1
|
Iwanowska M, Kochman M, Szatko A, Zgliczyński W, Glinicki P. Bone Disease in Primary Hyperparathyroidism-Changes Occurring in Bone Metabolism and New Potential Treatment Strategies. Int J Mol Sci 2024; 25:11639. [PMID: 39519190 PMCID: PMC11546563 DOI: 10.3390/ijms252111639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Primary hyperparathyroidism (PHPT) is a common endocrinopathy, predominantly caused by a single parathyroid adenoma that is responsible for the excessive secretion of parathyroid hormone (PTH)-the hallmark of disease. Excess of this hormone causes remarkable changes in bone metabolism, including an increased level of bone remodeling with a predominance of bone resorption. Those changes lead to deterioration of bone structure and density, especially in cortical bone. The main treatment for PHPT is surgical removal of the adenoma, which normalizes PTH levels and terminates the progression of bone disease and leads to its regeneration. However, because not all the patients are suitable candidates for surgery, alternative therapies are needed. Current non-surgical treatments targeting bone disease secondary to PHPT include bisphosphonates and denosumab. Those antiresorptives prevent further bone loss, but they lack the ability to regenerate already degraded bone. There is ongoing research to find targeted drugs capable of halting resorption alongside stimulating bone formation. This review presents the advancements in understanding the molecular mechanisms responsible for bone disease in PHPT and assesses the efficacy of new potential therapeutic approaches (e.g., allosteric inhibitors of the PTH receptor, V-ATPase, or cathepsin inhibitors) aimed at mitigating bone loss and enhancing bone regeneration in affected patients.
Collapse
Affiliation(s)
- Mirella Iwanowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Magdalena Kochman
- Department of Endocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Alicja Szatko
- Department of Endocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
- EndoLab Laboratory, Centre of Postgraduate Medical Education, 01-809 Warsaw, Poland
| | - Wojciech Zgliczyński
- Department of Endocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Piotr Glinicki
- Department of Endocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
- EndoLab Laboratory, Centre of Postgraduate Medical Education, 01-809 Warsaw, Poland
| |
Collapse
|
2
|
Goulding DA, Bonnet N, Horcajada MN, Baruchet M, Bermont F, Hauser J, Macrì S, Pisa E, Nembrini C, Vidal K, O'Brien NM, O'Mahony JA, O'Regan J. The impact of complexation or complex coacervation of lactoferrin and osteopontin on simulated infant gastrointestinal digestion, intestinal inflammation, and in vivo bone development. Food Funct 2024; 15:9928-9940. [PMID: 39259160 DOI: 10.1039/d4fo02790f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Lactoferrin (LF) and osteopontin (OPN) are bioactive milk proteins which can form heteroprotein complexes and complex coacervates. This research studied the effect of LF-OPN complexation and complex coacervation on the simulated infant gastrointestinal digestion of LF with subsequent examination of gut and bone health bioactivities in preclinical models. In an infant digestion model, the proteolytic profile of LF was unaltered by the pre-association of LF and OPN. Gastric proteolysis of LF was increased when the model gastric pH was reduced from 5.3 to 4.0, but less so when complexed with OPN. In a model of intestinal inflammation, undigested (79% inhibition) and gastric digestates (26% inhibition) of LF, but not gastrointestinal digestates, inhibited lipopolysaccharide (LPS)-induced NF-κB activation in intestinal epithelial cells. LF-OPN complexation sustained the inhibitory effect (21-43% of the undigested effect, depending on the type of complex) of LF after gastrointestinal digestion, suggesting that the peptides produced were different. In a neonatal rodent model used to study bone development, coacervating LF and OPN improved bone structures with a significant increase of trabecular proportion (BV/TV increase by 21.7%). This resulted in an 11.3% increase in stiffness of bones. Feeding the LF and OPN proteins in coacervate format also increased the levels of OPN, P1NP and M-CSF in blood, signifying a more pronounced impact on bone development. This research demonstrated that LF-OPN complexation and complex coacervation can delay simulated infant gastrointestinal digestion of LF and protect or improve the bioactivity of the proteins.
Collapse
Affiliation(s)
- David A Goulding
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, V94 E7P9, Ireland.
| | - Nicolas Bonnet
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Marie-Noëlle Horcajada
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Michael Baruchet
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Flavien Bermont
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Jonas Hauser
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Edoardo Pisa
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Chiara Nembrini
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Karine Vidal
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Nora M O'Brien
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - James A O'Mahony
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Jonathan O'Regan
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, V94 E7P9, Ireland.
| |
Collapse
|
3
|
Saulacic N, Katagiri H, Fujioka-Kobayashi M, Ferrari SL, Gerbaix MC. Alternated activation with relaxation of periosteum stimulates bone modeling and remodeling. Sci Rep 2024; 14:11136. [PMID: 38750119 PMCID: PMC11096315 DOI: 10.1038/s41598-024-61902-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Gradual elevation of the periosteum from the original bone surface, based on the principle of distraction osteogenesis, induces endogenous hard and soft tissue formation. This study aimed to assess the impact of alternating protocols of activation with relaxation (periosteal pumping) on bone modeling and remodeling. One hundred and sixty-two adult male Wistar rats were used in this study. Four test groups with different pumping protocols were created based on the relaxation applied. Two control groups underwent an activation period without relaxation or only a single activation. One group was sham-operated. Periosteal pumping without period of activation induced gene expression in bone and bone remodeling, and following activation period enhanced bone modeling. Four test groups and control group with activation period equaled the values of bone modeling at the end-consolidation period, showing significant downregulation of Sost in the bone and periosteum compared to that in the sham group (p < 0.001 and p < 0.001, respectively). When all test groups were pooled together, plate elevation from the bony surface increased bone remodeling on day 45 of the observation period (p = 0.003). Furthermore, bone modeling was significantly affected by plate elevation on days 17 and 45 (p = 0.047 and p = 0.005, respectively) and by pumping protocol on day 31 (p = 0.042). Periosteal pumping was beneficial for increasing bone repair when the periosteum remained in contact with the underlaying bony surface during the manipulation period. Following periosteal elevation, periosteal pumping accelerated bone formation from the bony surface by the modeling process.
Collapse
Affiliation(s)
- Nikola Saulacic
- Department of Cranio-Maxillofacial Surgery, Faculty of Medicine, University of Bern, Bern, Switzerland.
| | - Hiroki Katagiri
- Department of Cranio-Maxillofacial Surgery, Faculty of Medicine, University of Bern, Bern, Switzerland
- Advanced Research Center, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Faculty of Medicine, University of Bern, Bern, Switzerland
- Department of Oral and Maxillofacial Surgery, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Serge L Ferrari
- Service of Bone Diseases, Department Medicine, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Maude C Gerbaix
- Service of Bone Diseases, Department Medicine, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
4
|
Ji L, Yu Y, Zhu F, Huang D, Wang X, Wang J, Liu C. 2-N, 6-O sulfated chitosan evokes periosteal stem cells for bone regeneration. Bioact Mater 2024; 34:282-297. [PMID: 38261845 PMCID: PMC10796814 DOI: 10.1016/j.bioactmat.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Musculoskeletal injuries and bone defects represent a significant clinical challenge, necessitating innovative approaches for effective bone tissue regeneration. In this study, we investigated the potential of harnessing periosteal stem cells (PSCs) and glycosaminoglycan (GAG)-mimicking materials for in situ bone regeneration. Our findings demonstrated that the introduction of 2-N, 6-O sulfated chitosan (26SCS), a GAG-like polysaccharide, enriched PSCs and promoted robust osteogenesis at the defect area. Mechanistically, 26SCS amplifies the biological effect of endogenous platelet-derived growth factor-BB (PDGF-BB) through enhancing the interaction between PDGF-BB and its receptor PDGFRβ abundantly expressed on PSCs, resulting in strengthened PSC proliferation and osteogenic differentiation. As a result, 26SCS effectively improved bone defect repair, even in an osteoporotic mouse model with lowered PDGF-BB level and diminished regenerative potential. Our findings suggested the significant potential of GAG-like biomaterials in regulating PSC behavior, which holds great promise for addressing osteoporotic bone defect repair in future applications.
Collapse
Affiliation(s)
- Luli Ji
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yuanman Yu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Fuwei Zhu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Dongao Huang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaogang Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jing Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
5
|
Changkhaokham B, Suamphan S, Jitpukdeebodintra S, Leethanakul C. Effects of continuous and released compressive force on osteoclastogenesis invitro. J Oral Biol Craniofac Res 2024; 14:164-168. [PMID: 38380224 PMCID: PMC10876609 DOI: 10.1016/j.jobcr.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/30/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Objective Compressive force has been found to be catabolic to alveolar bone during orthodontic tooth movement. This study quantified the fusion of mononuclear RAW 264.7 cells (a murine osteoclastic-like cell line) into multinucleated osteoclasts under a hydrostatic pressure-generated mechanical compression-the new model of various magnitudes and durations. Methods RAW 264.7 cells were subjected to 0.3, 0.6 or 0.9 g/cm2 of compressive force by an acrylic cylinder custom-made by laser cutting or no compressive force for 4 days during osteoclastogenic induction. TRAP-positive multinucleated cells were quantified. For the release from force experiment, osteoclastogenesis was induced by 0.6 g/cm2 mechanical stimuli for 0, 1, 2, 3 or 4 days. Cell viability, TRAP-positive multinucleated cells, DCSTAMP and Cathepsin K (CTSK) gene expression were evaluated 4 days after release from force. Results Compressive force at 0.6 and 0.9 g/cm2 significantly increase the number of TRAP-positive multinucleated cells (P < 0.05). Release from continuous mechanical compression after 4 days significantly elevated the number of TRAP-positive multinucleated cells and DCSTAMP and CTSK mRNA expression, with no adverse effects on cell viability (P < 0.05). Conclusions Continuous stimulation with compressive force induced osteoclastogenesis in RAW 264.7 cells by enhancing DCSTAMP and CTSK expression, which provides new understanding of bone remodeling during orthodontic treatment.
Collapse
Affiliation(s)
| | - Sumit Suamphan
- School of Dentistry, Maefahluang University, Chiangrai, 57100, Thailand
| | - Suwanna Jitpukdeebodintra
- Department of Oral Biology, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Chidchanok Leethanakul
- Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| |
Collapse
|
6
|
Ackerman JE, Muscat SN, Adjei-Sowah E, Korcari A, Nichols AEC, Buckley MR, Loiselle AE. Identification of Periostin as a critical niche for myofibroblast dynamics and fibrosis during tendon healing. Matrix Biol 2024; 125:59-72. [PMID: 38101460 PMCID: PMC10922883 DOI: 10.1016/j.matbio.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/17/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Tendon injuries are a major clinical problem, with poor patient outcomes caused by abundant scar tissue deposition during healing. Myofibroblasts play a critical role in the initial restoration of structural integrity after injury. However, persistent myofibroblast activity drives the transition to fibrotic scar tissue formation. As such, disrupting myofibroblast persistence is a key therapeutic target. While myofibroblasts are typically defined by the presence of αSMA+ stress fibers, αSMA is expressed in other cell types including the vasculature. As such, modulation of myofibroblast dynamics via disruption of αSMA expression is not a translationally tenable approach. Recent work has demonstrated that Periostin-lineage (PostnLin) cells are a precursor for cardiac fibrosis-associated myofibroblasts. In contrast to this, here we show that PostnLin cells contribute to a transient αSMA+ myofibroblast population that is required for functional tendon healing, and that Periostin forms a supportive matrix niche that facilitates myofibroblast differentiation and persistence. Collectively, these data identify the Periostin matrix niche as a critical regulator of myofibroblast fate and persistence that could be targeted for therapeutic manipulation to facilitate regenerative tendon healing.
Collapse
Affiliation(s)
- Jessica E Ackerman
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States; NDORMS, University of Oxford, Oxford, United Kingdom
| | - Samantha N Muscat
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States; Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Emmanuela Adjei-Sowah
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States; Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Antonion Korcari
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States; Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Anne E C Nichols
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States; Department of Orthopaedics & Physical Performance, University of Rochester Medical Center, Rochester, NY, United States
| | - Mark R Buckley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States; Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States; Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States; Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States; Department of Orthopaedics & Physical Performance, University of Rochester Medical Center, Rochester, NY, United States.
| |
Collapse
|
7
|
Qin X, Wei Q, An R, Yang Y, Cai M, Han X, Mao H, Gao X. Regulation of bone and fat balance by Fructus Ligustri Lucidi in ovariectomized mice. PHARMACEUTICAL BIOLOGY 2023; 61:391-403. [PMID: 36740874 PMCID: PMC9904306 DOI: 10.1080/13880209.2023.2168019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 12/03/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT Fructus Ligustri Lucidi (FLL), a commonly used herb of traditional Chinese medicine (TCM), is the fruit of Ligustrum lucidum Ait. (Oleaceae). The ethanol extract of FLL is a potential candidate for preventing and treating postmenopausal osteoporosis (PMOP) by nourishing the liver and kidneys. OBJECTIVE This study determines whether an ethanol extract of FLL has anti-osteoporotic effects in ovariectomized (OVX) mice and explores the underlying mechanism. MATERIALS AND METHODS The OVX model of eight-week-old C57BL/6J female mice was taken, and ovariectomy was used as PMOP. Mice were divided into five groups: sham-operated group (n = 10), OVX group (n = 10), OVX + E2 group (n = 10; 0.039 mg/kg), OVX + FLL group (n = 10; 2 g/kg) and OVX + FLL group (n = 10; 4 g/kg). Mice were treated by gavage with FLL or CMCNa once daily for 8 weeks. We harvested uteri, femur, and tibias from mice; bone mineral density (BMD) and bone microstructure were obtained by X-ray absorptiometry and micro-CT. Furthermore, the effect of FLL on the balance of osteoblast and adipocyte differentiation was investigated using bone marrow mesenchymal stem cells (BMMSCs). RESULTS The results indicated that FLL did not affect OVX-induced estradiol reduction. Compared with OVX mice, FLL significantly increased BMD (63.54 vs. 61.96), Conn. D (86.46 vs. 57.00), and left tibial strength (13.91 vs. 11.27), decreased Tb. Sp (0.38 vs. 0.44) and body fat content (4.19% vs. 11.24%). FLL decreased osteoclast activity and enhanced RUNX2 expression; inhibited perilipin peroxisome proliferator-activated receptor gamma (PPARγ) expression and adipocyte differentiation from BMMSCs. CONCLUSIONS FLL prevented additional bone loss and improved bone microstructure in OVX mice by modulating bone and fat balance, suggesting that FLL might be a therapeutic agent for PMOP.
Collapse
Affiliation(s)
- Xiaoyan Qin
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiu Wei
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ran An
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun Yang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingqi Cai
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoling Han
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haoping Mao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Chen R, Dong H, Raval D, Maridas D, Baroi S, Chen K, Hu D, Berry SR, Baron R, Greenblatt MB, Gori F. Sfrp4 is required to maintain Ctsk-lineage periosteal stem cell niche function. Proc Natl Acad Sci U S A 2023; 120:e2312677120. [PMID: 37931101 PMCID: PMC10655581 DOI: 10.1073/pnas.2312677120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023] Open
Abstract
We have previously reported that the cortical bone thinning seen in mice lacking the Wnt signaling antagonist Sfrp4 is due in part to impaired periosteal apposition. The periosteum contains cells which function as a reservoir of stem cells and contribute to cortical bone expansion, homeostasis, and repair. However, the local or paracrine factors that govern stem cells within the periosteal niche remain elusive. Cathepsin K (Ctsk), together with additional stem cell surface markers, marks a subset of periosteal stem cells (PSCs) which possess self-renewal ability and inducible multipotency. Sfrp4 is expressed in periosteal Ctsk-lineage cells, and Sfrp4 global deletion decreases the pool of PSCs, impairs their clonal multipotency for differentiation into osteoblasts and chondrocytes and formation of bone organoids. Bulk RNA sequencing analysis of Ctsk-lineage PSCs demonstrated that Sfrp4 deletion down-regulates signaling pathways associated with skeletal development, positive regulation of bone mineralization, and wound healing. Supporting these findings, Sfrp4 deletion hampers the periosteal response to bone injury and impairs Ctsk-lineage periosteal cell recruitment. Ctsk-lineage PSCs express the PTH receptor and PTH treatment increases the % of PSCs, a response not seen in the absence of Sfrp4. Importantly, in the absence of Sfrp4, PTH-dependent increase in cortical thickness and periosteal bone formation is markedly impaired. Thus, this study provides insights into the regulation of a specific population of periosteal cells by a secreted local factor, and shows a central role for Sfrp4 in the regulation of Ctsk-lineage periosteal stem cell differentiation and function.
Collapse
Affiliation(s)
- Ruiying Chen
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Han Dong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard University Medical School, Boston, MA02115
| | - Dhairya Raval
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - David Maridas
- Department of Developmental Biology, Harvard Medical School and Harvard School of Dental Medicine, Boston, MA02115
| | - Sudipta Baroi
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Kun Chen
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Dorothy Hu
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Shawn R. Berry
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Roland Baron
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
- Harvard Medical School, Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Boston, MA02114
| | - Matthew B. Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
- Research Division, Hospital for Special Surgery, New York, NY10021
| | - Francesca Gori
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| |
Collapse
|
9
|
Liu Z, Liu J, Li J, Li Y, Sun J, Deng Y, Zhou H. Discovery of CTSK+ Periosteal Stem Cells Mediating Bone Repair in Orbital Reconstruction. Invest Ophthalmol Vis Sci 2023; 64:30. [PMID: 37639249 PMCID: PMC10461643 DOI: 10.1167/iovs.64.11.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Purpose The purpose of this study was to explore the role of cathepsin K positive (CTSK+) periosteal stem cells (PSCs) in orbital bone repair and to clarify the source of endogenous stem cells for orbital bone self-repair. Methods Periosteum samples obtained by clinical orbital bone repair surgery were analyzed, after which immunofluorescence and immunohistochemical staining were used to detect the content of bone marrow-derived cells and CTSK+ PSCs in periosteum as well as the mobilization of PSCs. CTSK+ PSCs were characterized by flow cytometry. Transcriptome sequencing was used to compare the transcriptomic characteristics of CTSK+ PSCs and bone marrow mesenchymal stem cells (BMSCs). Results The orbital periosteum contained CTSK+CD200+ cell lineage, including CD200+CD105- PSCs and CD200+CD105+ progenitor cells. CTSK and osteocalcin (OCN) colocalized in the inner layer of the orbital periosteum, suggesting the osteogenic differentiation potential of CTSK+ PSCs. CTSK expression was much higher in periosteum after mobilization. Immunofluorescence showed low amounts of scattered CD31+ and CD45+ cells in the orbital periosteum. The stem cell characteristics of CTSK+ PSCs were verified by multidirectional differentiation. Flow cytometry found CD200+CD105- CTSK+ PSCs and CD200variantCD105+ progenitor cells. Transcriptome sequencing of CTSK+ PSCs and BMSCs found 3613 differential genes with significant differences. Gene Ontology (GO) analysis showed the differences between the two types of stem cells, revealing that PSCs were more suitable for intramembranous osteogenesis. Conclusions CTSK+ PSCs may be endogenous stem cells for orbital bone repair. They are mobilized after orbital fracture and have unique features suitable for intramembranous osteogenesis, completely different from BMSCs.
Collapse
Affiliation(s)
- Zeyang Liu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jin Liu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jipeng Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yinwei Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jing Sun
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yuan Deng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Huifang Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
10
|
Ackerman JE, Adjei-Sowah E, Korcari A, Muscat SN, Nichols AE, Buckley MR, Loiselle AE. Identification of Periostin as a critical niche for myofibroblast dynamics and fibrosis during tendon healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550090. [PMID: 37502924 PMCID: PMC10370208 DOI: 10.1101/2023.07.21.550090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Tendon injuries are a major clinical problem, with poor patient outcomes caused by abundant scar tissue deposition during healing. Myofibroblasts play a critical role in the initial restoration of structural integrity after injury. However, persistent myofibroblast activity drives the transition to fibrotic scar tissue formation. As such, disrupting myofibroblast persistence is a key therapeutic target. While myofibroblasts are typically defined by the presence of αSMA+ stress fibers, αSMA is expressed in other cell types including the vasculature. As such, modulation of myofibroblast dynamics via disruption of αSMA expression is not a translationally tenable approach. Recent work has demonstrated that Periostin-lineage (PostnLin) cells are a precursor for cardiac fibrosis-associated myofibroblasts. In contrast to this, here we show that PostnLin cells contribute to a transient αSMA+ myofibroblast population that is required for functional tendon healing, and that Periostin forms a supportive matrix niche that facilitates myofibroblast differentiation and persistence. Collectively, these data identify the Periostin matrix niche as a critical regulator of myofibroblast fate and persistence that could be targeted for therapeutic manipulation to facilitate regenerative tendon healing.
Collapse
Affiliation(s)
- Jessica E. Ackerman
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
- Current affiliation: NDORMS, University of Oxford, Oxford, United Kingdom
| | - Emmanuela Adjei-Sowah
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Antonion Korcari
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Samantha N. Muscat
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Anne E.C. Nichols
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
- Department of Orthopaedics & Physical Performance, University of Rochester Medical Center, Rochester, NY
| | - Mark R. Buckley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Alayna E. Loiselle
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
- Department of Orthopaedics & Physical Performance, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
11
|
Ferrari S, Langdahl B. Mechanisms underlying the long-term and withdrawal effects of denosumab therapy on bone. Nat Rev Rheumatol 2023; 19:307-317. [PMID: 37024711 DOI: 10.1038/s41584-023-00935-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 04/08/2023]
Abstract
Denosumab, a human monoclonal antibody against receptor activator of nuclear factor-κB ligand (RANKL), is a potent inhibitor of osteoclast differentiation and activity. As the first biologic drug used to treat osteoporosis, denosumab has shown potent anti-resorptive properties and anti-fracture efficacy. The effects of this drug are also unique compared with the effects of bisphosphonates: namely, long-term treatment with this drug results in a continuous gain of bone mineral density, whereas withdrawal of the drug results in a transient overshoot in bone turnover and rapid bone loss. Although the mechanisms for these specific effects remain incompletely understood, emerging experimental and clinical data have started to highlight potential biological and pharmacological mechanisms by which denosumab might affect osteoclasts, as well as osteoblasts, and cause both sustained bone gain and bone loss upon treatment cessation. This Perspective discusses those potential mechanisms and the future studies and clinical implications that might ensue from these findings.
Collapse
Affiliation(s)
- Serge Ferrari
- Service of Bone Diseases, Department of Medicine, Geneva University Hospital and Faculty of Medicine, Geneva, Switzerland.
| | - Bente Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
12
|
Nitrogen-Containing Bisphosphonates Downregulate Cathepsin K and Upregulate Annexin V in Osteoclasts Cultured In Vitro. Int J Dent 2023; 2023:2960941. [PMID: 36866025 PMCID: PMC9974278 DOI: 10.1155/2023/2960941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 02/23/2023] Open
Abstract
Introduction Bisphosphonates are widely used in the treatment of osteoporosis; however, they are associated with the serious adverse event of bisphosphonate-related osteonecrosis of the jaw (BRONJ). Aim The aim of this study is to assess the effects of nitrogen-containing bisphosphonates (N-PHs) on the synthesis of IL-1β, TNF-α, sRANKL, cathepsin K, and annexin V in bone cells cultured in vitro. Materials and Methods Osteoblasts and bone marrow-derived osteoclasts were cultured in vitro, subjected to treatment with alendronate, risedronate, or ibandronate at a concentration of 10-5 M for 0 to 96 h and then assayed for IL-1β, sRANKL, and TNF-α production by ELISA. Cathepsin K and Annexin V-FITC staining in osteoclasts were assessed by flow cytometry. Results There was significant downregulation of IL-1β, sRANKL, and TNF-α in experimental osteoblasts compared to control cells, and there was upregulation of IL-1β and downregulation of RANKL and TNF-α in experimental osteoclasts. Furthermore, in osteoclasts, cathepsin K expression was downregulated at 48-72 h with alendronate treatment, while risedronate treatment resulted in upregulated annexin V expression at 48 h compared to the control treatment. Conclusion Bisphosphonates added to bone cells inhibited osteoclastogenesis, which led to the downregulation of cathepsin K and induction of apoptosis in osteoclasts; these changes limited the capacity of bone remodelling and healing that may contribute to BRONJ induced by surgical dental procedures.
Collapse
|
13
|
Everts-Graber J, Reichenbach S, Gahl B, Häuselmann H, Ziswiler HR, Studer U, Lehmann T. Effects of zoledronate on bone mineral density and bone turnover after long-term denosumab therapy: Observations in a real-world setting. Bone 2022; 163:116498. [PMID: 35882310 DOI: 10.1016/j.bone.2022.116498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/12/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The rebound effect after denosumab discontinuation is lessened with subsequent zoledronate therapy. However, it is unclear whether this mitigation is sufficient after long-term denosumab treatment. OBJECTIVE This retrospective observational study analysed bone mineral density (BMD) and bone turnover marker (BTM) changes after denosumab therapy according to treatment duration and subsequent zoledronate regimen. METHODS We measured the outcomes of 282 women with postmenopausal osteoporosis who discontinued denosumab and received zoledronate 6 months later. In patients with longer denosumab therapy (≥5 years), BTMs were measured every 3 months and a second zoledronate infusion was administered if BTM levels increased by ≥2-fold. The BMD of all women was measured before denosumab therapy, at the last injection and 1 to 2 years after the first zoledronate. RESULTS Bone loss after switching from denosumab to zoledronate was higher in patients with 10 ± 2 denosumab injections (n = 84) compared to 5 ± 2 injections (n = 144, p < 0.001 for lumbar spine and femoral neck), but there was no further increase with treatment durations of ≥15 ± 2 injections (n = 54, p = 0.35 and p = 0.20, respectively). BTMs in patients with ≥10 denosumab injections were elevated 6 months after zoledronate in some patients, but not all. Twenty-four women received a second zoledronate dose 6 months after the first one. BTMs in these patients were subsequently lower, but bone loss at both the lumbar spine and hip was comparable to that in patients with only one zoledronate dose (p = 0.37 for lumbar spine and p = 0.97 for femoral neck). CONCLUSIONS Rebound-associated bone loss reached a plateau after denosumab treatment durations of 4-6 years, irrespective of the frequency of subsequent zoledronate therapy.
Collapse
Affiliation(s)
- Judith Everts-Graber
- OsteoRheuma Bern, Bahnhofplatz 1, Bern, Switzerland; Department of Rheumatology and Immunology, University Hospital, Bern, Switzerland.
| | - Stephan Reichenbach
- Department of Rheumatology and Immunology, University Hospital, Bern, Switzerland; Institute for Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Brigitta Gahl
- Clinical Trial Unit (CTU) Bern, University of Bern, Bern, Switzerland
| | - HansJörg Häuselmann
- Zentrum für Rheuma- und Knochenerkrankungen, Klinik Im Park, Hirslanden Zürich, Switzerland
| | | | - Ueli Studer
- OsteoRheuma Bern, Bahnhofplatz 1, Bern, Switzerland
| | | |
Collapse
|
14
|
Fernandes-Breitenbach F, Peres-Ueno MJ, Santos LFG, Brito VGB, Castoldi RC, Louzada MJQ, Chaves-Neto AH, Oliveira SHP, Dornelles RCM. Analysis of the femoral neck from rats in the periestropause treated with oxytocin and submitted to strength training. Bone 2022; 162:116452. [PMID: 35654351 DOI: 10.1016/j.bone.2022.116452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022]
Abstract
Among the interventions used to prevent osteoporosis in female organisms, strength training (ST) and oxytocin (OT) stand out, as a promising hormone with anabolic action on bone. This study aimed to verify whether the combined action of OT and ST, compared to isolated interventions, potentiates the bone remodeling process of the femoral neck of Wistar rats during periestropause. Forty Wistar rats (18 months) with irregular estrous cycle were randomly distributed into groups: 1-Vehicle (Veh; NaCl 0.15 mol/L ip); 2-Oxytocin (Ot; 134 μg/kg/ip); 3-Strength training (St); 4-Ot + St. The animals of the 1, 2 and 4 groups received two intraperitoneal injections with an interval of 12 h every 30 days, totaling 8 injections at the end of the experimental period (18 to 21 months). The animals in the St and Ot + St groups performed ST on a ladder 3 times a week, maximal voluntary carrying capacity (MVCC) test monthly. After 120 days, the animals were euthanized; the femur was collected for analysis of biomechanical testing, densitometry, bone microtomography, Raman spectroscopy, tissue PCR, and blood for analysis of bone biomarkers, liver damage, and oxidative stress. The main effects in the Ot group were observed in the maximum load and energy in the compression testing (femoral head), and stiffness and energy in the three-points bending testing (femur diaphysis). In addition, the main effects occurred on the bone mineral density (BMD), cortical thickness (Ct.Th), number of pores (Po.N), polar moment of inertia (J), trabecular thickness (Tb.Th), and connectivity density (Conn.Dn), Bone alkaline phosphatase (Alp), Tumor necrosis factor receptor superfamily member 11b (Opg), Tumor necrosis factor ligand superfamily member 11 (Rankl) and Cathepsin K (Ctsk) expression. There was an effect in the tartrate-resistant acid phosphatase (TRAP) and alkaline phosphatase (ALP). In the St group, the main effect was observed on the energy (compression and the three-points bending), stiffness, aBMD, BMD, cortical bone area (Ct.Ar), Po.N, trabecular bone volume (BV/TV), Tb.Th and in the mineralization ratio (ѵ1PO4/proline), Runt-related transcription factor 2 (Runx2), Bone morphogenetic protein 2 (Bmp2), Alp, Osteopontin/secreted phosphoprotein 1 (Opn/Spp1), Opg, Tumor necrosis factor receptor superfamily member 11ª (Rank), Rankl, Ctsk expression. There was an effect in the TRAP and ALP. The interaction in the combination of therapies in the Ot + St group was verified in energy to maximum load (compression and three-points bending testing), stiffness, BMD, Ct.Th, J, Tb.Th and ѵ1PO4/proline. In the gene analysis there was interaction in the Runx2, Osterix/Sp7 transcription factor (Osx/Sp7), Bmp2, Alp, Osteocalcin/Bone gamma-carboxyglutamate protein (Ocn/Bglap), Opg, Rankl and Acid phosphatase 5, tartrate resistant (Trap/Acp5) expression. In addition, the combination of OT and ST resulted in a higher maximum load compared to the Veh group, with higher BV/TV than the Ot group, higher Rankl and Ctsk expression than Veh and Ot groups, and lower Po.N and lower activity of TRAP than the other groups. In oxidative stress, total antioxidant capacity (TAC) was lower. These results showed that the combination of interventions is a promising anabolic strategy for the prevention of osteoporosis in the period of periestropause, standing out from the effects of isolated interventions.
Collapse
Affiliation(s)
- Fernanda Fernandes-Breitenbach
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Melise Jacon Peres-Ueno
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Luís Fernando Gadioli Santos
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Victor Gustavo Balera Brito
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Robson Chacon Castoldi
- Postgraduate Program in Movement Sciences, Federal University of Mato Grosso do Sul - UFMS
| | - Mário Jeferson Quirino Louzada
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Antonio Hernandes Chaves-Neto
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Sandra Helena Penha Oliveira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Rita Cássia Menegati Dornelles
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.
| |
Collapse
|
15
|
Zhang J, Tong Y, Liu Y, Lin M, Xiao Y, Liu C. Mechanical loading attenuated negative effects of nucleotide analogue reverse-transcriptase inhibitor TDF on bone repair via Wnt/β-catenin pathway. Bone 2022; 161:116449. [PMID: 35605959 DOI: 10.1016/j.bone.2022.116449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/19/2022]
Abstract
The nucleotide analog reverse-transcriptase inhibitor, tenofovir disoproxil fumarate (TDF), is widely used to treat hepatitis B virus (HBV) and human immunodeficiency virus infection (HIV). However, long-term TDF usage is associated with an increased incidence of bone loss, osteoporosis, fractures, and other adverse reactions. We investigated the effect of chronic TDF use on bone homeostasis and defect repair in mice. In vitro, TDF inhibited osteogenic differentiation and mineralization in MC3T3-E1 cells. In vivo, 8-week-old C57BL/6 female mice were treated with TDF for 38 days to simulate chronic medication. Four-point bending test and μCT showed reduced bone biomechanical properties and microarchitecture in long bones. To investigate the effects of TDF on bone defect repair, we utilized a bilateral tibial monocortical defect model. μCT showed that TDF reduced new bone mineral tissue and bone mineral density (BMD) in the defect. To verify whether mechanical stimulation may be a useful treatment to counteract the negative bone effects of TDF, controlled dynamic mechanical loading was applied to the whole tibia during the matrix deposition phase on post-surgery days (PSDs) 5 to 8. Second harmonic generation (SHG) of collagen fibers and μCT showed that the reduction of new bone volume and bone mineral density caused by TDF was reversed by mechanical loading in the defect. Immunofluorescent deep tissue imaging showed that chronic TDF treatment reduced the number of osteogenic cells and the volume of new vessels. In addition, chronic TDF treatment inhibited the expressions of periostin and β-catenin, but increased the expression of sclerostin. Both negative effects were reversed by mechanical loading. Our study provides strong evidence that chronic use of TDF exerts direct and inhibitory impacts on bone repair, but appropriate mechanical loading could reverse these adverse effects.
Collapse
Affiliation(s)
- Jianing Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Yanrong Tong
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Yang Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Minmin Lin
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Yao Xiao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Chao Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
16
|
Chitosan Scaffold Containing Periostin Can Accelerate Bone Defect Regeneration in Non-Weight-Bearing Conditions. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00268-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
17
|
Zou N, Liu R, Li C. Cathepsin K+ Non-Osteoclast Cells in the Skeletal System: Function, Models, Identity, and Therapeutic Implications. Front Cell Dev Biol 2022; 10:818462. [PMID: 35912093 PMCID: PMC9326176 DOI: 10.3389/fcell.2022.818462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cathepsin K (Ctsk) is a cysteine protease of the papain superfamily initially identified in differentiated osteoclasts; it plays a critical role in degrading the bone matrix. However, subsequent in vivo and in vitro studies based on animal models elucidate novel subpopulations of Ctsk-expressing cells, which display markers and properties of mesenchymal stem/progenitor cells. This review introduces the function, identity, and role of Ctsk+ cells and their therapeutic implications in related preclinical osseous disorder models. It also summarizes the available in vivo models for studying Ctsk+ cells and their progeny. Further investigations of detailed properties and mechanisms of Ctsk+ cells in transgenic models are required to guide potential therapeutic targets in multiple diseases in the future.
Collapse
Affiliation(s)
- Nanyu Zou
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Ran Liu
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- *Correspondence: Changjun Li,
| |
Collapse
|
18
|
Zhu D, Wang Z, Zhang G, Ma C, Qiu X, Wang Y, Liu M, Guo X, Chen H, Deng Q, Kang X. Periostin promotes nucleus pulposus cells apoptosis by activating the Wnt/β-catenin signaling pathway. FASEB J 2022; 36:e22369. [PMID: 35747912 DOI: 10.1096/fj.202200123r] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/20/2022] [Accepted: 05/10/2022] [Indexed: 12/11/2022]
Abstract
Intervertebral disc (IVD) degeneration (IVDD) is closely linked to degenerative spinal disease, resulting in disability, poor quality of life, and financial burden. Apoptosis of nucleus pulposus (NP) cells (NPCs) is a key pathological basis of IVDD. Periostin (POSTN), an extracellular matrix protein, is expressed in many tissues, whereas its abnormal expression is associated with IVDD. The conventional Wnt/β-catenin pathway is also involved in IVDD and contributes to NPCs apoptosis. However, research on the mechanisms of POSTN in IVDD is lacking. This study investigated the relationship between POSTN and β-catenin expression in degenerated IVDs. We detected the expression of POSTN, β-catenin, and cleaved-caspase-3 (C-caspase3) in degenerated and non-degenerated IVD tissues of different grades (n = 8) using RT-qPCR, immunohistochemical staining, and western blotting analysis. Next, we explored the effects of recombinant periostin (rPOSTN) and isoquercitrin (Iso), an inhibitor of the Wnt/β-catenin pathway, on NPCs apoptosis. Finally, we inhibited the expression of POSTN in degenerated NPCs in vivo and investigated the anti-apoptotic effect. The expression of β-catenin, POSTN, and C-caspase3 in severe degenerative IVDs was significantly higher than that in mild degenerative IVDs. These findings were confirmed in rat and cell-based degenerative models. When treated with rPOSTN, the Wnt/β-catenin pathway activity and cell apoptosis were time- and dose-dependent. However, rPOSTN-induced NPCs apoptosis decreased after iso-induced inhibition of the Wnt/β-catenin pathway. POSTN inhibition reduced apoptosis but was restored by rPOSTN re-addition. Lastly, POSTN inhibition ameliorated puncture-induced IVDD in vivo. Overall, our study demonstrated that POSTN promotes NPCs apoptosis and aggravates degeneration by activating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Daxue Zhu
- Lanzhou University Second Hospital, Lanzhou, PR China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Zhaoheng Wang
- Lanzhou University Second Hospital, Lanzhou, PR China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Guangzhi Zhang
- Lanzhou University Second Hospital, Lanzhou, PR China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Congwen Ma
- Lanzhou University Second Hospital, Lanzhou, PR China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Xiaoming Qiu
- Lanzhou University Second Hospital, Lanzhou, PR China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Yidian Wang
- Lanzhou University Second Hospital, Lanzhou, PR China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Mingqiang Liu
- Lanzhou University Second Hospital, Lanzhou, PR China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Xudong Guo
- Lanzhou University Second Hospital, Lanzhou, PR China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Haiwei Chen
- Lanzhou University Second Hospital, Lanzhou, PR China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Qiang Deng
- Gansu Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xuewen Kang
- Lanzhou University Second Hospital, Lanzhou, PR China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| |
Collapse
|
19
|
Li Y, Yang S, Liu Y, Yang S. Deletion of Trp53 and Rb1 in Ctsk-expressing cells drives osteosarcoma progression by activating glucose metabolism and YAP signaling. MedComm (Beijing) 2022; 3:e131. [PMID: 35615117 PMCID: PMC9026232 DOI: 10.1002/mco2.131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/23/2022] Open
Abstract
Glucose metabolism reprogramming is a critical factor in the progression of multiple cancers and is directly regulated by many tumor suppressors. However, how glucose metabolism regulates osteosarcoma development and progression is largely unknown. Cathepsin K (Ctsk) has been reported to express in chondroprogenitor cells and stem cells besides osteoclasts. Moreover, mutations in the tumor suppressors transformation-related protein 53 (Trp53) and retinoblastoma protein (Rb1) are evident in approximately 50%-70% of human osteosarcoma. To understand how deletion of Trp53 and Rb1 in Ctsk-expressing cells drives tumorigenesis, we generated the Ctsk-Cre;Trp53f/f/Rb1f/f mouse model. Our data revealed that those mice developed osteosarcoma without formation of tumor in osteoclast lineage. The level of cortical bone destruction was gradually increased in parallel to the osteosarcoma progression rate. Through mechanistic studies, we found that loss of Trp53/Rb1 in Ctsk-expressing cells significantly elevated Yes-associated protein (YAP) expression and activity. YAP/TEAD1 complex binds to the glucose transporter 1 (Glut1) promoter to upregulate Glut1 expression. Upregulated Glut1 expression led to overactive glucose metabolism, increasing osteosarcoma progression. Ablation of YAP signaling inhibited energy metabolism and delayed osteosarcoma progression in Ctsk-Cre;Trp53f/f/Rb1f/f mice. Collectively, these findings provide proof of principle that inhibition of YAP activity may be a potential strategy for osteosarcoma treatment.
Collapse
Affiliation(s)
- Yang Li
- Department of Basic & Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Shuting Yang
- Department of Basic & Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Yang Liu
- College of Fisheries and Life ScienceDalian Ocean UniversityDalianChina
| | - Shuying Yang
- Department of Basic & Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Innovation & Precision DentistrySchool of Dental MedicineSchool of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- The Penn Center for Musculoskeletal DisordersSchool of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
20
|
Tong X, Yu G, Liu Q, Zhang X, Bian J, Liu Z, Gu J. Puerarin alleviates cadmium-induced oxidative damage to bone by reducing autophagy in rats. ENVIRONMENTAL TOXICOLOGY 2022; 37:720-729. [PMID: 34897960 DOI: 10.1002/tox.23437] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/28/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Autophagy is a regulatory mechanism involved in cadmium (Cd)-induced bone toxicity and is suppressed by various stimuli, including oxidative stress. Puerarin is an isoflavonoid compound isolated from Pueraria, a plant used in traditional Chinese medicine. The underlying mechanisms of action of puerarin remain unclear. The objective of this study was to explore the mitigating effects of puerarin on cadmium-induced oxidative damage in the bones of rats. Cadmium exposure increased oxidative damage in rat bones; this was markedly decreased by puerarin treatment, as demonstrated by changes in the activity of antioxidative enzymes. Cadmium-induced blockage of the expression of key bone regulatory proteins, autophagy-related markers, and signaling molecules was also alleviated by puerarin treatment. Additionally, cadmium reduced expression of the autophagic protein Rab7 and of late endosomal/lysosomal adaptor and MAPK and mTOR activator 1 (LAMTOR1); the decrease in these proteins was not restored by puerarin treatment. We speculate that puerarin relieves the inhibition of fusion of autophagosomes with lysosomes that is induced by cadmium; however, this specific effect of puerarin and downstream effects on bone regulatory mechanisms require further investigation. In conclusion, puerarin alleviates cadmium-induced oxidative damage in the bones of rats by attenuating autophagy, which is likely associated with the antioxidant activity of puerarin.
Collapse
Affiliation(s)
- Xishuai Tong
- Institutes of Agricultural Science and Technology Development, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P. R. China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, P. R. China
| | - Gengsheng Yu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P. R. China
| | - Qingyang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P. R. China
| | - Xueqing Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P. R. China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, P. R. China
| | - Zongping Liu
- Institutes of Agricultural Science and Technology Development, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P. R. China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, P. R. China
| | - Jianhong Gu
- Institutes of Agricultural Science and Technology Development, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P. R. China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, P. R. China
| |
Collapse
|
21
|
Chen R, Baron R, Gori F. Sfrp4 and the Biology of Cortical Bone. Curr Osteoporos Rep 2022; 20:153-161. [PMID: 35182301 PMCID: PMC9098678 DOI: 10.1007/s11914-022-00727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Periosteal apposition and endosteal remodeling regulate cortical bone expansion and thickness, both critical determinants of bone strength. Yet, the cellular characteristics and local or paracrine factors that regulate the periosteum and endosteum remain largely elusive. Here we discuss novel insights in cortical bone growth, expansion, and homeostasis, provided by the study of Secreted Frizzled Receptor Protein 4 (Sfrp4), a decoy receptor for Wnt ligands. RECENT FINDINGS SFRP4 loss-of function mutations cause Pyle disease, a rare skeletal disorder characterized by cortical bone thinning and increased fragility fractures despite increased trabecular bone density. On the endosteal surface, Sfrp4-mediated repression of non-canonical Wnt signaling regulates endosteal resorption. On the periosteum, Sfrp4 identifies as a critical functional mediator of periosteal stem cell/progenitor expansion and differentiation. Analysis of signaling pathways regulating skeletal stem cells/progenitors provides an opportunity to advance our understanding of the mechanisms involved in cortical bone biology.
Collapse
Affiliation(s)
- Ruiying Chen
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Roland Baron
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
- Endocrine Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Francesca Gori
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
22
|
Changkhaokham B, Suamphan S, Pavasant P, Jitpukdeebodintra S, Leethanakul C. Effects of compressive stress combined with mechanical vibration on osteoclastogenesis in RAW 264.7 cells. Angle Orthod 2022; 92:555-561. [PMID: 35262654 DOI: 10.2319/090321-682.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES To investigate the effects of compressive force and/or mechanical vibration on NFATc1, DCSTAMP, and CTSK (cathepsin K) gene expression and the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in RAW 264.7 cells, a murine osteoclastic-like cell line. MATERIALS AND METHODS RAW 264.7 cells were subjected to mechanical vibration, compressive force, or compressive force combined with vibration. Cell viability and the numbers of TRAP-positive multinucleated cells were evaluated. NFATc1, DCSTAMP, and CTSK gene expressions were analyzed using real-time quantitative reverse transcription polymerase chain reaction. RESULTS Compressive force combined with mechanical vibration significantly increased the numbers of TRAP-positive multinucleated cells but did not significantly affect cell viability. In addition, compressive force combined with mechanical vibration significantly increased NFATc1, DCSTAMP, and CTSK mRNA expression compared with compressive force or vibration alone. CONCLUSIONS Compressive force combined with mechanical vibration induces osteoclastogenesis and upregulates NFATc1, DCSTAMP, and CTSK gene expression in RAW 264.7 cells. These results provide more insight into the mechanisms by which vibratory force accelerates orthodontic tooth movement.
Collapse
|
23
|
Salehiamin M, Toolee H, Azami M, Tafti SHA, Mojaverrostami S, Halimi S, Barakzai S, Sobhani A, Abbasi Y. Chitosan Scaffold Containing Periostin Enhances Sternum Bone Healing and Decreases Serum Level of TNF-α and IL-6 after Sternotomy in Rat. Tissue Eng Regen Med 2022; 19:839-852. [PMID: 35199306 PMCID: PMC9294132 DOI: 10.1007/s13770-022-00434-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND In the aftermath of bone injuries, such as cranium and sternum, bone wax (BW) is used to control bleeding from the bone surfaces during surgery. Made up of artificial substances, however, it is associated with many complications such as inflammation, increased risk for infection, and bone repair delay. We, therefore, in this study set out to design and evaluate a novel BW without the above-mentioned side-effects reported for other therapies. METHODS The pastes (new BW(s)) were prepared in the laboratory and examined by MTT, MIC, MBC, and degradability tests. Then, 60 adult male Wistar rats, divided into six equal groups including chitosan (CT), CT-octacalcium phosphate (OCP), CT-periostin (Post), CT-OCP-Post, Control (Ctrl), and BW, underwent sternotomy surgery. Once the surgeries were completed, the bone repair was assessed radiologically and thereafter clinically in vivo and in vitro using CT-scan, H&E, ELISA, and qRT-PCR. RESULTS All pastes displayed antibacterial properties and the CT-Post group had the highest cell viability compared to the control group. In contrast to the BW, CT-Post group demonstrated weight changes in the degradability test. In the CT-Post group, more number of osteocyte cells, high trabeculae percentage, and the least fibrous connective tissue were observed compared to other groups. Additionally, in comparison to the CT and Ctrl groups, higher alkaline phosphatase activity, as well as decreased level of serum tumor necrosis factor-α, interleukin-6, and OCN in the CT-Post group was evident. Finally, Runx2, OPG, and RANKL genes' expression was significantly higher in the CT-Post group than in other groups. CONCLUSION Our results provide insights into the desirability of pastes in terms of cellular viability, degradability, antibacterial properties, and surgical site restoration compared to the BW group. Besides, Periostin could enhance the osteogenic properties of bone tissue defect site.
Collapse
Affiliation(s)
- Mehdi Salehiamin
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Heidar Toolee
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahnaz Halimi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shogoofa Barakzai
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aligholi Sobhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Yasaman Abbasi
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Martín-Alonso M, Iqbal S, Vornewald PM, Lindholm HT, Damen MJ, Martínez F, Hoel S, Díez-Sánchez A, Altelaar M, Katajisto P, Arroyo AG, Oudhoff MJ. Smooth muscle-specific MMP17 (MT4-MMP) regulates the intestinal stem cell niche and regeneration after damage. Nat Commun 2021; 12:6741. [PMID: 34795242 PMCID: PMC8602650 DOI: 10.1038/s41467-021-26904-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
Smooth muscle is an essential component of the intestine, both to maintain its structure and produce peristaltic and segmentation movements. However, very little is known about other putative roles that smooth muscle cells may have. Here, we show that smooth muscle cells may be the dominant suppliers of BMP antagonists, which are niche factors essential for intestinal stem cell maintenance. Furthermore, muscle-derived factors render epithelium reparative and fetal-like, which includes heightened YAP activity. Mechanistically, we find that the membrane-bound matrix metalloproteinase MMP17, which is exclusively expressed by smooth muscle cells, is required for intestinal epithelial repair after inflammation- or irradiation-induced injury. Furthermore, we propose that MMP17 affects intestinal epithelial reprogramming after damage indirectly by cleaving diffusible factor(s) such as the matricellular protein PERIOSTIN. Together, we identify an important signaling axis that establishes a role for smooth muscle cells as modulators of intestinal epithelial regeneration and the intestinal stem cell niche.
Collapse
Affiliation(s)
- Mara Martín-Alonso
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Sharif Iqbal
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pia M Vornewald
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Håvard T Lindholm
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mirjam J Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Fernando Martínez
- Bioinformatics Unit. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Sigrid Hoel
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Alberto Díez-Sánchez
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Pekka Katajisto
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alicia G Arroyo
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Menno J Oudhoff
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
25
|
Pepe J, Bonnet N, Cipriani C, Ferrara C, Rossi M, De Martino V, Colangelo L, Sonato C, Cecchetti V, Ferrari S, Minisola S. Higher serum levels of a cathepsin K-generated periostin fragment are associated with fractures in postmenopausal women with primary hyperparathyroidism: a pilot study. Osteoporos Int 2021; 32:2365-2369. [PMID: 34061236 DOI: 10.1007/s00198-021-06018-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
UNLABELLED The only difference between fractured and non-fractured postmenopausal women with PHPT of same sex, age, and BMI was a significantly mean higher serum k-periostin level. K-periostin value was associated with fracture at any site (odds ratio 1.044, 95% CI 1.005-1.091, p = 0.03). INTRODUCTION To assess serum k-periostin fragment levels in patients with primary hyperparathyroidism (PHPT), fractured and non-fractured matched for sex, age, and body mass index. METHODS Twenty-five Caucasian fractured postmenopausal women with PHPT (group Fx) and 25 PHPT non-fractured (group NFx) were enrolled. Each patient underwent DXA scan at lumbar, hip, and forearm, spine X-ray, and biochemical evaluation of calcium metabolism. For k-periostin analyses, we utilized a specific ELISA test that detects CatK-generated fragment levels in the bloodstream. RESULTS We found no difference in mean BMD and bone turnover marker values between Fx and NFx groups. Prevalence of osteoporosis was not significantly different in Fx vs NFx (72% vs 60%, p = 0.55). Among Fx, 16% reported multiple fractures, 28% morphometric vertebral fractures, 4% femoral fractures, 28% non-vertebral non-femoral fractures, and 8% wrist fractures. The only detectable difference between Fx and NFx group was a significantly mean higher k-periostin serum level (46.2 ± 21.4 vs 34.7 ± 13.5 ng/ml, p = 0.02). K-periostin was associated with fracture at any site (odds ratio 1.044, 95% CI 1.005-1.091, p = 0.03). No difference in mean k-periostin values was found between patients with vertebral fracture vs those with non-vertebral fracture, and between those with multiple fractures vs those with single fracture. CONCLUSION Serum k-periostin is significantly associated with fracture in PHPT. If confirmed by further studies, k-periostin could be considered a new marker of bone fragility in PHPT, independently of BMD.
Collapse
Affiliation(s)
- J Pepe
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences (SCIAC), "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| | - N Bonnet
- Nestle Research, Innovation EPFL Park, 1015, Lausanne, Switzerland
| | - C Cipriani
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences (SCIAC), "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - C Ferrara
- Department of Public Health and Infectious Diseases, "Sapienza" University, Rome, Italy
| | - M Rossi
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences (SCIAC), "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - V De Martino
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences (SCIAC), "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - L Colangelo
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences (SCIAC), "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - C Sonato
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences (SCIAC), "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - V Cecchetti
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences (SCIAC), "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - S Ferrari
- Division of Bone Diseases, University Hospitals and Faculty of Medicine, CH-1205, Geneva, Switzerland
| | - S Minisola
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences (SCIAC), "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| |
Collapse
|
26
|
Zhu D, Zhou W, Wang Z, Wang Y, Liu M, Zhang G, Guo X, Kang X. Periostin: An Emerging Molecule With a Potential Role in Spinal Degenerative Diseases. Front Med (Lausanne) 2021; 8:694800. [PMID: 34513869 PMCID: PMC8430223 DOI: 10.3389/fmed.2021.694800] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022] Open
Abstract
Periostin, an extracellular matrix protein, is widely expressed in a variety of tissues and cells. It has many biological functions and is related to many diseases: for example, it promotes cell proliferation and differentiation in osteoblasts, which are closely related to osteoporosis, and mediates cell senescence and apoptosis in chondrocytes, which are involved in osteoarthritis. Furthermore, it also plays an important role in mediating inflammation and reconstruction during bronchial asthma, as well as in promoting bone development, reconstruction, repair, and strength. Therefore, periostin has been explored as a potential biomarker for various diseases. Recently, periostin has also been found to be expressed in intervertebral disc cells as a component of the intervertebral extracellular matrix, and to play a crucial role in the maintenance and degeneration of intervertebral discs. This article reviews the biological role of periostin in bone marrow-derived mesenchymal stem cells, osteoblasts, osteoclasts, chondrocytes, and annulus fibrosus and nucleus pulposus cells, which are closely related to spinal degenerative diseases. The study of its pathophysiological effects is of great significance for the diagnosis and treatment of spinal degeneration, although additional studies are needed.
Collapse
Affiliation(s)
- Daxue Zhu
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Wupin Zhou
- The 947th Army Hospital of the Chinese PLA, Kashgar, China
| | - Zhen Wang
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yidian Wang
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Mingqiang Liu
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Guangzhi Zhang
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Xudong Guo
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Xuewen Kang
- Lanzhou University Second Hospital, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| |
Collapse
|
27
|
Becker K, Rauch N, Brunello G, Azimi S, Beller M, Hüfner M, Nienkemper M, Schwarz-Herzke B, Drescher D. Bone remodelling patterns around orthodontic mini-implants migrating in bone: an experimental study in rat vertebrae. Eur J Orthod 2021; 43:708-717. [PMID: 34476491 PMCID: PMC8643410 DOI: 10.1093/ejo/cjab065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background Orthodontic implant migration has been clinically observed in presence of continuous loading forces. Recent studies indicate that osteocytes play a crucial role in this phenomenon. Objectives Aim of this study was to investigate local osteocytic gene expression, protein expression, and bone micro-structure in peri-implant regions of pressure and tension. Material and methods The present work reports a complementary analysis to a previous micro-computed tomography study. Two customized mini-implants were placed in one caudal rat vertebra and connected by a nickel–titanium contraction spring generating different forces (i.e. 0, 0.5, 1.0, and 1.5 N). Either at 2 or 8 weeks, the vertebrae were harvested and utilized for 1. osteocytic gene expression using laser capture micro-dissection on frozen sections coupled with qPCR, 2. haematoxylin–eosin staining for qualitative and quantitative analyses, 3. immunofluorescence staining and analysis, and 4. bone-to-implant contact on undecalcified samples. Results At the two time points for all the performed analyses no significant differences were observed with respect to the applied force magnitudes and cell harvesting localization. However, descriptive histological analysis revealed remarkable bone remodelling at 2 weeks of loading. At 8 weeks the implants were osseointegrated and, especially in 1.0 and 1.5 N groups, newly formed bone presented a characteristic load bearing architecture with trabecula oriented in the direction of the loading. Conclusions The present study confirmed that stress-induced bone remodelling is the biological mechanism of orthodontic implant migration. Bone apposition was found at ‘tension’ and ‘pressure’ sites thus limiting implant migration over time.
Collapse
Affiliation(s)
- Kathrin Becker
- Department of Orthodontics, University Clinic of Düsseldorf, Germany
| | - Nicole Rauch
- Department of Oral Surgery, University Clinic of Düsseldorf, Germany
| | - Giulia Brunello
- Department of Oral Surgery, University Clinic of Düsseldorf, Germany.,Department of Neurosciences, University of Padua, Italy
| | - Sarah Azimi
- Department of Orthodontics, University Clinic of Düsseldorf, Germany
| | - Mathias Beller
- Institute for Mathematical Modeling of Biological Systems, University of Düsseldorf, Germany.,Systems Biology of Lipid Metabolism, University of Düsseldorf, Germany
| | - Mira Hüfner
- Department of Orthodontics, University Clinic of Düsseldorf, Germany
| | - Manuel Nienkemper
- Department of Orthodontics, University Clinic of Düsseldorf, Germany.,Private Practice, Dusseldorf, Germany
| | | | - Dieter Drescher
- Department of Orthodontics, University Clinic of Düsseldorf, Germany
| |
Collapse
|
28
|
Zorina OA, Amkhadova MA, Boriskina OA, Aleskerov ES, Kostoev IS. [Diagnostic value of biomarkers of bone metabolism in the gingival fluid in inflammatory-destructive and tumor oral pathology]. STOMATOLOGII︠A︡ 2021; 100:31-36. [PMID: 34357725 DOI: 10.17116/stomat202110004131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The aim of the work was to determine the informativeness of the assessment of biochemical markers in the gingival fluid with destructive bone changes in the peri-implantation area, primary tumor lesion of the alveolar processes of the jaws and metastatic destruction of the jaw bone tissue in cancer of the large salivary glands. The study included 51 patients aged 30 to 75 years of both sexes. Depending on the genesis of destruction of the bone tissue of the lower jaw, three groups of patients were identified. Group 1 - 20 patients with peri-implantitis. Group 2 - 22 patients diagnosed with cancer of the oral floor mucosa (ICD C04) with erosion of the cortical bone or dental socket by a primary tumor. Group 3 - 9 patients with adenocarcinoma of the large salivary glands with metastatic lesions of the lower jaw. 15 people were practically healthy persons without periodontal pathology. The test material was gingival fluid or exudate from peri-implantation pockets. The content of cathepsin K, tartrate-resistant acid phosphatase (TAP) was determined by the enzyme immunoassay, and the bone fraction of alkaline phosphatase (BAP) was determined by the kinetic method. RESULTS As a result, it was found that in group 1 in the exudate of the peri-implantation sulcus, the content of cathepsin K increased in comparison with the control by 2.5 times (p<0.05), TAP by 1.6 times (p<0.05). in groups 1 and 2, there was a moderate increase in the production of activated osteoblasts of KAP. In cancer of the mucous membrane of the floor of the mouth, a tenfold increase in the concentration of cathepsin K and TAP in the gingival fluid was observed. With metastatic lesions of the jaw in patients with adenocarcinoma of the large salivary glands, along with a multiple increase in the concentration of cathepsin K and TAP in the gingival fluid, there was a twenty-fold increase in the bone formation marker BAP, which indicated a mixed type of metastases and was a differential diagnostic criterion for metastatic lesion of bone tissue in comparison with the primary metastatic lesion of bone tissue. CONCLUSION Thus, biochemical markers are sensitive indicators of remodeling of bone tissue both in local inflammatory and destructive processes in peri-implantitis and in primary and metastatic tumor lesions of the jaws.
Collapse
Affiliation(s)
- O A Zorina
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - M A Amkhadova
- Moscow Regional Research and Clinical Institute (MONIKI), Moscow, Russia
| | - O A Boriskina
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Moscow Regional Research and Clinical Institute (MONIKI), Moscow, Russia
| | - E Sh Aleskerov
- Moscow Regional Research and Clinical Institute (MONIKI), Moscow, Russia
| | - I S Kostoev
- National Medical Research Centre for Oncology, Rostov-on-Don, Russia
| |
Collapse
|
29
|
Bonnet N, Douni E, Perréard Lopreno G, Besse M, Biver E, Ferrari S. RANKL-Induced Increase in Cathepsin K Levels Restricts Cortical Expansion in a Periostin-Dependent Fashion: A Potential New Mechanism of Bone Fragility. J Bone Miner Res 2021; 36:1636-1645. [PMID: 33856714 DOI: 10.1002/jbmr.4307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Receptor activator of nuclear factor-κΒ ligand (RANKL) is necessary and sufficient to promote osteoclastogenesis and a key pathogenic factor in osteoporosis. Failure of periosteal apposition to compensate for bone loss due to endosteal resorption further contributes to bone fragility. Whether these two processes are biologically related, however, remains unknown. Using high-resolution peripheral quantitative computed tomography (HR-pQCT), we first examined cortical bone parameters at distal radius and tibia in postmenopausal women (PMW) as well as in cadaveric human adult humeri. Increases in medullary area were negatively correlated with cortical bone volume but positively with total bone volume, and this relationship was stronger in the dominant arm, suggesting a mechanically driven process. To investigate the role of RANKL in this dual process, we used mice overexpressing huRANKL (huRANKLTg+ ). Trabecular and cortical bone volume (Ct.BV) are reduced in these mice, whereas cortical total volume (Ct.TV) is increased. In these bones, Sost mRNA levels are downregulated and periostin (Postn) mRNA levels upregulated, hence providing a positive message for periosteal bone formation. In turn, genetic deletion of Postn in huRANKLTg+ mice prevented the increase in Ct.TV and aggravated bone fragility. In contrast, cathepsin K (Ctsk) ablation improved Ct.TV in both huRANKLTg+ and wild-type (WT) mice and stimulated periosteal bone formation, while augmenting Postn protein levels. Therefore, bone strength in huRANKLTg+ /Ctsk-/- mice was restored to WT levels. These findings suggest that high levels of RANKL not only induce endosteal bone loss but may somewhat restrict periosteal bone formation by triggering periostin degradation through cathepsin K, hence providing a biological mechanism for the observed limited increase in cortical area in postmenopausal women. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Nicolas Bonnet
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital and Faculty of Medicine, Geneva, Switzerland
| | - Eleni Douni
- Department of Biotechnology, Agricultural University of Athens, Iera Odos, Athens, Greece.,Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Geneviève Perréard Lopreno
- Laboratory of Prehistoric Archaeology and Anthropology, F.-A. Forel Department, Section of Earth and Environmental Sciences, University of Geneva, Uni Carl Vogt, Geneva, Switzerland
| | - Marie Besse
- Laboratory of Prehistoric Archaeology and Anthropology, F.-A. Forel Department, Section of Earth and Environmental Sciences, University of Geneva, Uni Carl Vogt, Geneva, Switzerland
| | - Emmanuel Biver
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital and Faculty of Medicine, Geneva, Switzerland
| | - Serge Ferrari
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
30
|
Gao Y, Patil S, Jia J. The Development of Molecular Biology of Osteoporosis. Int J Mol Sci 2021; 22:8182. [PMID: 34360948 PMCID: PMC8347149 DOI: 10.3390/ijms22158182] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is one of the major bone disorders that affects both women and men, and causes bone deterioration and bone strength. Bone remodeling maintains bone mass and mineral homeostasis through the balanced action of osteoblasts and osteoclasts, which are responsible for bone formation and bone resorption, respectively. The imbalance in bone remodeling is known to be the main cause of osteoporosis. The imbalance can be the result of the action of various molecules produced by one bone cell that acts on other bone cells and influence cell activity. The understanding of the effect of these molecules on bone can help identify new targets and therapeutics to prevent and treat bone disorders. In this article, we have focused on molecules that are produced by osteoblasts, osteocytes, and osteoclasts and their mechanism of action on these cells. We have also summarized the different pharmacological osteoporosis treatments that target different molecular aspects of these bone cells to minimize osteoporosis.
Collapse
Affiliation(s)
- Yongguang Gao
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China;
| | - Suryaji Patil
- Lab for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Jingxian Jia
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China;
| |
Collapse
|
31
|
Zorina OA, Amkhadova MA, Boriskina OA, Aleskerov ES, Polyakov VM. [Diagnostic possibilities of laboratory assessment of cathepsin K activity in gingival and peri-implant fluid under normal conditions and periimplantitis]. STOMATOLOGII︠A︡ 2021; 100:55-59. [PMID: 34180626 DOI: 10.17116/stomat202110003155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The aim of the work was to develop a non-invasive laboratory method for local control of the severity of osteo-destructive processes in the bone tissue of the jaws after dental implantation. MATERIALS AND METHODS The study comprised 75 individuals aged 18 to 65. The main group included 40 patients with a diagnosis of dental periimplantitis (ICD K 10.2). A comparison group (n=20) included patients after dental implantation without postoperative complications. The control group (n=25) consisted of individuals without dental pathology. Cathepsin K (CTSK) (Human) ELISA Kit (Cloud-Clone Corp., USA) was used to determine the concentration of cathepsin K by the enzyme immunoassay in the gingival or peri-implant fluid. RESULTS The concentration of cathepsin K in the gingival fluid in the patients of the control group was 1.7±0.3 pmol/l, in the comparison group the concentration of the studied biomarker corresponded to 2.3±0.4 pmol/l. In the main group, the concentration of cathepsin K in the exudate of peri-implantation pockets increased 2.8 times (p<0.05) and corresponded to 4.9±0.5 pmol/l. The concentration of cathepsin K in the gingival fluid normally did not depend on age and gender, which increased the independence of the osteomarker for characterizing the osteoresorbent process in the peri-implantation area. After dental implantation, an excess of cathepsin K concentration above the level of 2.7 pmol/l with a diagnostic sensitivity of 82.5% and a specificity of 83.7% suggests a high risk of developing peri-implantitis. CONCLUSION The concentration of cathepsin K may be seen as valuable marker for local inflammatory and destructive processes in the contents of the peri-implantation area.
Collapse
Affiliation(s)
- O A Zorina
- Central Research Institute of Dentistry and Maxillofacial Surgery of Ministry of Health of the Russian Federation, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - M A Amkhadova
- Moscow Regional Research and Clinical Institute, Moscow, Russia
| | - O A Boriskina
- Central Research Institute of Dentistry and Maxillofacial Surgery of Ministry of Health of the Russian Federation, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Moscow Regional Research and Clinical Institute, Moscow, Russia
| | - E Sh Aleskerov
- Moscow Regional Research and Clinical Institute, Moscow, Russia
| | - V M Polyakov
- Rostov State Medical University of Ministry of Health of the Russian Federation, Rostov-on-Don, Russia
| |
Collapse
|
32
|
Khan IZ, Del Guzzo CA, Shao A, Cho J, Du R, Cohen AO, Owens DM. The CD200-CD200R axis promotes squamous cell carcinoma metastasis via regulation of cathepsin K. Cancer Res 2021; 81:5021-5032. [PMID: 34183355 DOI: 10.1158/0008-5472.can-20-3251] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 04/05/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022]
Abstract
The CD200-CD200R immunoregulatory signaling axis plays an etiological role in the survival and spread of numerous cancers primarily through suppression of anti-tumor immune surveillance. Our previous work outlined a pro-metastatic role for the CD200-CD200R axis in cutaneous squamous cell carcinoma (cSCC) that is independent of direct T cell suppression but modulates the function of infiltrating myeloid cells. To identify effectors of the CD200-CD200R axis important for cSCC metastasis, we conducted RNA-Seq profiling of infiltrating CD11B+Cd200R+ cells isolated from CD200+ versus CD200-null cSCCs and identified the cysteine protease cathepsin K (Ctsk) to be highly upregulated in CD200+ cSCCs. CD11B+Cd200R+ cells expressed phenotypic markers associated with myeloid-derived suppressor cell-like cells and tumor-associated macrophages and were the primary source of Ctsk expression in cSCC. A Cd200R+ myeloid cell-cSCC co-culture system showed that induction of Ctsk was dependent on engagement of the CD200-CD200R axis, indicating that Ctsk is a target gene of this pathway in the cSCC tumor microenvironment. Inhibition of Ctsk, but not matrix metalloproteinases (MMP), significantly blocked cSCC cell migration in vitro. Finally, targeted CD200 disruption in tumor cells and Ctsk pharmacological inhibition significantly reduced cSCC metastasis in vivo. Collectively, these findings support the conclusion that CD200 stimulates cSCC invasion and metastasis via induction of Ctsk in CD200R+ infiltrating myeloid cells.
Collapse
Affiliation(s)
| | | | | | | | - Rong Du
- Dermatology, Columbia University
| | | | | |
Collapse
|
33
|
Zhu L, Tang Y, Li XY, Keller ET, Yang J, Cho JS, Feinberg TY, Weiss SJ. Osteoclast-mediated bone resorption is controlled by a compensatory network of secreted and membrane-tethered metalloproteinases. Sci Transl Med 2021; 12:12/529/eaaw6143. [PMID: 32024800 DOI: 10.1126/scitranslmed.aaw6143] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/03/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
Osteoclasts actively remodel both the mineral and proteinaceous components of bone during normal growth and development as well as pathologic states ranging from osteoporosis to bone metastasis. The cysteine proteinase cathepsin K confers osteoclasts with potent type I collagenolytic activity; however, cathepsin K-null mice, as well as cathepsin K-mutant humans, continue to remodel bone and degrade collagen by as-yet-undefined effectors. Here, we identify a cathepsin K-independent collagenolytic system in osteoclasts that is composed of a functionally redundant network of the secreted matrix metalloproteinase MMP9 and the membrane-anchored matrix metalloproteinase MMP14. Unexpectedly, whereas deleting either of the proteinases individually leaves bone resorption intact, dual targeting of Mmp9 and Mmp14 inhibited the resorptive activity of mouse osteoclasts in vitro and in vivo and human osteoclasts in vitro. In vivo, Mmp9/Mmp14 conditional double-knockout mice exhibited marked increases in bone density and displayed a highly protected status against either parathyroid hormone- or ovariectomy-induced pathologic bone loss. Together, these studies characterize a collagenolytic system operative in mouse and human osteoclasts and identify the MMP9/MMP14 axis as a potential target for therapeutic interventions for bone-wasting disease states.
Collapse
Affiliation(s)
- Lingxin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China. .,Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yi Tang
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiao-Yan Li
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Evan T Keller
- Department of Pathology, Department of Urology and the Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jingwen Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.,School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jung-Sun Cho
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tamar Y Feinberg
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen J Weiss
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA. .,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
34
|
de França GM, Felix FA, de Morais EF, Medeiros MRDS, Andrade ACDM, Galvão HC. Osteomyelitis of the jaws in patients with pycnodysostosis: a systematic review. Braz J Otorhinolaryngol 2021; 87:620-628. [PMID: 33579598 PMCID: PMC9422419 DOI: 10.1016/j.bjorl.2020.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/11/2020] [Accepted: 12/03/2020] [Indexed: 11/18/2022] Open
Abstract
Introduction Pycnodysostosis is a rare autosomal recessive syndrome that provides the abnormal bone metabolism that increases the susceptibility of patients to develop osteomyelitis. Objective This systematic review was conducted to analyze the risk factors associated with the development of complications in the jaws (fractures and osteomyelitis), as well as their clinical-pathological characteristics and therapeutic approaches in patients with pycnodysostosis. Methods Searches were performed in the PubMed, Web of Science, Scopus, Lilacs, and Cochrane databases. Case reports or case series that met the eligibility criteria according to the PRISMA statement were included. The full texts of 31 articles were retrieved. Twenty of these articles published between 1969 and 2018 were selected, which described 26 cases of osteomyelitis in patients with pycnodysostosis. Results The mean age of the patients was 37.84 years; the male-to-female was 1.36:1. The mandible was the most affected site (76.9%). Tooth extraction was the main risk factor for osteomyelitis (61.5%), followed by infection (26.8%) and mandibular fracture (23.0%). Antibiotic therapy alone or combined with some surgical procedure was the treatment used in most cases (80.7%). Conclusion The findings of this review showed that patients with pycnodysostosis are more likely to develop osteomyelitis of the jaws after surgical procedures, especially tooth extraction which remains the main risk factor for its establishment. In addition, prophylactic antibiotic-therapy in the pre- and postoperative periods may prevent the development of osteomyelitis in pycnodysostosis.
Collapse
Affiliation(s)
- Glória Maria de França
- Universidade Federal do Rio Grande do Norte (UFRN), Departamento de Odontologia, Programa de Pós-Graduação em Ciências Odontológicas, Área de Concentração em Patologia Oral e Estomatologia, Natal, RN, Brazil.
| | - Fernanda Aragão Felix
- Universidade Federal do Rio Grande do Norte (UFRN), Centro de Biociências, Programa de Pós-Graduação em Ciências Odontológicas, Área de Concentração em Biologia Oral, Natal, RN, Brazil
| | - Everton Freitas de Morais
- Universidade Federal do Rio Grande do Norte (UFRN), Departamento de Odontologia, Programa de Pós-Graduação em Ciências Odontológicas, Área de Concentração em Patologia Oral e Estomatologia, Natal, RN, Brazil
| | - Maurília Raquel de Souto Medeiros
- Universidade Federal do Rio Grande do Norte (UFRN), Departamento de Odontologia, Programa de Pós-Graduação em Ciências Odontológicas, Área de Concentração em Patologia Oral e Estomatologia, Natal, RN, Brazil
| | - Ana Cláudia de Macedo Andrade
- Universidade Federal do Rio Grande do Norte (UFRN), Departamento de Odontologia, Programa de Pós-Graduação em Ciências Odontológicas, Área de Concentração em Patologia Oral e Estomatologia, Natal, RN, Brazil
| | - Hébel Cavalcanti Galvão
- Universidade Federal do Rio Grande do Norte (UFRN), Departamento de Odontologia, Programa de Pós-Graduação em Ciências Odontológicas, Área de Concentração em Patologia Oral e Estomatologia, Natal, RN, Brazil
| |
Collapse
|
35
|
Wang J, Xu J, Wang X, Sheng L, Zheng L, Song B, Wu G, Zhang R, Yao H, Zheng N, Yun Ong MT, Yung PSH, Qin L. Magnesium-pretreated periosteum for promoting bone-tendon healing after anterior cruciate ligament reconstruction. Biomaterials 2020; 268:120576. [PMID: 33271449 DOI: 10.1016/j.biomaterials.2020.120576] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 09/01/2020] [Accepted: 11/21/2020] [Indexed: 12/21/2022]
Abstract
Periosteum can improve tendon-bone healing when applied to wrap the tendon graft in both animal studies and clinical trials. As magnesium (Mg) ions can significantly elevate the levels of relevant cytokines involving in the osteogenic differentiation of periosteum-derived stem cells, the Mg-pretreated periosteum may be an innovative approach for enveloping the tendon graft. To test this hypothesis, we compared the effects of Mg-pretreated periosteum (M - P) and the stainless steel (SS)-pretreated periosteum (SS-P) in ACL reconstruction. We firstly found that the released Mg ions from the Mg implants were partially accumulated in periosteum, resulting in higher Mg/Ca ratio in the M - P compared to the SS-P. Additionally, the M - P showed significantly higher expression levels of calcitonin gene-related peptide (CGRP) and periostin than the SS-P due to the decrease in Cathepsin K (CTSK). Elevation of CGRP and periostin was beneficial for the osteogenic differentiation of periosteum-derived stem cells. More importantly, we demonstrated that the M - P remarkably increased the formation of fibrocartilage at the interface between the periosteum and tendon. Collectively, M - P group demonstrated significantly prevented peri-tunnel bone loss, more osseous ingrowth into the tendon graft and higher maximum load to failure as compared to the SS-P group. In summary, our study warrants further investigations for translating the current proof-of-concept findings to optimize the delivery of CGRP, periostin, and cells as novel practical therapeutic strategy for enhancing tendon-bone interface healing in patients undergoing ACL reconstruction.
Collapse
Affiliation(s)
- Jiali Wang
- Biomedical Engineering School, Sun Yat-sen University, Guangzhou, 510006, PR China; Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Xinluan Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Liyuan Sheng
- Shenzhen Institute, Peking University, Shenzhen, Guangdong province, 518057, PR China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Bin Song
- Department of Sports Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Ge Wu
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, PR China
| | - Ri Zhang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Hao Yao
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Nianye Zheng
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Michael Tim Yun Ong
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Patrick Shu-Hang Yung
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| |
Collapse
|
36
|
Huang S, Jin M, Su N, Chen L. New insights on the reparative cells in bone regeneration and repair. Biol Rev Camb Philos Soc 2020; 96:357-375. [PMID: 33051970 DOI: 10.1111/brv.12659] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Bone possesses a remarkable repair capacity to regenerate completely without scar tissue formation. This unique characteristic, expressed during bone development, maintenance and injury (fracture) healing, is performed by the reparative cells including skeletal stem cells (SSCs) and their descendants. However, the identity and functional roles of SSCs remain controversial due to technological difficulties and the heterogeneity and plasticity of SSCs. Moreover, for many years, there has been a biased view that bone marrow is the main cell source for bone repair. Together, these limitations have greatly hampered our understanding of these important cell populations and their potential applications in the treatment of fractures and skeletal diseases. Here, we reanalyse and summarize current understanding of the reparative cells in bone regeneration and repair and outline recent progress in this area, with a particular emphasis on the temporal and spatial process of fracture healing, the sources of reparative cells, an updated definition of SSCs, and markers of skeletal stem/progenitor cells contributing to the repair of craniofacial and long bones, as well as the debate between SSCs and pericytes. Finally, we also discuss the existing problems, emerging novel technologies and future research directions in this field.
Collapse
Affiliation(s)
- Shuo Huang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang zhi Road, Yuzhong District, Chongqing, China
| | - Min Jin
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang zhi Road, Yuzhong District, Chongqing, China
| | - Nan Su
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang zhi Road, Yuzhong District, Chongqing, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang zhi Road, Yuzhong District, Chongqing, China
| |
Collapse
|
37
|
Dai R, Wu Z, Chu HY, Lu J, Lyu A, Liu J, Zhang G. Cathepsin K: The Action in and Beyond Bone. Front Cell Dev Biol 2020; 8:433. [PMID: 32582709 PMCID: PMC7287012 DOI: 10.3389/fcell.2020.00433] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/08/2020] [Indexed: 02/05/2023] Open
Abstract
Cathepsin K (CatK) is one of the most potent proteases in lysosomal cysteine proteases family, of which main function is to mediate bone resorption. Currently, CatK is among the most attractive targets for anti-osteoporosis drug development. Although many pharmaceutical companies are working on the development of selective inhibitors for CatK, there is no FDA approved drug till now. Odanacatib (ODN) developed by Merck & Co. is the only CatK inhibitor candidate which demonstrated high therapeutic efficacy in patients with postmenopausal osteoporosis in Phase III clinical trials. Unfortunately, the development of ODN was finally terminated due to the cardio-cerebrovascular adverse effects. Therefore, it arouses concerns on the undesirable CatK inhibition in non-bone sites. It is known that CatK has far-reaching actions throughout various organs besides bone. Many studies have also demonstrated the involvement of CatK in various diseases beyond the musculoskeletal system. This review not only summarized the functional roles of CatK in bone and beyond bone, but also discussed the potential relevance of the CatK action beyond bone to the adverse effects of inhibiting CatK in non-bone sites.
Collapse
Affiliation(s)
- Rongchen Dai
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Zeting Wu
- International Medical Service Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hang Yin Chu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Jun Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Aiping Lyu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
- *Correspondence: Jin Liu,
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
- Ge Zhang,
| |
Collapse
|
38
|
Pathak JL, Bravenboer N, Klein-Nulend J. The Osteocyte as the New Discovery of Therapeutic Options in Rare Bone Diseases. Front Endocrinol (Lausanne) 2020; 11:405. [PMID: 32733380 PMCID: PMC7360678 DOI: 10.3389/fendo.2020.00405] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/20/2020] [Indexed: 01/18/2023] Open
Abstract
Osteocytes are the most abundant (~95%) cells in bone with the longest half-life (~25 years) in humans. In the past osteocytes have been regarded as vestigial cells in bone, since they are buried inside the tough bone matrix. However, during the last 30 years it has become clear that osteocytes are as important as bone forming osteoblasts and bone resorbing osteoclasts in maintaining bone homeostasis. The osteocyte cell body and dendritic processes reside in bone in a complex lacuno-canalicular system, which allows the direct networking of osteocytes to their neighboring osteocytes, osteoblasts, osteoclasts, bone marrow, blood vessels, and nerves. Mechanosensing of osteocytes translates the applied mechanical force on bone to cellular signaling and regulation of bone adaptation. The osteocyte lacuno-canalicular system is highly efficient in transferring external mechanical force on bone to the osteocyte cell body and dendritic processes via displacement of fluid in the lacuno-canalicular space. Osteocyte mechanotransduction regulates the formation and function of the osteoblasts and osteoclasts to maintain bone homeostasis. Osteocytes produce a variety of proteins and signaling molecules such as sclerostin, cathepsin K, Wnts, DKK1, DMP1, IGF1, and RANKL/OPG to regulate osteoblast and osteoclast activity. Various genetic abnormality-associated rare bone diseases are related to disrupted osteocyte functions, including sclerosteosis, van Buchem disease, hypophosphatemic rickets, and WNT1 and plastin3 mutation-related disorders. Meticulous studies during the last 15 years on disrupted osteocyte function in rare bone diseases guided for the development of various novel therapeutic agents to treat bone diseases. Studies on genetic, molecular, and cellular mechanisms of sclerosteosis and van Buchem disease revealed a role for sclerostin in bone homeostasis, which led to the development of the sclerostin antibody to treat osteoporosis and other bone degenerative diseases. The mechanism of many other rare bone diseases and the role of the osteocyte in the development of such conditions still needs to be investigated. In this review, we mainly discuss the knowledge obtained during the last 30 years on the role of the osteocyte in rare bone diseases. We speculate about future research directions to develop novel therapeutic drugs targeting osteocyte functions to treat both common and rare bone diseases.
Collapse
Affiliation(s)
- Janak L. Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jenneke Klein-Nulend
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, Amsterdam Movement Sciences, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Jenneke Klein-Nulend
| |
Collapse
|
39
|
Ferrari S. Response to Letter to the Editor: "Further Nonvertebral Fracture Reduction Beyond 3 Years for Up to 10 Years of Denosumab Treatment". J Clin Endocrinol Metab 2019; 104:5806. [PMID: 31290968 DOI: 10.1210/jc.2019-01388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/03/2019] [Indexed: 11/19/2022]
Affiliation(s)
- Serge Ferrari
- Division of Bone Diseases, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
40
|
Zhang X. Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer. Cancer Commun (Lond) 2019; 39:76. [PMID: 31753020 PMCID: PMC6873445 DOI: 10.1186/s40880-019-0425-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/13/2019] [Indexed: 12/26/2022] Open
Abstract
Bone metastasis is the leading cause of death in prostate cancer patients, for which there is currently no effective treatment. Since the bone microenvironment plays an important role in this process, attentions have been directed to the interactions between cancer cells and the bone microenvironment, including osteoclasts, osteoblasts, and bone stromal cells. Here, we explained the mechanism of interactions between prostate cancer cells and metastasis-associated cells within the bone microenvironment and further discussed the recent advances in targeted therapy of prostate cancer bone metastasis. This review also summarized the effects of bone microenvironment on prostate cancer metastasis and the related mechanisms, and provides insights for future prostate cancer metastasis studies.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Pathology, Jining First People's Hospital, Jining Medical University, No. 6 Jiankang Road, Jining, 272000, Shandong, P. R. China.
| |
Collapse
|
41
|
Guañabens N, Filella X, Florez H, Ruiz-Gaspá S, Conesa A, Peris P, Monegal A, Torres F. Tartrate-resistant acid phosphatase 5b, but not periostin, is useful for assessing Paget's disease of bone. Bone 2019; 124:132-136. [PMID: 31051316 DOI: 10.1016/j.bone.2019.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Periostin is a matricellular protein with a preferential location in cortical bone and periosteal tissue, and tartrate-resistant acid phosphatase 5b (TRAP5b) is a marker of osteoclast numbers. In Paget's disease of bone (PDB), there is increased cortical thickening and probably increased periosteal apposition, along with increased osteoclast numbers. OBJECTIVES To analyse if circulating periostin is a biomarker for PDB, and if it is associated with disease activity and involvement of long bones that represent major cortical contribution. Also, to analyse whether TRAP5b, a scarcely explored bone resorption marker, is useful in the assessment of PDB. PATIENTS AND METHODS We recruited 42 patients with PDB (13F/29M; 71 ± 11.6 yrs). 71.4% had active disease, 66.6% had polyostotic disease and 54.8% had long bone involvement. Blood and urine samples were taken between 8:00 and 10:00 A.M. after an overnight fast. Periostin and TRAP5b were measured in serum, using commercial ELISA assays (Biomedica and IDS, respectively). Serum total ALP, PINP, CTX, bone ALP and urinary NTX were measured. Reference values for periostin and TRAP5b were obtained from 45 healthy subjects. RESULTS Serum periostin did not differ between patients and controls (989.4 ± 173.2 vs. 966.9 ± 195.4 pMol/L, p = 0.572). No significant differences were observed between patients with and without active disease (964.5 ± 168.8 vs.1051.6 ± 175.6 pMol/L, p = 0.143), involvement or not of long bones (1022.2 ± 145.8 vs 949.7 ± 198.2 pMol/L, p = 0.181) and monostotic or polyostotic disease (963.8 ± 198.7 vs 1002.2 ± 161.4 pMol/L, p = 0.505). There were significant correlations between serum periostin and all bone turnover markers (bone ALP, PINP, uNTX, sCTX and TRAP5b) in PDB patients with active disease, but not in the inactive PDB group. Serum TRAP5b was significantly higher in PDB patients than in controls (4.43 ± 1.76 vs. 3.21 ± 1.02 U/L, p < 0.001), in those with active disease (4.98 ± 1.76 vs. 3.07 ± 0.72 U/L, p < 0.001) and in patients with polyostotic disease than in those with monostotic disease (4.81 ± 1.79 vs 3.68 ± 1.5 U/L, p = 0.005). TRAP5b levels were not influenced by previous bisphosphonate treatment (4.14 ± 1.42 vs. 4.84 ± 2.02 U/L, p = 0.206). CONCLUSIONS Periostin is not useful for assessing PDB, whilst TRAP5b, which has been a scarcely explored bone turnover marker until now, may be useful in the analysis of this disease, providing new information on the resorption process. In addition, periostin levels correlate with all classical BTMs in active PDB, suggesting that this marker may reflect periosteal and cortical metabolism in accelerated bone turnover states.
Collapse
Affiliation(s)
- Núria Guañabens
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, IDIBAPS, CIBERhed, University of Barcelona, Spain.
| | - Xavier Filella
- Biochemistry and Molecular Genetics Department, Hospital Clínic, Barcelona, Spain
| | - Helena Florez
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, IDIBAPS, CIBERhed, University of Barcelona, Spain
| | | | - Arantxa Conesa
- Department of Rheumatology, University Hospital of Castellón, Spain
| | - Pilar Peris
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, IDIBAPS, CIBERhed, University of Barcelona, Spain
| | - Ana Monegal
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, IDIBAPS, CIBERhed, University of Barcelona, Spain
| | - Ferran Torres
- Medical Statistics Core Facility, IDIBAPS, Hospital Clínic, Barcelona, Spain; Biostatistics Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
42
|
Liang W, Wang F, Chen Q, Dai J, Escara-Wilke J, Keller ET, Zimmermann J, Hong N, Lu Y, Zhang J. Targeting cathepsin K diminishes prostate cancer establishment and growth in murine bone. J Cancer Res Clin Oncol 2019; 145:1999-2012. [PMID: 31172267 PMCID: PMC6658578 DOI: 10.1007/s00432-019-02950-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 06/01/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The processes of prostate cancer (PCa) invasion and metastasis are facilitated by proteolytic cascade involving multiple proteases, such as matrix metalloproteinases, serine proteases and cysteine proteases including cathepsin K (CatK). CatK is predominantly secreted by osteoclasts and specifically degrades collagen I leading to bone destruction. PCa and breast cancer preferentially metastasize to the bone. Importantly, CatK expression level is greater in PCa bone metastatic sites compared to primary tumor and normal prostate tissues. However, the underlying mechanism of CatK during PCa metastases into the bone remains to be elucidated. We investigated the functional role of CatK during the PCa establishment and growth process in the murine bone. METHODS CatK mRNA expression was validated by RT-PCR, protein expression by immunoblotting in PCa LNCaP, C4-2B, and PC3 cells as well as in PCa tissues. Its protein production was measured using ELISA assay. The effect of both knockdowns via siRNA and CatK inhibitor was compared in regard to PCa cell invasion. We further studied the dose-dependent CatK inhibitor effect on conditioned media-induced bone resorption. In setting up an animal model, C4-2B cells were injected into the tibiae of SCID mice. The animals treated with either vehicle or CatK inhibitor for 8 weeks at the time of tumor cell injection (tumor establishment model; protocol I) or 4 weeks after tumor cell injection (tumor progression model; protocol II) were applied to histological and histomorphometric analyses. RESULTS We confirmed CatK expression in PCa LNCaP, C4-2B, and PC3 cells as well as in PCa tissues. Furthermore, we observed the inhibitory effects of a selective CatK inhibitor on PCa cell invasion. The CatK inhibitor dose-dependently inhibited PCa-conditioned media-induced bone resorption. Upon injection of C4-2B cells into the tibiae of SCID mice, the selective CatK inhibitor significantly prevented the tumor establishment in protocol I, and reduced the tumor growth in bone in protocol II. It also decreased serum PSA levels in both animal models. The inhibitory effects of the CatK inhibitor were enhanced in combination with zoledronic acid (ZA). CONCLUSION The selective CatK inhibitor may prevent the establishment and progression of PCa in bone, thus making it a novel therapeutic approach for advanced PCa.
Collapse
Affiliation(s)
- Weiping Liang
- Key Laboratory of Longevity and Aging-Related Diseases, Guangxi Medical University, Ministry of Education, Nanning, 530021, Guangxi, China
| | - Fuhao Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, 518055, Guangdong, China
| | - Qiuyan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jinlu Dai
- Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - June Escara-Wilke
- Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Evan T Keller
- Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Johann Zimmermann
- Novartis Pharma Ltd., Basel, Switzerland.,Polyphor Ltd, Hegenheimermattweg 125, 4123, Allschwil, Switzerland
| | - Ni Hong
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Yi Lu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China. .,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, 518055, Guangdong, China.
| | - Jian Zhang
- Key Laboratory of Longevity and Aging-Related Diseases, Guangxi Medical University, Ministry of Education, Nanning, 530021, Guangxi, China. .,School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China. .,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, 518055, Guangdong, China. .,Department of Urology, University of Pittsburgh, Pittsburgh, PA, 15240, USA.
| |
Collapse
|
43
|
New Insights on Properties and Spatial Distributions of Skeletal Stem Cells. Stem Cells Int 2019; 2019:9026729. [PMID: 31281389 PMCID: PMC6589297 DOI: 10.1155/2019/9026729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
Skeletal stem cells (SSCs) are postnatal self-renewing, multipotent, and skeletal lineage-committed progenitors that are capable of giving rise to cartilage, bone, and bone marrow stroma including marrow adipocytes and stromal cells in vitro and in an exogenous environment after transplantation in vivo. Identifying and isolating defined SSCs as well as illuminating their spatiotemporal properties contribute to our understating of skeletal biology and pathology. In this review, we revisit skeletal stem cells identified most recently and systematically discuss their origin and distributions.
Collapse
|
44
|
Periostin in chronic liver diseases: Current research and future perspectives. Life Sci 2019; 226:91-97. [PMID: 30978348 DOI: 10.1016/j.lfs.2019.04.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/26/2019] [Accepted: 04/08/2019] [Indexed: 01/06/2023]
Abstract
The liver is importantly metabolic and detoxifying organ in the body. When various pathogenic factors affect the liver, the normal physiological and biochemical functions are weakened, resulting in liver diseases. Liver fibrosis is a common pathological process of chronic liver disease. During hepatic fibrosis the changes in the components of the extracellular matrix (ECM) provide an environment that facilitates tissue remodeling. Among these ECM components, periostin, a glycoprotein that is predominantly secreted by osteoblasts and their precursors, playing an important role in bone formation, has attracted great attention. Periostin not only involves in bone metabolism, but also functions in modulating the cell fate determination, proliferation, inflammatory responses, even tumorigenesis of many other tissues and organs including liver. In different categories of liver disease patients, the serum and liver tissue levels of periostin were closely related to the decline of liver function, and the pathological stage. Numerous animal studies and experiments in vitro subsequently demonstrated that the abnormal expression of periostin resulted in metabolic disorders, liver inflammation, fibrosis and even tumorigenesis. Here we review the current progress on the role of periostin in pathologic pathways of liver system to explore whether periostin is a potential therapeutic target for the treatment of different liver diseases.
Collapse
|
45
|
Gao B, Deng R, Chai Y, Chen H, Hu B, Wang X, Zhu S, Cao Y, Ni S, Wan M, Yang L, Luo Z, Cao X. Macrophage-lineage TRAP+ cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration. J Clin Invest 2019; 129:2578-2594. [PMID: 30946695 DOI: 10.1172/jci98857] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The periosteum, a thin tissue that covers almost the entire bone surface, accounts for more than 80% of human bone mass and is essential for bone regeneration. Its osteogenic and bone regenerative abilities are well studied, but much is unknown about the periosteum. In this study, we found that macrophage-lineage cells recruit periosteum-derived cells (PDCs) for cortical bone formation. Knockout of colony stimulating factor-1 eliminated macrophage-lineage cells and resulted in loss of PDCs with impaired periosteal bone formation. Moreover, macrophage-lineage TRAP+ cells induced transcriptional expression of periostin and recruitment of PDCs to the periosteal surface through secretion of platelet-derived growth factor-BB (PDGF-BB), where the recruited PDCs underwent osteoblast differentiation coupled with type H vessel formation. We also found that subsets of Nestin+ and LepR+ PDCs possess multipotent and self-renewal abilities and contribute to cortical bone formation. Nestin+ PDCs are found primarily during bone development, whereas LepR+ PDCs are essential for bone homeostasis in adult mice. Importantly, conditional knockout of Pdgfrβ (platelet-derived growth factor receptor beta) in LepR+ cells impaired periosteal bone formation and regeneration. These findings uncover the essential role of periosteal macrophage-lineage cells in regulating periosteum homeostasis and regeneration.
Collapse
Affiliation(s)
- Bo Gao
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Institute of Orthopaedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ruoxian Deng
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yu Chai
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hao Chen
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bo Hu
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xiao Wang
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shouan Zhu
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yong Cao
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shuangfei Ni
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mei Wan
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liu Yang
- Institute of Orthopaedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhuojing Luo
- Institute of Orthopaedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xu Cao
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Kamimoto H, Kobayashi Y, Moriyama K. Relaxin 2 carried by magnetically directed liposomes accelerates rat midpalatal suture expansion and subsequent new bone formation. Bone Rep 2019; 10:100202. [PMID: 30937342 PMCID: PMC6430079 DOI: 10.1016/j.bonr.2019.100202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/06/2019] [Accepted: 03/11/2019] [Indexed: 11/27/2022] Open
Abstract
Relaxin (RLN) is an insulin-like peptide hormone that enables softening and lengthening of the pubic symphysis and uterine cervix. Here, we analyzed the effects of RLN2 on the expansion of rat midpalatal suture (MPS) using a magnetically directed liposome-based drug delivery system. Thirty-six male rats were divided into three groups: control (MPS was not expanded), lipo (expanded for 1 week with vehicle liposomes encapsulating ferric oxide and Cy5.5), and RLN-lipo (expanded for 1 week with the liposomes coated with RLN2). Rats were sacrificed after 1 week of expansion or after 2 weeks of retention. To accumulate RLN2-liposomes, a magnetic sheet was fixed to the palatal mucosa of the MPS. In vivo imaging showed magnetically controlled accumulation of liposomes in the MPS for 72 h. Immunohistochemistry revealed RLN2 expression in the MPS after expansion and relaxin receptor (RXFP) 2 expression at the osteogenic front (OF) in the RLN-lipo group; all groups expressed RXFP1 in the MPS. MPS expansion and bone formation were significantly accelerated at the OF in RLN-lipo group compared with the other groups. In the RLN-lipo group, significantly accelerated serrate bone deposition and elevated periostin (POSTN), iNOS, and MMP-1 levels were observed in the MPS. Sclerostin (SOST) expression was significantly reduced in newly formed bone in the RLN-lipo group. Our data revealed that RLN2 enhanced suture expansion via MMP-1 and iNOS secretion in the sutural fibroblasts and new bone formation via POSTN expression in osteoblasts at the OF. These properties may be useful for developing a new less-invasive orthopedic treatment aiming at sutural modification of cranio- and maxillofacial deformity patients. In vivo Magnetically localization of RLN2 carried by liposome at rat midpalatal suture (MPS) was originally performed. RLN2 promoted efficiency of the MPS expansion with secretion of Mmp1 and iNos in the mid-sutural fibroblasts. During expansion period, RLN2 increased the number and differentiation of osteoblast cells in the MPS. RLN2 enhanced newly bone formation at the MPS during expansion and retention period through Rxfp2. Sinus-like bone formation and Postn localization at the expanded MPS was observed by RLN2 administration.
Collapse
Affiliation(s)
- Hiroyuki Kamimoto
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Yukiho Kobayashi
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Keiji Moriyama
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
47
|
Guerin Lemaire H, Merle B, Borel O, Gensburger D, Chapurlat R. Serum periostin levels and severity of fibrous dysplasia of bone. Bone 2019; 121:68-71. [PMID: 30616028 DOI: 10.1016/j.bone.2019.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/04/2018] [Accepted: 01/03/2019] [Indexed: 01/16/2023]
Abstract
Fibrous dysplasia of bone (FD) is a rare congenital bone disease, characterized by a fibrous component in the bone marrow. Periostin has been extensively researched because of its implication in various fibrotic or inflammatory diseases. Periostin may be associated with the burden or the severity of FD. The case control PERIOSDYS study aimed at assessing serum periostin levels in FD patients. Sixty four patients with monostotic or polyostotic disease were included, in order to evaluate whether the concentrations were greater in patients than in 128 healthy age, BMI and sex-matched controls and if they were more elevated in patients with the more severe phenotypes. We found that periostin levels were greater in patients with FD compared to controls (mean = 1085 vs 958 pmol/l, p = 0.026), especially in those with a history of fracture (mean = 1475 vs 966 pmol/l, p = 0.0005), polyostotic forms (mean = 1214 vs 955 pmol/l, p = 0.004) or McCune-Albright syndrome (mean = 1585 vs 1023 pmol/l, p = 0.0048). In contrast, high pain levels were not associated with periostin levels (mean = 1137 vs 1036 pmol/l, p = 0.445). Furthermore, patients undergoing bisphosphonate therapy had significantly lower levels than treatment naïve patients (mean = 953 vs 1370 pmol/l, p = 0.002). In conclusion, periostin may be a biochemical marker indicative of the most severe forms of FD and could be used to monitor patients treated with bisphosphonates.
Collapse
Affiliation(s)
- H Guerin Lemaire
- Department of Rheumatology, Edouard Herriot University Hospital, 5 Place d'Arsonval, 69003 Lyon, France.
| | - B Merle
- INSERM UMR 1033, Université de Lyon, Division of Rheumatology, Edouard Herriot University Hospital, 5 Place d'Arsonval, 69003 Lyon, France
| | - O Borel
- INSERM UMR 1033, Université de Lyon, Division of Rheumatology, Edouard Herriot University Hospital, 5 Place d'Arsonval, 69003 Lyon, France
| | - D Gensburger
- INSERM UMR 1033, Université de Lyon, Division of Rheumatology, Edouard Herriot University Hospital, 5 Place d'Arsonval, 69003 Lyon, France
| | - R Chapurlat
- INSERM UMR 1033, Université de Lyon, Division of Rheumatology, Edouard Herriot University Hospital, 5 Place d'Arsonval, 69003 Lyon, France
| |
Collapse
|
48
|
Abstract
Periostin is specifically expressed in periosteum that functions in bone modeling and remodeling and bone repair, and is sensitive to mechanical stress. Thus periostin has been expected for controlling these crucial systems in bone. The results from periostin deficient mice demonstrate that periostin acts on bone remodeling though detailed mechanisms are unknown. Recent findings have revealed that periostin is essential for bone repair. In this chapter, I introduce expression and function of periostin in bone.
Collapse
Affiliation(s)
- Akira Kudo
- International Frontier, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan. .,School of Dentistry, Showa University, Tokyo, Japan.
| |
Collapse
|
49
|
The Structure of the Periostin Gene, Its Transcriptional Control and Alternative Splicing, and Protein Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:7-20. [PMID: 31037620 DOI: 10.1007/978-981-13-6657-4_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although many studies have described the role of periostin in various diseases, the functions of periostin derived from alternative splicing and proteinase cleavage at its C-terminus remain unknown. Further experiments investigating the periostin structures that are relevant to diseases are essential for an in-depth understanding of their functions, which would accelerate their clinical applications by establishing new approaches for curing intractable diseases. Furthermore, this understanding would enhance our knowledge of novel functions of periostin related to stemness and response to mechanical stress .
Collapse
|
50
|
Periostin Mediates Right Ventricular Failure through Induction of Inducible Nitric Oxide Synthase Expression in Right Ventricular Fibroblasts from Monocrotaline-Induced Pulmonary Arterial Hypertensive Rats. Int J Mol Sci 2018; 20:ijms20010062. [PMID: 30586863 PMCID: PMC6337160 DOI: 10.3390/ijms20010062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 01/07/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) leads to lethal right ventricular failure (RVF). Periostin (POSTN) mRNA expression is increased in right ventricles (RVs) of monocrotaline (MCT)-induced PAH model rats. However, the pathophysiological role of POSTN in RVF has not been clarified. We investigated the effects of POSTN on inducible nitric oxide (NO) synthase (iNOS) expression and NO production, which causes cardiac dysfunction, in right ventricular fibroblasts (RVFbs). Male Wistar rats were intraperitoneally injected with MCT (60 mg/kg) or saline. Three weeks after injection, RVFbs were isolated from RVs of MCT- or saline-injected rats (MCT-RVFb or CONT-RVFb). In MCT-RVFb, iNOS expression and phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and nuclear factor-kappa B (NF-κB) were higher than those in CONT-RVFb. Recombinant POSTN increased iNOS expression and NO production, which were prevented by a pharmacological inhibition of ERK1/2, JNK or NF-κB in RVFbs isolated from normal rats. Culture medium of POSTN-stimulated RVFbs suppressed Ca2+ inflow through l-type Ca2+ channel (LTCC) in H9c2 cardiomyoblasts. We demonstrated that POSTN enhances iNOS expression and subsequent NO production via ERK1/2, JNK, and NF-κB signaling pathways in RVFbs. POSTN might mediate RVF through the suppression of LTCC activity of cardiomyocytes by producing NO from RVFbs in PAH model rats.
Collapse
|