1
|
Lu K, Qian Y, Gong J, Li Z, Yu M, Wang H. A novel PTH1R mutation causes primary failure of eruption via the cAMP-PI3K/AKT pathway. Prog Orthod 2025; 26:7. [PMID: 39988614 PMCID: PMC11847765 DOI: 10.1186/s40510-025-00555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/21/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Primary failure of eruption (PFE) is a rare disorder characterized by a posterior open bite. While mutations in the parathyroid hormone 1 receptor (PTH1R) gene have been demonstrated to cause PFE, the underlying mechanisms remain largely unknown. METHODS Whole exome sequencing was conducted to identify PTH1R variants in a PFE family. MG63 cells that stably expressed the corresponding mutant PTH1R were established using lentiviruses. Next, osteogenesis was assessed by measuring cell alkaline phosphatase activity, conducting alizarin red staining, and evaluating osteoblast-specific gene expression. Then, computational analysis of binding affinity and RNA sequencing were carried out. Lastly, rescue experiments were performed to validate the mechanism underlying the pathogenesis of PFE. RESULTS A novel PTH1R missense mutation (c.904G > A, p.E302K) was identified in a Chinese family affected by PFE. Moreover, the E302K mutation inhibited the expression of osteogenic-specific genes and proteins in MG63 cells. Computational analysis revealed the E302K mutation decreased the binding affinity of Gαs to the PTH1R protein. Consistently, cAMP accumulation assays demonstrated that the E302K mutation impaired the intracellular PTH1-34 -induced accumulation of cAMP. Further RNA sequencing analysis and validation experiments revealed that the PI3K-AKT signaling pathway was predominantly down-regulated in response to the E302K mutation. Finally, forskolin partially restored the effects of the E302K mutation on osteogenesis. CONCLUSIONS This study indicated that the E302K mutation in PTH1R decreased the binding affinity of PTH1R protein for Gαs, down-regulated the cAMP-PI3K/AKT signaling pathway, and inhibited osteogenesis, eventually leading to PFE. This study not only expands the genotypic spectrum of PTH1R mutations but also elucidates the underlying pathogenic mechanism of PTH1R-associated PFE.
Collapse
Affiliation(s)
- Kejie Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Ying Qian
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Jiaxing Gong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China.
| | - Zhiyong Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China.
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China.
| | - Huiming Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
2
|
Zhang Y, Zhou L, Fu Q, Liu Z. FOXG1 promotes osteogenesis of bone marrow-derived mesenchymal stem cells by activating autophagy through regulating USP14. Commun Biol 2025; 8:59. [PMID: 39814826 PMCID: PMC11735862 DOI: 10.1038/s42003-024-07429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025] Open
Abstract
The osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) is key for bone formation, and its imbalance leads to osteoporosis. Forkhead Box Protein G1 (FOXG1) is associated with osteogenesis, however, the effect of FOXG1 on osteogenesis of BMSCs and ovariectomy (OVX)-induced bone loss is unknown. In our study, FOXG1 expression in BMSCs increases after osteogenic induction. FOXG1 overexpression significantly increases osteoblast marker expression ALP activity, and calcium deposition, while the opposite results are observed in FOXG1 knockdown BMSCs, suggesting that FOXG1 promotes osteogenic differentiation. Additionally, autophagy promotes the differentiation process in BMSCs. We find that FOXG1 induces autophagy, and osteogenic differentiation is blocked via inhibiting FOXG1-caused autophagy, indicating that FOXG1 accelerates osteogenic differentiation via inducing autophagy. Eight-week-old female C57BL/6J mice are used in OVX models, FOXG1 overexpression decreases bone loss by increasing bone formation. Moreover, FOXG1 overexpression suppresses osteoclast differentiation. Mechanically, FOXG1 transcriptionally represses ubiquitin-specific protease14 (USP14) via binding to the USP14 promoter. USP14 overexpression prevents the promoting effect of FOXG1 on osteogenic differentiation in BMSCs. Therefore, our findings suggest that FOXG1 promotes BMSC osteogenic differentiation and inhibits osteoclast differentiation, eventually blocking OVX-induced bone loss, which may provide a promising approach for osteoporosis treatment.
Collapse
Affiliation(s)
- Yiqi Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Long Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qin Fu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ziyun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
3
|
Melis S, Trompet D, Chagin AS, Maes C. Skeletal stem and progenitor cells in bone physiology, ageing and disease. Nat Rev Endocrinol 2024:10.1038/s41574-024-01039-y. [PMID: 39379711 DOI: 10.1038/s41574-024-01039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/10/2024]
Abstract
Skeletal stem cells (SSCs) and related progenitors with osteogenic potential, collectively termed skeletal stem and/or progenitor cells (SSPCs), are crucial for providing osteoblasts for bone formation during homeostatic tissue turnover and fracture repair. Besides mediating normal bone physiology, they also have important roles in various metabolic bone diseases, including osteoporosis. SSPCs are of tremendous interest because they represent prime future targets for osteoanabolic therapies and bone regenerative medicine. Remarkable progress has been made in characterizing various SSC and SSPC populations in postnatal bone. SSPCs exist in the periosteum and within the bone marrow stroma, including subsets localizing around arteriolar and sinusoidal blood vessels; they can display osteogenic, chondrogenic, adipogenic and/or fibroblastic potential, and exert critical haematopoiesis-supportive functions. However, much remains to be clarified. By the current markers, bona fide SSCs are commonly contained within broader SSPC populations characterized by considerable heterogeneity and overlap, whose common versus specific functions in health and disease have not been fully unravelled. Here, we review the present knowledge of the identity, fates and relationships of SSPC populations in the postnatal bone environment, their contributions to bone maintenance, the changes observed upon ageing, and the effect of metabolic diseases such as osteoporosis and diabetes mellitus.
Collapse
Affiliation(s)
- Seppe Melis
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Dana Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Andrei S Chagin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Pan L, Liu J, Liu C, Guo L, Yang S. Intermittent pulses of methylprednisolone with low-dose prednisone attenuate lupus symptoms in B6.MRL-Fas lpr/J mice with fewer glucocorticoid side effects. Biomed Pharmacother 2024; 177:117138. [PMID: 39018878 DOI: 10.1016/j.biopha.2024.117138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
Glucocorticoids (GCs) are potent anti-inflammatory and immunosuppressant medications and remain the cornerstone of systemic lupus erythematosus (SLE) therapy. However, ongoing exposure to GCs has the potential to elicit multiple adverse effects. Considering the irreplaceability of GCs in SLE therapy, it is important to explore the optimal regimen of GCs. Here, we compared the long-term efficacy and safety of pulsed and oral GC therapy in a lupus-prone mouse model. Mice were grouped using a randomized block design. We monitored survival rates, proteinuria, serum autoantibodies, and complement 3 (C3) levels up to 28 weeks of age, and assessed renal damage, bone quality, lipid deposition in the liver and marrow, glucose metabolic parameters, and levels of hormones of the hypothalamic-pituitary-adrenal (HPA) axis. Finally, we explored the mechanisms underlying the superior efficacy of the pulse regimen over oral prednisone regimen. We found that both GC regimens alleviated the poor survival rate, proteinuria, and glomerulonephritis, while also reducing serum autoantibodies and increasing the level of C3. The pulsed GC regimen showed less resistance to insulin, less suppression of the HPA axis, less bone loss, and less bone marrow fat deposition than the oral GC regimen. Additionally, GC-induced leucine zipper (GILZ) was significantly overexpressed in the GC pulse group. These results suggest that the GC pulse regimen ameliorated symptoms in lupus-prone mice, with fewer side effects, which may be related to GILZ overexpression. Our findings offer a potentially promising GC treatment option for SLE.
Collapse
Affiliation(s)
- Lu Pan
- Department of Pediatric Rheumatology, Immunology & Allergy, Children's Medical Center, The First Hospital of Jilin University, Changchun, China; The Child Health Clinical Research Center of Jilin Province, China
| | - Jinxiang Liu
- Department of Pediatric Rheumatology, Immunology & Allergy, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Congcong Liu
- Department of Pediatric Rheumatology, Immunology & Allergy, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Lishuang Guo
- Department of Pediatric Rheumatology, Immunology & Allergy, Children's Medical Center, The First Hospital of Jilin University, Changchun, China; The Child Health Clinical Research Center of Jilin Province, China
| | - Sirui Yang
- Department of Pediatric Rheumatology, Immunology & Allergy, Children's Medical Center, The First Hospital of Jilin University, Changchun, China; The Child Health Clinical Research Center of Jilin Province, China.
| |
Collapse
|
5
|
Papaioannou G, Sato T, Houghton C, Kotsalidis PE, Strauss KE, Dean T, Nelson AJ, Stokes M, Gardella TJ, Wein MN. Regulation of intracellular cAMP levels in osteocytes by mechano-sensitive focal adhesion kinase via PDE8A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601153. [PMID: 38979143 PMCID: PMC11230356 DOI: 10.1101/2024.06.28.601153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Osteocytes are the primary mechano-sensitive cell type in bone. Mechanical loading is sensed across the dendritic projections of osteocytes leading to transient reductions in focal adhesion kinase (FAK) activity. Knowledge regarding the signaling pathways downstream of FAK in osteocytes is incomplete. We performed tyrosine-focused phospho-proteomic profiling in osteocyte-like Ocy454 cells to identify FAK substrates. Gsα, parathyroid hormone receptor (PTH1R), and phosphodiesterase 8A (PDE8A), all proteins associated with cAMP signaling, were found as potential FAK targets based on their reduced tyrosine phosphorylation in both FAK- deficient or FAK inhibitor treated cells. Real time monitoring of intracellular cAMP levels revealed that FAK pharmacologic inhibition or gene deletion increased basal and GPCR ligand-stimulated cAMP levels and downstream phosphorylation of protein kinase A substrates. Mutating FAK phospho-acceptor sites in Gsα and PTH1R had no effect on PTH- or FAK inhibitor-stimulated cAMP levels. Since FAK inhibitor treatment augmented cAMP levels even in the presence of forskolin, we focused on potential FAK substrates downstream of cAMP generation. Indeed, PDE8A inhibition mimicked FAK inhibition at the level of increased cAMP, PKA activity, and expression of cAMP-regulated target genes. In vitro kinase assay showed that PDE8A is directly phosphorylated by FAK while immunoprecipitation assays revealed intracellular association between FAK and PDE8A. Thus, FAK inhibition in osteocytes acts synergistically with signals that activate adenylate cyclase to increase intracellular cAMP. Mechanically-regulated FAK can modulate intracellular cAMP levels via effects on PDE8A. These data suggest a novel signal transduction mechanism that mediates crosstalk between mechanical and cAMP-linked hormonal signaling in osteocytes.
Collapse
|
6
|
Palmisano B, Labella R, Donsante S, Remoli C, Spica E, Coletta I, Farinacci G, Dello Spedale Venti M, Saggio I, Serafini M, Robey PG, Corsi A, Riminucci M. Gsα R201C and estrogen reveal different subsets of bone marrow adiponectin expressing osteogenic cells. Bone Res 2022; 10:50. [PMID: 35853852 PMCID: PMC9296668 DOI: 10.1038/s41413-022-00220-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 12/20/2022] Open
Abstract
The Gsα/cAMP signaling pathway mediates the effect of a variety of hormones and factors that regulate the homeostasis of the post-natal skeleton. Hence, the dysregulated activity of Gsα due to gain-of-function mutations (R201C/R201H) results in severe architectural and functional derangements of the entire bone/bone marrow organ. While the consequences of gain-of-function mutations of Gsα have been extensively investigated in osteoblasts and in bone marrow osteoprogenitor cells at various differentiation stages, their effect in adipogenically-committed bone marrow stromal cells has remained unaddressed. We generated a mouse model with expression of GsαR201C driven by the Adiponectin (Adq) promoter. Adq-GsαR201C mice developed a complex combination of metaphyseal, diaphyseal and cortical bone changes. In the metaphysis, GsαR201C caused an early phase of bone resorption followed by bone deposition. Metaphyseal bone formation was sustained by cells that were traced by Adq-Cre and eventually resulted in a high trabecular bone mass phenotype. In the diaphysis, GsαR201C, in combination with estrogen, triggered the osteogenic activity of Adq-Cre-targeted perivascular bone marrow stromal cells leading to intramedullary bone formation. Finally, consistent with the previously unnoticed presence of Adq-Cre-marked pericytes in intraosseous blood vessels, GsαR201C caused the development of a lytic phenotype that affected both cortical (increased porosity) and trabecular (tunneling resorption) bone. These results provide the first evidence that the Adq-cell network in the skeleton not only regulates bone resorption but also contributes to bone formation, and that the Gsα/cAMP pathway is a major modulator of both functions.
Collapse
Affiliation(s)
- Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Rossella Labella
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Samantha Donsante
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
- Tettamanti Research Center, Department of Pediatrics, University of Milano Bicocca/Fondazione MBBM, Monza, 20900, Italy
| | - Cristina Remoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Emanuela Spica
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Ilenia Coletta
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Giorgia Farinacci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | | | - Isabella Saggio
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, 00185, Italy
- Institute of Structural Biology and School of Biological Sciences Nanyang Technological University, 639798, Singapore, Singapore
- CNR Institute of Molecular Biology and Pathology, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Marta Serafini
- Tettamanti Research Center, Department of Pediatrics, University of Milano Bicocca/Fondazione MBBM, Monza, 20900, Italy
| | - Pamela Gehron Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy.
| |
Collapse
|
7
|
Matsushita Y, Ono W, Ono N. Toward Marrow Adipocytes: Adipogenic Trajectory of the Bone Marrow Stromal Cell Lineage. Front Endocrinol (Lausanne) 2022; 13:882297. [PMID: 35528017 PMCID: PMC9075612 DOI: 10.3389/fendo.2022.882297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Bone marrow contains precursor cells for osteoblasts and adipocytes in the stromal compartment. Bone marrow adipose tissue (BMAT) is an important constituent of the bone marrow that is particularly abundant in adults. BMAT is composed of the proximal "regulated" BMAT containing individual adipocytes interspersed within actively hematopoietic marrow, and the distal "constitutive" BMAT containing large adipocytes in the area of low hematopoiesis. Historically, bone marrow adipocytes were regarded as one of the terminal states of skeletal stem cells, which stand at the pinnacle of the lineage and possess trilineage differentiation potential into osteoblasts, chondrocytes and adipocytes. Recent single-cell RNA-sequencing studies uncover a discrete group of preadipocyte-like cells among bone marrow stromal cells (BMSCs), and recent mouse genetic lineage-tracing studies reveal that these adipocyte precursor cells possess diverse functions in homeostasis and regeneration. These adipogenic subsets of BMSCs are abundant in the central marrow space and can directly convert not only into lipid-laden adipocytes but also into skeletal stem cell-like cells and osteoblasts under regenerative conditions. It remains determined whether there are distinct adipocyte precursor cell types contributing to two types of BMATs. In this short review, we discuss the functions of the recently identified subsets of BMSCs and their trajectory toward marrow adipocytes, which is influenced by multiple modes of cell-autonomous and non-cell autonomous regulations.
Collapse
|
8
|
Lyu P, Li B, Li P, Bi R, Cui C, Zhao Z, Zhou X, Fan Y. Parathyroid Hormone 1 Receptor Signaling in Dental Mesenchymal Stem Cells: Basic and Clinical Implications. Front Cell Dev Biol 2021; 9:654715. [PMID: 34760881 PMCID: PMC8573197 DOI: 10.3389/fcell.2021.654715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/28/2021] [Indexed: 02/05/2023] Open
Abstract
Parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) are two peptides that regulate mineral ion homeostasis, skeletal development, and bone turnover by activating parathyroid hormone 1 receptor (PTH1R). PTH1R signaling is of profound clinical interest for its potential to stimulate bone formation and regeneration. Recent pre-clinical animal studies and clinical trials have investigated the effects of PTH and PTHrP analogs in the orofacial region. Dental mesenchymal stem cells (MSCs) are targets of PTH1R signaling and have long been known as major factors in tissue repair and regeneration. Previous studies have begun to reveal important roles for PTH1R signaling in modulating the proliferation and differentiation of MSCs in the orofacial region. A better understanding of the molecular networks and underlying mechanisms for modulating MSCs in dental diseases will pave the way for the therapeutic applications of PTH and PTHrP in the future. Here we review recent studies involving dental MSCs, focusing on relationships with PTH1R. We also summarize recent basic and clinical observations of PTH and PTHrP treatment to help understand their use in MSCs-based dental and bone regeneration.
Collapse
Affiliation(s)
- Ping Lyu
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chen Cui
- Guangdong Province Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Ambrosi TH, Marecic O, McArdle A, Sinha R, Gulati GS, Tong X, Wang Y, Steininger HM, Hoover MY, Koepke LS, Murphy MP, Sokol J, Seo EY, Tevlin R, Lopez M, Brewer RE, Mascharak S, Lu L, Ajanaku O, Conley SD, Seita J, Morri M, Neff NF, Sahoo D, Yang F, Weissman IL, Longaker MT, Chan CKF. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature 2021; 597:256-262. [PMID: 34381212 PMCID: PMC8721524 DOI: 10.1038/s41586-021-03795-7] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/05/2021] [Indexed: 12/22/2022]
Abstract
Loss of skeletal integrity during ageing and disease is associated with an imbalance in the opposing actions of osteoblasts and osteoclasts1. Here we show that intrinsic ageing of skeletal stem cells (SSCs)2 in mice alters signalling in the bone marrow niche and skews the differentiation of bone and blood lineages, leading to fragile bones that regenerate poorly. Functionally, aged SSCs have a decreased bone- and cartilage-forming potential but produce more stromal lineages that express high levels of pro-inflammatory and pro-resorptive cytokines. Single-cell RNA-sequencing studies link the functional loss to a diminished transcriptomic diversity of SSCs in aged mice, which thereby contributes to the transformation of the bone marrow niche. Exposure to a youthful circulation through heterochronic parabiosis or systemic reconstitution with young haematopoietic stem cells did not reverse the diminished osteochondrogenic activity of aged SSCs, or improve bone mass or skeletal healing parameters in aged mice. Conversely, the aged SSC lineage promoted osteoclastic activity and myeloid skewing by haematopoietic stem and progenitor cells, suggesting that the ageing of SSCs is a driver of haematopoietic ageing. Deficient bone regeneration in aged mice could only be returned to youthful levels by applying a combinatorial treatment of BMP2 and a CSF1 antagonist locally to fractures, which reactivated aged SSCs and simultaneously ablated the inflammatory, pro-osteoclastic milieu. Our findings provide mechanistic insights into the complex, multifactorial mechanisms that underlie skeletal ageing and offer prospects for rejuvenating the aged skeletal system.
Collapse
Affiliation(s)
- Thomas H Ambrosi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Owen Marecic
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Adrian McArdle
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gunsagar S Gulati
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Xinming Tong
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yuting Wang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Holly M Steininger
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Malachia Y Hoover
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Lauren S Koepke
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew P Murphy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jan Sokol
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Eun Young Seo
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ruth Tevlin
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Lopez
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel E Brewer
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Shamik Mascharak
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Laura Lu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Oyinkansola Ajanaku
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Stephanie D Conley
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jun Seita
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Center for Integrative Medical Sciences and Advanced Data Science Project, RIKEN, Tokyo, Japan
| | | | | | - Debashis Sahoo
- Pediatrics, and Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Fan Yang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Biology and Medicine at Stanford University, Stanford, CA, USA
| | - Michael T Longaker
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| | - Charles K F Chan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Matsushita Y, Chu AKY, Ono W, Welch JD, Ono N. Intercellular Interactions of an Adipogenic CXCL12-Expressing Stromal Cell Subset in Murine Bone Marrow. J Bone Miner Res 2021; 36:1145-1158. [PMID: 33651379 PMCID: PMC8605623 DOI: 10.1002/jbmr.4282] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/08/2021] [Accepted: 02/24/2021] [Indexed: 01/08/2023]
Abstract
Bone marrow houses a multifunctional stromal cell population expressing C-X-C motif chemokine ligand 12 (CXCL12), termed CXCL12-abundant reticular (CAR) cells, that regulates osteogenesis and adipogenesis. The quiescent pre-adipocyte-like subset of CXCL12+ stromal cells ("Adipo-CAR" cells) is localized to sinusoidal surfaces and particularly enriched for hematopoiesis-supporting cytokines. However, detailed characteristics of these CXCL12+ pre-adipocyte-like stromal cells and how they contribute to marrow adipogenesis remain largely unknown. Here we highlight CXCL12-dependent physical coupling with hematopoietic cells as a potential mechanism regulating the adipogenic potential of CXCL12+ stromal cells. Single-cell computational analyses of RNA velocity and cell signaling reveal that Adipo-CAR cells exuberantly communicate with hematopoietic cells through CXCL12-CXCR4 ligand-receptor interactions but do not interconvert with Osteo-CAR cells. Consistent with this computational prediction, a substantial fraction of Cxcl12-creER+ pre-adipocyte-like cells intertwines with hematopoietic cells in vivo and in single-cell preparation in a protease-sensitive manner. Deletion of CXCL12 in these cells using Col2a1-cre leads to a reduction of stromal-hematopoietic coupling and extensive marrow adipogenesis in adult bone marrow, which appears to involve direct conversion of CXCL12+ cells to lipid-laden marrow adipocytes without altering mesenchymal progenitor cell fates. Therefore, these findings suggest that CXCL12+ pre-adipocyte-like marrow stromal cells prevent their premature differentiation by maintaining physical coupling with hematopoietic cells in a CXCL12-dependent manner, highlighting a possible cell-non-autonomous mechanism that regulates marrow adipogenesis. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Yuki Matsushita
- University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Angel Ka Yan Chu
- Department of Computational Medicine and Bioinformatics, Department of Computer Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Wanida Ono
- University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Joshua D Welch
- Department of Computational Medicine and Bioinformatics, Department of Computer Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Noriaki Ono
- University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Donsante S, Palmisano B, Serafini M, Robey PG, Corsi A, Riminucci M. From Stem Cells to Bone-Forming Cells. Int J Mol Sci 2021; 22:ijms22083989. [PMID: 33924333 PMCID: PMC8070464 DOI: 10.3390/ijms22083989] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 12/22/2022] Open
Abstract
Bone formation starts near the end of the embryonic stage of development and continues throughout life during bone modeling and growth, remodeling, and when needed, regeneration. Bone-forming cells, traditionally termed osteoblasts, produce, assemble, and control the mineralization of the type I collagen-enriched bone matrix while participating in the regulation of other cell processes, such as osteoclastogenesis, and metabolic activities, such as phosphate homeostasis. Osteoblasts are generated by different cohorts of skeletal stem cells that arise from different embryonic specifications, which operate in the pre-natal and/or adult skeleton under the control of multiple regulators. In this review, we briefly define the cellular identity and function of osteoblasts and discuss the main populations of osteoprogenitor cells identified to date. We also provide examples of long-known and recently recognized regulatory pathways and mechanisms involved in the specification of the osteogenic lineage, as assessed by studies on mice models and human genetic skeletal diseases.
Collapse
Affiliation(s)
- Samantha Donsante
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo, 20900 Monza, Italy;
| | - Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
| | - Marta Serafini
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo, 20900 Monza, Italy;
| | - Pamela G. Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA;
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
- Correspondence:
| |
Collapse
|
12
|
Johnson GP, Fair S, Hoey DA. Primary cilium-mediated MSC mechanotransduction is dependent on Gpr161 regulation of hedgehog signalling. Bone 2021; 145:115846. [PMID: 33450431 DOI: 10.1016/j.bone.2021.115846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 01/09/2023]
Abstract
The benefits of physical loading to skeletal mass are well known. The primary cilium has emerged as an important organelle in bone mechanobiology/mechanotransduction, particularly in mesenchymal stem/stromal cells, yet the molecular mechanisms of cilium mechanotransduction are poorly understood. In this study, we demonstrate that Gpr161 is a mechanoresponsive GPCR, that localises to the cilium, and is involved in fluid shear-induced cAMP signalling and downstream osteogenesis. This Gpr161-mediated mechanotransduction is dependent on IFT88/cilium and may act through adenylyl cyclase 6 (AC6) to regulate cAMP and MSC osteogenesis. Moreover, we demonstrate that Hh signalling is positively associated with osteogenesis and that Hh gene expression is mechanically regulated and required for loading-induced osteogenic differentiation through a mechanism that involves IFT88, Gpr161, AC6, and cAMP. Therefore, we have delineated a molecular mechanism of MSC mechanotransduction which likely occurs at the cilium, leading to MSC osteogenesis, highlighting novel mechanotherapeutic targets to enhance osteogenesis.
Collapse
Affiliation(s)
- Gillian P Johnson
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin D02 R590, Ireland; Dept. of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2 D02 DK07, Ireland; Dept. of Mechanical, Aeronautical and Biomedical Engineering, School of Engineering, University of Limerick, Limerick V94 PH61, Ireland; Laboratory of Animal Reproduction, Dept. of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick V94 T9PX, Ireland
| | - Sean Fair
- Laboratory of Animal Reproduction, Dept. of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick V94 T9PX, Ireland
| | - David A Hoey
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin D02 R590, Ireland; Dept. of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2 D02 DK07, Ireland; Dept. of Mechanical, Aeronautical and Biomedical Engineering, School of Engineering, University of Limerick, Limerick V94 PH61, Ireland; Advanced Materials and Bioengineering Research Centre, Trinity College Dublin & RCSI, Dublin 2 D02 VN51, Ireland.
| |
Collapse
|
13
|
Brewer N, Fong JT, Zhang D, Ramaswamy G, Shore EM. Gnas Inactivation Alters Subcutaneous Tissues in Progression to Heterotopic Ossification. Front Genet 2021; 12:633206. [PMID: 33574833 PMCID: PMC7870717 DOI: 10.3389/fgene.2021.633206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Heterotopic ossification (HO), the formation of bone outside of the skeleton, occurs in response to severe trauma and in rare genetic diseases such as progressive osseous heteroplasia (POH). In POH, which is caused by inactivation of GNAS, a gene that encodes the alpha stimulatory subunit of G proteins (Gsα), HO typically initiates within subcutaneous soft tissues before progressing to deeper connective tissues. To mimic POH, we used conditional Gnas-null mice which form HO in subcutaneous tissues upon Gnas inactivation. In response to Gnas inactivation, we determined that prior to detection of heterotopic bone, dermal adipose tissue changed dramatically, with progressively decreased adipose tissue volume and increased density of extracellular matrix over time. Upon depletion of the adipose tissue, heterotopic bone progressively formed in those locations. To investigate the potential relevance of the tissue microenvironment for HO formation, we implanted Gnas-null or control mesenchymal progenitor cells into Gnas-null or control host subcutaneous tissues. We found that mutant cells in a Gnas-null tissue environment induced a robust HO response while little/no HO was detected in control hosts. Additionally, a Gnas-null tissue environment appeared to support the recruitment of control cells to heterotopic bone, although control cell implants were associated with less HO formation compared to mutant cells. Our data support that Gnas inactivation alters the tissue microenvironment to influence mutant and wild-type progenitor cells to contribute to HO formation.
Collapse
Affiliation(s)
- Niambi Brewer
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John T Fong
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Deyu Zhang
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Girish Ramaswamy
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Eileen M Shore
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
14
|
Rumiński S, Kalaszczyńska I, Lewandowska-Szumieł M. Effect of cAMP Signaling Regulation in Osteogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells. Cells 2020; 9:E1587. [PMID: 32629962 PMCID: PMC7408391 DOI: 10.3390/cells9071587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
The successful implementation of adipose-derived mesenchymal stem cells (ADSCs) in bone regeneration depends on efficient osteogenic differentiation. However, a literature survey and our own experience demonstrated that current differentiation methods are not effective enough. Since the differentiation of mesenchymal stem cells (MSCs) into osteoblasts and adipocytes can be regulated by cyclic adenosine monophosphate (cAMP) signaling, we investigated the effects of cAMP activator, forskolin, and inhibitor, SQ 22,536, on the early and late osteogenic differentiation of ADSCs cultured in spheroids or in a monolayer. Intracellular cAMP concentration, protein kinase A (PKA) activity, and inhibitor of DNA binding 2 (ID2) expression examination confirmed cAMP up- and downregulation. cAMP upregulation inhibited the cell cycle and protected ADSCs from osteogenic medium (OM)-induced apoptosis. Surprisingly, the upregulation of cAMP level at the early stages of osteogenic differentiation downregulated the expression of osteogenic markers RUNX2, Osterix, and IBSP, which was more significant in spheroids, and it is used for the more efficient commitment of ADSCs into preosteoblasts, according to the previously reported protocol. However, cAMP upregulation in a culture of ADSCs in spheroids resulted in significantly increased osteocalcin production and mineralization. Thus, undifferentiated and predifferentiated ADSCs respond differently to cAMP pathway stimulation in terms of osteogenesis, which might explain the ambiguous results from the literature.
Collapse
Affiliation(s)
- Sławomir Rumiński
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, 02-004 Warsaw, Poland;
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Ilona Kalaszczyńska
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, 02-004 Warsaw, Poland;
- Laboratory for Cell Research and Application, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Małgorzata Lewandowska-Szumieł
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, 02-004 Warsaw, Poland;
- Laboratory for Cell Research and Application, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
15
|
Lin T, Pajarinen J, Kohno Y, Nabeshima A, Lu L, Nathan K, Yao Z, Wu JY, Goodman S. Increased NF-kB activity in osteoprogenitor-lineage cells impairs the balance of bone versus fat in the marrow of skeletally mature mice. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020; 6:69-77. [PMID: 32377560 DOI: 10.1007/s40883-019-00112-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
"Senile osteoporosis" is defined as significant aging-associated bone loss, and is accompanied by increased fat in the bone marrow. The proportion of adipocytes in bone marrow is inversely correlated with bone formation, and is associated with increased risk of fracture. NF-κB is a transcription factor that functions as a master regulator of inflammation and bone remodeling. NF-κB activity increases during aging; furthermore, constitutive activation of NF-κB significantly impairs skeletal development in neonatal mice. However, the effects of NF-κB activation using a skeletally mature animal model have not been examined. In the current study, an osteoprogenitor (OP)-specific, doxycycline-regulated NF-κB activated transgenic mouse model (iNF-κB/OP) was generated to investigate the role of NF-κB in bone remodeling in skeletally mature mice. Reduced osteogenesis in the OP-lineage cells isolated from iNF-κB/OP mice was only observed in the absence of doxycycline in vitro. Bone mineral density in the metaphyseal regions of femurs and tibias was reduced in iNF-κB/OP mice. No significant differences in bone volume fraction and cortical bone thickness were observed. Osmium-stained bone marrow fat was increased in epiphyseal and metaphyseal areas in the tibias of iNF-κB/OP mice. These findings suggest that targeting NF-κB activity as a therapeutic strategy may improve bone healing and prevent aging-associated bone loss in aged patients.
Collapse
Affiliation(s)
- Tzuhua Lin
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Jukka Pajarinen
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Yusuke Kohno
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Akira Nabeshima
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Laura Lu
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Karthik Nathan
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Joy Y Wu
- Dvision of Endocrinology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Stuart Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
16
|
Pierce JL, Begun DL, Westendorf JJ, McGee-Lawrence ME. Defining osteoblast and adipocyte lineages in the bone marrow. Bone 2019; 118:2-7. [PMID: 29782940 PMCID: PMC6240509 DOI: 10.1016/j.bone.2018.05.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 12/22/2022]
Abstract
Bone is a complex endocrine organ that facilitates structural support, protection to vital organs, sites for hematopoiesis, and calcium homeostasis. The bone marrow microenvironment is a heterogeneous niche consisting of multipotent musculoskeletal and hematopoietic progenitors and their derivative terminal cell types. Amongst these progenitors, bone marrow mesenchymal stem/stromal cells (BMSCs) may differentiate into osteogenic, adipogenic, myogenic, and chondrogenic lineages to support musculoskeletal development as well as tissue homeostasis, regeneration and repair during adulthood. With age, the commitment of BMSCs to osteogenesis slows, bone formation decreases, fracture risk rises, and marrow adiposity increases. An unresolved question is whether osteogenesis and adipogenesis are co-regulated in the bone marrow. Osteogenesis and adipogenesis are controlled by specific signaling mechanisms, circulating cytokines, and transcription factors such as Runx2 and Pparγ, respectively. One hypothesis is that adipogenesis is the default pathway if osteogenic stimuli are absent. However, recent work revealed that Runx2 and Osx1-expressing preosteoblasts form lipid droplets under pathological and aging conditions. Histone deacetylase 3 (Hdac3) and other epigenetic regulators suppress lipid storage in preosteoblasts and/or control marrow adiposity. Establishing a better understanding of fat storage in bone marrow cells, as well as the osteoblast-adipocyte relationship within the bone marrow niche is necessary to understand the mechanisms underlying disease- and aging-related marrow fat storage and may lead to the development of new therapeutic targets for "fatty bone" and osteoporosis.
Collapse
Affiliation(s)
- J L Pierce
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - D L Begun
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - J J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - M E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA.
| |
Collapse
|
17
|
Abstract
Skeletal development is exquisitely controlled both spatially and temporally by cell signaling networks. Gαs is the stimulatory α-subunit in a heterotrimeric G protein complex transducing the signaling of G-protein-coupled receptors (GPCRs), responsible for controlling both skeletal development and homeostasis. Gαs, encoded by the GNAS gene in humans, plays critical roles in skeletal development and homeostasis by regulating commitment, differentiation and maturation of skeletal cells. Gαs-mediated signaling interacts with the Wnt and Hedgehog signaling pathways, both crucial regulators of skeletal development, remodeling and injury repair. Genetic mutations that disrupt Gαs functions cause human disorders with severe skeletal defects, such as fibrous dysplasia of bone and heterotopic bone formation. This chapter focuses on the crucial roles of Gαs signaling during skeletal development and homeostasis, and the pathological mechanisms underlying skeletal diseases caused by GNAS mutations.
Collapse
Affiliation(s)
- Qian Cong
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Ruoshi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States.
| |
Collapse
|
18
|
Fulzele K, Dedic C, Lai F, Bouxsein M, Lotinun S, Baron R, Divieti Pajevic P. Loss of Gsα in osteocytes leads to osteopenia due to sclerostin induced suppression of osteoblast activity. Bone 2018; 117:138-148. [PMID: 30266511 PMCID: PMC6207374 DOI: 10.1016/j.bone.2018.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/06/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
Abstract
The stimulatory subunit of G-protein, Gsα, acts as a secondary messenger of G-protein coupled receptors (GPCRs) that primarily activates cAMP-induced signaling. GPCRs, such as the parathyroid hormone receptor (PTHR), are critical regulators of bone formation as shown by number of genetic manipulation studies targeting early osteoblast lineage cells. In this study, we have examined the role of Gsα in osteocytes, the terminally differentiated and most abundant cells of the osteoblast lineage. Mice lacking the stimulatory subunit of G-proteins (Gsα) in osteocytes (DMP1-GsαKO) have significant decrease of both trabecular and cortical bone, as assessed by μCT. Histomorphometric analysis showed that the osteopenia was mostly driven by more than 90% decrease in osteoblast numbers and activity whereas osteoclasts were only slightly decreased. The decrease in osteoblast number was associated with a striking lack of endocortical osteoblasts. We have previously shown that loss of the stimulatory subunit of G-proteins (Gsα) in osteocytes in vitro or in vivo induces high expression of sclerostin. To determine if the increased sclerostin levels contributed to the decreased endosteal bone lining cells and osteopenia, we treated wild-type mice with recombinant sclerostin and the DMP1-GsαKO mice with anti-sclerostin antibody. Treatment of wild-type mice with 100 μg/kg sclerostin for 3-weeks significantly reduced the numbers of bone lining cells and led to osteopenia. Next, the DMP1-GsαKO and control littermates were treated with the anti-sclerostin antibody (25 mg/kg, 2 times per week) for 4-weeks. Upon the antibody treatment, the endocortical osteoblasts reappeared in the DMP1-GsαKO mice to a comparable level to that of the vehicle treated control littermates. In control mice, E11/gp38 positive osteocytes were observed in parallel with the endocortical osteoblasts with higher dendrite density towards the endocortical osteoblasts. In DMP1-GsαKO mice, E11/gp38 positive osteocytes were lacking dendrites and were randomly scattered throughout the bone matrix. After treatment with anti-sclerostin antibody, DMP1-GsαKO mice showed increased E11/gp38 positive osteocytes near the endosteal bone surface and endosteal osteoblasts. The anti-sclerostin antibody treatment proportionally increased the bone volume but it could not completely rescue the osteopenia in the DMP1-GsαKO mice. Taken together, this data suggests that Gsα signaling in osteocytes leads to osteopenia driven, at least in part, by increased secretion of sclerostin.
Collapse
Affiliation(s)
- Keertik Fulzele
- Molecular and Cell Biology, Goldman School of Dental Medicine, Boston University, Boston, USA
| | - Christopher Dedic
- Molecular and Cell Biology, Goldman School of Dental Medicine, Boston University, Boston, USA
| | - Forest Lai
- Molecular and Cell Biology, Goldman School of Dental Medicine, Boston University, Boston, USA
| | - Mary Bouxsein
- Beth Israel Deaconess Hospital, Harvard Medical School, Boston, USA
| | - Sutada Lotinun
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA; Department of Physiology and Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Roland Baron
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Paola Divieti Pajevic
- Molecular and Cell Biology, Goldman School of Dental Medicine, Boston University, Boston, USA.
| |
Collapse
|
19
|
Wein MN, Kronenberg HM. Regulation of Bone Remodeling by Parathyroid Hormone. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031237. [PMID: 29358318 DOI: 10.1101/cshperspect.a031237] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Parathyroid hormone (PTH) exerts profound effects on skeletal homeostasis through multiple cellular and molecular mechanisms. Continuous hyperparathyroidism causes net loss of bone mass, despite accelerating bone formation by osteoblasts. Intermittent treatment with PTH analogs represents the only Food and Drug Administration (FDA)-approved bone anabolic osteoporosis treatment strategy. Functional PTH receptors are present on cells of the osteoblast lineage, ranging from early skeletal stem cells to matrix-embedded osteocytes. In addition, bone remodeling by osteoclasts liberates latent growth factors present within bone matrix. Here, we will provide an overview of the multiple cellular and molecular mechanisms through which PTH influences bone homeostasis. Notably, net skeletal effects of continuous versus intermittent can differ significantly. Where possible, we will highlight mechanisms through which continuous hyperparathyroidism leads to bone loss, and through which intermittent hyperparathyroidism boosts bone mass. Given the therapeutic usage of intermittent PTH (iPTH) treatment for osteoporosis, particular attention will be paid toward mechanisms underlying the bone anabolic effects of once daily PTH administration.
Collapse
Affiliation(s)
- Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Henry M Kronenberg
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
20
|
Tzeng YS, Chung NC, Chen YR, Huang HY, Chuang WP, Lai DM. Imbalanced Osteogenesis and Adipogenesis in Mice Deficient in the Chemokine Cxcl12/Sdf1 in the Bone Mesenchymal Stem/Progenitor Cells. J Bone Miner Res 2018; 33:679-690. [PMID: 29120093 DOI: 10.1002/jbmr.3340] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/23/2017] [Accepted: 11/08/2017] [Indexed: 11/08/2022]
Abstract
Bone and bone marrow serve as an imperative ecosystem to various types of cells participating in critical body functions. The chemokine Cxcl12, also known as stromal cell-derived factor 1 (Sdf1), is one of the communication factors in the marrow microenvironment that regulates hematopoietic stem/progenitor cell homeostasis. However, the function of Cxcl12 in other bone marrow cells in vivo is yet to be discovered. Here we report a novel function of Cxcl12 in postnatal bone development and homeostasis. Targeted deletion of Cxcl12 in Paired related homeobox 1 (Prx1)-expressing or osterix (Osx)-expressing mesenchymal stem/progenitor cells (MSPCs), but not in mature osteoblasts, resulted in marrow adiposity and reduced trabecular bone content. In vivo lineage tracing analysis revealed biased differentiation of MSPCs toward adipocytes. In contrast, adult-stage deletion of Cxcl12 in Osx-expressing cells led to reduced bone content but not adiposity. Targeting the receptor Cxcr4 in the Prx1-expressing cells also resulted in reduced trabecular bone content but not adiposity. Our study reveals a previously unidentified role of the MSPC-secreting Cxcl12 that regulates its osteogenesis and adipogenesis through the cell-autonomous and non-autonomous mechanism, respectively; which could further influence the homeostatic control of the hematopoietic system. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yi-Shiuan Tzeng
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ni-Chun Chung
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Ren Chen
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsin-Yi Huang
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Po Chuang
- Cardiovascular Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Dar-Ming Lai
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
21
|
Ramaswamy G, Fong J, Brewer N, Kim H, Zhang D, Choi Y, Kaplan FS, Shore EM. Ablation of Gsα signaling in osteoclast progenitor cells adversely affects skeletal bone maintenance. Bone 2018; 109:86-90. [PMID: 29183785 PMCID: PMC5866199 DOI: 10.1016/j.bone.2017.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/09/2017] [Accepted: 11/23/2017] [Indexed: 01/18/2023]
Abstract
Gsα, the alpha stimulatory subunit of heterotrimeric G proteins that activates downstream signaling through the adenylyl cyclase and cAMP/PKA pathway, plays an important role in bone development and remodeling. The role of Gsα in mesenchymal stem cell (MSC) differentiation to osteoblasts has been demonstrated in several mouse models of Gsα inactivation. Previously, using mice with heterozygous germline deletion of Gsα (Gnas+/p-), we identified a novel additional role for Gsα in bone remodeling, and showed the importance of Gnas in maintaining bone quality by regulating osteoclast differentiation and function. In this study, we show that postnatal deletion of Gsα (CreERT2;Gnasfl/fl) leads to reduction in trabecular bone quality parameters and increased trabecular osteoclast numbers. Furthermore, mice with deletion of Gsα specifically in cells of the macrophage/osteoclast lineage (LysM-Cre;Gnasfl/fl) showed reduced trabecular bone quality and increased trabecular osteoclasts, but to a reduced extent compared to the CreERT2;Gnasfl/fl global knockout. This demonstrates that while Gsα has a cell autonomous role in osteclasts in regulating bone quality, Gsα expression in other cell types additionally contribute. In both of these mouse models, cortical bone was more subtly affected than trabecular bone. Our results support that Gsα is required postnatally to maintain trabecular bone quality and that Gsα function to maintain trabecular bone is regulated in part through a specific activity in osteoclasts.
Collapse
Affiliation(s)
- Girish Ramaswamy
- Department of Orthopaedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John Fong
- Department of Orthopaedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Niambi Brewer
- Department of Orthopaedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Hyunsoo Kim
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Deyu Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Frederick S Kaplan
- Department of Orthopaedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Eileen M Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Swami S, Johnson J, Bettinson LA, Kimura T, Zhu H, Albertelli MA, Johnson RW, Wu JY. Prevention of breast cancer skeletal metastases with parathyroid hormone. JCI Insight 2017; 2:90874. [PMID: 28878134 DOI: 10.1172/jci.insight.90874] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 07/27/2017] [Indexed: 12/12/2022] Open
Abstract
Advanced breast cancer is frequently associated with skeletal metastases and accelerated bone loss. Recombinant parathyroid hormone [teriparatide, PTH(1-34)] is the first anabolic agent approved in the US for treatment of osteoporosis. While signaling through the PTH receptor in the osteoblast lineage regulates bone marrow hematopoietic niches, the effects of anabolic PTH on the skeletal metastatic niche are unknown. Here, we demonstrate, using orthotopic and intratibial models of 4T1 murine and MDA-MB-231 human breast cancer tumors, that anabolic PTH decreases both tumor engraftment and the incidence of spontaneous skeletal metastasis in mice. Microcomputed tomography and histomorphometric analyses revealed that PTH increases bone volume and reduces tumor engraftment and volume. Transwell migration assays with murine and human breast cancer cells revealed that PTH alters the gene expression profile of the metastatic niche, in particular VCAM-1, to inhibit recruitment of cancer cells. While PTH did not affect growth or migration of the primary tumor, it elicited several changes in the tumor gene expression profile resulting in a less metastatic phenotype. In conclusion, PTH treatment in mice alters the bone microenvironment, resulting in decreased cancer cell engraftment, reduced incidence of metastases, preservation of bone microarchitecture and prolonged survival.
Collapse
Affiliation(s)
- Srilatha Swami
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, Stanford, California, USA
| | - Joshua Johnson
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, Stanford, California, USA.,Department of Medicine, Division of Clinical Pharmacology, and.,Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Lance A Bettinson
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, Stanford, California, USA
| | - Takaharu Kimura
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, Stanford, California, USA
| | - Hui Zhu
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, Stanford, California, USA
| | | | - Rachelle W Johnson
- Department of Medicine, Division of Clinical Pharmacology, and.,Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, California, USA.,Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Joy Y Wu
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
23
|
Osteogenesis Is Improved by Low Tumor Necrosis Factor Alpha Concentration through the Modulation of Gs-Coupled Receptor Signals. Mol Cell Biol 2017; 37:MCB.00442-16. [PMID: 28137910 DOI: 10.1128/mcb.00442-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/24/2017] [Indexed: 12/31/2022] Open
Abstract
In the early phase of bone damage, low concentrations of the cytokine tumor necrosis factor alpha (TNF-α) favor osteoblast differentiation. In contrast, chronic high doses of the same cytokine contribute to bone loss, demonstrating opposite effects depending on its concentration and on the time of exposure. In the bone microenvironment, TNF-α modulates the expression/function of different G protein-coupled receptors (GPCRs) and of their regulatory proteins, GPCR-regulated kinases (GRKs), thus dictating their final biological outcome in controlling bone anabolic processes. Here, the effects of TNF-α were investigated on the expression/responsiveness of the A2B adenosine receptor (A2BAR), a Gs-coupled receptor that promotes mesenchymal stem cell (MSC) differentiation into osteoblasts. Low TNF-α concentrations exerted a prodifferentiating effect on MSCs, pushing them toward an osteoblast phenotype. By regulating GRK2 turnover and expression, the cytokine impaired A2BAR desensitization, accelerating receptor-mediated osteoblast differentiation. These data supported the anabolic effect of TNF-α submaximal concentration and demonstrated that the cytokine regulates GPCR responses by interfering with the receptor desensitization machinery, thereby enhancing the anabolic responses evoked by A2BAR ligands. Overall, these results indicated that GPCR desensitization plays a pivotal role in osteogenesis and that its manipulation is an effective strategy to favor bone remodeling.
Collapse
|
24
|
Gsα Controls Cortical Bone Quality by Regulating Osteoclast Differentiation via cAMP/PKA and β-Catenin Pathways. Sci Rep 2017; 7:45140. [PMID: 28338087 PMCID: PMC5364530 DOI: 10.1038/srep45140] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/17/2017] [Indexed: 12/14/2022] Open
Abstract
Skeletal bone formation and maintenance requires coordinate functions of several cell types, including bone forming osteoblasts and bone resorbing osteoclasts. Gsα, the stimulatory subunit of heterotrimeric G proteins, activates downstream signaling through cAMP and plays important roles in skeletal development by regulating osteoblast differentiation. Here, we demonstrate that Gsα signaling also regulates osteoclast differentiation during bone modeling and remodeling. Gnas, the gene encoding Gsα, is imprinted. Mice with paternal allele deletion of Gnas (Gnas+/p-) have defects in cortical bone quality and strength during early development (bone modeling) that persist during adult bone remodeling. Reduced bone quality in Gnas+/p- mice was associated with increased endosteal osteoclast numbers, with no significant effects on osteoblast number and function. Osteoclast differentiation and resorption activity was enhanced in Gnas+/p- cells. During differentiation, Gnas+/p- cells showed diminished pCREB, β-catenin and cyclin D1, and enhanced Nfatc1 levels, conditions favoring osteoclastogenesis. Forskolin treatment increased pCREB and rescued osteoclast differentiation in Gnas+/p- by reducing Nfatc1 levels. Cortical bone of Gnas+/p- mice showed elevated expression of Wnt inhibitors sclerostin and Sfrp4 consistent with reduced Wnt/β-catenin signaling. Our data identify a new role for Gsα signaling in maintaining bone quality by regulating osteoclast differentiation and function through cAMP/PKA and Wnt/β-catenin pathways.
Collapse
|
25
|
Fan Y, Hanai JI, Le PT, Bi R, Maridas D, DeMambro V, Figueroa CA, Kir S, Zhou X, Mannstadt M, Baron R, Bronson RT, Horowitz MC, Wu JY, Bilezikian JP, Dempster DW, Rosen CJ, Lanske B. Parathyroid Hormone Directs Bone Marrow Mesenchymal Cell Fate. Cell Metab 2017; 25:661-672. [PMID: 28162969 PMCID: PMC5342925 DOI: 10.1016/j.cmet.2017.01.001] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/09/2016] [Accepted: 01/04/2017] [Indexed: 02/05/2023]
Abstract
Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP receptor (PTH1R) in mesenchymal stem cells using Prx1Cre and found low bone formation, increased bone resorption, and high bone marrow adipose tissue (BMAT). Bone marrow adipocytes traced to Prx1 and expressed classic adipogenic markers and high receptor activator of nuclear factor kappa B ligand (Rankl) expression. RANKL levels were also elevated in bone marrow supernatant and serum, but undetectable in other adipose depots. By cell sorting, Pref1+RANKL+ marrow progenitors were twice as great in mutant versus control marrow. Intermittent PTH administration to control mice reduced BMAT significantly. A similar finding was noted in male osteoporotic patients. Thus, marrow adipocytes exhibit osteogenic and adipogenic characteristics, are uniquely responsive to PTH, and secrete RANKL. These studies reveal an important mechanism for PTH's therapeutic action through its ability to direct mesenchymal cell fate.
Collapse
Affiliation(s)
- Yi Fan
- Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA 02115, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jun-Ichi Hanai
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Phuong T Le
- Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Endocrine Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - David Maridas
- Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | | | | | - Serkan Kir
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Michael Mannstadt
- Endocrine Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Roland Baron
- Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA 02115, USA; Endocrine Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Roderick T Bronson
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215, USA
| | - Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT 06510, USA
| | - Joy Y Wu
- Division of Endocrinology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John P Bilezikian
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - David W Dempster
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Scarborough, ME 04074, USA.
| | - Beate Lanske
- Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA 02115, USA; Endocrine Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
26
|
Wang FS, Lian WS, Weng WT, Sun YC, Ke HJ, Chen YS, Ko JY. Neuropeptide Y mediates glucocorticoid-induced osteoporosis and marrow adiposity in mice. Osteoporos Int 2016; 27:2777-2789. [PMID: 27080706 DOI: 10.1007/s00198-016-3598-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/08/2016] [Indexed: 12/15/2022]
Abstract
UNLABELLED Increased neuropeptide Y (NPY) expression occurred in the glucocorticoid-induced osteoporotic skeleton. NPY knockout mice exhibited a minor response to the glucocorticoid-mediated exacerbation of bone accretion and fatty marrow pathogenesis. NPY deletion restored SITR1 signaling and enhanced PPARγ ubiquitination of bone tissue, an alternative strategy for ameliorating glucocorticoid-induced skeletal deterioration. INTRODUCTION Glucocorticoid excess is observed to worsen the pathogenesis of osteoporosis and fatty marrow. This study was undertaken to investigate the contribution of neuropeptide Y (NPY) to glucocorticoid-induced bone loss and marrow adiposity. METHODS NPY knockout and wild-type mice were administered methylprednisolone for four consecutive weeks. Bone mineral density, microarchitecture, and calcein-labeled mineral acquisition were quantified by μCT, dual energy X-ray absorptiometry, and histomorphometry. Expression of osteogenic and adipogenic markers and acetylation states of PPARγ were detected by RT-quantitative PCR, immunoprecipitation, and immunoblotting. RESULTS High NPY levels were associated with glucocorticoid-induced trabecular bone deterioration and marrow fat accumulation. Mice lacking NPY had high bone mass concomitant with spacious trabecular and cortical bone microstructure. NPY deletion shielded skeletal tissues from the glucocorticoid-induced impediment of bone mass, trabecular morphometric characteristics, mineral accretion activity, and fatty marrow development. Ex vivo, NPY deficiency sustained osteogenic differentiation capacity and curtailed the glucocorticoid-mediated escalation of adipocyte formation reactions of primary bone-marrow mesenchymal cells. NPY deletion appeared to modulate Y1 and Y2 receptors, sirtuin 1, ERK, and p38 signaling pathways, an effect that facilitated hypoacetylation and ubiquitination of adipogenic transcription factor PPARγ in the skeletal tissues exposed to glucocorticoid stress. CONCLUSIONS NPY mediates the glucocorticoid-induced disturbance of mineral accretion and marrow adipogenesis through post-translational modification of PPARγ. This study brings a new molecular insight into the disintegration of adipogenic and osteogenic activities within glucocorticoid-mediated osteoporotic skeletons. Control of NPY is an alternative strategy to ameliorate glucocorticoid-induced bone destruction and fatty marrow.
Collapse
Affiliation(s)
- F-S Wang
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Core Laboratory for Phenomics and Diagnostics, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - W-S Lian
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Core Laboratory for Phenomics and Diagnostics, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - W-T Weng
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Core Laboratory for Phenomics and Diagnostics, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Y-C Sun
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Core Laboratory for Phenomics and Diagnostics, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - H-J Ke
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Core Laboratory for Phenomics and Diagnostics, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Y-S Chen
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Core Laboratory for Phenomics and Diagnostics, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - J-Y Ko
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan.
| |
Collapse
|
27
|
Cain CJ, Valencia JT, Ho S, Jordan K, Mattingly A, Morales BM, Hsiao EC. Increased Gs Signaling in Osteoblasts Reduces Bone Marrow and Whole-Body Adiposity in Male Mice. Endocrinology 2016; 157:1481-94. [PMID: 26901092 PMCID: PMC4816728 DOI: 10.1210/en.2015-1867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/16/2016] [Indexed: 12/21/2022]
Abstract
Bone is increasingly recognized as an endocrine organ that can regulate systemic hormones and metabolism through secreted factors. Although bone loss and increased adiposity appear to be linked clinically, whether conditions of increased bone formation can also change systemic metabolism remains unclear. In this study, we examined how increased osteogenesis affects metabolism by using an engineered G protein-coupled receptor, Rs1, to activate Gs signaling in osteoblastic cells in ColI(2.3)(+)/Rs1(+) transgenic mice. We previously showed that these mice have dramatically increased bone formation resembling fibrous dysplasia of the bone. We found that total body fat was significantly reduced starting at 3 weeks of age. Furthermore, ColI(2.3)(+)/Rs1(+) mice showed reduced O2 consumption and respiratory quotient measures without effects on food intake and energy expenditure. The mice had significantly decreased serum triacylglycerides, leptin, and adiponectin. Resting glucose and insulin levels were unchanged; however, glucose and insulin tolerance tests revealed increased sensitivity to insulin. The mice showed resistance to fat accumulation from a high-fat diet. Furthermore, ColI(2.3)(+)/Rs1(+) mouse bones had dramatically reduced mature adipocyte differentiation, increased Wingless/Int-1 (Wnt) signaling, and higher osteoblastic glucose utilization than controls. These findings suggest that osteoblasts can influence both local and peripheral adiposity in conditions of increased bone formation and suggest a role for osteoblasts in the regulation of whole-body adiposity and metabolic homeostasis.
Collapse
Affiliation(s)
- Corey J Cain
- Department of Medicine, Division of Endocrinology and Metabolism; Institute for Human Genetics; and Program in Craniofacial Biology (C.J.C., S.H., K.J., A.M., B.M.M., and E.C.H.); and the Biomedical Sciences Graduate Program (J.T.V. and E.C.H.); University of California, San Francisco, San Francisco, California 94143-0794
| | - Joel T Valencia
- Department of Medicine, Division of Endocrinology and Metabolism; Institute for Human Genetics; and Program in Craniofacial Biology (C.J.C., S.H., K.J., A.M., B.M.M., and E.C.H.); and the Biomedical Sciences Graduate Program (J.T.V. and E.C.H.); University of California, San Francisco, San Francisco, California 94143-0794
| | - Samantha Ho
- Department of Medicine, Division of Endocrinology and Metabolism; Institute for Human Genetics; and Program in Craniofacial Biology (C.J.C., S.H., K.J., A.M., B.M.M., and E.C.H.); and the Biomedical Sciences Graduate Program (J.T.V. and E.C.H.); University of California, San Francisco, San Francisco, California 94143-0794
| | - Kate Jordan
- Department of Medicine, Division of Endocrinology and Metabolism; Institute for Human Genetics; and Program in Craniofacial Biology (C.J.C., S.H., K.J., A.M., B.M.M., and E.C.H.); and the Biomedical Sciences Graduate Program (J.T.V. and E.C.H.); University of California, San Francisco, San Francisco, California 94143-0794
| | - Aaron Mattingly
- Department of Medicine, Division of Endocrinology and Metabolism; Institute for Human Genetics; and Program in Craniofacial Biology (C.J.C., S.H., K.J., A.M., B.M.M., and E.C.H.); and the Biomedical Sciences Graduate Program (J.T.V. and E.C.H.); University of California, San Francisco, San Francisco, California 94143-0794
| | - Blanca M Morales
- Department of Medicine, Division of Endocrinology and Metabolism; Institute for Human Genetics; and Program in Craniofacial Biology (C.J.C., S.H., K.J., A.M., B.M.M., and E.C.H.); and the Biomedical Sciences Graduate Program (J.T.V. and E.C.H.); University of California, San Francisco, San Francisco, California 94143-0794
| | - Edward C Hsiao
- Department of Medicine, Division of Endocrinology and Metabolism; Institute for Human Genetics; and Program in Craniofacial Biology (C.J.C., S.H., K.J., A.M., B.M.M., and E.C.H.); and the Biomedical Sciences Graduate Program (J.T.V. and E.C.H.); University of California, San Francisco, San Francisco, California 94143-0794
| |
Collapse
|
28
|
Tascau L, Gardner T, Anan H, Yongpravat C, Cardozo CP, Bauman WA, Lee FY, Oh DS, Tawfeek HA. Activation of Protein Kinase A in Mature Osteoblasts Promotes a Major Bone Anabolic Response. Endocrinology 2016; 157:112-26. [PMID: 26488807 DOI: 10.1210/en.2015-1614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein kinase A (PKA) regulates osteoblast cell function in vitro and is activated by important bone mass modulating agents. We determined whether PKA activation in osteoblasts is sufficient to mediate a bone anabolic response. Thus, a mouse model conditionally expressing a constitutively active PKA (CA-PKA) in osteoblasts (CA-PKA-OB mouse) was developed by crossing a 2.3-kb α1 (I)-collagen promoter-Cre mouse with a floxed-CA-PKA mouse. Primary osteoblasts from the CA-PKA-OB mice exhibited higher basal PKA activity than those from control mice. Microcomputed tomographic analysis revealed that CA-PKA-OB female mice had an 8.6-fold increase in femoral but only 1.16-fold increase in lumbar 5 vertebral bone volume/total volume. Femur cortical thickness and volume were also higher in the CA-PKA-OB mice. In contrast, alterations in many femoral microcomputed tomographic parameters in male CA-PKA-OB mice were modest. Interestingly, the 3-dimensional structure model index was substantially lower both in femur and lumbar 5 of male and female CA-PKA-OB mice, reflecting an increase in the plate to rod-like structure ratio. In agreement, femurs from female CA-PKA-OB mice had greater load to failure and were stiffer compared with those of control mice. Furthermore, the CA-PKA-OB mice had higher levels of serum bone turnover markers and increased osteoblast and osteoclast numbers per total tissue area compared with control animals. In summary, constitutive activation of PKA in osteoblasts is sufficient to increase bone mass and favorably modify bone architecture and improve mechanical properties. PKA activation in mature osteoblasts is, therefore, an important target for designing anabolic drugs for treating diseases with bone loss.
Collapse
Affiliation(s)
- Liana Tascau
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Thomas Gardner
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Hussein Anan
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Charlie Yongpravat
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Christopher P Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - William A Bauman
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Francis Y Lee
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Daniel S Oh
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Hesham A Tawfeek
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| |
Collapse
|
29
|
Falank C, Fairfield H, Reagan MR. Signaling Interplay between Bone Marrow Adipose Tissue and Multiple Myeloma cells. Front Endocrinol (Lausanne) 2016; 7:67. [PMID: 27379019 PMCID: PMC4911365 DOI: 10.3389/fendo.2016.00067] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/03/2016] [Indexed: 01/04/2023] Open
Abstract
In the year 2000, Hanahan and Weinberg (1) defined the six Hallmarks of Cancer as: self-sufficiency in growth signals, evasion of apoptosis, insensitivity to antigrowth mechanisms, tissue invasion and metastasis, limitless replicative potential, and sustained angiogenesis. Eleven years later, two new Hallmarks were added to the list (avoiding immune destruction and reprograming energy metabolism) and two new tumor characteristics (tumor-promoting inflammation and genome instability and mutation) (2). In multiple myeloma (MM), a destructive cancer of the plasma cell that grows predominantly in the bone marrow (BM), it is clear that all these hallmarks and characteristics are in play, contributing to tumor initiation, drug resistance, disease progression, and relapse. Bone marrow adipose tissue (BMAT) is a newly recognized contributor to MM oncogenesis and disease progression, potentially affecting MM cell metabolism, immune action, inflammation, and influences on angiogenesis. In this review, we discuss the confirmed and hypothetical contributions of BMAT to MM development and disease progression. BMAT has been understudied due to technical challenges and a previous lack of appreciation for the endocrine function of this tissue. In this review, we define the dynamic, responsive, metabolically active BM adipocyte. We then describe how BMAT influences MM in terms of: lipids/metabolism, hypoxia/angiogenesis, paracrine or endocrine signaling, and bone disease. We then discuss the connection between BMAT and systemic inflammation and potential treatments to inhibit the feedback loops between BM adipocytes and MM cells that support MM progression. We aim for researchers to use this review to guide and help prioritize their experiments to develop better treatments or a cure for cancers, such as MM, that associate with and may depend on BMAT.
Collapse
Affiliation(s)
- Carolyne Falank
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Heather Fairfield
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Michaela R. Reagan
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, USA
- School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
- School of Medicine, Tufts University, Boston, MA, USA
- *Correspondence: Michaela R. Reagan,
| |
Collapse
|
30
|
Ko JY, Chuang PC, Ke HJ, Chen YS, Sun YC, Wang FS. MicroRNA-29a mitigates glucocorticoid induction of bone loss and fatty marrow by rescuing Runx2 acetylation. Bone 2015; 81:80-88. [PMID: 26141838 DOI: 10.1016/j.bone.2015.06.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/08/2015] [Accepted: 06/29/2015] [Indexed: 12/27/2022]
Abstract
Glucocorticoid treatment reportedly increases the morbidity of osteoporotic or osteonecrotic disorders. Exacerbated bone acquisition and escalated marrow adipogenesis are prominent pathological features of glucocorticoid-mediated skeletal disorders. MicroRNAs reportedly modulate tissue metabolism and remodeling. This study was undertaken to investigate the biological roles of microRNA-29a (miR-29a) in skeletal and fat metabolism in the pathogenesis of glucocorticoid-induced osteoporosis. Transgenic mice overexpressing miR-29a precursor or wild-type mice were given methylprednisolone. Bone mass, microarchitecture and histology were assessed by dual energy X-ray absorptiometry, μCT and histomorphometry. Differential gene expression and signaling components were delineated by quantitative RT-PCR and immunoblotting. Glucocorticoid treatment accelerated bone loss and marrow fat accumulation in association with decreased miR-29a expression. The miR-29a transgenic mice had high bone mineral density, trabecular microarchitecture and cortical thickness. miR-29a overexpression mitigated the glucocorticoid-induced impediment of bone mass, skeletal microstructure integrity and mineralization reaction and attenuated fatty marrow histopathology. Ex vivo, miR-29a increased osteogenic differentiation capacity and alleviated the glucocorticoid-induced promotion of adipocyte formation in primary bone-marrow mesenchymal progenitor cell cultures. Through inhibition of histone deacetylase 4 (HDAC4) expression, miR-29a restored acetylated Runx2 and β-catenin abundances and reduced RANKL, leptin and glucocorticoid receptor expression in glucocorticoid-mediated osteoporosis bone tissues. Taken together, glucocorticoid suppression of miR-29a signaling disturbed the balances between osteogenic and adipogenic activities, and thereby interrupted bone formation and skeletal homeostasis. miR-29a inhibition of HDAC4 stabilized the acetylation state of Runx2 and β-catenin that ameliorated the detrimental effects of glucocorticoid on mineralization and lipogenesis reactions in bone tissue microenvironments. This study highlighted emerging skeletal-anabolic actions of miR-29a signaling in the progression of glucocorticoid-induced bone tissue destruction. Sustaining miR-29a actions is beneficial in protecting against glucocorticoid-mediated osteoporosis.
Collapse
Affiliation(s)
- Jih-Yang Ko
- Departments of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Chin Chuang
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Huei-Jin Ke
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Shan Chen
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-Chih Sun
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Feng-Sheng Wang
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Centre for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
31
|
Sinha P, Aarnisalo P, Chubb R, Poulton IJ, Guo J, Nachtrab G, Kimura T, Swami S, Saeed H, Chen M, Weinstein LS, Schipani E, Sims NA, Kronenberg HM, Wu JY. Loss of Gsα in the Postnatal Skeleton Leads to Low Bone Mass and a Blunted Response to Anabolic Parathyroid Hormone Therapy. J Biol Chem 2015; 291:1631-1642. [PMID: 26598522 DOI: 10.1074/jbc.m115.679753] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Indexed: 12/25/2022] Open
Abstract
Parathyroid hormone (PTH) is an important regulator of osteoblast function and is the only anabolic therapy currently approved for treatment of osteoporosis. The PTH receptor (PTH1R) is a G protein-coupled receptor that signals via multiple G proteins including Gsα. Mice expressing a constitutively active mutant PTH1R exhibited a dramatic increase in trabecular bone that was dependent upon expression of Gsα in the osteoblast lineage. Postnatal removal of Gsα in the osteoblast lineage (P-Gsα(OsxKO) mice) yielded markedly reduced trabecular and cortical bone mass. Treatment with anabolic PTH(1-34) (80 μg/kg/day) for 4 weeks failed to increase trabecular bone volume or cortical thickness in male and female P-Gsα(OsxKO) mice. Surprisingly, in both male and female mice, PTH administration significantly increased osteoblast numbers and bone formation rate in both control and P-Gsα(OsxKO) mice. In mice that express a mutated PTH1R that activates adenylyl cyclase and protein kinase A (PKA) via Gsα but not phospholipase C via Gq/11 (D/D mice), PTH significantly enhanced bone formation, indicating that phospholipase C activation is not required for increased bone turnover in response to PTH. Therefore, although the anabolic effect of intermittent PTH treatment on trabecular bone volume is blunted by deletion of Gsα in osteoblasts, PTH can stimulate osteoblast differentiation and bone formation. Together these findings suggest that alternative signaling pathways beyond Gsα and Gq/11 act downstream of PTH on osteoblast differentiation.
Collapse
Affiliation(s)
- Partha Sinha
- From the Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Piia Aarnisalo
- From the Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114,; Department of Clinical Chemistry, University of Helsinki and Helsinki University Central Hospital, Hospital District of Helsinki and Uusimaa, Laboratory Services, HUSLAB, 00029 HUS, Finland
| | - Rhiannon Chubb
- From the Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Ingrid J Poulton
- St. Vincent's Institute and Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Jun Guo
- From the Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Gregory Nachtrab
- From the Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Takaharu Kimura
- Division of Endocrinology, Stanford University School of Medicine, Stanford, California 94305
| | - Srilatha Swami
- Division of Endocrinology, Stanford University School of Medicine, Stanford, California 94305
| | - Hamid Saeed
- Division of Endocrinology, Stanford University School of Medicine, Stanford, California 94305
| | - Min Chen
- Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Lee S Weinstein
- Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Ernestina Schipani
- Departments of Orthopedic Surgery and Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Natalie A Sims
- St. Vincent's Institute and Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Henry M Kronenberg
- From the Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Joy Y Wu
- From the Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114,; Division of Endocrinology, Stanford University School of Medicine, Stanford, California 94305,.
| |
Collapse
|
32
|
Marie PJ. Osteoblast dysfunctions in bone diseases: from cellular and molecular mechanisms to therapeutic strategies. Cell Mol Life Sci 2015; 72:1347-61. [PMID: 25487608 PMCID: PMC11113967 DOI: 10.1007/s00018-014-1801-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/13/2014] [Accepted: 12/01/2014] [Indexed: 12/27/2022]
Abstract
Several metabolic, genetic and oncogenic bone diseases are characterized by defective or excessive bone formation. These abnormalities are caused by dysfunctions in the commitment, differentiation or survival of cells of the osteoblast lineage. During the recent years, significant advances have been made in our understanding of the cellular and molecular mechanisms underlying the osteoblast dysfunctions in osteoporosis, skeletal dysplasias and primary bone tumors. This led to suggest novel therapeutic approaches to correct these abnormalities such as the modulation of WNT signaling, the pharmacological modulation of proteasome-mediated protein degradation, the induction of osteoprogenitor cell differentiation, the repression of cancer cell proliferation and the manipulation of epigenetic mechanisms. This article reviews our current understanding of the major cellular and molecular mechanisms inducing osteoblastic cell abnormalities in age-related bone loss, genetic skeletal dysplasias and primary bone tumors, and discusses emerging therapeutic strategies to counteract the osteoblast abnormalities in these disorders of bone formation.
Collapse
Affiliation(s)
- Pierre J Marie
- INSERM UMR-1132, Hôpital Lariboisière, 2 rue Ambroise Paré, 75475, Paris Cedex 10, France,
| |
Collapse
|
33
|
Pignolo RJ, Ramaswamy G, Fong JT, Shore EM, Kaplan FS. Progressive osseous heteroplasia: diagnosis, treatment, and prognosis. APPLICATION OF CLINICAL GENETICS 2015; 8:37-48. [PMID: 25674011 PMCID: PMC4321643 DOI: 10.2147/tacg.s51064] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Progressive osseous heteroplasia (POH) is an ultrarare genetic condition of progressive ectopic ossification. Most cases of POH are caused by heterozygous inactivating mutations of GNAS, the gene encoding the alpha subunit of the G-stimulatory protein of adenylyl cyclase. POH is part of a spectrum of related genetic disorders, including Albright hereditary osteodystrophy, pseudohypoparathyroidism, and primary osteoma cutis, that share common features of superficial ossification and association with inactivating mutations of GNAS. The genetics, diagnostic criteria, supporting clinical features, current management, and prognosis of POH are reviewed here, and emerging therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA ; Department of Orthopaedic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA ; The Center for Research in FOP and Related Disorders, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Girish Ramaswamy
- Department of Orthopaedic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA ; The Center for Research in FOP and Related Disorders, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - John T Fong
- Department of Orthopaedic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA ; The Center for Research in FOP and Related Disorders, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eileen M Shore
- Department of Orthopaedic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA ; The Center for Research in FOP and Related Disorders, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA ; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Frederick S Kaplan
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA ; Department of Orthopaedic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA ; The Center for Research in FOP and Related Disorders, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|