in Caco-2 and HCT116 cells. Tumor conditioned media (TCMs) from both cell lines treated with PTHrP increases the number of cells, the migration and the tube formation in the endothelial HMEC-1 cells, whereas the neutralizing antibody against VEGF diminished this response. In contrast, PTHrP by direct treatment only increased ERK1/2 phosphorylation and the HMEC-1 cells number. These results provide the first evidence related to the mode of action of PTHrP that leads to its proangiogenic effects in the CRC.
Collapse
Affiliation(s)
- Natalia Calvo
- Dept. Biología Bioquímica y Farmacia-INBIOSUR, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| | - Pedro Carriere
- Dept. Biología Bioquímica y Farmacia-INBIOSUR, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - María Julia Martín
- Dept. Biología Bioquímica y Farmacia-INBIOSUR, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Graciela Gigola
- Dept. Biología Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Claudia Gentili
- Dept. Biología Bioquímica y Farmacia-INBIOSUR, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
34
|
The Role of the ER-Induced UPR Pathway and the Efficacy of Its Inhibitors and Inducers in the Inhibition of Tumor Progression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5729710. [PMID: 30863482 PMCID: PMC6378054 DOI: 10.1155/2019/5729710] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/08/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Cancer is the second most frequent cause of death worldwide. It is considered to be one of the most dangerous diseases, and there is still no effective treatment for many types of cancer. Since cancerous cells have a high proliferation rate, it is pivotal for their proper functioning to have the well-functioning protein machinery. Correct protein processing and folding are crucial to maintain tumor homeostasis. Endoplasmic reticulum (ER) stress is one of the leading factors that cause disturbances in these processes. It is induced by impaired function of the ER and accumulation of unfolded proteins. Induction of ER stress affects many molecular pathways that cause the unfolded protein response (UPR). This is the way in which cells can adapt to the new conditions, but when ER stress cannot be resolved, the UPR induces cell death. The molecular mechanisms of this double-edged sword process are involved in the transition of the UPR either in a cell protection mechanism or in apoptosis. However, this process remains poorly understood but seems to be crucial in the treatment of many diseases that are related to ER stress. Hence, understanding the ER stress response, especially in the aspect of pathological consequences of UPR, has the potential to allow us to develop novel therapies and new diagnostic and prognostic markers for cancer.
Collapse
|
35
|
James EN, Van Doren E, Li C, Kaplan DL. Silk Biomaterials-Mediated miRNA Functionalized Orthopedic Devices. Tissue Eng Part A 2018; 25:12-23. [PMID: 29415631 DOI: 10.1089/ten.tea.2017.0455] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Silk-based bioresorbable medical devices, such as screws, plates, and rods, have been under investigation due to their promising properties for orthopedic repairs. Options to functionalize these new devices for enhanced control of bone regeneration would also exploit the compatible processing methods used to generate the devices. MicroRNAs are important regulators of bone maintenance and formation, and miRNA-based therapeutics have the potential to aid bone repair, utilizing a transient therapeutic approach with local bioactivity. We hypothesized that silk-based orthopedic devices could be used for the local delivery of miRNAs, using anti-sense miR-214 (AS-miR-214), to inhibit endogenous expression of osteoinductive antagonist and thereby supporting the upregulation of osteoinductive target molecules activating transcription factor 4 (ATF4) and Osterix (Osx). AS-miR-214 silk devices, prepared using surface coating, demonstrated continuous release of miRNA inhibitors up to 7 days in vitro. Additionally, human mesenchymal stem cells seeded on AS-miR-214 silk films expressed higher levels of osteogenic genes ATF4, Osx, Runx2, and Osteocalcin. Interestingly, these cells exhibited lower cell viability and DNA content over 21 days. Conversely, the cells demonstrated significantly higher levels of alkaline phosphatase expression and calcium deposition compared with cells seeded on silk films with nontargeting miRNA controls. The study demonstrated that the silk-based orthopedic devices, in conjunction with bioactive miRNA-based therapeutics, may serve as a novel system for localized bone tissue engineering, enhancing osteogenesis at the implant interface while avoiding detrimental systematic side effects.
Collapse
Affiliation(s)
- Eric N James
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Emily Van Doren
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
36
|
Sharma M, Pandey R, Saluja D. ROS is the major player in regulating altered autophagy and lifespan in sin-3 mutants of C. elegans. Autophagy 2018; 14:1239-1255. [PMID: 29912629 PMCID: PMC6103711 DOI: 10.1080/15548627.2018.1474312] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 04/25/2018] [Accepted: 05/02/2018] [Indexed: 12/14/2022] Open
Abstract
SIN3, a transcriptional corepressor has been implicated in varied functions both as transcription activator and repressor. Recent studies associated Sin3 with the macroautophagic/autophagic process as a negative regulator of Atg8 and Atg32. Though the role of SIN3 in autophagy is being explored, little is known about the overall effect of SIN3 deletion on the survival of an organism. In this study using a Caenorhabditis elegans sin-3(tm1279);him-5(e1490) strain, we demonstrate that under in vivo conditions SIN-3 differentially modulates autophagy and lifespan. We provide evidence that the enhanced autophagy and decreased lifespan observed in sin-3 deletion mutants is dependent on ROS and intracellular oxidative stress. Inability of the mutant worms to maintain redox balance along with dysregulation of enzymatic antioxidants, depletion of GSH and NADP reserves and elevation of ROS markers compromises the longevity of the worms. It is possible that the enhanced autophagic process observed in sin-3(tm1279);him-5(e1490) worms is required to compensate for oxidative stress generated in these worms. ABBREVIATIONS cat: catalase; DCFDA: 2',7'-dichlorodihydrofluoroscein diacetate; GSH: reduced glutathione; GSSG: oxidized glutathione; H2O2: hydrogen peroxide; HDAC: Histone deacetylase; HID: HDAC interacting domain; him-5: high incidence of males; HLH-30: Helix Loop Helix-30; HNE: 4-hydroxyl-2-noneal; LIPL: LIPase Like; MDA: malondialdehyde; NGM: nematode growth medium; PAH: paired amphipathic α-helix; PE: phosphatidylethanolamine; RFU: relative fluorescence unit; ROS: reactive oxygen species; sin-3/SIN3: yeast Switch Independent; SOD: superoxide dismutase; NADP: nicotinamide adenine dinucleotide phosphate; SQST-1: SeQueSTosome related-1; ATG: AuTophaGy related.
Collapse
Affiliation(s)
- Meenakshi Sharma
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Renu Pandey
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Daman Saluja
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| |
Collapse
|
37
|
Geng W, Qin F, Ren J, Xiao S, Wang A. Mini-peptide RPL41 attenuated retinal neovascularization by inducing degradation of ATF4 in oxygen-induced retinopathy mice. Exp Cell Res 2018; 369:243-250. [PMID: 29803741 DOI: 10.1016/j.yexcr.2018.05.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/14/2022]
Abstract
Endoplasmic reticulum (ER) stress signaling is activated in retinal degeneration disease. Activating transcription factor 4 (ATF4), an important mediator of the unfolded protein response (UPR), is a key element that maintains cell survival and proliferation in hypoxic conditions. Our previous studies showed that a small ribosomal protein L41 (RPL41) inhibits ATF4 by inducing its phosphorylation and degradation. In the present study, the effects of mini-peptide RPL41 on retinal neovascularization (RNV) in oxygen-induced retinopathy (OIR) mice was investigated. We induced OIR in C57BL/6 mice and obtained retinas from normoxia, OIR, OIR control (treated with PBS), and OIR treated (treated with RPL41) mice. Our results showed that ER stress signaling was activated and ATF4 was overexpressed in the retinas of OIR mice. After intravitreal injection of RPL41, the size of RNV and vaso-obliteration, and the number of preretinal neovascular cell nuclei in the retinas of OIR mice were significantly decreased. Western blot analysis and quantitative real-time polymerase chain reaction (qPCR) showed ATF4 and VEGF expression decreased after intravitreal injection of RPL41. Furthermore, the expression levels of inflammatory genes including TNF-α, IL-1β, and IL-6 were significantly decreased compared with the OIR control mice. In conclusion, RPL41 prevented pathologic neovascularization and exerted anti-inflammatory effects by degrading the important ER stress factor ATF4, thus, RPL41 could be a promising therapeutic agent for the treatment of neovascular eye diseases, especially retinopathy of prematurity (ROP).
Collapse
Affiliation(s)
- Wen Geng
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shengyang, Liaoning 110004, PR China
| | - Feng Qin
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shengyang, Liaoning 110004, PR China
| | - Jiaxu Ren
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shengyang, Liaoning 110004, PR China
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital of Harvard Medical School, Boston, MA 02115, USA
| | - Aiyuan Wang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shengyang, Liaoning 110004, PR China.
| |
Collapse
|
38
|
Cai W, Salvador-Reyes LA, Zhang W, Chen QY, Matthew S, Ratnayake R, Seo SJ, Dolles S, Gibson DJ, Paul VJ, Luesch H. Apratyramide, a Marine-Derived Peptidic Stimulator of VEGF-A and Other Growth Factors with Potential Application in Wound Healing. ACS Chem Biol 2018; 13:91-99. [PMID: 29205032 DOI: 10.1021/acschembio.7b00827] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel linear depsipeptide enriched with tyrosine-derived moieties, termed apratyramide, was isolated from an apratoxin-producing cyanobacterium. The structure was determined using a combination of NMR spectroscopy, mass spectrometry, and chiral analysis of the acid hydrolyzate and confirmed by total synthesis. Apratyramide up-regulated multiple growth factors at the transcript level in human keratinocyte (HaCaT) cells and induced the secretion of vascular endothelial growth factor A (VEGF-A) from HaCaT cells, suggesting the compound's potential wound-healing properties through growth factor induction. Transcriptome analysis and sequential validation supported the hypothesis and indicated its mode of action (MOA) through the unfolded protein response (UPR) pathway, which is functionally related to wound healing and angiogenesis. The conditioned medium of HaCaT cells treated with apratyramide induced angiogenesis in vitro. An ex vivo rabbit corneal epithelial model was applied to confirm the VEGF-A induction in this wound-healing model.
Collapse
Affiliation(s)
| | - Lilibeth A. Salvador-Reyes
- Marine
Science Institute, College of Science, University of the Philippines, Diliman, Quezon
City 1100, Philippines
| | - Wei Zhang
- School
of Pharmacy, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | - Valerie J. Paul
- Smithsonian Marine Station, Fort Pierce, Florida 34949, United States
| | | |
Collapse
|
39
|
Endoplasmic Reticulum Stress in Hearing Loss. JOURNAL OF OTORHINOLARYNGOLOGY, HEARING AND BALANCE MEDICINE 2017. [DOI: 10.3390/ohbm1010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
40
|
Liu D, Zhang Y, Li X, Li J, Yang S, Xing X, Fan G, Yokota H, Zhang P. eIF2α signaling regulates ischemic osteonecrosis through endoplasmic reticulum stress. Sci Rep 2017; 7:5062. [PMID: 28698612 PMCID: PMC5505953 DOI: 10.1038/s41598-017-05488-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/15/2017] [Indexed: 12/25/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) primarily results from ischemia/hypoxia to the femoral head, and one of the cellular manifestations is the endoplasmic reticulum (ER) stress. To understand possible linkage of ischemic osteonecrosis to the ER stress, a surgery-induced animal model was employed and salubrinal was administered to evaluate the role of ER stress. Salubrinal is a synthetic chemical that inhibits de-phosphorylation of eIF2α, and it can suppress cell death from the ER stress at a proper dose. The results indicated that the ER stress was associated with ONFH and salubrinal significantly improved ONFH-induced symptoms such as osteonecrosis, bone loss, reduction in vessel perfusion, and excessive osteoclastogenesis in the femoral head. Salubrinal also protected osteoblast development by upregulating the levels of ATF4, ALP and RUNX2, and it stimulated angiogenesis of endothelial cells through elevating ATF4 and VEGF. Collectively, the results support the notion that the ER stress is an important pathological outcome in the surgery-induced ONFH model, and salubrinal improves ONFH symptoms by enhancing angiogenesis and bone healing via suppressing the ER stress.
Collapse
Affiliation(s)
- Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Department of Pharmacology, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, 300100, China
- TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300457, China
| | - Yunlong Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- School of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300457, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Shuang Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoxue Xing
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Guanwei Fan
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
- TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300457, China.
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China.
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
| |
Collapse
|
41
|
Zhang Z, Zhang Y, Zhou Z, Shi H, Qiu X, Xiong J, Chen Y. BDNF regulates the expression and secretion of VEGF from osteoblasts via the TrkB/ERK1/2 signaling pathway during fracture healing. Mol Med Rep 2017; 15:1362-1367. [PMID: 28098876 DOI: 10.3892/mmr.2017.6110] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/09/2016] [Indexed: 11/05/2022] Open
Abstract
Brain‑derived neurotrophic factor (BDNF), a member of the neurotropic family, is expressed in osteoblast‑like cells of a fracture callus, however, its role in fracture healing remains to be fully elucidated. Osteoblasts isolated from Sprague Dawley rats were stimulated by BDNF in a dose‑ and time‑dependent manner. Immunoblotting and immunofluorescence was used to detect the expression and distribution of targeted proteins. The concentration of vascular endothelial growth factor (VEGF) released in medium was determined using an ELISA. PD98059 and K252a were used to investigate the signaling pathways that may be involved. The present study demonstrated that BDNF was involved in fracture repair by controlling the expression and secretion of VEGF from osteoblasts, which predominantly drives angiogenesis during fracture healing. Tropomyosin‑related kinase B (TrkB), the specific receptor of BDNF, was shown to be expressed at high levels in the osteoblasts. Following BDNF stimulation, TrkB and extracellular signal‑regulated kinase 1/2 (ERK1/2) were rapidly activated. The inhibition of TrkB by K252a decreased the expression and secretion of VEGF, and suppressed the phosphorylation level of ERK1/2. PD98059, an antagonist of ERK1/2, elicited the same effects on VEGF from the BDNF‑stimulated osteoblasts, however, it did not affect the phosphorylation of TrkB. In conclusion, during fracture healing, BDNF was found to stimulate the expression and secretion of VEGF from osteoblasts via the TrkB/ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Zitao Zhang
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Yan Zhang
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Zhengnan Zhou
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Hongfei Shi
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Xusheng Qiu
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Jin Xiong
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Yixin Chen
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
42
|
Kc R, Li X, Kroin JS, Liu Z, Chen D, Xiao G, Levine B, Li J, Hamilton JL, van Wijnen AJ, Piel M, Shelly DA, Brass D, Kolb E, Im HJ. PKCδ null mutations in a mouse model of osteoarthritis alter osteoarthritic pain independently of joint pathology by augmenting NGF/TrkA-induced axonal outgrowth. Ann Rheum Dis 2016; 75:2133-2141. [PMID: 26783110 PMCID: PMC5136703 DOI: 10.1136/annrheumdis-2015-208444] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/10/2015] [Accepted: 12/14/2015] [Indexed: 01/23/2023]
Abstract
OBJECTIVES A key clinical paradox in osteoarthritis (OA), a prevalent age-related joint disorder characterised by cartilage degeneration and debilitating pain, is that the severity of joint pain does not strictly correlate with radiographic and histological defects in joint tissues. Here, we determined whether protein kinase Cδ (PKCδ), a key mediator of cartilage degeneration, is critical to the mechanism by which OA develops from an asymptomatic joint-degenerative condition to a painful disease. METHODS OA was induced in 10-week-old PKCδ null (PKCδ-/-) and wild-type mice by destabilisation of the medial meniscus (DMM) followed by comprehensive examination of the histology, molecular pathways and knee-pain-related-behaviours in mice, and comparisons with human biopsies. RESULTS In the DMM model, the loss of PKCδ expression prevented cartilage degeneration but exacerbated OA-associated hyperalgesia. Cartilage preservation corresponded with reduced levels of inflammatory cytokines and of cartilage-degrading enzymes in the joints of PKCδ-deficient DMM mice. Hyperalgesia was associated with stimulation of nerve growth factor (NGF) by fibroblast-like synovial cells and with increased synovial angiogenesis. Results from tissue specimens of patients with symptomatic OA strikingly resembled our findings from the OA animal model. In PKCδ null mice, increases in sensory neuron distribution in knee OA synovium and activation of the NGF-tropomyosin receptor kinase (TrkA) axis in innervating dorsal root ganglia were highly correlated with knee OA hyperalgesia. CONCLUSIONS Increased distribution of synovial sensory neurons in the joints, and augmentation of NGF/TrkA signalling, causes OA hyperalgesia independently of cartilage preservation.
Collapse
Affiliation(s)
- Ranjan Kc
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois, USA
| | - Xin Li
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois, USA
| | - Jeffrey S Kroin
- Department of Anesthesiology, Rush University Medical Center, Chicago, Illinois, USA
| | - Zhiqiang Liu
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois, USA
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois, USA
| | - Guozhi Xiao
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois, USA
- Department of Biology and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China, Shenzhen, China
| | - Brett Levine
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Jinyuan Li
- Department of Anesthesiology, Rush University Medical Center, Chicago, Illinois, USA
| | - John L Hamilton
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois, USA
| | - Andre J van Wijnen
- Departments of Orthopedic Surgery & Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Margaret Piel
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois, USA
| | | | | | - Ela Kolb
- Alomone Labs Ltd, Jerusalem, Israel
| | - Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
- Department of Internal Medicine (Section of Rheumatology), Rush University Medical Center, Chicago, Illinois, USA
- Department of Bioengineering, University of Illinois at Chicago, Illinois, USA
- Jesse Brown Veterans Affairs Medical Center at Chicago, Illinois, USA
| |
Collapse
|
43
|
Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM. The integrated stress response. EMBO Rep 2016; 17:1374-1395. [PMID: 27629041 DOI: 10.15252/embr.201642195] [Citation(s) in RCA: 1607] [Impact Index Per Article: 178.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023] Open
Abstract
In response to diverse stress stimuli, eukaryotic cells activate a common adaptive pathway, termed the integrated stress response (ISR), to restore cellular homeostasis. The core event in this pathway is the phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) by one of four members of the eIF2α kinase family, which leads to a decrease in global protein synthesis and the induction of selected genes, including the transcription factor ATF4, that together promote cellular recovery. The gene expression program activated by the ISR optimizes the cellular response to stress and is dependent on the cellular context, as well as on the nature and intensity of the stress stimuli. Although the ISR is primarily a pro-survival, homeostatic program, exposure to severe stress can drive signaling toward cell death. Here, we review current understanding of the ISR signaling and how it regulates cell fate under diverse types of stress.
Collapse
Affiliation(s)
- Karolina Pakos-Zebrucka
- Apoptosis Research Centre, National University of Ireland Galway, Galway, Ireland School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Izabela Koryga
- Apoptosis Research Centre, National University of Ireland Galway, Galway, Ireland School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Katarzyna Mnich
- Apoptosis Research Centre, National University of Ireland Galway, Galway, Ireland School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Mila Ljujic
- Apoptosis Research Centre, National University of Ireland Galway, Galway, Ireland School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, National University of Ireland Galway, Galway, Ireland School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Adrienne M Gorman
- Apoptosis Research Centre, National University of Ireland Galway, Galway, Ireland School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
44
|
Abstract
The roles of prolyl hydroxylase domain proteins (PHDs) in bone are incompletely understood. Here we deleted the expression of genes encoding PHD1, PHD2, and PHD3 in osteoblasts in mice by breeding the floxed Phd1-3 mice with Col1a1-Cre transgenic mice. Results showed that mice lacking PHD1-3 in osteoblasts (Phd1-3ob-/-) had increased bone mass. Bone parameters such as bone volume/tissue volume (BV/TV), trabecular number (Tb.N), and trabecular thickness (Tb.Th) were increased, while trabecular spacing (Tb.Sp) was decreased in Phd1-3ob-/- relative to wild-type (WT) femurs. In contrast, loss of PHD1-3 in osteoblasts did not alter cortical thickness (Cort.Th). The mineralization apposition rate (MAR) was increased in Phd1-3ob-/- bone compared to that of wild-type (WT) bone, demonstrating an enhancement of osteoblast function. Loss of PHD1-3 increased the number of osteoblast progenitors (CFU-OBs) in bone marrow cultures. Interestingly, deleting Phd1-3 genes in osteoblasts increased osteoclast formation in vitro and in bone.
Collapse
|
45
|
Zhu K, Song P, Lai Y, Xiao G. WITHDRAWN: Prolyl hydroxylase domain proteins regulate bone mass through their expression in osteoblasts. GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Su YW, Chung R, Ruan CS, Chim SM, Kuek V, Dwivedi PP, Hassanshahi M, Chen KM, Xie Y, Chen L, Foster BK, Rosen V, Zhou XF, Xu J, Xian CJ. Neurotrophin-3 Induces BMP-2 and VEGF Activities and Promotes the Bony Repair of Injured Growth Plate Cartilage and Bone in Rats. J Bone Miner Res 2016; 31:1258-74. [PMID: 26763079 DOI: 10.1002/jbmr.2786] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 12/20/2022]
Abstract
Injured growth plate is often repaired by bony tissue causing bone growth defects, for which the mechanisms remain unclear. Because neurotrophins have been implicated in bone fracture repair, here we investigated their potential roles in growth plate bony repair in rats. After a drill-hole injury was made in the tibial growth plate and bone, increased injury site mRNA expression was observed for neurotrophins NGF, BDNF, NT-3, and NT-4 and their Trk receptors. NT-3 and its receptor TrkC showed the highest induction. NT-3 was localized to repairing cells, whereas TrkC was observed in stromal cells, osteoblasts, and blood vessel cells at the injury site. Moreover, systemic NT-3 immunoneutralization reduced bone volume at injury sites and also reduced vascularization at the injured growth plate, whereas recombinant NT-3 treatment promoted bony repair with elevated levels of mRNA for osteogenic markers and bone morphogenetic protein (BMP-2) and increased vascularization and mRNA for vascular endothelial growth factor (VEGF) and endothelial cell marker CD31 at the injured growth plate. When examined in vitro, NT-3 promoted osteogenesis in rat bone marrow stromal cells, induced Erk1/2 and Akt phosphorylation, and enhanced expression of BMPs (particularly BMP-2) and VEGF in the mineralizing cells. It also induced CD31 and VEGF mRNA in rat primary endothelial cell culture. BMP activity appears critical for NT-3 osteogenic effect in vitro because it can be almost completely abrogated by co-addition of the BMP inhibitor noggin. Consistent with its angiogenic effect in vivo, NT-3 promoted angiogenesis in metatarsal bone explants, an effect abolished by co-treatment with anti-VEGF. This study suggests that NT-3 may be an osteogenic and angiogenic factor upstream of BMP-2 and VEGF in bony repair, and further studies are required to investigate whether NT-3 may be a potential target for preventing growth plate faulty bony repair or for promoting bone fracture healing. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yu-Wen Su
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Rosa Chung
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Chun-Sheng Ruan
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Shek Man Chim
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Australia
| | - Vincent Kuek
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Australia
| | - Prem P Dwivedi
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Ke-Ming Chen
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou, China
| | - Yangli Xie
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lin Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Bruce K Foster
- Department of Orthopaedic Surgery, Women's and Children's Hospital, North Adelaide, Australia
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Australia
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| |
Collapse
|
47
|
ATF4 plays a pivotal role in the development of functional hematopoietic stem cells in mouse fetal liver. Blood 2015; 126:2383-91. [PMID: 26384355 DOI: 10.1182/blood-2015-03-633354] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 09/08/2015] [Indexed: 01/23/2023] Open
Abstract
The fetal liver (FL) serves as a predominant site for expansion of functional hematopoietic stem cells (HSCs) during mouse embryogenesis. However, the mechanisms for HSC development in FL remain poorly understood. In this study, we demonstrate that deletion of activating transcription factor 4 (ATF4) significantly impaired hematopoietic development and reduced HSC self-renewal in FL. In contrast, generation of the first HSC population in the aorta-gonad-mesonephros region was not affected. The migration activity of ATF4(-/-) HSCs was moderately reduced. Interestingly, the HSC-supporting ability of both endothelial and stromal cells in FL was significantly compromised in the absence of ATF4. Gene profiling using RNA-seq revealed downregulated expression of a panel of cytokines in ATF4(-/-) stromal cells, including angiopoietin-like protein 3 (Angptl3) and vascular endothelial growth factor A (VEGFA). Addition of Angptl3, but not VEGFA, partially rescued the repopulating defect of ATF4(-/-) HSCs in the culture. Furthermore, chromatin immunoprecipitation assay in conjunction with silencing RNA-mediated silencing and complementary DNA overexpression showed transcriptional control of Angptl3 by ATF4. To summarize, ATF4 plays a pivotal role in functional expansion and repopulating efficiency of HSCs in developing FL, and it acts through upregulating transcription of cytokines such as Angptl3 in the microenvironment.
Collapse
|
48
|
Song W, Fhu CW, Ang KH, Liu CH, Johari NAB, Lio D, Abraham S, Hong W, Moss SE, Greenwood J, Wang X. The fetal mouse metatarsal bone explant as a model of angiogenesis. Nat Protoc 2015; 10:1459-73. [DOI: 10.1038/nprot.2015.097] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
49
|
Tameire F, Verginadis II, Koumenis C. Cell intrinsic and extrinsic activators of the unfolded protein response in cancer: Mechanisms and targets for therapy. Semin Cancer Biol 2015; 33:3-15. [PMID: 25920797 DOI: 10.1016/j.semcancer.2015.04.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/16/2015] [Indexed: 02/07/2023]
Abstract
A variety of cell intrinsic or extrinsic stresses evoke perturbations in the folding environment of the endoplasmic reticulum (ER), collectively known as ER stress. Adaptation to stress and re-establishment of ER homeostasis is achieved by activation of an integrated signal transduction pathway called the unfolded protein response (UPR). Both ER stress and UPR activation have been implicated in a variety of human cancers. Although at early stages or physiological conditions of ER stress, the UPR generally promotes survival, when the stress becomes more stringent or prolonged, its role can switch to a pro-cell death one. Here, we discuss historical and recent evidence supporting an involvement of the UPR in malignancy, describe the main mechanisms by which tumor cells overcome ER stress to promote their survival, tumor progression and metastasis and discuss the current state of efforts to develop therapeutic approaches of targeting the UPR.
Collapse
Affiliation(s)
- Feven Tameire
- Department of Radiation Oncology, Perelman University School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Program in Cell and Molecular Biology, Perelman University School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ioannis I Verginadis
- Department of Radiation Oncology, Perelman University School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman University School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
50
|
Activating transcription factor 4 promotes angiogenesis of breast cancer through enhanced macrophage recruitment. BIOMED RESEARCH INTERNATIONAL 2015; 2015:974615. [PMID: 25883982 PMCID: PMC4391610 DOI: 10.1155/2015/974615] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/30/2014] [Indexed: 12/17/2022]
Abstract
Angiogenesis plays an important role in the progression of tumor. Besides being regulated by tumor cells per se, tumor angiogenesis is also influenced by stromal cells in tumor microenvironment (TME), for example, tumor associated macrophages (TAMs). Activating transcription factor 4 (ATF4), a member of the ATF/CREB family, has been reported to be related to tumor angiogenesis. In this study, we found that exogenous overexpression of ATF4 in mouse breast cancer cells promotes tumor growth via increasing tumor microvascular density. However, ATF4 overexpression failed to increase the expression level of a series of proangiogenic factors including vascular endothelial growth factor A (VEGFA) in tumor cells in this model. Thus, we further investigated the infiltration of proangiogenic macrophages in tumor tissues and found that ATF4-overexpressing tumors could recruit more macrophages via secretion of macrophage colony stimulating factor (M-CSF). Overall, we concluded that exogenous overexpression of ATF4 in breast cancer cells may facilitate the recruitment of macrophages into tumor tissues and promote tumor angiogenesis and tumor growth indirectly.
Collapse
|