1
|
Gustafsson A, Galteri G, Barakat A, Engqvist J, Grassi L, Cristofolini L, Dejea H, Isaksson H. Characterization of damage mechanisms in cortical bone: Quantification of fracture resistance, critical strains, and crack tortuosity. J Mech Behav Biomed Mater 2024; 160:106721. [PMID: 39288666 DOI: 10.1016/j.jmbbm.2024.106721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
One step towards understanding bone fragility and degenerative diseases is to unravel the links between fracture resistance and the compositional and structural characteristics of cortical bone. In this study, we explore an optical method for automatic crack detection to generate full fracture resistance curves of cortical bone. We quantify fracture toughness, critical failure strains at the crack tip, and crack tortuosity in three directions and analyze how they relate to cortical bone microstructure. A three-point bending fracture test of single-edge notched beam specimens in three directions (cracks propagating transverse, radial and longitudinal to the microstructure) from bovine cortical bone was combined with 2D-digital image correlation. Crack growth was automatically monitored by analyzing discontinuities in the displacement field using phase congruency analysis. Fracture resistance was analyzed using J-R-curves and strains were quantified at the crack tip. Post-testing, a subset of specimens was scanned using micro-tomography to visualize cracks and to quantify their tortuosity. Both fracture toughness and crack tortuosity were significantly higher in the transverse direction compared to the other directions. Similar fracture toughness was found for radial and longitudinal directions, albeit 20% higher crack tortuosity in the radial specimens. This suggests that radial crack deflections are not as efficient toughening mechanisms. Strains at crack initiation were ∼0.4% for all tissue orientations, while at fully developed damage process zones failure strains were significantly higher in the transverse direction (∼1.5%). Altogether, we present unique quantitative data including different aspects of bone damage in three directions, illustrating the importance of cortical bone microstructure.
Collapse
Affiliation(s)
- Anna Gustafsson
- Department of Biomedical Engineering, Lund University, Sweden.
| | - Giulia Galteri
- Department of Industrial Engineering, Alma Mater Studiorum, University of Bologna, Italy
| | - Arthur Barakat
- Department of Biomedical Engineering, Lund University, Sweden
| | | | - Lorenzo Grassi
- Department of Biomedical Engineering, Lund University, Sweden
| | - Luca Cristofolini
- Department of Industrial Engineering, Alma Mater Studiorum, University of Bologna, Italy
| | - Hector Dejea
- Department of Biomedical Engineering, Lund University, Sweden; MAX IV Laboratory, Lund University, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Sweden
| |
Collapse
|
2
|
Gallaway G, Surowiec RK, Allen MR, Wallace JM, Pyrak-Nolte LJ, Howarter JA, Siegmund T. A proposal for the combined analysis of bone quantity and quality of human cortical bone by quasi-brittle fracture mechanics. J Biomech 2024; 176:112359. [PMID: 39413449 DOI: 10.1016/j.jbiomech.2024.112359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
Quasi-brittle fracture mechanics is used to evaluate fracture of human cortical bone in aging. The approach is demonstrated using cortical bone bars extracted from one 92-year-old human male cadaver. In-situ fracture mechanics experiments in a 3D X-ray microscope are conducted. The evolution of the fracture process zone is documented. Fully developed fracture process zone lengths at peak load are found to span about three osteon diameters. Crack deflection and arrest at cement lines is a key process to build extrinsic toughness. Strength and toughness are found as size-dependent, not only for laboratory-scale experimental specimens but also for the whole femur. A scaling law for the length fracture process zone is used. Then, size-independent, tissue fracture properties are calculated. Linear elastic fracture mechanics applied to laboratory beam specimens underestimates the tissue toughness by 60%. Tissue fracture properties are used to predict the load capacity of the femur in bending within the range of documented data. The quasi-brittle fracture mechanics approach allows for the assessment of the combined effect of bone quantity and bone quality on fracture risk. However, further work is needed considering a larger range of subjects and in the model validation at the organ length scale.
Collapse
Affiliation(s)
- Glynn Gallaway
- School of Mechanical Engineering, Purdue University, United States of America
| | - Rachel K Surowiec
- Weldon School of Biomedical Engineering, Purdue University, United States of America
| | - Matthew R Allen
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, United States of America; Roudebush Veterans Administration Medical Center, United States of America
| | - Joseph M Wallace
- Weldon School of Biomedical Engineering, Purdue University, United States of America
| | - Laura J Pyrak-Nolte
- Department of Physics and Astronomy, Purdue University, United States of America
| | - John A Howarter
- School of Materials Engineering, Purdue University, United States of America; Environmental and Ecological Engineering, Purdue University, United States of America
| | - Thomas Siegmund
- School of Mechanical Engineering, Purdue University, United States of America.
| |
Collapse
|
3
|
Skedros JG, Dayton MR, Cronin JT, Mears CS, Bloebaum RD, Wang X, Bachus KN. Roles of collagen cross-links and osteon collagen/lamellar morphotypes in equine third metacarpals in tension and compression tests. J Exp Biol 2024; 227:jeb247758. [PMID: 39045755 PMCID: PMC11418171 DOI: 10.1242/jeb.247758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024]
Abstract
Many bones experience bending, placing one side in net compression and the other in net tension. Because bone mechanical properties are relatively reduced in tension compared with compression, adaptations are needed to reduce fracture risk. Several toughening mechanisms exist in bone, yet little is known of the influences of secondary osteon collagen/lamellar 'morphotypes' and potential interplay with intermolecular collagen cross-links (CCLs) in prevalent/predominant tension- and compression-loaded regions. Paired third metacarpals (MC3s) from 10 adult horses were prepared for mechanical testing. From one MC3/pair, 5 mm cubes were tested in compression at several mid-shaft locations. From contralateral bones, dumbbell-shaped specimens were tested in tension. Hence, habitual/natural tension- and compression-loaded regions were tested in both modes. Data included: elastic modulus, yield and ultimate strength, and energy absorption (toughness). Fragments of tested specimens were examined for predominant collagen fiber orientation (CFO; representing osteonal and non-osteonal bone), osteon morphotype score (MTS, representing osteonal CFO), mineralization, porosity and other histological characteristics. As a consequence of insufficient material from tension-tested specimens, CCLs were only examined in compression-tested specimens (HP, hydroxylysylpyridinoline; LP, lysylpyridinoline; PE, pentosidine). Among CCLs, only LP and HP/LP correlated significantly with mechanical parameters: LP with energy absorption, HP/LP with elastic modulus (both r=0.4). HP/LP showed a trend with energy absorption (r=-0.3, P=0.08). HP/LP more strongly correlated with osteon density and mineralization than CFO or MTS. Predominant CFO more strongly correlated with energy absorption than MTS in both testing modes. In general, CFO was found to be relatively prominent in affecting regional toughness in these equine MC3s in compression and tension.
Collapse
Affiliation(s)
- John G. Skedros
- University of Utah, Department of Orthopaedics, Salt Lake City, UT 84108, USA
| | - Michael R. Dayton
- University of Colorado, Department of Orthopedics, Aurora, CO 80045, USA
| | - John T. Cronin
- University of Utah, Department of Orthopaedics, Salt Lake City, UT 84108, USA
| | - Chad S. Mears
- University of Utah, Department of Orthopaedics, Salt Lake City, UT 84108, USA
| | - Roy D. Bloebaum
- University of Utah, Department of Orthopaedics, Salt Lake City, UT 84108, USA
| | - Xiaodu Wang
- Department of Mechanical Engineering, University of Texas, San Antonio, TX 78249, USA
| | - Kent N. Bachus
- University of Utah, Department of Orthopaedics, Salt Lake City, UT 84108, USA
- Research Service, Veterans Affair Medical Center, Salt Lake City, UT 84148, USA
| |
Collapse
|
4
|
Surowiec RK, Does MD, Nyman JS. In Vivo Assessment of Bone Quality Without X-rays. Curr Osteoporos Rep 2024; 22:56-68. [PMID: 38227178 PMCID: PMC11050740 DOI: 10.1007/s11914-023-00856-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2023] [Indexed: 01/17/2024]
Abstract
PURPOSE OF REVIEW This review summarizes recent advances in the assessment of bone quality using non-X-ray techniques. RECENT FINDINGS Quantitative ultrasound (QUS) provides multiple measurements of bone characteristics based on the propagation of sound through bone, the attenuation of that sound, and different processing techniques. QUS parameters and model predictions based on backscattered signals can discriminate non-fracture from fracture cases with accuracy comparable to standard bone mineral density (BMD). With advances in magnetic resonance imaging (MRI), bound water and pore water, or a porosity index, can be quantified in several long bones in vivo. Since such imaging-derived measurements correlate with the fracture resistance of bone, they potentially provide new BMD-independent predictors of fracture risk. While numerous measurements of mineral, organic matrix, and bound water by Raman spectroscopy correlate with the strength and toughness of cortical bone, the clinical assessment of person's bone quality using spatially offset Raman spectroscopy (SORS) requires advanced spectral processing techniques that minimize contaminating signals from fat, skin, and blood. Limiting exposure of patients to ionizing radiation, QUS, MRI, and SORS has the potential to improve the assessment of fracture risk and track changes of new therapies that target bone matrix and micro-structure.
Collapse
Affiliation(s)
- Rachel K Surowiec
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N. University Blvd., Indianapolis, IN, 46202, USA
| | - Mark D Does
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37232, USA
- Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S., Nashville, TN, 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Ave. S., Nashville, TN, 37232, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, 400 24th Ave. S., Nashville, TN, 37212, USA
| | - Jeffry S Nyman
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37232, USA.
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S., Suite 4200, Nashville, TN, 37232, USA.
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 1211 Medical Center Dr., Nashville, TN, 37212, USA.
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA.
| |
Collapse
|
5
|
Wölfel EM, Bartsch B, Koldehoff J, Fiedler IAK, Dragoun‐Kolibova S, Schmidt FN, Krug J, Lin M, Püschel K, Ondruschka B, Zimmermann EA, Jelitto H, Schneider G, Gludovatz B, Busse B. When Cortical Bone Matrix Properties Are Indiscernible between Elderly Men with and without Type 2 Diabetes, Fracture Resistance Follows Suit. JBMR Plus 2023; 7:e10839. [PMID: 38130774 PMCID: PMC10731113 DOI: 10.1002/jbm4.10839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 12/23/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease affecting bone tissue and leading to increased fracture risk in men and women, independent of bone mineral density (BMD). Thus, bone material quality (i.e., properties that contribute to bone toughness but are not attributed to bone mass or quantity) is suggested to contribute to higher fracture risk in diabetic patients and has been shown to be altered. Fracture toughness properties are assumed to decline with aging and age-related disease, while toughness of human T2DM bone is mostly determined from compression testing of trabecular bone. In this case-control study, we determined fracture resistance in T2DM cortical bone tissue from male individuals in combination with a multiscale approach to assess bone material quality indices. All cortical bone samples stem from male nonosteoporotic individuals and show no significant differences in microstructure in both groups, control and T2DM. Bone material quality analyses reveal that both control and T2DM groups exhibit no significant differences in bone matrix composition assessed with Raman spectroscopy, in BMD distribution determined with quantitative back-scattered electron imaging, and in nanoscale local biomechanical properties assessed via nanoindentation. Finally, notched three-point bending tests revealed that the fracture resistance (measured from the total, elastic, and plastic J-integral) does not significantly differ in T2DM and control group, when both groups exhibit no significant differences in bone microstructure and material quality. This supports recent studies suggesting that not all T2DM patients are affected by a higher fracture risk but that individual risk profiles contribute to fracture susceptibility, which should spur further research on improving bone material quality assessment in vivo and identifying risk factors that increase bone fragility in T2DM. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Eva M. Wölfel
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Benjamin Bartsch
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Jasmin Koldehoff
- Institute of Advanced CeramicsHamburg University of TechnologyHamburgGermany
- Interdisciplinary Competence Center for Interface Research (ICCIR)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Imke A. K. Fiedler
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Interdisciplinary Competence Center for Interface Research (ICCIR)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sofie Dragoun‐Kolibova
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Felix N. Schmidt
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Interdisciplinary Competence Center for Interface Research (ICCIR)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Johannes Krug
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Mei‐Chun Lin
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Klaus Püschel
- Institute of Legal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Benjamin Ondruschka
- Institute of Legal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | | | - Hans Jelitto
- Institute of Advanced CeramicsHamburg University of TechnologyHamburgGermany
| | - Gerold Schneider
- Institute of Advanced CeramicsHamburg University of TechnologyHamburgGermany
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing EngineeringUniversity of New South Wales, Sydney (UNSW Sydney)SydneyAustralia
| | - Björn Busse
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Interdisciplinary Competence Center for Interface Research (ICCIR)University Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
6
|
Wang B, Vashishth D. Advanced glycation and glycoxidation end products in bone. Bone 2023; 176:116880. [PMID: 37579812 PMCID: PMC10529863 DOI: 10.1016/j.bone.2023.116880] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/21/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Hyperglycemia and oxidative stress, enhanced in diabetes and aging, result in excessive accumulation of advanced glycation and glycoxidation end products (AGEs/AGOEs) in bone. AGEs/AGOES are considered to be "the missing link" in explaining increased skeletal fragility with diabetes, aging, and osteoporosis where increased fracture risk cannot be solely explained by bone mass and/or fall incidences. AGEs/AGOEs disrupt bone turnover and deteriorate bone quality through alterations of organic matrix (collagen and non-collagenous proteins), mineral, and water content. AGEs and AGOEs are also associated with bone fragility in other conditions such as Alzheimer's disease, circadian rhythm disruption, and cancer. This review explains how AGEs and AGOEs accumulate in bone and impact bone quality and bone fracture, and how AGES/AGOEs are being targeted in preclinical and clinical investigations for inhibition or removal, and for prediction and management of diabetic, osteoporotic and insufficiency fractures.
Collapse
Affiliation(s)
- Bowen Wang
- Shirley Ann Jackson Ph.D. Center of Biotechnology and Interdisciplinary Studies, Troy, NY 12180, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Deepak Vashishth
- Shirley Ann Jackson Ph.D. Center of Biotechnology and Interdisciplinary Studies, Troy, NY 12180, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Rensselaer - Icahn School of Medicine at Mount Sinai Center for Engineering and Precision Medicine, New York, NY 10019, USA.
| |
Collapse
|
7
|
Nyman JS, Ketsiri T, Louie EA, Harkins KD, Manhard MK, Gochberg DF, Lee DH, Desai MJ, Maslow J, Tanner SB, Does MD. Toward the use of MRI measurements of bound and pore water in fracture risk assessment. Bone 2023; 176:116863. [PMID: 37527697 PMCID: PMC10528882 DOI: 10.1016/j.bone.2023.116863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
The current clinical assessment of fracture risk lacks information about the inherent quality of a person's bone tissue. Working toward an imaging-based approach to quantify both a bone tissue quality marker (tissue hydration as water bound to the matrix) and a bone microstructure marker (porosity as water in pores), we hypothesized that the concentrations of bound water (Cbw) are lower and concentrations of pore water (Cpw) are higher in patients with osteoporosis (OP) than in age- and sex-matched adults without the disease. Using recent developments in ultrashort echo time (UTE) magnetic resonance imaging (MRI), maps of Cbw and Cpw were acquired from the uninjured distal third radius (Study 1) of 20 patients who experienced a fragility fracture of the distal radius (Fx) and 20 healthy controls (Non-Fx) and from the tibia mid-diaphysis (Study 2) of 30 women with clinical OP (low T-scores) and 15 women without OP (normal T-scores). In Study 1, Cbw was significantly lower (p = 0.0018) and Cpw was higher (p = 0.0022) in the Fx than in the Non-Fx group. In forward stepwise, logistic regression models using Bayesian Information Criterion for selecting the best set of predictors (from imaging parameters, age, BMI, and DXA scanner type), the area-under-the-receiver operator characteristics-curve (AUC with 95 % confidence intervals) was 0.73 (0.56, 0.86) for hip aBMD (best predictors without MRI) and 0.86 (0.70, 0.95) for the combination of Cbw and Cpw (best predictors overall). In Study 2, Cbw was significantly lower (p = 0.0005) in women with OP (23.8 ± 4.3 1H mol/L) than in women without OP (29.9 ± 6.4 1H mol/L); Cpw was significantly higher by estimate of 2.9 1H mol/L (p = 0.0298) with clinical OP, but only when accounting for the type of UTE-MRI scan with 3D providing higher values than 2D (p < 0.0001). Lastly, Cbw, but not Cpw, was sensitive to bone forming osteoporosis medications over 12-months. UTE-MRI-derived measurements of bound and pore water concentrations are potential, aBMD-independent predictors of fracture risk.
Collapse
Affiliation(s)
- Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S., Suite 4200, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24th Ave. S., Nashville, TN 37212, USA; Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center,1211 Medical Center Dr., Nashville, TN 37212, USA.
| | - Thammathida Ketsiri
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, USA; Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S., Nashville, TN 37232, USA
| | - Elizabeth A Louie
- Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S., Nashville, TN 37232, USA
| | - Kevin D Harkins
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, USA; Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S., Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Ave. S., Nashville, TN 37232, USA
| | - Mary Kate Manhard
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Daniel F Gochberg
- Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S., Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Ave. S., Nashville, TN 37232, USA
| | - Donald H Lee
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S., Suite 4200, Nashville, TN 37232, USA
| | - Mihir J Desai
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S., Suite 4200, Nashville, TN 37232, USA
| | - Jed Maslow
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S., Suite 4200, Nashville, TN 37232, USA
| | - S Bobo Tanner
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center,1211 Medical Center Dr., Nashville, TN 37212, USA; Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center, 1161 21st Ave. S., Nashville, TN 37232, USA
| | - Mark D Does
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, USA; Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S., Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Ave. S., Nashville, TN 37232, USA; Department of Electrical Engineering and Computer Science, Vanderbilt University, 400 24th Ave. S., Nashville, TN 37212, USA.
| |
Collapse
|
8
|
Qian W, Gamsjaeger S, Paschalis EP, Graeff-Armas LA, Bare SP, Turner JA, Lappe JM, Recker RR, Akhter MP. Bone intrinsic material and compositional properties in postmenopausal women diagnosed with long-term Type-1 diabetes. Bone 2023; 174:116832. [PMID: 37385427 PMCID: PMC11302406 DOI: 10.1016/j.bone.2023.116832] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
The incidence of diabetes mellitus and the associated complications are growing worldwide, affecting the patients' quality of life and exerting a considerable burden on health systems. Yet, the increase in fracture risk in type 1 diabetes (T1D) patients is not fully captured by bone mineral density (BMD), leading to the hypothesis that alterations in bone quality are responsible for the increased risk. Material/compositional properties are important aspects of bone quality, yet information on human bone material/compositional properties in T1D is rather sparse. The purpose of the present study is to measure both the intrinsic material behaviour by nanoindentation, and material compositional properties by Raman spectroscopy as a function of tissue age and microanatomical location (cement lines) in bone tissue from iliac crest biopsies from postmenopausal women diagnosed with long-term T1D (N = 8), and appropriate sex-, age-, BMD- and clinically-matched controls (postmenopausal women; N = 5). The results suggest elevation of advanced glycation endproducts (AGE) content in the T1D and show significant differences in mineral maturity / crystallinity (MMC) and glycosaminoglycan (GAG) content between the T1D and control groups. Furthermore, both hardness and modulus by nanoindentation are greater in T1D. These data suggest a significant deterioration of material strength properties (toughness) and compositional properties in T1D compared with controls.
Collapse
Affiliation(s)
- Wen Qian
- University of Nebraska, Lincoln, NE, USA
| | | | | | | | - Sue P Bare
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA
| | | | - Joan M Lappe
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA
| | - Robert R Recker
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA
| | | |
Collapse
|
9
|
Ketsiri T, Uppuganti S, Harkins KD, Gochberg DF, Nyman JS, Does MD. Finite element analysis of bone mechanical properties using MRI-derived bound and pore water concentration maps. Comput Methods Biomech Biomed Engin 2023; 26:905-916. [PMID: 35822868 PMCID: PMC9837311 DOI: 10.1080/10255842.2022.2098016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/10/2022] [Accepted: 06/30/2022] [Indexed: 01/17/2023]
Abstract
Ultrashort echo time (UTE) MRI techniques can be used to image the concentration of water in bones. Particularly, quantitative MRI imaging of collagen-bound water concentration (Cbw) and pore water concentration (Cpw) in cortical bone have been shown as potential biomarkers for bone fracture risk. To investigate the effect of Cbw and Cpw on the evaluation of bone mechanical properties, MRI-based finite element models of cadaver radii were generated with tissue material properties derived from 3 D maps of Cbw and Cpw measurements. Three-point bending tests were simulated by means of the finite element method to predict bending properties of the bone and the results were compared with those from direct mechanical testing. The study results demonstrate that these MRI-derived measures of Cbw and Cpw improve the prediction of bone mechanical properties in cadaver radii and have the potential to be useful in assessing patient-specific bone fragility risk.
Collapse
Affiliation(s)
- Thammathida Ketsiri
- Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University, Nashville, TN, United States
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN, United States
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kevin D. Harkins
- Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
- Radiology & Radiological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Daniel F. Gochberg
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
- Radiology & Radiological Sciences, Vanderbilt University, Nashville, TN, United States
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States
| | - Jeffry S. Nyman
- Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University, Nashville, TN, United States
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN, United States
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mark D. Does
- Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
- Radiology & Radiological Sciences, Vanderbilt University, Nashville, TN, United States
- Electrical Engineering, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
10
|
Jones BC, Wehrli FW, Kamona N, Deshpande RS, Vu BTD, Song HK, Lee H, Grewal RK, Chan TJ, Witschey WR, MacLean MT, Josselyn NJ, Iyer SK, Al Mukaddam M, Snyder PJ, Rajapakse CS. Automated, calibration-free quantification of cortical bone porosity and geometry in postmenopausal osteoporosis from ultrashort echo time MRI and deep learning. Bone 2023; 171:116743. [PMID: 36958542 PMCID: PMC10121925 DOI: 10.1016/j.bone.2023.116743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND Assessment of cortical bone porosity and geometry by imaging in vivo can provide useful information about bone quality that is independent of bone mineral density (BMD). Ultrashort echo time (UTE) MRI techniques of measuring cortical bone porosity and geometry have been extensively validated in preclinical studies and have recently been shown to detect impaired bone quality in vivo in patients with osteoporosis. However, these techniques rely on laborious image segmentation, which is clinically impractical. Additionally, UTE MRI porosity techniques typically require long scan times or external calibration samples and elaborate physics processing, which limit their translatability. To this end, the UTE MRI-derived Suppression Ratio has been proposed as a simple-to-calculate, reference-free biomarker of porosity which can be acquired in clinically feasible acquisition times. PURPOSE To explore whether a deep learning method can automate cortical bone segmentation and the corresponding analysis of cortical bone imaging biomarkers, and to investigate the Suppression Ratio as a fast, simple, and reference-free biomarker of cortical bone porosity. METHODS In this retrospective study, a deep learning 2D U-Net was trained to segment the tibial cortex from 48 individual image sets comprised of 46 slices each, corresponding to 2208 training slices. Network performance was validated through an external test dataset comprised of 28 scans from 3 groups: (1) 10 healthy, young participants, (2) 9 postmenopausal, non-osteoporotic women, and (3) 9 postmenopausal, osteoporotic women. The accuracy of automated porosity and geometry quantifications were assessed with the coefficient of determination and the intraclass correlation coefficient (ICC). Furthermore, automated MRI biomarkers were compared between groups and to dual energy X-ray absorptiometry (DXA)- and peripheral quantitative CT (pQCT)-derived BMD. Additionally, the Suppression Ratio was compared to UTE porosity techniques based on calibration samples. RESULTS The deep learning model provided accurate labeling (Dice score 0.93, intersection-over-union 0.88) and similar results to manual segmentation in quantifying cortical porosity (R2 ≥ 0.97, ICC ≥ 0.98) and geometry (R2 ≥ 0.82, ICC ≥ 0.75) parameters in vivo. Furthermore, the Suppression Ratio was validated compared to established porosity protocols (R2 ≥ 0.78). Automated parameters detected age- and osteoporosis-related impairments in cortical bone porosity (P ≤ .002) and geometry (P values ranging from <0.001 to 0.08). Finally, automated porosity markers showed strong, inverse Pearson's correlations with BMD measured by pQCT (|R| ≥ 0.88) and DXA (|R| ≥ 0.76) in postmenopausal women, confirming that lower mineral density corresponds to greater porosity. CONCLUSION This study demonstrated feasibility of a simple, automated, and ionizing-radiation-free protocol for quantifying cortical bone porosity and geometry in vivo from UTE MRI and deep learning.
Collapse
Affiliation(s)
- Brandon C Jones
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Felix W Wehrli
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Nada Kamona
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Rajiv S Deshpande
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Brian-Tinh Duc Vu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Hee Kwon Song
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Hyunyeol Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; School of Electronics Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea.
| | - Rasleen Kaur Grewal
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Trevor Jackson Chan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Walter R Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Matthew T MacLean
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Nicholas J Josselyn
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Data Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States of America.
| | - Srikant Kamesh Iyer
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America
| | - Mona Al Mukaddam
- Department of Medicine, Division of Endocrinology, Perelman School of Medicine, University of Pennsylvania, Perelman Center for Advanced Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States of America.
| | - Peter J Snyder
- Department of Medicine, Division of Endocrinology, Perelman School of Medicine, University of Pennsylvania, Perelman Center for Advanced Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States of America.
| | - Chamith S Rajapakse
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
11
|
Ketsiri T, Uppuganti S, Harkins KD, Gochberg DF, Nyman JS, Does MD. T 1 relaxation of bound and pore water in cortical bone. NMR IN BIOMEDICINE 2023; 36:e4878. [PMID: 36418236 DOI: 10.1002/nbm.4878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
MRI measures of bound and/or pore water concentration in cortical bone offer potential diagnostics of bone fracture risk. The transverse relaxation characteristics of both bound and pore water are relatively well understood and have been used to design clinical MRI pulse sequences to image each water pool quantitatively. However, these methods are also sensitive to longitudinal relaxation characteristics, which have been less well studied. Here, spectroscopic relaxometry measurements of 31 human cortical bone specimens provided a more detailed picture of T 1 of both bound and pore water. The results included mean, standard deviation, and range of T 1 spectra from both bound and pore water, as well as novel presentations of the 2D T 1 - T 2 distribution of pore water. Importantly, for each sample the pore water T 1 spectrum was found to span more than one order of magnitude and varied substantially across the 31 sample studies. Because many existing methods assume pore water T 1 to be mono-exponential and constant across individuals, the results were used to compute the potential effect neglecting this intra- and intersample T 1 variation on accurate MRI measurement of both bound and pore water concentrations. The greatest effect was found for adiabatic inversion recovery (AIR) based measurements of bound water concentration, which showed an average of 8.8% and as much as 37% error when using a common mono-exponential assumption of pore water T 1 . Despite these errors, the simulated AIR measurements were still moderately well correlated with the bound water concentrations derived from the spectroscopic data.
Collapse
Affiliation(s)
- Thammathida Ketsiri
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sasidhar Uppuganti
- Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kevin D Harkins
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel F Gochberg
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeffry S Nyman
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark D Does
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Electrical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
12
|
Jerban S, Ma Y, Alenezi S, Moazamian D, Athertya J, Jang H, Dorthe E, Dlima D, Woods G, Chung CB, Chang EY, Du J. Ultrashort Echo Time (UTE) MRI porosity index (PI) and suppression ratio (SR) correlate with the cortical bone microstructural and mechanical properties: Ex vivo study. Bone 2023; 169:116676. [PMID: 36657630 PMCID: PMC9987215 DOI: 10.1016/j.bone.2023.116676] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/19/2022] [Accepted: 01/08/2023] [Indexed: 01/18/2023]
Abstract
Ultrashort echo time (UTE) MRI can image and consequently enable quantitative assessment of cortical bone. UTE-MRI-based evaluation of bone is largely underutilized due to the high cost and time demands of MRI in general. The signal ratio in dual-echo UTE imaging, known as porosity index (PI), as well as the signal ratio between UTE and inversion recovery UTE (IR-UTE) imaging, known as the suppression ratio (SR), are two rapid UTE-based bone evaluation techniques (∼ 5 mins scan time each), which can potentially reduce the time demand and cost in future clinical studies. This study aimed to investigate the correlations of PI and SR measures with cortical bone microstructural and mechanical properties. Cortical bone strips (n = 135) from tibial and femoral midshafts of 37 donors (61 ± 24 years old) were scanned using a dual-echo 3D Cones UTE sequence and a 3D Cones IR-UTE sequence for PI and SR calculations, respectively. Average bone mineral density, porosity, and pore size were measured using microcomputed tomography (μCT). Bone mechanical properties were measured using 4-point bending tests. The μCT measures showed significant correlations with PI (moderate to strong, R = 0.68-0.71) and SR (moderate, R = 0.58-0.68). Young's modulus, yield stress, and ultimate stress demonstrated significant moderate correlations with PI and SR (R = 0.52-0.62) while significant strong correlations with μCT measures (R > 0.7). PI and SR can potentially serve as fast and noninvasive (non-ionizing radiation) biomarkers for evaluating cortical bone in various bone diseases.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA; Department of Orthopedic Surgery, University of California, San Diego, La Jolla, CA, USA.
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Salem Alenezi
- Research and Laboratories Sector, Saudi Food and Drug Authority, Riyadh, Kingdom of Saudi Arabia
| | - Dina Moazamian
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Jiyo Athertya
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Erik Dorthe
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Darryl Dlima
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Gina Woods
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Unal M, Uppuganti S, Dapaah DY, Ahmed R, Pennings JS, Willett TL, Voziyan P, Nyman JS. Effect of ribose incubation on physical, chemical, and mechanical properties of human cortical bone. J Mech Behav Biomed Mater 2023; 140:105731. [PMID: 36827936 PMCID: PMC10068591 DOI: 10.1016/j.jmbbm.2023.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/27/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023]
Abstract
Raman spectroscopy (RS) is sensitive to the accumulation of advanced glycation end-products (AGEs), and it measures matrix-sensitive properties that correlate with the fracture toughness of human cortical bone. However, it is unclear whether sugar-mediated accumulation of AGEs affects the fracture toughness of human cortical bone in a manner that is consistent with the negative correlations between amide I sub-peak ratios and fracture toughness. Upon machining 64 single-edge notched beam (SENB) specimens from cadaveric femurs (8 male and 7 female donors between 46 years and 61 years of age), pairs of SENB specimens were incubated in 15 mL of phosphate buffered saline with or without 0.1 M ribose for 4 weeks at 37 °C. After acquiring 10 Raman spectra per bone specimen (n = 32 per incubation group), paired SENB specimens were loaded in three-point bending at a quasi-static or a high loading rate approximating 10-4 s-1 or 10-2 s-1, respectively (n = 16 per incubation group per loading rate). While 2 amide I sub-peak ratios, I1670/I1640 and I1670/I1610, decreased by 3-5% with a 100% increase in AGE content, as confirmed by fluorescence measurements, the ribose incubation to accumulate AGEs in bone did not affect linear elastic (KIc) nor non-linear elastic (KJc) measurements of bone's ability to resist crack growth. Moreover, AGE accumulation did not affect the change in these properties when the loading rate changed. Increasing the loading rate increased KIc but decreased KJc. Ribose incubation did not affect mineral-related RS properties such as mineral-to-matrix ratios, Type B carbonate substitutions, and crystallinity. It did however increase the thermal stability of demineralized bone (differential scanning calorimetry), without affecting the network connectivity of the organic matrix (i.e., maximum slope during a hydrothermal isometric tension test of demineralized bone). In conclusion, RS is sensitive to AGE accumulation via the amide I band (plus the hydroxyproline-to-proline ratio), but the increase in AGE content due to ribose incubation was not sufficient to affect the fracture toughness of human cortical bone.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Bioengineering, Karamanoglu Mehmetbey University, Karaman, 70200, Turkey; Department of Biophysics, Faculty of Medicine, Karamanoglu Mehmetbey University, Karaman, 70200, Turkey
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S, Suite 4200, Nashville, TN, 37232, USA; Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave, Nashville, TN, 37212, USA
| | - Daniel Y Dapaah
- Biomedical Engineering Program, Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Rafay Ahmed
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S, Suite 4200, Nashville, TN, 37232, USA; Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave, Nashville, TN, 37212, USA
| | - Jacquelyn S Pennings
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S, Suite 4200, Nashville, TN, 37232, USA; Vanderbilt Center for Musculoskeletal Research, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 1200, Nashville, TN, 37203, USA
| | - Thomas L Willett
- Biomedical Engineering Program, Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Paul Voziyan
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S, Suite 4200, Nashville, TN, 37232, USA; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, 1611 21st Ave. S, Nashville, TN, 37212, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S, Suite 4200, Nashville, TN, 37232, USA; Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave, Nashville, TN, 37212, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24th Ave. S, Nashville, TN, 37212, USA; Vanderbilt Center for Musculoskeletal Research, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 1200, Nashville, TN, 37203, USA.
| |
Collapse
|
14
|
Visser N, Rezaie E, Ducharme A, Shin AY, Bishop AT. The effect of surgical revascularization on the mechanical properties of cryopreserved bone allograft in a porcine tibia model. J Orthop Res 2023; 41:815-822. [PMID: 35880353 DOI: 10.1002/jor.25422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/06/2022] [Accepted: 07/23/2022] [Indexed: 02/04/2023]
Abstract
Cryopreserved bone allografts(CBA) are susceptible to infection, nonunion, and late stress fracture. Although surgical revascularization by intramedullary implantation of an arteriovenous bundle (AV bundle) generates a neoangiogenic blood supply, there is potential for vascular ingrowth-mediated bone resorption to weaken the graft. For this reason, we have evaluated changes in CBA mechanical properties of structural tibial allografts with and without surgically induced angiogenesis. Cryopreserved tibia bone allografts were transplanted to reconstruct a 3.5 cm segmental tibial defect in 16 Yucatan mini pigs. Surgical revascularization was performed in half by implantation of a cranial tibial AV bundle, (revascularization group). A control group of identical size had a ligated AV bundle implanted, (ligated group). At 20 weeks micro-computed tomography (CT) measured bone mineral density (BMD) as well as bone union. Reference point indentation (RPI) compared cortex material properties, and axial compression determined the allotransplant compressive modulus. Seven of eight tibiae in the angiogenesis group were healed at both junction points at 20 weeks. Only four of eight tibiae healed in the ligated control group. There was no significant difference between the revascularization and ligated control groups in BMD and axial compression test. Similarly, RPI parameters were statistically equal. In paired comparisons with contralateral tibias, however, some RPI values were significantly worse in the ligated control group tibiae. This study demonstrates no adverse effect of surgical angiogenesis on cryopreserved structural bone allograft biomechanical properties in a large animal orthotopic segmental tibial defect model. These data suggest the potential value of surgical angiogenesis in clinical limb-sparing reconstructive surgery.
Collapse
Affiliation(s)
- Noortje Visser
- Microvascular Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.,Department of Plastic and Reconstructive Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Elisa Rezaie
- Microvascular Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.,Department of Plastic and Reconstructive Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexandra Ducharme
- Microvascular Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Alexander Y Shin
- Microvascular Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Allen T Bishop
- Microvascular Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
15
|
Harkins KD, Ketsiri T, Nyman JS, Does MD. Fast bound and pore water mapping of cortical bone with arbitrary slice oriented two-dimensional ultra-short echo time. Magn Reson Med 2023; 89:767-773. [PMID: 36226656 PMCID: PMC9897494 DOI: 10.1002/mrm.29484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023]
Abstract
PURPOSE Extend fast, two-dimensional (2D) methods of bound and pore water mapping in bone to arbitrary slice orientation. METHODS To correct for slice profile artifacts caused by gradient errors of half pulse 2D ultra-short echo time (UTE), we developed a library of predistorted gradient waveforms that can be used to interpolate optimized gradient waveforms for 2D UTE slice selection. We also developed a method to estimate and correct for a bulk phase difference between the two half pulse excitations used for 2D UTE signal excitation. Bound water images were acquired in three healthy subjects with adiabatic inversion recovery prepared 2D UTE, while pore water images were acquired after short-T2 signals were suppressed with double adiabatic inversion recovery preparation. The repeatability of bound and pore water imaging with 2D UTE was tested by repeating acquisitions after repositioning. RESULTS The library-based interpolation of optimized slice select gradient waveforms combined with the method to estimate bulk phase between two excitations provided compact slice profiles for half pulse excited 2D UTE. Quantitative bound and pore water values were highly repeatable-the pooled SD of bound water across all three subjects was 0.38 mol1 $$ {}^1 $$ H/L, while pooled SD of pore water was 0.30 mol1 $$ {}^1 $$ H/L. CONCLUSION Fast, quantitative, 2D UTE-based bound and pore water images can be acquired at arbitrary oblique orientations after correcting for errors in the slice select gradient waveform and bulk phase shift between the two half acquisitions.
Collapse
Affiliation(s)
- Kevin D Harkins
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Institute of Image Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Thammathida Ketsiri
- Institute of Image Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeffry S Nyman
- Institute of Image Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark D Does
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Institute of Image Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Electrical Engineering, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Pei S, Zhou Y, Li Y, Azar T, Wang W, Kim DG, Liu XS. Instrumented nanoindentation in musculoskeletal research. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 176:38-51. [PMID: 35660010 DOI: 10.1016/j.pbiomolbio.2022.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Musculoskeletal tissues, such as bone, cartilage, and muscle, are natural composite materials that are constructed with a hierarchical structure ranging from the cell to tissue level. The component differences and structural complexity, together, require comprehensive multiscale mechanical characterization. In this review, we focus on nanoindentation testing, which is used for nanometer to sub-micrometer length scale mechanical characterization. In the following context, we will summarize studies of nanoindentation in musculoskeletal research, examine the critical factors that affect nanoindentation testing results, and briefly summarize other commonly used techniques that can be conjoined with nanoindentation for synchronized imaging and colocalized characterization.
Collapse
Affiliation(s)
- Shaopeng Pei
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Yilu Zhou
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Tala Azar
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Wenzheng Wang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States.
| |
Collapse
|
17
|
Vaidya R, Rezaee T, Edwards T, Bender R, Vickneswaran A, Chalivendra V, Karim L. Accumulation of fluorescent advanced glycation end products and carboxymethyl-lysine in human cortical and trabecular bone. Bone Rep 2022; 17:101634. [DOI: 10.1016/j.bonr.2022.101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
|
18
|
Willett TL, Voziyan P, Nyman JS. Causative or associative: A critical review of the role of advanced glycation end-products in bone fragility. Bone 2022; 163:116485. [PMID: 35798196 PMCID: PMC10062699 DOI: 10.1016/j.bone.2022.116485] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
Abstract
The accumulation of advanced glycation end-products (AGEs) in the organic matrix of bone with aging and chronic disease such as diabetes is thought to increase fracture risk independently of bone mass. However, to date, there has not been a clinical trial to determine whether inhibiting the accumulation of AGEs is effective in preventing low-energy, fragility fractures. Moreover, unlike with cardiovascular or kidney disease, there are also no pre-clinical studies demonstrating that AGE inhibitors or breakers can prevent the age- or diabetes-related decrease in the ability of bone to resist fracture. In this review, we critically examine the case for a long-standing hypothesis that AGE accumulation in bone tissue degrades the toughening mechanisms by which bone resists fracture. Prior research into the role of AGEs in bone has primarily measured pentosidine, an AGE crosslink, or bulk fluorescence of hydrolysates of bone. While significant correlations exist between these measurements and mechanical properties of bone, multiple AGEs are both non-fluorescent and non-crosslinking. Since clinical studies are equivocal on whether circulating pentosidine is an indicator of elevated fracture risk, there needs to be a more complete understanding of the different types of AGEs including non-crosslinking adducts and multiple non-enzymatic crosslinks in bone extracellular matrix and their specific contributions to hindering fracture resistance (biophysical and biological). By doing so, effective strategies to target AGE accumulation in bone with minimal side effects could be investigated in pre-clinical and clinical studies that aim to prevent fragility fractures in conditions that bone mass is not the underlying culprit.
Collapse
Affiliation(s)
- Thomas L Willett
- Biomedical Engineering Program, Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada.
| | - Paul Voziyan
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
19
|
Uniyal P, Sharma A, Kumar N. Investigation on the sensitivity of indentation devices for detection of fatigue loading induced damage in bovine cortical bone. J Biomech 2022; 143:111274. [PMID: 36049386 DOI: 10.1016/j.jbiomech.2022.111274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2022]
Abstract
Daily physiological activities subject our skeletal system to cyclic loading with varying frequencies and magnitudes. These loadings interact with the microstructure of bone and create microdamage, which can cause stress-induced injuries if not repaired on the time. The early detection is required to prevent the complications associated with these fractures. In the present study, to examine fatigue loading-induced damage in cortical bone, the sensitivity of four different indentation devices was investigated. For this, cortical bone samples were fatigued in four-point bending configuration at 0.5 Hz, 2 Hz and 4 Hz frequencies. Following the fatigue loading, cyclic reference point indentation (cRPI), impact reference point indentation (iRPI), Vickers microhardness and nanoindentation tests were performed on the bone samples. Results show that indentation devices are sensitive to detect fatigue loading induced damage only in 0.5 Hz group samples on compressive region. On the other hand, the sensitivity of indentation devices for tensile stress-induced damage is not clear. Also, histological examination of fatigued bone samples shows a significant increase in the crack density and crack length with fatigue loading only for the 0.5 Hz group samples. The present study provides insight into the sensitivity of different indentation devices to fatigue loading induced damage, which could be helpful in the development of new devices for the early diagnosis of stress induced injuries.
Collapse
Affiliation(s)
- Piyush Uniyal
- Department of Biomedical Engineering, IIT Ropar, India
| | - Akshay Sharma
- Department of Mechanical Engineering, IIT Ropar, India
| | - Navin Kumar
- Department of Biomedical Engineering, IIT Ropar, India; Department of Mechanical Engineering, IIT Ropar, India.
| |
Collapse
|
20
|
A critical evaluation of cortical bone fracture toughness testing methods. J Mech Behav Biomed Mater 2022; 134:105419. [PMID: 36037708 DOI: 10.1016/j.jmbbm.2022.105419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
Cortical bone fracture mechanics which quantifies the tissue's resistance to fracture is widely regarded as important to finding key determinants of bone fragility and fracture. Currently, the most widely used fracture mechanics approach is the J-integral resistance (J-R) curve as defined in ASTM E1820 standard. This standard employs an unloading compliance (UC) method to estimate crack extension, necessary for fracture toughness and resistance curve (R-curve) quantification. Further, this UC method requires a series of unload-reload cycles to be conducted during the fracture test. However, cortical bone violates some assumptions on which the UC method is based, which are: no energy loss during the unload-reload cycles and any change in unloading compliance is only due to crack extension. Consequently, the aim of this study was to examine the impact of the UC method on the accuracy of fracture toughness measurement for bovine cortical bone. Ten pairs of single edged notched bend specimens were prepared from the posterior diaphysis of bovine tibiae and underwent three-point bending fracture tests. The paired specimens were divided into two groups: a cyclic loaded group and a monotonic loaded group. Further, crack extension was determined by the UC method for the cyclic group and by an optical method for both the cyclic and monotonic groups. From these, three different approaches were used to generate J-R curves from which three fracture toughness parameters were computed and compared between the three approaches. This comparison allowed the impact of crack extension estimation by the UC method as well as the unload-reload cycles on the accuracy of the fracture toughness measures to be assessed. Results show that the UC method underestimates crack extension by an average error of 73%. In addition, the combined effects from crack extension estimation using the UC method and the unload-reload cycles lead to a significant overestimation of the specimen's fracture toughness measures. This highlights the need for more studies to establish a standardized approach to cortical bone fracture testing.
Collapse
|
21
|
Ahmed R, Uppuganti S, Derasari S, Meyer J, Pennings JS, Elefteriou F, Nyman JS. Identifying Bone Matrix Impairments in a Mouse Model of Neurofibromatosis Type 1 (NF1) by Clinically Translatable Techniques. J Bone Miner Res 2022; 37:1603-1621. [PMID: 35690920 PMCID: PMC9378557 DOI: 10.1002/jbmr.4633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/25/2022] [Accepted: 06/04/2022] [Indexed: 11/06/2022]
Abstract
Three-to-four percent of children with neurofibromatosis type 1 (NF1) present with unilateral tibia bowing, fracture, and recalcitrant healing. Alkaline phosphatase (ALP) enzyme therapy prevented poor bone mineralization and poor mechanical properties in mouse models of NF1 skeletal dysplasia; but transition to clinical trials is hampered by the lack of a technique that (i) identifies NF1 patients at risk of tibia bowing and fracture making them eligible for trial enrollment and (ii) monitors treatment effects on matrix characteristics related to bone strength. Therefore, we assessed the ability of matrix-sensitive techniques to provide characteristics that differentiate between cortical bone from mice characterized by postnatal loss of Nf1 in Osx-creTet-Off ;Nf1flox/flox osteoprogenitors (cKO) and from wild-type (WT) mice. Following euthanasia at two time points of bone disease progression, femur and tibia were harvested from both genotypes (n ≥ 8/age/sex/genotype). A reduction in the mid-diaphysis ultimate force during three-point bending at 20 weeks confirmed deleterious changes in bone induced by Nf1 deficiency, regardless of sex. Pooling females and males, low bound water (BW), and low cortical volumetric bone mineral density (Ct.vBMD) were the most accurate outcomes in distinguishing cKO from WT femurs with accuracy improving with age. Ct.vBMD and the average unloading slope (Avg-US) from cyclic reference point indentation tests were the most sensitive in differentiating WT from cKO tibias. Mineral-to-matrix ratio and carbonate substitution from Raman spectroscopy were not good classifiers. However, when combined with Ct.vBMD and BW (femur), they helped predict bending strength. Nf1 deficiency in osteoprogenitors negatively affected bone microstructure and matrix quality with deficits in properties becoming more pronounced with duration of Nf1 deficiency. Clinically measurable without ionizing radiation, BW and Avg-US are sensitive to deleterious changes in bone matrix in a preclinical model of NF1 bone dysplasia and require further clinical investigation as potential indicators of an onset of bone weakness in children with NF1. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Rafay Ahmed
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shrey Derasari
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Joshua Meyer
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jacquelyn S Pennings
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Musculoskeletal Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Florent Elefteriou
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Orthopaedic Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Center for Musculoskeletal Research, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
22
|
The characterization of bovine compact bone fatigue damage using terahertz spectroscopy. Z Med Phys 2022:S0939-3889(22)00065-4. [PMID: 35764468 DOI: 10.1016/j.zemedi.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022]
Abstract
Fatigue can cause cracks to propagate from the micro- to the macroscale, which results in a decrease of Young's modulus of the bone. Non-destructive measurements of bone fatigue damage are of great importance for bone quality assessment and fracture prevention. Unfortunately, there is still a lack of effective nondestructive methods sensitive to the initial deterioration during damage accumulation, particularly in the field of orthopedics and biomechanics. In this study, terahertz spectroscopy was adopted to evaluate microscale bone damage. Specifically, the refractive index and Young's modulus of bone samples subjected to different degrees of fatigue damage were tested at a fixed area. Both parameters are found to decrease in two stages under cycled fatigue loading, which is attributed to the initial onset and subsequent development of microdamage during fatigue loading. The change in refractive index reflects the accumulation of fatigue damage as well as the decrease in Young's modulus.
Collapse
|
23
|
Surowiec RK, Allen MR, Wallace JM. Bone hydration: How we can evaluate it, what can it tell us, and is it an effective therapeutic target? Bone Rep 2022; 16:101161. [PMID: 35005101 PMCID: PMC8718737 DOI: 10.1016/j.bonr.2021.101161] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/22/2022] Open
Abstract
Water constitutes roughly a quarter of the cortical bone by volume yet can greatly influence mechanical properties and tissue quality. There is a growing appreciation for how water can dynamically change due to age, disease, and treatment. A key emerging area related to bone mechanical and tissue properties lies in differentiating the role of water in its four different compartments, including free/pore water, water loosely bound at the collagen/mineral interfaces, water tightly bound within collagen triple helices, and structural water within the mineral. This review summarizes our current knowledge of bone water across the four functional compartments and discusses how alterations in each compartment relate to mechanical changes. It provides an overview on the advent of- and improvements to- imaging and spectroscopic techniques able to probe nano-and molecular scales of bone water. These technical advances have led to an emerging understanding of how bone water changes in various conditions, of which aging, chronic kidney disease, diabetes, osteoporosis, and osteogenesis imperfecta are reviewed. Finally, it summarizes work focused on therapeutically targeting water to improve mechanical properties.
Collapse
Affiliation(s)
- Rachel K. Surowiec
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Matthew R. Allen
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| |
Collapse
|
24
|
Hua R, Jiang JX. Small leucine-rich proteoglycans in physiological and biomechanical function of bone. Matrix Biol Plus 2021; 11:100063. [PMID: 34435181 PMCID: PMC8377002 DOI: 10.1016/j.mbplus.2021.100063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
Proteoglycans (PGs) and glycosaminoglycans (GAGs) play vital roles in key signaling pathways to regulate bone homeostasis. The highly negatively charged GAGs are crucial in retaining bound water and modulating mechanical properties of bone. Age-related changes of PGs, GAGs, and bound water contribute to deterioration of bone quality during aging.
Proteoglycans (PGs) contain long unbranched glycosaminoglycan (GAG) chains attached to core proteins. In the bone extracellular matrix, PGs represent a class of non-collagenous proteins, and have high affinity to minerals and collagen. Considering the highly negatively charged character of GAGs and their interfibrillar positioning interconnecting with collagen fibrils, PGs and GAGs play pivotal roles in maintaining hydrostatic and osmotic pressure in the matrix. In this review, we will discuss the role of PGs, especially the small leucine-rich proteoglycans, in regulating the bioactivity of multiple cytokines and growth factors, and the bone turnover process. In addition, we focus on the coupling effects of PGs and GAGs in the hydration status of bone extracellular matrix, thus modulating bone biomechanical properties under physiological and pathological conditions.
Collapse
Affiliation(s)
- Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
25
|
Barbieri M, Fantazzini P, Testa C, Bortolotti V, Baruffaldi F, Kogan F, Brizi L. Characterization of Structural Bone Properties through Portable Single-Sided NMR Devices: State of the Art and Future Perspectives. Int J Mol Sci 2021; 22:7318. [PMID: 34298936 PMCID: PMC8303251 DOI: 10.3390/ijms22147318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
Nuclear Magnetic Resonance (NMR) is a well-suited methodology to study bone composition and structural properties. This is because the NMR parameters, such as the T2 relaxation time, are sensitive to the chemical and physical environment of the 1H nuclei. Although magnetic resonance imaging (MRI) allows bone structure assessment in vivo, its cost limits the suitability of conventional MRI for routine bone screening. With difficulty accessing clinically suitable exams, the diagnosis of bone diseases, such as osteoporosis, and the associated fracture risk estimation is based on the assessment of bone mineral density (BMD), obtained by the dual-energy X-ray absorptiometry (DXA). However, integrating the information about the structure of the bone with the bone mineral density has been shown to improve fracture risk estimation related to osteoporosis. Portable NMR, based on low-field single-sided NMR devices, is a promising and appealing approach to assess NMR properties of biological tissues with the aim of medical applications. Since these scanners detect the signal from a sensitive volume external to the magnet, they can be used to perform NMR measurement without the need to fit a sample inside a bore of a magnet, allowing, in principle, in vivo application. Techniques based on NMR single-sided devices have the potential to provide a high impact on the clinical routine because of low purchasing and running costs and low maintenance of such scanners. In this review, the development of new methodologies to investigate structural properties of trabecular bone exploiting single-sided NMR devices is reviewed, and current limitations and future perspectives are discussed.
Collapse
Affiliation(s)
- Marco Barbieri
- Department of Radiology, Stanford University, Stanford, CA 94395, USA;
- Department of Physics and Astronomy “Augusto Righi”, University of Bologna, 40127 Bologna, Italy; (P.F.); (C.T.)
| | - Paola Fantazzini
- Department of Physics and Astronomy “Augusto Righi”, University of Bologna, 40127 Bologna, Italy; (P.F.); (C.T.)
| | - Claudia Testa
- Department of Physics and Astronomy “Augusto Righi”, University of Bologna, 40127 Bologna, Italy; (P.F.); (C.T.)
- IRCCS Istituto delle Scienze Neurologiche Bologna, Functional and Molecular Neuroimaging Unit, 40139 Bologna, Italy
| | - Villiam Bortolotti
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, 40134 Bologna, Italy;
| | - Fabio Baruffaldi
- Medical Technology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Feliks Kogan
- Department of Radiology, Stanford University, Stanford, CA 94395, USA;
| | - Leonardo Brizi
- Department of Physics and Astronomy “Augusto Righi”, University of Bologna, 40127 Bologna, Italy; (P.F.); (C.T.)
| |
Collapse
|
26
|
Singleton RC, Pharr GM, Nyman JS. Increased tissue-level storage modulus and hardness with age in male cortical bone and its association with decreased fracture toughness. Bone 2021; 148:115949. [PMID: 33862261 PMCID: PMC8102428 DOI: 10.1016/j.bone.2021.115949] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022]
Abstract
The incidence of bone fracture increases with age, due to both declining bone quantity and quality. Toward the goal of an improved understanding of the causes of the age-related decline in the fracture toughness of male cortical bone, nanoindentation experiments were performed on femoral diaphysis specimens from men aged 21-98 years. Because aged bone has less matrix-bound water and dry bone is less viscoelastic, we used a nanoindentation method that is sensitive to changes in viscoelasticity. Given the anisotropy of bone stiffness, longitudinal (n = 26) and transverse (n = 25) specimens relative to the long axis of the femur diaphysis were tested both dry in air and immersed in phosphate buffered saline solution. Indentation stiffness (storage modulus) and hardness increased with age, while viscoelasticity (loss modulus) was independent of donor age. The increases in indentation stiffness and hardness with age were best explained by increased mineralization with age. Indentation stiffness and hardness were negatively correlated with previously acquired fracture toughness parameters, which is consistent with a tradeoff between material strength and toughness. In keeping with the complex structure of bone, a combination of tissue-level storage modulus or hardness, bound water, and osteonal area in regression models best explained the variance in the fracture toughness of male human cortical bone. On the other hand, viscoelasticity was unchanged with age and was not associated with fracture toughness. In conclusion, the age-related increase in stiffness and hardness of male cortical bone may be one of the multiple tissue-level characteristics that contributes to decreased fracture toughness.
Collapse
Affiliation(s)
- Robert C Singleton
- Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996, USA
| | - George M Pharr
- Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996, USA; Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
27
|
Talebi M, Abbasi-Rad S, Malekzadeh M, Shahgholi M, Ardakani AA, Foudeh K, Rad HS. Cortical Bone Mechanical Assessment via Free Water Relaxometry at 3 T. J Magn Reson Imaging 2021; 54:1744-1751. [PMID: 34142413 DOI: 10.1002/jmri.27765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Investigation of cortical bone using magnetic resonance imaging is a developing field, which uses short/ultrashort echo time (TE) pulse sequences to quantify bone water content and to obtain indirect information about bone microstructure. PURPOSE To improve the accuracy of the previously proposed technique of free water T1 quantification and to seek the relationship between cortical bone free water T1 and its mechanical competence. STUDY TYPE Prospective. SUBJECTS Twenty samples of bovine tibia bone. FIELD STRENGTH/SEQUENCES 3.0 T; ultra-fast two-dimensional gradient echo, Radio frequency-spoiled three-dimensional gradient echo. ASSESSMENT Cortical bone free water T1 was quantified via three different methods: inversion recovery (IR), variable flip angle (VFA), and variable repetition time (VTR). Signal-to-noise ratio was measured by dividing the signal of each segmented sample to background noise. Segmentation was done manually. The effect of noise on T1 quantification was evaluated. Then, the samples were subjected to mechanical compression test to measure the toughness, yield stress, ultimate stress, and Young modulus. STATISTICAL TESTS All the statistical analysis (Shapiro-Wilk, way analysis of variance, paired t test, Pearson correlation, and Bland-Altman plot) were done using SPSS. RESULTS Significant difference was found between T1 quantification groups (P < 0.05). Average T1 of each quantification method differed significantly after adding noise (P < 0.05). VFA-T1 values significantly correlated with toughness (r = -0.68, P < 0.05), ultimate stress (r = -0.71, P < 0.05), and yield stress (r = -0.62, P < 0.05). No significant correlation was found between VTR-T1 values and toughness (P = 0.07), ultimate stress (P = 0.47), yield stress (P = 0.30), and Young modulus (P = 0.39). DATA CONCLUSION Pore water T1 value is associated with bone mechanical competence, and VFA method employing short-TE pulse sequence seems a superior technique to VTR method for this quantification. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: 1.
Collapse
Affiliation(s)
- Mahsa Talebi
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran.,The Quantitative MR Imaging and Spectroscopy Group, Research Center for Cellular and Molecular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Abbasi-Rad
- The Quantitative MR Imaging and Spectroscopy Group, Research Center for Cellular and Molecular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Malakeh Malekzadeh
- The Quantitative MR Imaging and Spectroscopy Group, Research Center for Cellular and Molecular Imaging, Tehran University of Medical Sciences, Tehran, Iran.,Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohamad Shahgholi
- The Quantitative MR Imaging and Spectroscopy Group, Research Center for Cellular and Molecular Imaging, Tehran University of Medical Sciences, Tehran, Iran.,Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Ali A Ardakani
- Department of Radiology Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Foudeh
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Hamidreza S Rad
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran.,The Quantitative MR Imaging and Spectroscopy Group, Research Center for Cellular and Molecular Imaging, Tehran University of Medical Sciences, Tehran, Iran.,Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Ni Q, Hua R, Holland D, Tinajero A, Han Y, Jiang JX, Wang X. Characterization of Microstructural Changes on Biglycan Induced Mice Bone by Low-Field Nuclear Magnetic Resonance. APPLIED PHYSICS (KOWLOON, CHINA) 2021; 4:58-67. [PMID: 35479609 PMCID: PMC9040680 DOI: 10.31058/j.ap.2021.42004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A NMR spin-spin (T2) relaxation technique has been described for determining the porosity, and the bound water distribution in biglycan induced mouse bone and correlate to their mechanical properties. The technique of low-field proton NMR involves spin-spin relaxation and free induction decay (FID) measurements, and the computational inversion methods for decay data analysis. The CPMG T2 relaxation data can be inverted to T2 relaxation distribution and this distribution then can be transformed to a pore size distribution with the longer relaxation times corresponding to larger pores. The FID T2 relaxation data of dried bone (mobile water removed) can be inverted to T2 relaxation distribution and this distribution then can be transformed to bound and solid-like water distribution with the longest relaxation time corresponding to bound water component. These techniques are applied to quantify apparent changes in porosity, and bound water in controlled and biglycan knockout mouse bone. Overall bone porosity from CPMG T2 relaxation is determined using the calibrated NMR fluid volume from the proton relaxation data divided by overall bone volume. Ignore the physical sample differences, from the inversion FID T2 relaxation spectrum, the ratio of the bound to solid-like water components is used to calibrate the bound water inside bone, and the results can be used to correlated bone mechanical properties. Hydration status significantly affects the toughness of bone, and bound water has been considered as a biomarker for prediction of bone fragility fractures. In addition to the collagen phase, recent evidence shows that glycosaminoglycans (GAGs) of proteoglycans (PGs) in the extracellular matrix also play a pivotal role in regulating the tissue-level hydration status of bone, there by affecting the tissue-level toughness of bone. Furthermore, biglycan and decorin are two major types of PGs in bone reports. Biglycan knockout induced changes in GAGs, bound water, as well as bone tissue toughness. Among all subtypes of PGs, biglycan is identified as a major subtype in the bone mineral matrix. In this study, we used a biglycan mouse model and the obtained bone samples were measured by low-field NMR to determine the bone porosity and bound water changes, and used to predict if knockout of biglycan may affect the amount of bound water and subsequently lead to reduce toughness of bone.
Collapse
Affiliation(s)
- Qingwen Ni
- Department of Mathematics and Physics,Texas A&M International University, Laredo, TX, USA
| | - Rui Hua
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Douglas Holland
- Department of Mathematics and Physics,Texas A&M International University, Laredo, TX, USA
| | - Anahi Tinajero
- Department of Mathematics and Physics,Texas A&M International University, Laredo, TX, USA
| | - Yan Han
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Xiaodu Wang
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
29
|
Yadav RN, Uniyal P, Sihota P, Kumar S, Dhiman V, Goni VG, Sahni D, Bhadada SK, Kumar N. Effect of ageing on microstructure and fracture behavior of cortical bone as determined by experiment and Extended Finite Element Method (XFEM). Med Eng Phys 2021; 93:100-112. [PMID: 34154770 DOI: 10.1016/j.medengphy.2021.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Bone fracture is a severe health concern; therefore, understanding the causes of bone fracture are crucial. This paper investigates the microstructure and fracture behaviour of cadaveric cortical bone of two different groups (Young, n= 6; Aged, n=7). The microstructure is obtained from µ-CT images, and the material parameters are measured with nanoindentation. Fracture behaviour in transverse and longitudinal orientations is investigated experimentally and numerically. The results show that the Haversian canal (HC) size increases and the osteon wall thickness (OWT) decreases significantly in the aged group, whereas a nonsignificant difference is found in tissue properties. The crack initiation (Jic) and crack growth (Jgrow) toughness of the aged group are found to be significantly lower (p<0.01) than the young group in the transverse orientation; however, for the longitudinal orientation, only the value of Jic in the aged group is found significantly lower. Further, a 4-phase XFEM (based on micro-CT image) model is developed to investigate the crack propagation behaviour in both orientations. For the transverse orientation, results show that in the aged group, the crack initially follows the cementline and then penetrates the osteon, whereas, in the young group, it propagates along the cementline. These results are in agreement with experimental results where the decrease in Jgrow is more significant than the Jic in the aged group. This study suggests that ageing leads to a larger HC and reduced OWT, which weakens the crack deflection ability and causes fragility fracture. Further, the XFEM results indicate that the presence of a small microcrack in the vicinity of a major crack tip causes an increase in the critical stress intensity factor.
Collapse
Affiliation(s)
- Ram Naresh Yadav
- Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Piyush Uniyal
- Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Praveer Sihota
- Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Sachin Kumar
- Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Vandana Dhiman
- Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Vijay G Goni
- Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Daisy Sahni
- Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Sanjay Kumar Bhadada
- Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Navin Kumar
- Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India.
| |
Collapse
|
30
|
Barbieri M, Fantazzini P, Bortolotti V, Baruffaldi F, Festa A, Manners DN, Testa C, Brizi L. Single-sided NMR to estimate morphological parameters of the trabecular bone structure. Magn Reson Med 2020; 85:3353-3369. [PMID: 33349979 DOI: 10.1002/mrm.28648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 11/06/2022]
Abstract
PURPOSE Single-sided 1 H-NMR is proposed for the estimation of morphological parameters of trabecular bone, and potentially the detection of pathophysiological alterations of bone structure. In this study, a new methodology was used to estimate such parameters without using an external reference signal, and to study intratrabecular and intertrabecular porosities, with a view to eventually scanning patients. METHODS Animal trabecular bone samples were analyzed by a single-sided device. The Carr-Purcell-Meiboom-Gill sequence of 1 H nuclei of fluids, including marrow, confined inside the bone, was analyzed by quasi-continuous T2 distributions and separated into two 1 H pools: short and long T2 components. The NMR parameters were estimated using models of trabecular bone structure, and compared with the corresponding micro-CT. RESULTS Without any further assumptions, the internal reference parameter (short T2 signal intensity fraction) enabled prediction of the micro-CT parameters BV/TV (volume of the trabeculae/total sample volume) and BS/TV (external surface of the trabeculae/total sample volume) with linear correlation coefficient >0.80. The assignment of the two pools to intratrabecular and intertrabecular components yielded an estimate of average intratrabecular porosity (33 ± 5)%. Using the proposed models, the NMR-estimated BV/TV and BS/TV were found to be linearly related to the corresponding micro-CT values with high correlation (>0.90 for BV/TV; >0.80 for BS/TV) and agreement coefficients. CONCLUSION Low-field, low-cost portable devices that rely on intrinsic magnetic field gradients and do not use ionizing radiation are viable tools for in vitro preclinical studies of pathophysiological structural alterations of trabecular bone.
Collapse
Affiliation(s)
- Marco Barbieri
- Physics and Astronomy Department, University of Bologna, Bologna, Italy.,Department of Radiology, Stanford University, Stanford, CA, USA
| | - Paola Fantazzini
- Physics and Astronomy Department, University of Bologna, Bologna, Italy
| | - Villiam Bortolotti
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Bologna, Italy
| | | | - Anna Festa
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - David N Manners
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudia Testa
- Physics and Astronomy Department, University of Bologna, Bologna, Italy.,National Institute for Nuclear Physics Bologna, Bologna, Italy
| | - Leonardo Brizi
- Physics and Astronomy Department, University of Bologna, Bologna, Italy.,National Institute for Nuclear Physics Bologna, Bologna, Italy
| |
Collapse
|
31
|
Bolger MW, Romanowicz GE, Bigelow EMR, Ward FS, Ciarelli A, Jepsen KJ, Kohn DH. External bone size identifies different strength-decline trajectories for the male human femora. J Struct Biol 2020; 212:107650. [PMID: 33096230 DOI: 10.1016/j.jsb.2020.107650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 01/22/2023]
Abstract
Understanding skeletal aging and predicting fracture risk is increasingly important with a growing elderly population. We hypothesized that when categorized by external bone size, the male femoral diaphysis would show different strength-age trajectories which can be explained by changes in morphology, composition and collagen cross-linking. Cadaveric male femora were sorted into narrow (n = 15, 26-89 years) and wide (n = 15, 29-82 years) groups based upon total cross-sectional area of the mid-shaft normalized to bone length (Tt.Ar/Le) and tested for whole bone strength, tissue-level strength, and tissue-level post-yield strain. Morphology, cortical TMD (Ct.TMD), porosity, direct measurements of enzymatic collagen cross-links, and pentosidine were obtained. The wide group alone showed significant negative correlations with age for tissue-level strength (R2 = 0.50, p = 0.002), tissue-level post-yield strain (R2 = 0.75, p < 0.001) and borderline significance for whole bone strength (R2 = 0.14, p = 0.108). Ct.TMD correlated with whole bone and tissue-level strength for both groups, but pentosidine normalized to enzymatic cross-links correlated negatively with all mechanical properties for the wide group only. The multivariate analysis showed that just three traits for each mechanical property explained the majority of the variance for whole bone strength (Ct.Area, Ct.TMD, Log(PEN/Mature; R2 = 0.75), tissue-level strength (Age, Ct.TMD, Log(DHLNL/HLNL); R2 = 0.56), and post-yield strain (Age, Log(Pyrrole), Ct.Area; R2 = 0.51). Overall, this highlights how inter-individual differences in bone structure, composition, and strength change with aging and that a one-size fits all understanding of skeletal aging is insufficient.
Collapse
Affiliation(s)
- Morgan W Bolger
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Genevieve E Romanowicz
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Erin M R Bigelow
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Ferrous S Ward
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA; Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Antonio Ciarelli
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA; Department of Mechanical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Karl J Jepsen
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA; Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - David H Kohn
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA; Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA.
| |
Collapse
|
32
|
Hua R, Ni Q, Eliason TD, Han Y, Gu S, Nicolella DP, Wang X, Jiang JX. Biglycan and chondroitin sulfate play pivotal roles in bone toughness via retaining bound water in bone mineral matrix. Matrix Biol 2020; 94:95-109. [PMID: 33002580 DOI: 10.1016/j.matbio.2020.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022]
Abstract
Recent in vitro evidence shows that glycosaminoglycans (GAGs) and proteoglycans (PGs) in bone matrix may functionally be involved in the tissue-level toughness of bone. In this study, we showed the effect of biglycan (Bgn), a small leucine-rich proteoglycan enriched in extracellular matrix of bone and the associated GAG subtype, chondroitin sulfate (CS), on the toughness of bone in vivo, using wild-type (WT) and Bgn deficient mice. The amount of total GAGs and CS in the mineralized compartment of Bgn KO mouse bone matrix decreased significantly, associated with the reduction of the toughness of bone, in comparison with those of WT mice. However, such differences between WT and Bgn KO mice diminished once the bound water was removed from bone matrix. In addition, CS was identified as the major subtype in bone matrix. We then supplemented CS to both WT and Bgn KO mice to test whether supplemental GAGs could improve the tissue-level toughness of bone. After intradermal administration of CS, the toughness of WT bone was greatly improved, with the GAGs and bound water amount in the bone matrix increased, while such improvement was not observed in Bgn KO mice or with supplementation of dermatan sulfate (DS). Moreover, CS supplemented WT mice exhibited higher bone mineral density and reduced osteoclastogenesis. Interestingly, Bgn KO bone did not show such differences irrespective of the intradermal administration of CS. In summary, the results of this study suggest that Bgn and CS in bone matrix play a pivotal role in imparting the toughness to bone most likely via retaining bound water in bone matrix. Moreover, supplementation of CS improves the toughness of bone in mouse models.
Collapse
Affiliation(s)
- Rui Hua
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX, USA
| | - Qingwen Ni
- Department of Physics, Texas A&M International University, Laredo, TX, USA
| | - Travis D Eliason
- Department of Materials Engineering, Southwest Research Institute, San Antonio, TX, USA
| | - Yan Han
- Department of Mechanical Engineering, University of Texas at San Antonio, TX, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX, USA
| | - Daniel P Nicolella
- Department of Materials Engineering, Southwest Research Institute, San Antonio, TX, USA
| | - Xiaodu Wang
- Department of Mechanical Engineering, University of Texas at San Antonio, TX, USA.
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX, USA.
| |
Collapse
|
33
|
Jerban S, Ma Y, Wei Z, Jang H, Chang EY, Du J. Quantitative Magnetic Resonance Imaging of Cortical and Trabecular Bone. Semin Musculoskelet Radiol 2020; 24:386-401. [PMID: 32992367 DOI: 10.1055/s-0040-1710355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bone is a composite material consisting of mineral, organic matrix, and water. Water in bone can be categorized as bound water (BW), which is bound to bone mineral and organic matrix, or as pore water (PW), which resides in Haversian canals as well as in lacunae and canaliculi. Bone is generally classified into two types: cortical bone and trabecular bone. Cortical bone is much denser than trabecular bone that is surrounded by marrow and fat. Magnetic resonance (MR) imaging has been increasingly used for noninvasive assessment of both cortical bone and trabecular bone. Bone typically appears as a signal void with conventional MR sequences because of its short T2*. Ultrashort echo time (UTE) sequences with echo times 100 to 1,000 times shorter than those of conventional sequences allow direct imaging of BW and PW in bone. This article summarizes several quantitative MR techniques recently developed for bone evaluation. Specifically, we discuss the use of UTE and adiabatic inversion recovery prepared UTE sequences to quantify BW and PW, UTE magnetization transfer sequences to quantify collagen backbone protons, UTE quantitative susceptibility mapping sequences to assess bone mineral, and conventional sequences for high-resolution imaging of PW as well as the evaluation of trabecular bone architecture.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, California
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, California
| | - Zhao Wei
- Department of Radiology, University of California, San Diego, California
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, California
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, California.,Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Jiang Du
- Department of Radiology, University of California, San Diego, California
| |
Collapse
|
34
|
Gauthier R, Follet H, Langer M, Peyrin F, Mitton D. What is the influence of two strain rates on the relationship between human cortical bone toughness and micro-structure? Proc Inst Mech Eng H 2020; 234:247-254. [DOI: 10.1177/0954411919884776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cortical bone fracture mechanisms are well studied under quasi-static loading. The influence of strain rate on crack propagation mechanisms needs to be better understood, however. We have previously shown that several aspects of the bone micro-structure are involved in crack propagation, such as the complete porosity network, including the Haversian system and the lacunar network, as well as biochemical aspects, such as the maturity of collagen cross-links. The aim of this study is to investigate the influence of strain rate on the toughness of human cortical bone with respect to its microstructure and organic non-collagenous composition. Two strain rates will be considered: quasi-static loading (10−4 s−1), a standard condition, and a higher loading rate (10−1 s−1), representative of a fall. Cortical bone samples were extracted from eight female donors (age 50–91 years). Three-point bending tests were performed until failure. Synchrotron radiation micro-computed tomography imaging was performed to assess bone microstructure including the Haversian system and the lacunar system. Collagen enzymatic cross-link maturation was measured using a high performance liquid chromatography column. Results showed that that under quasi-static loading, the elastic contribution of the fracture process is correlated to both the collagen cross-links maturation and the microstructure, while the plastic contribution is correlated only to the porosity network. Under fall-like loading, bone organization appears to be less linked to crack propagation.
Collapse
Affiliation(s)
- Rémy Gauthier
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, Lyon, France
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, CREATIS, Villeurbanne, France
| | - Hélène Follet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, LYOS UMR1033, Lyon, France
| | - Max Langer
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, CREATIS, Villeurbanne, France
| | - Françoise Peyrin
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, CREATIS, Villeurbanne, France
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - David Mitton
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, Lyon, France
| |
Collapse
|
35
|
Jerban S, Lu X, Dorthe EW, Alenezi S, Ma Y, Kakos L, Jang H, Sah RL, Chang EY, D’Lima D, Du J. Correlations of cortical bone microstructural and mechanical properties with water proton fractions obtained from ultrashort echo time (UTE) MRI tricomponent T2* model. NMR IN BIOMEDICINE 2020; 33:e4233. [PMID: 31820518 PMCID: PMC7161421 DOI: 10.1002/nbm.4233] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 05/12/2023]
Abstract
Mechanical and microstructural evaluations of cortical bone using ultrashort echo time magnetic resonance imaging (UTE-MRI) have been performed increasingly in recent years. UTE-MRI acquires considerable signal from cortical bone and enables quantitative bone evaluations. Fitting bone apparent transverse magnetization (T2*) decay using a bicomponent model has been regularly performed to estimate bound water (BW) and pore water (PW) in the quantification of bone matrix and porosity, respectively. Human cortical bone possesses a considerable amount of fat, which appears as MRI T2* signal oscillation and can subsequently lead to BW overestimation when using a bicomponent model. Tricomponent T2* fitting model has been developed to improve BW and PW estimations by accounting for fat contribution in the MRI signal. This study aimed to investigate the correlations of microstructural and mechanical properties of human cortical bone with water pool fractions obtained from a tricomponent T2* model. 135 cortical bone strips (~4 × 2 × 40 mm3 ) from tibial and femoral midshafts of 37 donors (61 ± 24 years old) were scanned using ten sets of dual-echo 3D-UTE-Cones sequences (TE = 0.032-24.0 ms) on a 3 T MRI scanner for T2* fitting analyses. Average bone porosity and pore size were measured using microcomputed tomography (μCT) at 9 μm voxel size. Bone mechanical properties were measured using 4-point bending tests. Using a tricomponent model, bound water fraction (FracBW ) showed significant strong (R = 0.70, P < 0.01) and moderate (R = 0.58-0.62, P < 0.01) correlations with porosity and mechanical properties, respectively. Correlations of bone microstructural and mechanical properties with water pool fractions were higher for tricomponent model results compared with the bicomponent model. The tricomponent T2* fitting model is suggested as a useful technique for cortical bone evaluation where the MRI contribution of bone fat is accounted for.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Corresponding authors: • Jiang Du, Department of Radiology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA, , Phone: +1 858 246 2248, Fax: +1 888 960 5922, • Saeed Jerban, Department of Radiology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA, , Phone: +1 858 246 3158, Fax: +1 888 960 5922
| | - Xing Lu
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- 12Sigma Technologies, San Diego, CA, USA
| | - Erik W. Dorthe
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Salem Alenezi
- Research and Laboratories Sector, Saudi Food and Drug Authority, Riyadh, KSA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Lena Kakos
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Robert L. Sah
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Darryl D’Lima
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Corresponding authors: • Jiang Du, Department of Radiology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA, , Phone: +1 858 246 2248, Fax: +1 888 960 5922, • Saeed Jerban, Department of Radiology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA, , Phone: +1 858 246 3158, Fax: +1 888 960 5922
| |
Collapse
|
36
|
Creecy A, Uppuganti S, Girard MR, Schlunk SG, Amah C, Granke M, Unal M, Does MD, Nyman JS. The age-related decrease in material properties of BALB/c mouse long bones involves alterations to the extracellular matrix. Bone 2020; 130:115126. [PMID: 31678497 PMCID: PMC6885131 DOI: 10.1016/j.bone.2019.115126] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/28/2022]
Abstract
One possibility for the disproportionate increase in fracture risk with aging relative to the decrease in bone mass is an accumulation of changes to the bone matrix which deleteriously affect fracture resistance. In order to effectively develop new targets for osteoporosis, a preclinical model of the age-related loss in fracture resistance needs to be established beyond known age-related decreases in bone mineral density and bone volume fraction. To that end, we examined long bones of male and female BALB/c mice at 6-mo. and 20-mo. of age and assessed whether material and matrix properties of cortical bone significantly differed between the age groups. The second moment of area of the diaphysis (minimum and maximum principals for femur and radius, respectively) as measured by ex vivo micro-computed tomography (μCT) was higher at 20-mo. than at 6-mo. for both males and females, but ultimate moment as measured by three-point bending tests did not decrease with age. Cortical thickness was lower with age for males, but higher for old females. Partially accounting for differences in structure, material estimates of yield, ultimate stress, and toughness (left femur) were 12.6%, 11.1%, and 40.9% lower, respectively, with age for both sexes. The ability of the cortical bone to resist crack growth (right femur) was also 18.1% less for the old than for the young adult mice. These decreases in material properties were not due to changes in intracortical porosity as pore number decreased with age. Rather, age-related alterations in the matrix were observed for both sexes: enzymatic and non-enzymatic crosslinks by high performance liquid chromatography increased (femur), volume fraction of bound water by 1H-nuclear magnetic resonance relaxometry decreased (femur), cortical tissue mineral density by μCT increased (femur and radius), and an Amide I sub-peak ratio I1670/I1640 by Raman spectroscopy increased (tibia). Overall, there are multiple matrix changes to potentially target that could prevent the age-related decrease in fracture resistance observed in BALB/c mouse.
Collapse
Affiliation(s)
- Amy Creecy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States; Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Madeline R Girard
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Siegfried G Schlunk
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Chidi Amah
- Meharry Medical College, Nashville, TN 37208, United States
| | - Mathilde Granke
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Mustafa Unal
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Mechanical Engineering, Karamanoglu Mehmetbey University, Karaman, 70100, Turkey
| | - Mark D Does
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Jeffry S Nyman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States; Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, United States.
| |
Collapse
|
37
|
Guo T, Ma Y, Jerban S, Jang H, Zhao W, Chang EY, Chen M, Bydder GM, Du J. T 1 measurement of bound water in cortical bone using 3D adiabatic inversion recovery ultrashort echo time (3D IR-UTE) Cones imaging. Magn Reson Med 2019; 84:634-645. [PMID: 31863519 DOI: 10.1002/mrm.28140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/04/2019] [Accepted: 11/30/2019] [Indexed: 11/11/2022]
Abstract
PURPOSE We describe the measurement of bound water T1 ( T 1 BW ) of cortical bone in vitro and in vivo with a 3D adiabatic inversion recovery ultrashort echo time (IR-UTE) Cones sequence using a clinical 3T scanner. METHODS A series IR-UTE data from 6 repetition times (TRs) with 5 inversion times (TIs) at each TR were acquired from 12 human tibial bone specimens, and data from 4 TRs with 5 TIs at each TR were acquired from the tibial midshafts of 8 healthy volunteers. The pore water nulling point was calculated from exponential fitting of the inversion recovery curve at each TR. Bone specimens and volunteers were then scanned again with the calculated nulling point at each TR. T 1 BW was derived through exponential fitting of data from IR-UTE images acquired at different TRs using the calculated pore water nulling point for each TR. RESULTS In vitro pore water nulling TIs were 141.3 ± 11.6, 123.4 ± 8.9, 101.3 ± 6.2, 88.9 ± 5.3, 74.8 ± 4.2, and 59.2 ± 3.9 ms for the 6 TRs of 500, 400, 300, 250, 200, and 150 ms, respectively. In vivo pore water nulling TIs were 132.8 ± 12.8, 110.3 ± 10.0, 80.0 ± 7.2, and 63.9 ± 5.4 ms for the 4 TRs of 400, 300, 200, and 150 ms, respectively. Excellent exponential fitting was achieved for IR-UTE imaging of bound water with pore water nulled at each TR. The mean T 1 BW was 106.9 ± 6.3 ms in vitro and 112.3 ± 16.4 ms in vivo. CONCLUSION Using the 3D IR-UTE Cones with a variable TR/TI approach, T 1 BW of cortical bone was calculated after complete nulling of pore water signals.
Collapse
Affiliation(s)
- Tan Guo
- Department of Radiology, Beijing Hospital, Beijing, China.,Department of Radiology, University of California, San Diego, California
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, California
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, California
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, California
| | - Wei Zhao
- Department of Radiology, University of California, San Diego, California
| | - Eric Y Chang
- Research Service, VA San Diego Healthcare System, San Diego, California
| | - Min Chen
- Department of Radiology, Beijing Hospital, Beijing, China
| | - Graeme M Bydder
- Department of Radiology, University of California, San Diego, California
| | - Jiang Du
- Department of Radiology, University of California, San Diego, California
| |
Collapse
|
38
|
Jerban S, Ma Y, Dorthe EW, Kakos L, Le N, Alenezi S, Sah RL, Chang EY, D'Lima D, Du J. Assessing cortical bone mechanical properties using collagen proton fraction from ultrashort echo time magnetization transfer (UTE-MT) MRI modeling. Bone Rep 2019; 11:100220. [PMID: 31440531 PMCID: PMC6700521 DOI: 10.1016/j.bonr.2019.100220] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/02/2019] [Indexed: 12/19/2022] Open
Abstract
Cortical bone shows as a signal void when using conventional clinical magnetic resonance imaging (MRI). Ultrashort echo time MRI (UTE-MRI) can acquire high signal from cortical bone, thus enabling quantitative assessments. Magnetization transfer (MT) imaging combined with UTE-MRI can indirectly assess protons in the organic matrix of bone. This study aimed to examine UTE-MT MRI techniques to estimate the mechanical properties of cortical bone. A total of 156 rectangular human cortical bone strips were harvested from the tibial and femoral midshafts of 43 donors (62 ± 22 years old, 62 specimens from females, 94 specimens from males). Bone specimens were scanned using UTE-MT sequences on a clinical 3 T MRI scanner and on a micro-computed tomography (μCT) scanner. A series of MT pulse saturation powers (400°, 600°, 800°) and frequency offsets (2, 5, 10, 20, 50 kHz) was used to measure the macromolecular fraction (MMF) utilizing a two-pool MT model. Failure mechanical properties of the bone specimens were measured using 4-point bending tests. MMF from MRI results showed significant strong correlations with cortical bone porosity (R = -0.72, P < 0.01) and bone mineral density (BMD) (R = +0.71, P < 0.01). MMF demonstrated significant moderate correlations with Young modulus, yield stress, and ultimate stress (R = 0.60-0.61, P < 0.01). These results suggest that the two-pool UTE-MT model focusing on the organic matrix of bone can potentially serve as a novel tool to detect the variations of bone mechanical properties and intracortical porosity.
Collapse
Key Words
- 3D, three-dimensional
- 3D-UTE, three-dimensional ultrashort echo time imaging
- BMD, bone mineral density
- Bone microstructure
- CT, computed tomography
- Cortical bone
- DEXA, dual-energy X-ray absorptiometry
- FA, flip angle
- FOV, field of view
- MMF, macromolecular proton fraction
- MR, magnetic resonance
- MRI
- MRI, magnetic resonance imaging
- MT, magnetization transfer
- Magnetization transfer
- Mechanical properties
- PBS, phosphate-buffered saline
- RF, radio frequency
- ROI, region of interest
- T2MM, macromolecular T2
- TE, echo time
- TR, repetition time
- Ultrashort echo time
- μCT, micro-computed tomography
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, CA 92093, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA 92093, USA
| | - Erik W. Dorthe
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA 92037, USA
| | - Lena Kakos
- Department of Radiology, University of California, San Diego, CA 92093, USA
| | - Nicole Le
- Radiology Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Salem Alenezi
- Research and Laboratories Sector, Saudi Food and Drug Authority, Riyadh 3292, Saudi Arabia
| | - Robert L. Sah
- Department of Bioengineering, University of California, San Diego, CA 92093, USA
- Department of Orthopaedic Surgery, University of California, San Diego, CA 92093, USA
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, CA 92093, USA
- Radiology Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Darryl D'Lima
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA 92037, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA 92093, USA
| |
Collapse
|
39
|
Jerban S, Lu X, Jang H, Ma Y, Namiranian B, Le N, Li Y, Chang EY, Du J. Significant correlations between human cortical bone mineral density and quantitative susceptibility mapping (QSM) obtained with 3D Cones ultrashort echo time magnetic resonance imaging (UTE-MRI). Magn Reson Imaging 2019; 62:104-110. [PMID: 31247253 PMCID: PMC6689249 DOI: 10.1016/j.mri.2019.06.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/06/2019] [Accepted: 06/23/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Quantitative susceptibility mapping (QSM) MRI is a tool that can characterize changes in susceptibility, an intrinsic property which is associated with compositional changes in the tissue. Current QSM estimation of cortical bone is challenging because conventional clinical MRI cannot acquire signal in cortical bone. This study aimed to implement Cones 3D ultrashort echo time MRI (UTE-MRI) for ex vivo QSM measurements in human tibial cortical bone, investigating the correlations of QSM with volumetric intracortical bone mineral density (BMD). MATERIALS AND METHODS Nine tibial midshaft cortical bone specimens (25 mm long specimens cut at the mid-point of tibial shaft, 67 ± 20 years old, 5 women and 4 men) were scanned on a clinical 3 T MRI scanner for QSM measurement. The specimens were also scanned on a high-resolution micro-computed tomography (μCT) scanner for volumetric BMD estimation. QSM and μCT results were compared at approximately nine regions of interest (ROIs) per specimen. RESULTS Average 3D UTE-MRI QSM showed significantly strong correlation with volumetric BMD (R = -0.82, P < 0.01) and bone porosity (R = 0.72, P < 0.01). Combining all data points together (77 ROIs), QSM showed significant moderate to strong correlation with volumetric BMD after correction for interdependencies in specimens (R = -0.70, P < 0.01). The corrections were required because the data points were not independent in each specimen. Similarly, the correlation between QSM and porosity was significant (R = 0.68, P < 0.01). CONCLUSIONS These results suggest that the Cones 3D UTE-MRI QSM technique can potentially serve as a novel and accurate tool to assess intracortical bone mineral density whilst avoiding ionizing radiation.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, CA, USA.
| | - Xing Lu
- Department of Radiology, University of California, San Diego, CA, USA; 12Sigma Technologies, San Diego, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, USA
| | - Behnam Namiranian
- Department of Radiology, University of California, San Diego, CA, USA
| | - Nicole Le
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Ying Li
- First affiliated hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Eric Y Chang
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA; Department of Radiology, University of California, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, USA.
| |
Collapse
|
40
|
Jerban S, Ma Y, Li L, Jang H, Wan L, Guo T, Searleman A, Chang EY, Du J. Volumetric mapping of bound and pore water as well as collagen protons in cortical bone using 3D ultrashort echo time cones MR imaging techniques. Bone 2019; 127:120-128. [PMID: 31176044 PMCID: PMC6708764 DOI: 10.1016/j.bone.2019.05.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022]
Abstract
Cortical bone assessment using magnetic resonance imaging (MRI) has recently received great attention in an effort to avoid the potential harm associated with ionizing radiation-based techniques. Ultrashort echo time MRI (UTE-MRI) techniques can acquire signal from major hydrogen proton pools in cortical bone, including bound and pore water, as well as from the collagen matrix. This study aimed to develop and evaluate the feasibility of a technique for mapping bound water, pore water, and collagen proton densities in human cortical bone ex vivo and in vivo using three-dimensional UTE Cones (3D-UTE-Cones) MRI. Eight human tibial cortical bone specimens (63 ± 19 years old) were scanned using 3D-UTE-Cones sequences on a clinical 3 T MRI scanner and a micro-computed tomography (μCT) scanner. Total, bound, and pore water proton densities (TWPD, BWPD, and PWPD, respectively) were measured using UTE and inversion recovery UTE (IR-UTE) imaging techniques. Macromolecular proton density (MMPD), a collagen representation, was measured using TWPD and macromolecular fraction (MMF) obtained from two-pool UTE magnetization transfer (UTE-MT) modeling. The correlations between proton densities and μCT-based measures were investigated. The 3D-UTE-Cones techniques were further applied on ten young healthy (34 ± 3 years old) and five old (78 ± 6 years old) female volunteers to evaluate the techniques' feasibility for translational clinical applications. In the ex vivo study, PWPD showed the highest correlations with bone porosity and bone mineral density (BMD) (R = 0.79 and - 0.70, p < 0.01). MMPD demonstrated moderate to strong correlations with bone porosity and BMD (R = -0.67 and 0.65, p < 0.01). MMPD showed strong correlation with age in specimens from female donors (R = -0.91, p = 0.03, n = 5). The presented comprehensive 3D-UTE-Cones imaging protocol allows quantitative mapping of protons in major pools of cortical bone ex vivo and in vivo. PWPD and MMPD can serve as potential novel biomarkers to assess bone matrix and microstructure, as well as bone age- or injury-related variations.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, USA
| | - Liang Li
- Department of Radiology, University of California, San Diego, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, CA, USA
| | - Lidi Wan
- Department of Radiology, University of California, San Diego, CA, USA
| | - Tan Guo
- Department of Radiology, University of California, San Diego, CA, USA
| | - Adam Searleman
- Department of Radiology, University of California, San Diego, CA, USA
| | - Eric Y Chang
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA; Department of Radiology, University of California, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, USA.
| |
Collapse
|
41
|
Thiagarajan G, Begonia MT, Dallas M, Lara-Castillo N, Scott JM, Johnson ML. Determination of Elastic Modulus in Mouse Bones Using a Nondestructive Micro-Indentation Technique Using Reference Point Indentation. J Biomech Eng 2019; 140:2679246. [PMID: 29801077 DOI: 10.1115/1.4039982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Indexed: 11/08/2022]
Abstract
The determination of the elastic modulus of bone is important in studying the response of bone to loading and is determined using a destructive three-point bending method. Reference point indentation (RPI), with one cycle of indentation, offers a nondestructive alternative to determine the elastic modulus. While the elastic modulus could be determined using a nondestructive procedure for ex vivo experiments, for in vivo testing, the three-point bending technique may not be practical and hence RPI is viewed as a potential alternative and explored in this study. Using the RPI measurements, total indentation distance (TID), creep indentation distance, indentation force, and the unloading slope, we have developed a numerical analysis procedure using the Oliver-Pharr (O/P) method to estimate the indentation elastic modulus. Two methods were used to determine the area function: (1) Oliver-Pharr (O/P-based on a numerical procedure) and (2) geometric (based on the calculation of the projected area of indentation). The indentation moduli of polymethyl methacrylate (PMMA) calculated by the O/P (3.49-3.68 GPa) and geometric (3.33-3.49 GPa) methods were similar to values in literature (3.5-4 GPa). In a study using femurs from C57Bl/6 mice of different ages and genders, the three-point bending modulus was lower than the indentation modulus. In femurs from 4 to 5 months old TOPGAL mice, we found that the indentation modulus from the geometric (5.61 ± 1.25 GPa) and O/P (5.53 ± 1.27 GPa) methods was higher than the three-point bending modulus (5.28 ± 0.34 GPa). In females, the indentation modulus from the geometric (7.45 ± 0.86 GPa) and O/P (7.46 ± 0.92 GPa) methods was also higher than the three-point bending modulus (7.33 ± 1.13 GPa). We can conclude from this study that the RPI determined values are relatively close to three-point bending values.
Collapse
Affiliation(s)
- Ganesh Thiagarajan
- Department of Civil and Mechanical Engineering, University of Missouri-Kansas City, 350K Robert H. Flarsheim Hall, 5110 Rockhill Road, Kansas City, MO 64110 e-mail:
| | - Mark T Begonia
- Department of Civil and Mechanical Engineering, University of Missouri-Kansas City, 350K Robert H. Flarsheim Hall, 5110 Rockhill Road, Kansas City, MO 64110
| | - Mark Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Room 3143, 650 E 25th Street, Kansas City, MO 64108
| | - Nuria Lara-Castillo
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Room 3143, 650 E 25th Street, Kansas City, MO 64108
| | - JoAnna M Scott
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Room 3143, 650 E 25th Street, Kansas City, MO 64108
| | - Mark L Johnson
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Room 3143, 650 E 25th Street, Kansas City, MO 64108
| |
Collapse
|
42
|
Gustafsson A, Wallin M, Khayyeri H, Isaksson H. Crack propagation in cortical bone is affected by the characteristics of the cement line: a parameter study using an XFEM interface damage model. Biomech Model Mechanobiol 2019; 18:1247-1261. [PMID: 30963356 PMCID: PMC6647448 DOI: 10.1007/s10237-019-01142-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/22/2019] [Indexed: 01/25/2023]
Abstract
Bulk properties of cortical bone have been well characterized experimentally, and potent toughening mechanisms, e.g., crack deflections, have been identified at the microscale. However, it is currently difficult to experimentally measure local damage properties and isolate their effect on the tissue fracture resistance. Instead, computer models can be used to analyze the impact of local characteristics and structures, but material parameters required in computer models are not well established. The aim of this study was therefore to identify the material parameters that are important for crack propagation in cortical bone and to elucidate what parameters need to be better defined experimentally. A comprehensive material parameter study was performed using an XFEM interface damage model in 2D to simulate crack propagation around an osteon at the microscale. The importance of 14 factors (material parameters) on four different outcome criteria (maximum force, fracture energy, crack length and crack trajectory) was evaluated using ANOVA for three different osteon orientations. The results identified factors related to the cement line to influence the crack propagation, where the interface strength was important for the ability to deflect cracks. Crack deflection was also favored by low interface stiffness. However, the cement line properties are not well determined experimentally and need to be better characterized. The matrix and osteon stiffness had no or low impact on the crack pattern. Furthermore, the results illustrated how reduced matrix toughness promoted crack penetration of the cement line. This effect is highly relevant for the understanding of the influence of aging on crack propagation and fracture resistance in cortical bone.
Collapse
Affiliation(s)
- Anna Gustafsson
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden
| | - Mathias Wallin
- Division of Solid Mechanics, Lund University, Box 118, 221 00 Lund, Sweden
| | - Hanifeh Khayyeri
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden
| |
Collapse
|
43
|
Lane N, Nyman J, Uppuganti S, Chaudhari A, Aguirre J, Shidara K, Liu X, Yao W, Kimmel D. Inhibition of vascular endothelial growth factor in young adult mice causes low bone blood flow and bone strength with no effect on bone mass in trabecular regions. Bone Rep 2019; 10:100210. [PMID: 31193542 PMCID: PMC6535464 DOI: 10.1016/j.bonr.2019.100210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To determine the effect of an antibody to vascular endothelial growth factor (VEGF) on bone blood flow, bone strength, and bone mass in the young adult mouse. METHODS Ten-week-old male BALB/cJ mice were body weight-randomized into either a rodent anti-VEGF monoclonal antibody (anti-VEGF, B20-4.1.1; 5 mg/kg 2×/wk.; n = 12) group or a vehicle (VEH; n = 12) group. After 42 days, mice were evaluated for bone blood flow at the distal femur by 18F-NaF-PET/CT and then necropsied. Samples from trabecular and cortical bone regions were evaluated for bone strength by mechanical testing, bone mass by peripheral quantitative computed tomography (pQCT), and micoarchitecture (MicroCT). Hydration of the whole femur was studied by proton nuclear magnetic resonance relaxometry (1H NMR). RESULTS Distal femur blood flow was 43% lower in anti-VEGF mice than in VEH mice (p = 0.009). Ultimate load in the lumbar vertebral body was 25% lower in anti-VEGF than in VEH mice (p = 0.013). Bone mineral density (BMD) in the trabecular region of the proximal humeral metaphysis by pQCT, and bone volume fraction and volumetric BMD by MicroCT were the same in the two groups. Volume fraction of bound water (BW) of the whole femur was 14% lower in anti-VEGF than in VEH mice (p = 0.003). Finally, BW, but not cortical tissue mineral density, helped section modulus explain the variance in the ultimate moment experienced by the femur in three-point bending. CONCLUSION Anti-VEGF caused low bone blood flow and bone strength in trabecular bone regions without influencing BMD and microarchitecture. Low bone strength was also associated with low bone hydration. These data suggest that bone blood flow is a novel bone property that affects bone quality.
Collapse
Affiliation(s)
- N.E. Lane
- Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - J.S. Nyman
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - S. Uppuganti
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - A.J. Chaudhari
- Center for Molecular and Genomic Imaging, Department of Radiology, University of California at Davis, Davis, CA 95616, USA
| | - J.I. Aguirre
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - K. Shidara
- Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - X.P. Liu
- Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - W. Yao
- Center for Musculoskeletal Health, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - D.B. Kimmel
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
44
|
Jerban S, Ma Y, Wong JH, Nazaran A, Searleman A, Wan L, Williams J, Du J, Chang EY. Ultrashort echo time magnetic resonance imaging (UTE-MRI) of cortical bone correlates well with histomorphometric assessment of bone microstructure. Bone 2019; 123:8-17. [PMID: 30877070 PMCID: PMC6504977 DOI: 10.1016/j.bone.2019.03.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022]
Abstract
Ultrashort echo time magnetic resonance imaging (UTE-MRI) techniques have been increasingly used to assess cortical bone microstructure. High resolution micro computed tomography (μCT) is routinely employed for validating the MRI-based assessments. However, water protons in cortical bone may reside in micropores smaller than the detectable size ranges by μCT. The goal of this study was to evaluate the upper limit of UTE-MRI and compare its efficacy to μCT at determining bone porosity ex vivo. This study investigated the correlations between UTE-MRI based quantifications and histomorphometric measures of bone porosity that cover all pores larger than 1 μm. Anterior tibial midshaft specimens from eleven donors (51 ± 16 years old, 6 males, 5 females) were scanned on a clinical 3 T-MRI using UTE magnetization transfer (UTE-MT, three power levels and five frequency offsets) and UTE-T2* sequences. Two-pool MT modeling and bi-component exponential T2* fitting were performed on the MRI datasets. Specimens were then scanned by μCT at 9 μm voxel size. Histomorphometry was performed on hematoxylin and eosin (H&E) stained slides imaged at submicron resolution. Macromolecular fraction from MT modeling, bi-component T2* fractions, and short component T2* showed strong correlations (R > 0.7, p < 0.01) with histomorphometric total and large-pores (>40 μm) porosities as well as with μCT-based porosity. UTE-MRI could also assess small pores variations with moderate correlations (R > 0.5, p < 0.01). The UTE-MRI techniques can detect variations of bone porosity comprised of pores below the range detectable by μCT. Such fine pore variations can contribute differently to the development of bone diseases or to the bone remodeling process, however, this needs to be investigated. In scanned specimens, major porosity changes were from large pores, therefore the μCT employment was likely adequate to validate UTE-MRI biomarkers.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, CA, USA.
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, USA
| | - Jonathan H Wong
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Amin Nazaran
- Department of Radiology, University of California, San Diego, CA, USA
| | - Adam Searleman
- Department of Radiology, University of California, San Diego, CA, USA
| | - Lidi Wan
- Department of Radiology, University of California, San Diego, CA, USA
| | - Judith Williams
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, USA
| | - Eric Y Chang
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA; Department of Radiology, University of California, San Diego, CA, USA.
| |
Collapse
|
45
|
Unal M, Uppuganti S, Timur S, Mahadevan-Jansen A, Akkus O, Nyman JS. Assessing matrix quality by Raman spectroscopy helps predict fracture toughness of human cortical bone. Sci Rep 2019; 9:7195. [PMID: 31076574 PMCID: PMC6510799 DOI: 10.1038/s41598-019-43542-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/26/2019] [Indexed: 01/10/2023] Open
Abstract
Developing clinical tools that assess bone matrix quality could improve the assessment of a person's fracture risk. To determine whether Raman spectroscopy (RS) has such potential, we acquired Raman spectra from human cortical bone using microscope- and fiber optic probe-based Raman systems and tested whether correlations between RS and fracture toughness properties were statistically significant. Calculated directly from intensities at wavenumbers identified by second derivative analysis, Amide I sub-peak ratio I1670/I1640, not I1670/I1690, was negatively correlated with Kinit (N = 58; R2 = 32.4%) and J-integral (R2 = 47.4%) when assessed by Raman micro-spectroscopy. Area ratios (A1670/A1690) determined from sub-band fitting did not correlate with fracture toughness. There were fewer correlations between RS and fracture toughness when spectra were acquired by probe RS. Nonetheless, the I1670/I1640 sub-peak ratio again negatively correlated with Kinit (N = 56; R2 = 25.6%) and J-integral (R2 = 39.0%). In best-fit general linear models, I1670/I1640, age, and volumetric bone mineral density explained 50.2% (microscope) and 49.4% (probe) of the variance in Kinit. I1670/I1640 and v1PO4/Amide I (microscope) or just I1670/I1640 (probe) were negative predictors of J-integral (adjusted-R2 = 54.9% or 37.9%, respectively). While Raman-derived matrix properties appear useful to the assessment of fracture resistance of bone, the acquisition strategy to resolve the Amide I band needs to be identified.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, 37212, USA
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Selin Timur
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Anita Mahadevan-Jansen
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, 37212, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, 37212, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA.
| |
Collapse
|
46
|
Willett TL, Dapaah DY, Uppuganti S, Granke M, Nyman JS. Bone collagen network integrity and transverse fracture toughness of human cortical bone. Bone 2019; 120:187-193. [PMID: 30394355 PMCID: PMC6360115 DOI: 10.1016/j.bone.2018.10.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/09/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022]
Abstract
Greater understanding of the determinants of skeletal fragility is highly sought due to the great burden that bone affecting diseases and fractures have on economies, societies and health care systems. Being a complex, hierarchical composite of collagen type-I and non-stoichiometric substituted hydroxyapatite, bone derives toughness from its organic phase. In this study, we tested whether early observations that a strong correlation between bone collagen integrity measured by thermomechanical methods and work to fracture exist in a more general and heterogeneous sampling of the population. Neighboring uniform specimens from an established, highly characterized and previously published collection of human cortical bone samples (femur mid-shaft) were decalcified in EDTA. Fifty-four of the original 62 donors were included (26 male and 28 females; ages 21-101 years; aging, osteoporosis, diabetes and cancer). Following decalcification, bone collagen was tested using hydrothermal isometric tension (HIT) testing in order to measure the collagen's thermal stability (denaturation temperature, Td) and network connectivity (maximum rate of isometric tension generation; Max.Slope). We used linear regression and general linear models (GLMs) with several explanatory variables to determine whether relationships between HIT parameters and generally accepted bone quality factors (e.g., cortical porosity, pentosidine content [pen], pyridinoline content [pyd]), age, and measures of fracture toughness (crack initiation fracture toughness, Kinit, and total energy release/dissipation rate evaluated at the point of unstable fast fracture, J-int) were significant. Bone collagen connectivity (Max.Slope) correlated well with the measures of fracture toughness (R2 = 24-35%), and to a lesser degree with bound water fraction (BW; R2 = 7.9%) and pore water fraction (PW; R2 = 9.1%). Significant correlations with age, apparent volumetric bone mineral density (vBMD), and mature enzymatic [pyd] and non-enzymatic collagen crosslinks [pen] were not detected. GLMs found that Max.Slope and vBMD (or BW), with or without age as additional covariate, all significantly explained the variance in Kinit (adjusted-R2 = 36.7-49.0%). Also, the best-fit model for J-int (adjusted-R2 = 35.7%) included only age and Max.Slope as explanatory variables with Max.Slope contributing twice as much as age. Max.Slope and BW without age were also significant predictors of J-int (adjusted-R2 = 35.5%). In conclusion, bone collagen integrity as measured by thermomechanical methods is a key factor in cortical bone fracture toughness. This study further demonstrates that greater attention should be paid to degradation of the overall organic phase, rather than a specific biomarker (e.g. [pen]), when seeking to understand elevated fracture rates in aging and disease.
Collapse
Affiliation(s)
- Thomas L Willett
- Biomedical Engineering Program, Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Daniel Y Dapaah
- Biomedical Engineering Program, Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Sasidhar Uppuganti
- Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Mathilde Granke
- Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Jeffry S Nyman
- Vanderbilt University Medical Center, Nashville, TN, United States of America.
| |
Collapse
|
47
|
Abstract
It is well known that bone loss accompanies aging in both men and women and contributes to skeletal fragility in the older population, but changes that occur to the bone tissue matrix itself are less well known. These changes in bone quality aggravate the skeletal fragility associated with loss of bone mass. Bone tissue quality is affected by age-related changes in bone mineral, collagen and its cross-linking profiles, water compartments and even non-collagenous proteins. It is commonly assumed that greater tissue mineralization accompanies aging as bone turnover slows down in elderly individuals, but the data for this are weak. However, there may be changes in the quality of the mineral crystals, and the substitutions found within the crystal. Both enzymatically-mediated and non-enzymatically-mediated collagen cross-links multiply with age. The former tend to make the bone stiffer and stronger, but the latter, while making the bone stiffer can also make it more brittle and more likely to fracture. Bone pore water that is not bound to collagen or mineral increases with age as bone mass is lost, but water that is bound to collagen and mineral declines with age. These changes contribute to skeletal fragility by reducing the amount that bone can deform before fracturing. Finally, non-collagenous proteins have physical properties that can alter matrix mechanical properties and can also have molecular signaling functions that regulate bone remodeling. Whether these change with age, how they change, and how this affects skeletal fragility with aging is still largely a black box, and requires much more investigation. The roles of any of these factors in skeletal fragility are difficult to assess clinically as there is no easy or economical way to evaluate them, but a picture of fragility in the aging skeleton is incomplete without them.
Collapse
Affiliation(s)
- David B Burr
- Dept. of Anatomy and Cell Biology, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, United States of America; Dept. of Biomedical Engineering, Indiana University-Purdue University, Indianapolis (IUPUI), United States of America.
| |
Collapse
|
48
|
Jerban S, Ma Y, Wan L, Searleman AC, Jang H, Sah RL, Chang EY, Du J. Collagen proton fraction from ultrashort echo time magnetization transfer (UTE-MT) MRI modelling correlates significantly with cortical bone porosity measured with micro-computed tomography (μCT). NMR IN BIOMEDICINE 2019; 32:e4045. [PMID: 30549338 PMCID: PMC6324959 DOI: 10.1002/nbm.4045] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 05/08/2023]
Abstract
Intracortical bone porosity is a key microstructural parameter that determines bone mechanical properties. While clinical MRI visualizes the cortical bone with a signal void, ultrashort echo time (UTE) MRI can acquire high signal from cortical bone, thus enabling quantitative assessments. Magnetization transfer (MT) imaging combined with UTE-MRI can indirectly assess protons in the bone collagenous matrix, which are inversely related to porosity. This study aimed to examine UTE-MT MRI techniques to evaluate intracortical bone porosity. Eighteen human cortical bone specimens from the tibial and fibular midshafts were scanned using UTE-MT sequences on a clinical 3 T MRI scanner and on a high-resolution micro-computed tomography (μCT) scanner. A series of MT pulse saturation powers (500°, 1000°, 1500°) and frequency offsets (2, 5, 10, 20, 50 kHz) were used to measure the macromolecular fraction (MMF) and macromolecular T2 (T2MM ) using a two-pool MT model. The measurements were made on 136 different regions of interest (ROIs). ROIs were selected at three cortical bone layers (from endosteum to periosteum) and four anatomical sites (anterior, mid-medial, mid-lateral, and posterior) to provide a wide range of porosity. MMF showed moderate to strong correlations with intracortical bone porosity (R = -0.67 to -0.73, p < 0.01) and bone mineral density (BMD) (R = +0.46 to +0.70, p < 0.01). Comparing the average MMF between cortical bone layers revealed a significant increase from the endosteum towards the periosteum. Such a pattern was in agreement with porosity reduction and BMD increase towards the periosteum. These results suggest that the two-pool UTE-MT technique can potentially serve as a novel and accurate tool to assess intracortical bone porosity.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, USA
| | - Lidi Wan
- Department of Radiology, University of California, San Diego, CA, USA
| | - Adam C. Searleman
- Department of Radiology, University of California, San Diego, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, CA, USA
| | - Robert L. Sah
- Department of Bioengineering, University of California, San Diego, CA, USA
- Department of Orthopaedic Surgery, University of California, San Diego, CA, USA
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, CA, USA
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, USA
| |
Collapse
|
49
|
Nyman JS, Uppuganti S, Unal M, Leverant CJ, Adabala S, Granke M, Voziyan P, Does MD. Manipulating the Amount and Structure of the Organic Matrix Affects the Water Compartments of Human Cortical Bone. JBMR Plus 2019; 3:e10135. [PMID: 31346566 PMCID: PMC6636778 DOI: 10.1002/jbm4.10135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/05/2018] [Accepted: 11/20/2018] [Indexed: 02/01/2023] Open
Abstract
Being predictors of the mechanical properties of human cortical bone, bound and pore water measurements by magnetic resonance (MR) imaging are being developed for the clinical assessment of fracture risk. While pore water is a surrogate of cortical bone porosity, the determinants of bound water are unknown. Manipulation of organic matrix properties by oxidative deproteinization, thermal denaturation, or nonenzymatic glycation lowers bone toughness. Because bound water contributes to bone toughness, we hypothesized that each of these matrix manipulations affect bound water fraction (Vbw/Vbone). Immersing cadaveric bone samples in sodium hypochlorite (NaClO) for 96 hours did not affect tissue mineral density or cortical porosity, but rather decreased Vbw/Vbone and increased short‐T2 pore water signals as determined by 1H nuclear MR relaxometry (1H NMR). Moreover, the post treatment Vbw/Vbone linearly correlated with the remaining weight fraction of the organic matrix. Heating bone samples at 110°C, 120°C, 130°C, and then 140°C (∼24 hours per temperature and rehydration for ∼24 hours before 1H NMR analysis) did not affect Vbw/Vbone. After subsequently heating them at 200°C, Vbw/Vbone increased. Boiling bone samples followed by heating at 110°C, 120°C, and then 130°C in water under pressure (8 hours per temperature) had a similar effect on Vbw/Vbone. Raman spectroscopy analysis confirmed that the increase in Vbw/Vbone coincided with an increase in an Amide I subpeak ratio that is sensitive to changes in the helical structure of collagen I. Glycation of bone by ribose for 4 weeks, but not in glucose for 16 weeks, decreased Vbw/Vbone, although the effect was less pronounced than that of oxidative deproteinization or thermal denaturation. We propose that MR measurements of bound water reflect the amount of bone organic matrix and can be modulated by collagen I helicity and by sugar‐derived post translational modifications of the matrix. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jeffry S Nyman
- Department of Orthopaedic Surgery and Rehabilitation Vanderbilt University Medical Center Nashville TN USA.,Department of Biomedical Engineering Vanderbilt University Nashville TN USA.,Department of Veterans Affairs Tennessee Valley Healthcare System Nashville TN USA
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery and Rehabilitation Vanderbilt University Medical Center Nashville TN USA
| | - Mustafa Unal
- Department of Orthopaedic Surgery and Rehabilitation Vanderbilt University Medical Center Nashville TN USA
| | - Calen J Leverant
- Department of Chemical and Biomolecular Engineering Vanderbilt University Nashville TN USA
| | - Saahit Adabala
- Department of Orthopaedic Surgery and Rehabilitation Vanderbilt University Medical Center Nashville TN USA
| | - Mathilde Granke
- Department of Orthopaedic Surgery and Rehabilitation Vanderbilt University Medical Center Nashville TN USA
| | - Paul Voziyan
- Department of Medicine Division of Nephrology Vanderbilt University Medical Center Nashville TN USA
| | - Mark D Does
- Department of Biomedical Engineering Vanderbilt University Nashville TN USA.,Department of Radiology and Radiological Sciences Vanderbilt University Medical Center Nashville TN USA.,Department of Electrical Engineering Vanderbilt University Nashville TN USA
| |
Collapse
|
50
|
Jerban S, Szeverenyi N, Ma Y, Guo T, Namiranian B, To S, Jang H, Chang EY, Du J. Ultrashort Echo Time MRI (UTE-MRI) Quantifications of Cortical Bone Varied Significantly at Body Temperature Compared with Room Temperature. ACTA ACUST UNITED AC 2019. [DOI: 10.13104/imri.2019.23.3.202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, United States
| | | | - Yajun Ma
- Department of Radiology, University of California, San Diego, United States
| | - Tan Guo
- Department of Radiology, University of California, San Diego, United States
| | - Behnam Namiranian
- Department of Radiology, University of California, San Diego, United States
| | - Sarah To
- Radiology Service, VA San Diego Healthcare System, San Diego, United States
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, United States
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, United States
- Radiology Service, VA San Diego Healthcare System, San Diego, United States
| | - Jiang Du
- Department of Radiology, University of California, San Diego, United States
| |
Collapse
|