1
|
Baumann S, Sewing L, Traechslin C, Verhagen-Kamerbeek W, Grize L, Kraenzlin M, Meier C. Serum Pentosidine in Relation to Obesity in Patients with Type 2 Diabetes and Healthy Controls. Calcif Tissue Int 2025; 116:25. [PMID: 39777548 PMCID: PMC11706925 DOI: 10.1007/s00223-024-01338-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Pentosidine (PEN), a surrogate marker of advanced glycation end-product formation, reflects increased non-enzymatic cross-linking in bone collagen, which is thought to be an important determinant of bone fragility in type 2 diabetes mellitus (T2DM). We aimed to investigate serum concentrations of PEN in patients with T2DM and controls without T2DM and to examine its relationship with bone parameters and metabolic state such as glycaemic control, insulin resistance and body weight. In a cross-sectional study-design, data from postmenopausal women and men with T2DM (n = 110) and controls without T2DM (n = 111) were evaluated. Serum PEN was measured using an ELISA-based assay (CSB-E09415h, Cusabio). In addition, biochemical markers of glucose metabolism and bone turnover markers were measured. Bone mineral density (BMD) was assessed by dual-energy X-ray absorptiometry. After adjustment for age, gender and body mass index (BMI), serum PEN was significantly higher in patients with T2DM compared to controls (p = 0.02) and most prominently in women with T2DM (p = 0.09). We found a strong association of serum PEN concentrations with BMI in the entire study population (R = 0.43, p < 0.001) as well as in patients with T2DM (R = 0.28, p < 0.01). While bone turnover markers were significantly decreased, and BMD increased in patients with T2DM, only weak or no associations were observed between these skeletal surrogate markers and serum PEN. We conclude that serum PEN is strongly associated with BMI with highest levels in obese women with T2DM. Adjustment for patient's weight is needed when evaluating serum PEN levels in patients with T2DM.Clinical Trial Information: NCT02551315.
Collapse
Affiliation(s)
- Sandra Baumann
- Division of Endocrinology and Diabetes, Spital Emmental, Burgdorf, Switzerland
- Division of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Aeschenvorstadt 57, 4051, Basel, Switzerland
| | - Lilian Sewing
- Division of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Aeschenvorstadt 57, 4051, Basel, Switzerland
| | - Cyril Traechslin
- Division of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Aeschenvorstadt 57, 4051, Basel, Switzerland
| | - Wilma Verhagen-Kamerbeek
- Division of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Aeschenvorstadt 57, 4051, Basel, Switzerland
| | - Leticia Grize
- Swiss Tropical and Public Health Institute and University of Basel, Basel, Switzerland
| | | | - Christian Meier
- Division of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Aeschenvorstadt 57, 4051, Basel, Switzerland.
- Endocrine Clinic and Laboratory, Basel, Switzerland.
| |
Collapse
|
2
|
Sihota P, Kumar S, Dhaliwal R, Uniyal P, Yadav RN, Dhiman V, Neradi D, Karn S, Sapara M, Sharma S, Aggarwal S, Goni VG, Mehandia V, Busse B, Vashishth D, Bhadada SK, Kumar N. Multi-scale inferomedial femoral neck bone quality in type 2 diabetes patients with fragility fracture. Bone 2024; 192:117375. [PMID: 39694129 DOI: 10.1016/j.bone.2024.117375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Both trabecular and cortical bone undergo changes at multiple scales. We previously demonstrated the multi-scale changes in trabecular bone quality that contribute to bone fragility in type 2 diabetes (T2D). The link between increased fragility in T2D and multi-scale changes in cortical bone and their interaction with glycation remains unclear. This study presents, first-ever, multi-scale cortical bone quality parameters in T2D patients after their first hip fracture. The study objective was to determine the association between cortical porosity (Ct.Po.), mechanical, material, and bone compositional properties in T2D. Inferomedial femoral neck (FN) bone tissue specimens were collected from patients (n = 10 with T2D, n = 25 age- and sex-matched non-diabetes controls) who underwent hip replacement surgery following the first hip fragility fracture. Bone mineral density at FN was found to be similar between groups. In T2D, Ct.Po was higher (p = 0.038), while ultimate stress (p = 0.021), ultimate strain (p = 0.040), post-yield strain (p = 0.011), toughness (p = 0.005), yield energy (p = 0.003), and post-yield energy (p = 0.004) were notably lower. Tissue compositional differences included lower gravimetric mineral/matrix (p = 0.017), higher non-enzymatic collagen cross-link ratio (NE-xLR) (p = 0.049) and higher sugar/matrix ratio (p = 0.042) in T2D. Fluorescent advanced glycation end-products (fAGEs) content was higher in T2D bone (p = 0.043). At the mesoscale, the fAGEs in the bone matrix are inversely related to the yield- and ultimate strain of T2D bone, and NE-xLR is negatively correlated with yield- and ultimate- stress in the T2D group. In conclusion, study findings demonstrate that elevated glycation weakens the mechanical integrity of cortical bone by reducing its ability to absorb energy and resist deformation, thereby contributing to bone fragility in T2D. The strong association of fAGEs with lower yield strain, along with the association of NE-xLR with lower yield- and ultimate stress, establishes a causal link between AGEs and the deterioration of cortical bone mechanical properties. These findings underscore the need for strategies targeting glycation and collagen quality to mitigate fracture risk in T2D patients.
Collapse
Affiliation(s)
- Praveer Sihota
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 22529, Germany
| | - Saroj Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Ruban Dhaliwal
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Piyush Uniyal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Ram Naresh Yadav
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Vandana Dhiman
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Deepak Neradi
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Shailesh Karn
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Mohin Sapara
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Sidhartha Sharma
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Sameer Aggarwal
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Vijay G Goni
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Vishwajeet Mehandia
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 22529, Germany
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India; Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| |
Collapse
|
3
|
Jia X, Zhang G, Yu D. Application of extracellular vesicles in diabetic osteoporosis. Front Endocrinol (Lausanne) 2024; 15:1466775. [PMID: 39720256 PMCID: PMC11666354 DOI: 10.3389/fendo.2024.1466775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/15/2024] [Indexed: 12/26/2024] Open
Abstract
As the population ages, the occurrence of osteoporosis is becoming more common. Diabetes mellitus is one of the factors in the development of osteoporosis. Compared with the general population, the incidence of osteoporosis is significantly higher in diabetic patients. Diabetic osteoporosis (DOP) is a metabolic bone disease characterized by abnormal bone tissue structure due to hyperglycemia and insulin resistance, reduced bone strength and increased risk of fractures. This is a complex mechanism that occurs at the cellular level due to factors such as blood vessels, inflammation, and hyperglycemia and insulin resistance. Although the application of some drugs in clinical practice can reduce the occurrence of DOP, the incidence of fractures caused by DOP is still very high. Extracellular vesicles (EVs) are a new communication mode between cells, which can transfer miRNAs and proteins from mother cells to target cells through membrane fusion, thereby regulating the function of target cells. In recent years, the role of EVs in the pathogenesis of DOP has been widely demonstrated. In this article, we first describe the changes in the bone microenvironment of osteoporosis. Second, we describe the pathogenesis of DOP. Finally, we summarize the research progress and challenges of EVs in DOP.
Collapse
Affiliation(s)
- Xiaopeng Jia
- Trauma Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Gongzi Zhang
- Department of Rehabilitation Medicine, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Deshui Yu
- Trauma Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
4
|
Carney TE, Biggs AE, Miller MA, Mann KA, Oest ME. Therapeutic radiation directly alters bone fatigue strength and microdamage accumulation. J Mech Behav Biomed Mater 2024; 160:106766. [PMID: 39378671 DOI: 10.1016/j.jmbbm.2024.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Radiotherapy (RTx) is an essential and efficacious oncologic treatment, however, post-RTx bone fragility fractures present a challenging clinical problem. Cancer survivors treated with RTx are at variable risk for these late-onset, complex fragility fractures. Little data exists regarding the effects of RTx on bone fatigue properties despite the likelihood of fatigue loading as a mechanism leading up to atraumatic fracture. In this study, femurs collected from adult male rats were irradiated ex vivo with a therapeutic dose of x-irradiation (20 Gy), and then fatigued using a three-point bend setup. Femurs positioned in an isotonic bath at room temperature were loaded to a range of prescribed initial strain levels (based on beam theory equations, prior to any fatigue damage) at 3 Hz in force control. The goals of this study were to determine the feasibility of assessing RTx-induced alterations in 1) femur fatigue strength, 2) structural microdamage (creep and stiffness), and 3) tissue damage (diffuse damage and/or linear microcracking). Mid-diaphyseal morphology and tissue mineral density were not different between the RTx and Sham groups (p ≥ 0.35). With increasing applied apparent strain, the number of cycles to failure was reduced for the RTx femurs when compared to the Sham femurs (treatment x εapp, p = 0.041). RTx femurs had a greater phase II (steady state) creep rate (p = 0.0462) compared to Sham femurs. For femurs that reached 500k cycles, the RTx group had greater diffuse damage area (p = 0.015) than the Sham. This study provides evidence that radiation at therapeutic doses can directly diminish bone fatigue properties. This loss of fatigue properties is associated with increased structural fatigue damage and diffuse microdamage, without alterations in morphology or tissue mineral density, indicating a reduction in bone quality.
Collapse
Affiliation(s)
- Tara E Carney
- Department of Orthopedic Surgery, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA; Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA.
| | - Amy E Biggs
- Department of Orthopedic Surgery, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA.
| | - Mark A Miller
- Department of Orthopedic Surgery, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA.
| | - Kenneth A Mann
- Department of Orthopedic Surgery, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA.
| | - Megan E Oest
- Department of Orthopedic Surgery, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA.
| |
Collapse
|
5
|
Tang K, Ceteznik S, Kim M, Bornfeldt KE, Kanter JE, Zhang H, Arola DD. Changes in the composition and mechanical properties of dentin in mouse models of diabetes. Dent Mater 2024; 40:2017-2024. [PMID: 39343702 DOI: 10.1016/j.dental.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVES This study employed mouse models of type 1 (T1D) and type 2 (T2D) diabetes to characterize the changes in tooth dentin composition and its mechanical properties. METHODS Thirty-two mice were used in this study and divided into T1D, T2D and corresponding control groups. Mandibles were extracted 12 weeks after the onset of diabetes, and dentin from the first molars was evaluated in varying regions of the root. The composition was assessed using Raman Spectroscopy. Nanoindentation and Vickers indentation were employed to study the mechanical properties of the tissue. Statistical significance was evaluated by two-way analysis of variance with respect to the diabetic group and region of the tooth (p ≤ 0.05). RESULTS In the T2D model, the mineral-to-collagen ratio, hardness, and storage modulus of the intertubular dentin were significantly reduced compared to tissue from the controls, especially in the cervical regions of the tooth. The reduction in the mineral-to-collagen ratio was also observed in the T1D model, but changes in nanomechanical properties were not evident. However, the bulk hardness of the teeth in the T1D model was lower than in the littermate controls. Optical microscopy revealed significant wear of the tooth crowns in both models of diabetes, which appear to result from parafunctional activities. CONCLUSION This study suggests that both type 1 and type 2 models of diabetes are associated with detrimental changes in dentin. CLINICAL SIGNIFICANCE Better understanding of how diabetes affects dentin and the contributing mechanisms will be key to improving treatments for people with diabetes.
Collapse
Affiliation(s)
- K Tang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - S Ceteznik
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - M Kim
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - K E Bornfeldt
- Department of Medicine, UW Medicine Diabetes Institute, Seattle, WA, USA
| | - J E Kanter
- Department of Medicine, UW Medicine Diabetes Institute, Seattle, WA, USA
| | - H Zhang
- Department of Oral Health Sciences, University of Washington, Seattle, WA, USA
| | - D D Arola
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA; Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, WA, USA; Department of Oral Health Sciences, University of Washington, Seattle, WA, USA; Department of Mechanical, Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Sroga GE, Vashishth D. In vivo glycation-interplay between oxidant and carbonyl stress in bone. JBMR Plus 2024; 8:ziae110. [PMID: 39386996 PMCID: PMC11458925 DOI: 10.1093/jbmrpl/ziae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 06/18/2024] [Accepted: 07/28/2024] [Indexed: 10/12/2024] Open
Abstract
Metabolic syndromes (eg, obesity, type 2 diabetes (T2D), atherosclerosis, and neurodegenerative diseases) and aging, they all have a strong component of carbonyl and reductive-oxidative (redox) stress. Reactive carbonyl (RCS) and oxidant (ROS) stress species are commonly generated as products or byproducts of cellular metabolism or are derived from the environment. RCS and ROS can play a dual role in living organisms. Some RCS and ROS function as signaling molecules, which control cellular defenses against biological and environmental assaults. However, due to their high reactivity, RCS and ROS inadvertently interact with different cellular and extracellular components, which can lead to the formation of undesired posttranslational modifications of bone matrix proteins. These are advanced glycation (AGEs) and glycoxidation (AGOEs) end products generated in vivo by non-enzymatic amino-carbonyl reactions. In this review, metabolic processes involved in generation of AGEs and AGOEs within and on protein surfaces including extracellular bone matrix are discussed from the perspective of cellular metabolism and biochemistry of certain metabolic syndromes. The impact of AGEs and AGOEs on some characteristics of mineral is also discussed. Different therapeutic approaches with the potential to prevent the formation of RCS, ROS, and the resulting formation of AGEs and AGOEs driven by these chemicals are also briefly reviewed. These are antioxidants, scavenging agents of reactive species, and newly emerging technologies for the development of synthetic detoxifying systems. Further research in the area of in vivo glycation and glycoxidation should lead to the development of diverse new strategies for halting the progression of metabolic complications before irreversible damage to body tissues materializes.
Collapse
Affiliation(s)
- Grażyna E Sroga
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Engineering and Precision Medicine, Rensselaer-Icahn School of Medicine at Mount Sinai, 619 West 54th Street, New York, NY 10019, United States
| |
Collapse
|
7
|
Brandt IG, Viggers R, Harsløf T, Frost M, Vestergaard P. Bone properties in persons with type 1 diabetes and healthy controls - A cross-sectional study. Bone 2024; 190:117306. [PMID: 39490885 DOI: 10.1016/j.bone.2024.117306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND The risk of fractures is increased in persons with type 1 diabetes (T1D) and assessment of bone health has been included in the 2024 updated Standards of Care by The American Diabetes Association (ADA). Previous studies have found that in T1D bone metabolism, mineral content, microstructure, and strength diverge from that of persons without diabetes. However, a clear description of a T1D bone phenotype has not yet been established. We investigated bone mechanical properties and microstructure in T1D compared with healthy controls. For the potential future introduction of additional bone measures in the clinical fracture risk assessment, we aimed to assess any potential associations between various measures related to bone indices in subjects with T1D. METHODS We studied human bone indices in a clinical cross-sectional setup including 111 persons with early-onset T1D and 37 sex- and age-matched control persons. Participants underwent hip and spine DXA scans for bone mineral density (BMD) of the femoral neck (FN), total hip (TH), and lumbar spine (LS), and TBS evaluation, microindentation of the tibial shaft for Bone Material Strength index (BMSi), and high-resolution periphery quantitative computed tomography (HRpQCT) of the distal radius and tibia for volumetric BMD (vBMD) and structural measures of trabecular and cortical bone. Results are reported as means with (standard deviation) or (95 % confidence intervals (CI)), medians with [interquartile range], and differences are reported with (95 % CI). RESULTS The study included 148 persons aged 20 to 75 years with a median age of 43.2 years. The T1D group who had all been diagnosed with T1D before the age of 18 years demonstrated values of HbA1c ranging from 39 to 107 mmol/mol and a median HbA1c of 57 mmol/mol. The BMD did not differ between groups (the mean difference in FN-BMD was 0.026 g/cm2 (-0.026; 0.079), p = 0.319) and the median BMSi was comparable in the two groups (79.2 [73.6; 83.8] in the T1D group compared with 77.9 [70.5, 86.1] in the control group). Total and trabecular vBMD (Tb.vBMD), cortical thickness (Ct.Th), and trabecular thickness (Tb.Th) of both radius and tibia were lower in participants with T1D. The mean Tb.vBMD at the radius was 143.6 (38.5) mg/cm3 in the T1D group and 171.5 (37.7) mg/cm3 in the control group, p < 0.001. The mean Ct. Thd of the radius was 0.739 mm (0.172) in the T1D group and 0.813 (0.188) in the control group, p = 0.044. Crude linear regressions revealed limited agreement between BMSi and Tb.vBMD (p = 0.010, r2 = 0.040 at the radius and p = 0.008, r2 = 0.040 at the tibia and between BMSi and the estimated failure load (FL) at the tibia (p < 0.001, r2 = 0.090). There were no significant correlations between BMSi and Ct.Th. TBS correlated with Tb.vBMD at the radius (p = 0.008, r2 = 0.044) and the tibia (p = 0.001, r2 = 0.069), and with the estimated FL at the distal tibia (p = 0.038, r2 = 0.026). CONCLUSION In this study, we examined the bones of persons with well-controlled, early-onset T1D. Compared with sex- and age-matched healthy control persons, we found reduced total and trabecular vBMD, as well as decreased trabecular and cortical thickness. These results suggest that a debut of T1D before reaching peak bone mass negatively impacts bone microarchitecture. No differences in areal BMD or BMSi were observed. Although the variations in total hip BMD reflect some variation in the vBMD, the reduction in trabecular bone mineral density was not captured by the DXA scan. Consequently, fracture risk may be underestimated when relying on DXA, and further research into fracture risk assessment in T1D is warranted.
Collapse
Affiliation(s)
- Inge Gerlach Brandt
- Steno Diabetes Center Northern Denmark, Aalborg, Denmark; Aalborg University Hospital, Denmark; Aalborg University, Denmark.
| | - Rikke Viggers
- Steno Diabetes Center Northern Denmark, Aalborg, Denmark; Aalborg University Hospital, Denmark; Aalborg University, Denmark
| | - Torben Harsløf
- Aarhus University Hospital, Dep. Of Endocrinology, Aarhus, Denmark
| | - Morten Frost
- Steno Diabetes Center Odense, Department of Endocrinology, Odense University Hospital, Odense, Denmark; Molecular Endocrinology Unit (KMEB), Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Peter Vestergaard
- Steno Diabetes Center Northern Denmark, Aalborg, Denmark; Aalborg University Hospital, Denmark; Aalborg University, Denmark
| |
Collapse
|
8
|
Vashishth D, Dhaliwal R, Rubin M. AGEs (Advanced Glycation End-products) in bone come of age. Bone 2024; 190:117301. [PMID: 39442854 DOI: 10.1016/j.bone.2024.117301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Advanced Glycation End-products (AGEs) are seen in long-lived proteins and were not expected to accumulate in the bone that turnovers and renews itself. Here, we provide a commentary on the contrary, highlighting the Special Issue of AGEs in Bone. An outcome of hyperglycemia and increased oxidative stress, AGEs form and accumulate by altering the bone resorption and formation processes. Accumulation of various AGEs species in bone increases bone fragility through the stiffening of the collagen network and, potentially, through the changes in collagen-mineral interactions. Evidence from both preclinical and clinical studies is leading to new translational approaches wherein measurement, inhibition, or removal of AGEs show the potential to diagnose, manage, and treat bone fragility associated with multiple conditions and diseases.
Collapse
Affiliation(s)
- Deepak Vashishth
- Shirley Ann Jackson PhD. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States of America; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America; Rensselaer - Icahn School of Medicine at Mount Sinai Center for Engineering and Precision Medicine, New York, NY, United States of America.
| | - Ruban Dhaliwal
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Mishaela Rubin
- Department of Medicine, Columbia Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
| |
Collapse
|
9
|
Barnet IR, Emerzian SR, Behzad R, Brooks DJ, Tedtsen T, Granados M, Park S, Moore J, Olson JD, Karim L, Bouxsein ML, Cline JM, Willey JS. Total body irradiation is associated with long-term deficits in femoral bone structure but not mechanical properties in male rhesus macaques. Sci Rep 2024; 14:23379. [PMID: 39379502 PMCID: PMC11461916 DOI: 10.1038/s41598-024-75363-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024] Open
Abstract
Exposure to ionizing radiation for oncological therapy increases the risk for late-onset fractures in survivors. However, the effects of total body irradiation (TBI) on adult bone are not well-characterized. The primary aim of this study was to quantify the long-term effects of TBI on bone microstructure, material composition, and mechanical behavior in skeletally mature rhesus macaque (Macaca mulatta) non-human primates. Femora were obtained post-mortem from animals exposed to an acute dose of TBI (6.0-6.75 Gy) nearly a decade earlier, age-matched non-irradiated controls, and non-irradiated young animals. The microstructure of femoral trabecular and cortical bone was assessed via micro-computed tomography. Material composition was evaluated by measuring total fluorescent advanced glycation end products (fAGEs). Cortical bone mechanical behavior was quantified via four-point bending and cyclic reference point indentation (cRPI). Animals exposed to TBI had slightly worse cortical microstructure, including lower cortical thickness (-11%, p = 0.037) and cortical area (-24%, p = 0.049), but similar fAGE content and mechanical properties as age-matched controls. Aging did not influence cortical microstructure, fAGE content, or cRPI measures but diminished femoral cortical post-yield properties, including toughness to fracture (-32%, p = 0.032). Because TBI was administered after the acquisition of peak bone mass, these results suggest that the skeletons of long-term survivors of adulthood TBI may be resilient, retaining or recovering their mechanical integrity during the post-treatment period, despite radiation-induced architectural deficits. Further investigation is necessary to better understand radiation-induced skeletal fragility in mature and immature bone to improve care for radiation patients of all ages.
Collapse
Affiliation(s)
| | - Shannon R Emerzian
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Ramina Behzad
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA, 02747, USA
| | - Daniel J Brooks
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Trinity Tedtsen
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Marcela Granados
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Sun Park
- Department of Radiation Oncology, Section on Radiation Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 21757, USA
| | - Joseph Moore
- Department of Radiation Oncology, Section on Radiation Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 21757, USA
| | - John D Olson
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 21757, USA
| | - Lamya Karim
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA, 02747, USA
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - J Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 21757, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Section on Radiation Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 21757, USA
| |
Collapse
|
10
|
Britton M, Monahan GE, Murphy CG, Kearns SR, Devitt AT, Okwieka A, Jaisson S, Van Gulick L, Beljebbar A, Kerdjoudj H, Schiavi J, Vaughan TJ. An investigation of composition, morphology, mechanical properties, and microdamage accumulation of human type 2 diabetic bone. Bone 2024; 187:117190. [PMID: 38960297 DOI: 10.1016/j.bone.2024.117190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
This study investigates the biomechanics of type 2 diabetic bone fragility through a multiscale experimental strategy that considers structural, mechanical, and compositional components of ex vivo human trabecular and cortical bone. Human tissue samples were obtained from the femoral heads of patients undergoing total hip replacement. Mechanical testing was carried out on isolated trabecular cores using monotonic and cyclic compression loading and nanoindentation experiments, with bone microdamage analysed using micro-computed tomography (CT) imaging. Bone composition was evaluated using Raman spectroscopy, high-performance liquid chromatography, and fluorometric spectroscopy. It was found that human type 2 diabetic bone had altered mechanical, compositional, and morphological properties compared to non-type 2 diabetic bone. High-resolution micro-CT imaging showed that cores taken from the central trabecular region of the femoral head had higher bone mineral density (BMD), bone volume, trabecular thickness, and reduced trabecular separation. Type 2 diabetic bone also had enhanced macro-mechanical compressive properties under mechanical loading compared to non-diabetic controls, with significantly higher apparent modulus, yield stress, and pre-yield toughness evident, even when properties were normalised against the bone volume. Using nanoindentation, there were no significant differences in the tissue-level mechanical properties of cortical or trabecular bone in type 2 diabetic samples compared to controls. Through compositional analysis, higher levels of furosine were found in type 2 diabetic trabecular bone, and an increase in both furosine and carboxymethyl-lysine (an advanced glycation end-product) was found in cortical bone. Raman spectroscopy showed that type 2 diabetic bone had a higher mineral-to-matrix ratio, carbonate substitution, and reduced crystallinity compared to the controls. Together, this study shows that type 2 diabetes leads to distinct changes in both organic and mineral phases of the bone tissue matrix, but these changes did not coincide with any reduction in the micro- or macro-mechanical properties of the tissue under monotonic or cyclic loading.
Collapse
Affiliation(s)
- Marissa Britton
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Genna E Monahan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Colin G Murphy
- Department of Orthopaedics, Galway University Hospitals, Galway, Ireland
| | - Stephen R Kearns
- Department of Orthopaedics, Galway University Hospitals, Galway, Ireland
| | - Aiden T Devitt
- Department of Orthopaedics, Galway University Hospitals, Galway, Ireland
| | - Anaïs Okwieka
- University of Reims Champagne-Ardenne, CNRS, Extracellular Matrix and Cell Dynamics Unit (MEDyC) UMR, Reims, France
| | - Stéphane Jaisson
- University of Reims Champagne-Ardenne, CNRS, Extracellular Matrix and Cell Dynamics Unit (MEDyC) UMR, Reims, France
| | | | | | - Halima Kerdjoudj
- Biomatériaux et Inflammation en Site Osseux (BIOS), Université de Reims Champagne Ardenne, EA 4691 Reims, France
| | | | - Ted J Vaughan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland.
| |
Collapse
|
11
|
Gao Q, Jiang Y, Zhou D, Li G, Han Y, Yang J, Xu K, Jing Y, Bai L, Geng Z, Zhang H, Zhou G, Zhu M, Ji N, Han R, Zhang Y, Li Z, Wang C, Hu Y, Shen H, Wang G, Shi Z, Han Q, Chen X, Su J. Advanced glycation end products mediate biomineralization disorder in diabetic bone disease. Cell Rep Med 2024; 5:101694. [PMID: 39173634 PMCID: PMC11524989 DOI: 10.1016/j.xcrm.2024.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/04/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
Patients with diabetes often experience fragile fractures despite normal or higher bone mineral density (BMD), a phenomenon termed the diabetic bone paradox (DBP). The pathogenesis and therapeutics opinions for diabetic bone disease (DBD) are not fully explored. In this study, we utilize two preclinical diabetic models, the leptin receptor-deficient db/db mice (DB) mouse model and the streptozotocin-induced diabetes (STZ) mouse model. These models demonstrate higher BMD and lower mechanical strength, mirroring clinical observations in diabetic patients. Advanced glycation end products (AGEs) accumulate in diabetic bones, causing higher non-enzymatic crosslinking within collagen fibrils. This inhibits intrafibrillar mineralization and leads to disordered mineral deposition on collagen fibrils, ultimately reducing bone strength. Guanidines, inhibiting AGE formation, significantly improve the microstructure and biomechanical strength of diabetic bone and enhance bone fracture healing. Therefore, targeting AGEs may offer a strategy to regulate bone mineralization and microstructure, potentially preventing the onset of DBD.
Collapse
Affiliation(s)
- Qianmin Gao
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Yingying Jiang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China.
| | - Dongyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Yafei Han
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Jingzhi Yang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Guangyin Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Mengru Zhu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Ning Ji
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Ruina Han
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Yuanwei Zhang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Zuhao Li
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Chuandong Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Yan Hu
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Hao Shen
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Zhongmin Shi
- Department of Orthopedics, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Qinglin Han
- Orthopaedic Department, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China.
| | - Xiao Chen
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China.
| |
Collapse
|
12
|
Elnunu IS, Redmond JN, Obata Y, Woolley W, Kammer DS, Acevedo C. Increased AGE Cross-Linking Reduces the Mechanical Properties of Osteons. JOM (WARRENDALE, PA. : 1989) 2024; 76:5692-5702. [PMID: 39318440 PMCID: PMC11417058 DOI: 10.1007/s11837-024-06716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/10/2024] [Indexed: 09/26/2024]
Abstract
The osteon is the primary structural component of bone, contributing significantly to its unique toughness and strength. Despite extensive research on osteonal structure, the properties of osteons have not been fully investigated, particularly within the context of bone fragility diseases like type 2 diabetes mellitus (T2DM). This study aims to isolate osteons from bovine bone, simulate the effects of increased advanced glycation end-products (AGEs) in T2DM through ribosylation, and evaluate the mechanical properties of isolated osteons. Osteons extracted from the posterior section of bovine femur mid-diaphysis were processed to achieve a sub-millimeter scale for microscale imaging. Subsequently, synchrotron radiation micro-computed tomography was employed to precisely localize and isolate the osteon internally. While comparable elastic properties were observed between control and ribosylated osteons, the presence of AGEs led to decreased strain to failure. Young's modulus was quantified (9.9 ± 4.9 GPa and 8.7 ± 3 GPa, respectively), aligning closely with existing literature. This study presents a novel method for the extraction and isolation of osteons from bone and shows the detrimental effect of AGEs at the osteonal level. Supplementary Information The online version contains supplementary material available at 10.1007/s11837-024-06716-x.
Collapse
Affiliation(s)
- Ihsan S Elnunu
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112 USA
| | - Jessica N Redmond
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112 USA
| | - Yoshihiro Obata
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112 USA
- Department of Mechanical and Aerospace Engineering, University of California San Diego, Engineers Ln, San Diego, CA 92161 USA
| | - William Woolley
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112 USA
- Department of Mechanical and Aerospace Engineering, University of California San Diego, Engineers Ln, San Diego, CA 92161 USA
| | - David S Kammer
- Institute for Building Materials, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland
| | - Claire Acevedo
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112 USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112 USA
- Department of Mechanical and Aerospace Engineering, University of California San Diego, Engineers Ln, San Diego, CA 92161 USA
| |
Collapse
|
13
|
Leanza G, Cannata F, Faraj M, Pedone C, Viola V, Tramontana F, Pellegrini N, Vadalà G, Piccoli A, Strollo R, Zalfa F, Beeve AT, Scheller EL, Tang SY, Civitelli R, Maccarrone M, Papalia R, Napoli N. Bone canonical Wnt signaling is downregulated in type 2 diabetes and associates with higher advanced glycation end-products (AGEs) content and reduced bone strength. eLife 2024; 12:RP90437. [PMID: 38598270 PMCID: PMC11006415 DOI: 10.7554/elife.90437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Type 2 diabetes (T2D) is associated with higher fracture risk, despite normal or high bone mineral density. We reported that bone formation genes (SOST and RUNX2) and advanced glycation end-products (AGEs) were impaired in T2D. We investigated Wnt signaling regulation and its association with AGEs accumulation and bone strength in T2D from bone tissue of 15 T2D and 21 non-diabetic postmenopausal women undergoing hip arthroplasty. Bone histomorphometry revealed a trend of low mineralized volume in T2D (T2D 0.249% [0.156-0.366]) vs non-diabetic subjects 0.352% [0.269-0.454]; p=0.053, as well as reduced bone strength (T2D 21.60 MPa [13.46-30.10] vs non-diabetic subjects 76.24 MPa [26.81-132.9]; p=0.002). We also showed that gene expression of Wnt agonists LEF-1 (p=0.0136) and WNT10B (p=0.0302) were lower in T2D. Conversely, gene expression of WNT5A (p=0.0232), SOST (p<0.0001), and GSK3B (p=0.0456) were higher, while collagen (COL1A1) was lower in T2D (p=0.0482). AGEs content was associated with SOST and WNT5A (r=0.9231, p<0.0001; r=0.6751, p=0.0322), but inversely correlated with LEF-1 and COL1A1 (r=-0.7500, p=0.0255; r=-0.9762, p=0.0004). SOST was associated with glycemic control and disease duration (r=0.4846, p=0.0043; r=0.7107, p=0.00174), whereas WNT5A and GSK3B were only correlated with glycemic control (r=0.5589, p=0.0037; r=0.4901, p=0.0051). Finally, Young's modulus was negatively correlated with SOST (r=-0.5675, p=0.0011), AXIN2 (r=-0.5523, p=0.0042), and SFRP5 (r=-0.4442, p=0.0437), while positively correlated with LEF-1 (r=0.4116, p=0.0295) and WNT10B (r=0.6697, p=0.0001). These findings suggest that Wnt signaling and AGEs could be the main determinants of bone fragility in T2D.
Collapse
Affiliation(s)
- Giulia Leanza
- Department of Medicine and Surgery, Research Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del PortilloRomaItaly
- Operative Research Unit of Osteometabolic and Thyroid Diseases, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del PortilloRomaItaly
| | - Francesca Cannata
- Department of Medicine and Surgery, Research Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del PortilloRomaItaly
| | - Malak Faraj
- Department of Medicine and Surgery, Research Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del PortilloRomaItaly
| | - Claudio Pedone
- Operative Research Unit of Geriatrics, Fondazione Policlinico Universitario Campus Bio Medico, Via Alvaro del PortilloRomaItaly
| | - Viola Viola
- Department of Medicine and Surgery, Research Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del PortilloRomaItaly
| | - Flavia Tramontana
- Department of Medicine and Surgery, Research Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del PortilloRomaItaly
- Operative Research Unit of Osteometabolic and Thyroid Diseases, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del PortilloRomaItaly
| | - Niccolò Pellegrini
- Department of Medicine and Surgery, Research Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del PortilloRomaItaly
| | - Gianluca Vadalà
- Operative Research Unit of Orthopedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del PortilloRomaItaly
| | - Alessandra Piccoli
- Department of Medicine and Surgery, Research Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del PortilloRomaItaly
| | - Rocky Strollo
- Department of Human Sciences and Promotion of the Quality of Life San Raffaele Roma Open University Via di Val CannutaRomaItaly
| | - Francesca Zalfa
- Predictive Molecular Diagnostic Unit, Pathology Department, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del PortilloRomaItaly
- Microscopic and Ultrastructural Anatomy Unit, Università Campus Bio-Medico di Roma, Via Alvaro del PortilloRomaItaly
| | - Alec T Beeve
- Department of Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of MedicineSt. LouisUnited States
| | - Erica L Scheller
- Department of Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of MedicineSt. LouisUnited States
| | - Simon Y Tang
- Department of Orthopaedic Surgery, Washington University in St. LouisSt LouisUnited States
| | - Roberto Civitelli
- Department of Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of MedicineSt. LouisUnited States
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio sncAquilaItaly
- European Center for Brain Research, Santa Lucia Foundation IRCCSRomaItaly
| | - Rocco Papalia
- Operative Research Unit of Orthopedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del PortilloRomaItaly
| | - Nicola Napoli
- Department of Medicine and Surgery, Research Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del PortilloRomaItaly
- Operative Research Unit of Osteometabolic and Thyroid Diseases, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del PortilloRomaItaly
- Department of Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
14
|
Rubin MR, Dhaliwal R. Role of advanced glycation endproducts in bone fragility in type 1 diabetes. Bone 2024; 178:116928. [PMID: 37802378 DOI: 10.1016/j.bone.2023.116928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
The excess fracture risk observed in adults with type 1 diabetes (T1D) is inexplicable in the presence of only modest reductions in areal bone mineral density (BMD). Accumulation of advanced glycation endproducts (AGEs) in bone has been invoked as one explanation for the increased bone fragility in diabetes. The evidence linking AGEs and fractures in individuals with T1D is sparse, although the association has been observed in individuals with type 2 diabetes. Recent data show that in T1D, AGEs as measured by skin intrinsic fluorescence, are a risk factor for lower BMD. Further research in T1D is needed to ascertain whether there is a causal relationship between fractures and AGEs. If confirmed, this would pave the way for finding interventions that can slow AGE accumulation and thus reduce fractures in T1D.
Collapse
Affiliation(s)
- Mishaela R Rubin
- Metabolic Bone Disease Unit, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, United States of America
| | - Ruban Dhaliwal
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, United States of America.
| |
Collapse
|
15
|
Maisenbacher TC, Ehnert S, Histing T, Nüssler AK, Menger MM. Advantages and Limitations of Diabetic Bone Healing in Mouse Models: A Narrative Review. Biomedicines 2023; 11:3302. [PMID: 38137522 PMCID: PMC10741210 DOI: 10.3390/biomedicines11123302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Diabetes represents a major risk factor for impaired fracture healing. Type 2 diabetes mellitus is a growing epidemic worldwide, hence an increase in diabetes-related complications in fracture healing can be expected. However, the underlying mechanisms are not yet completely understood. Different mouse models are used in preclinical trauma research for fracture healing under diabetic conditions. The present review elucidates and evaluates the characteristics of state-of-the-art murine diabetic fracture healing models. Three major categories of murine models were identified: Streptozotocin-induced diabetes models, diet-induced diabetes models, and transgenic diabetes models. They all have specific advantages and limitations and affect bone physiology and fracture healing differently. The studies differed widely in their diabetic and fracture healing models and the chosen models were evaluated and discussed, raising concerns in the comparability of the current literature. Researchers should be aware of the presented advantages and limitations when choosing a murine diabetes model. Given the rapid increase in type II diabetics worldwide, our review found that there are a lack of models that sufficiently mimic the development of type II diabetes in adult patients over the years. We suggest that a model with a high-fat diet that accounts for 60% of the daily calorie intake over a period of at least 12 weeks provides the most accurate representation.
Collapse
Affiliation(s)
- Tanja C. Maisenbacher
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Clinic Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (T.H.); (M.M.M.)
- Siegfried Weller Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (S.E.); (A.K.N.)
| | - Sabrina Ehnert
- Siegfried Weller Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (S.E.); (A.K.N.)
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Clinic Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (T.H.); (M.M.M.)
| | - Andreas K. Nüssler
- Siegfried Weller Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (S.E.); (A.K.N.)
| | - Maximilian M. Menger
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Clinic Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (T.H.); (M.M.M.)
| |
Collapse
|
16
|
Wölfel EM, Bartsch B, Koldehoff J, Fiedler IAK, Dragoun‐Kolibova S, Schmidt FN, Krug J, Lin M, Püschel K, Ondruschka B, Zimmermann EA, Jelitto H, Schneider G, Gludovatz B, Busse B. When Cortical Bone Matrix Properties Are Indiscernible between Elderly Men with and without Type 2 Diabetes, Fracture Resistance Follows Suit. JBMR Plus 2023; 7:e10839. [PMID: 38130774 PMCID: PMC10731113 DOI: 10.1002/jbm4.10839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 12/23/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease affecting bone tissue and leading to increased fracture risk in men and women, independent of bone mineral density (BMD). Thus, bone material quality (i.e., properties that contribute to bone toughness but are not attributed to bone mass or quantity) is suggested to contribute to higher fracture risk in diabetic patients and has been shown to be altered. Fracture toughness properties are assumed to decline with aging and age-related disease, while toughness of human T2DM bone is mostly determined from compression testing of trabecular bone. In this case-control study, we determined fracture resistance in T2DM cortical bone tissue from male individuals in combination with a multiscale approach to assess bone material quality indices. All cortical bone samples stem from male nonosteoporotic individuals and show no significant differences in microstructure in both groups, control and T2DM. Bone material quality analyses reveal that both control and T2DM groups exhibit no significant differences in bone matrix composition assessed with Raman spectroscopy, in BMD distribution determined with quantitative back-scattered electron imaging, and in nanoscale local biomechanical properties assessed via nanoindentation. Finally, notched three-point bending tests revealed that the fracture resistance (measured from the total, elastic, and plastic J-integral) does not significantly differ in T2DM and control group, when both groups exhibit no significant differences in bone microstructure and material quality. This supports recent studies suggesting that not all T2DM patients are affected by a higher fracture risk but that individual risk profiles contribute to fracture susceptibility, which should spur further research on improving bone material quality assessment in vivo and identifying risk factors that increase bone fragility in T2DM. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Eva M. Wölfel
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Benjamin Bartsch
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Jasmin Koldehoff
- Institute of Advanced CeramicsHamburg University of TechnologyHamburgGermany
- Interdisciplinary Competence Center for Interface Research (ICCIR)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Imke A. K. Fiedler
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Interdisciplinary Competence Center for Interface Research (ICCIR)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sofie Dragoun‐Kolibova
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Felix N. Schmidt
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Interdisciplinary Competence Center for Interface Research (ICCIR)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Johannes Krug
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Mei‐Chun Lin
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Klaus Püschel
- Institute of Legal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Benjamin Ondruschka
- Institute of Legal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | | | - Hans Jelitto
- Institute of Advanced CeramicsHamburg University of TechnologyHamburgGermany
| | - Gerold Schneider
- Institute of Advanced CeramicsHamburg University of TechnologyHamburgGermany
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing EngineeringUniversity of New South Wales, Sydney (UNSW Sydney)SydneyAustralia
| | - Björn Busse
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Interdisciplinary Competence Center for Interface Research (ICCIR)University Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
17
|
Kamml J, Acevedo C, Kammer DS. Advanced-Glycation Endproducts: How cross-linking properties affect the collagen fibril behavior. J Mech Behav Biomed Mater 2023; 148:106198. [PMID: 37890341 PMCID: PMC11519298 DOI: 10.1016/j.jmbbm.2023.106198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Advanced-Glycation-Endproducts (AGEs) are known to be a major cause of impaired tissue material properties. In collagen fibrils, which constitute a major building component of human tissue, these AGEs appear as fibrillar cross-links. It has been shown that when AGEs accumulate in collagen fibrils, a process often caused by diabetes and aging, the mechanical properties of the collagen fibril are altered. However, current knowledge about the mechanical properties of different types of AGEs, and their quantity in collagen fibrils is limited owing to the scarcity of available experimental data. Consequently, the precise relationship between the nano-scale cross-link properties, which differ from type to type, their density in collagen fibrils, and the mechanical properties of the collagen fibrils at larger scales remains poorly understood. In our study, we use coarse-grained molecular dynamics simulations and perform destructive tensile tests on collagen fibrils to evaluate the effect of different cross-link densities and their mechanical properties on collagen fibril deformation and fracture behavior. We observe that the collagen fibril stiffens at high strain levels when either the AGEs density or the loading energy capacity of AGEs are increased. Based on our results, we demonstrate that this stiffening is caused by a mechanism that favors energy absorption via stretching rather than inter-molecular sliding. Hence, in these cross-linked collagen fibrils, the absorbed energy is stored rather than dissipated through friction, resulting in brittle fracture upon fibrillar failure. Further, by varying multiple AGEs nano-scale parameters, we show that the AGEs loading energy capacity is, aside from their density in the fibril, the unique factor determining the effect of different types of AGEs on the mechanical behavior of collagen fibrils. Our results show that knowing AGEs properties is crucial for a better understanding of the nano-scale origin of impaired tissue behavior. We further suggest that future experimental investigations should focus on the quantification of the loading energy capacity of AGEs as a key property for their influence on collagen fibrils.
Collapse
Affiliation(s)
- Julia Kamml
- Institute for Building Materials, ETH Zurich, Switzerland
| | - Claire Acevedo
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
| | - David S Kammer
- Institute for Building Materials, ETH Zurich, Switzerland.
| |
Collapse
|
18
|
Trandafir AI, Sima OC, Gheorghe AM, Ciuche A, Cucu AP, Nistor C, Carsote M. Trabecular Bone Score (TBS) in Individuals with Type 2 Diabetes Mellitus: An Updated Review. J Clin Med 2023; 12:7399. [PMID: 38068450 PMCID: PMC10707110 DOI: 10.3390/jcm12237399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2025] Open
Abstract
Bone fragility is a complication of type 2 diabetes mellitus (T2DM) that has been identified in recent decades. Trabecular bone score (TBS) appears to be more accurate than bone mineral density (BMD) in diabetic bone disease, particularly in menopausal women with T2DM, to independently capture the fracture risk. Our purpose was to provide the most recent overview on TBS-associated clinical data in T2DM. The core of this narrative review is based on original studies (PubMed-indexed journals, full-length, English articles). The sample-based analysis (n = 11, N = 4653) confirmed the use of TBS in T2DM particularly in females (females/males ratio of 1.9), with ages varying between 35 and 91 (mean 65.34) years. With concern to the study design, apart from the transversal studies, two others were prospective, while another two were case-control. These early-post-pandemic data included studies of various sample sizes, such as: males and females (N of 245, 361, 511, and 2294), only women (N of 80, 96, 104, 243, 493, and 887), and only men (N = 169). Overall, this 21-month study on published data confirmed the prior profile of BMD-TBS in T2DM, while the issue of whether checking the fracture risk is mandatory in adults with uncontrolled T2DM remains to be proven or whether, on the other hand, a reduced TBS might function as a surrogate marker of complicated/uncontrolled T2DM. The interventional approach with bisphosphonates for treating T2DM-associated osteoporosis remains a standard one (n = 2). One control study on 4 mg zoledronic acid showed after 1 year a statistically significant increase of lumbar BMD in both diabetic and non-diabetic groups (+3.6%, p = 0.01 and +6.2%, p = 0.01, respectively). Further studies will pinpoint additive benefits on glucose status of anti-osteoporotic drugs or will confirm if certain glucose-lowering regimes are supplementarily beneficial for fracture risk reduction. The novelty of this literature research: these insights showed once again that the patients with T2DM often have a lower TBS than those without diabetes or with normal glucose levels. Therefore, the decline in TBS may reflect an early stage of bone health impairment in T2DM. The novelty of the TBS as a handy, non-invasive method that proved to be an index of bone microarchitecture confirms its practicality as an easily applicable tool for assessing bone fragility in T2DM.
Collapse
Affiliation(s)
- Alexandra-Ioana Trandafir
- PhD Doctoral School, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-I.T.); (O.-C.S.); (A.-M.G.); (A.-P.C.)
| | - Oana-Claudia Sima
- PhD Doctoral School, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-I.T.); (O.-C.S.); (A.-M.G.); (A.-P.C.)
| | - Ana-Maria Gheorghe
- PhD Doctoral School, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-I.T.); (O.-C.S.); (A.-M.G.); (A.-P.C.)
| | - Adrian Ciuche
- Department 4—Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Thoracic Surgery Department, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Anca-Pati Cucu
- PhD Doctoral School, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-I.T.); (O.-C.S.); (A.-M.G.); (A.-P.C.)
- Thoracic Surgery Department, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Claudiu Nistor
- Department 4—Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Thoracic Surgery Department, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Mara Carsote
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Clinical Endocrinology V, C.I. Parhon National Institute of Endocrinology, 020021 Bucharest, Romania
| |
Collapse
|
19
|
Cipriani C, Lauriero G, Tripepi G, Ferrari S, Bover J, Ravera M, Barbuto S, Cianciolo G, De Nicola L, Brandi ML, Minisola S, Mereu MC, Corrao G, Del Vecchio L, Fusaro M. Effect of Antidiabetic Drugs on Bone Health in Patients with Normal Renal Function and in Chronic Kidney Disease (CKD): Insight into Clinical Challenges in the Treatment of Type 2 Diabetes. J Clin Med 2023; 12:7260. [PMID: 38068310 PMCID: PMC10707671 DOI: 10.3390/jcm12237260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 09/14/2024] Open
Abstract
Among the metabolic changes occurring during the course of type 2 diabetes (T2DM) and diabetic kidney disease (DKD), impaired bone health with consequent increased fracture risk is one of the most complex and multifactorial complications. In subjects with diabetic kidney disease, skeletal abnormalities may develop as a consequence of both conditions. In the attempt to define a holistic approach to diabetes, potential effects of various classes of antidiabetic drugs on the skeleton should be considered in the setting of normal kidney function and in DKD. We reviewed the main evidence on these specific topics. Experimental studies reported potential beneficial and harmful effects on bone by different antidiabetics, with few data available in DKD. Clinical studies specifically designed to evaluate skeletal effects of antidiabetics have not been performed; notwithstanding, data gleaned from randomized controlled trials and intervention studies did not completely confirm observations made by basic research. In the aggregate, evidence from meta-analyses of these studies suggests potential positive effects on fracture risk by metformin and glucagon-like peptide-1 receptor agonists, neutral effects by dipeptidyl peptidase-4 inhibitors, sodium-glucose cotransporter-2 inhibitors, and sulfonylureas, and negative effects by insulin and thiazolidinediones. As no clinical recommendations on the management of antidiabetic drugs currently include fracture risk assessment among the main goal of therapy, we propose an integrated approach with the aim of defining a patient-centered management of diabetes in chronic kidney disease (CKD) and non-CKD patients. Future clinical evidence on the skeletal effects of antidiabetics will help in optimizing the approach to a personalized and more effective therapy of diabetes.
Collapse
Affiliation(s)
- Cristiana Cipriani
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy;
| | - Gabriella Lauriero
- Nephrology and Dialysis Unit, Ospedale “F. Perinei”, ASL of Bari, 70022 Bari, Italy;
| | - Giovanni Tripepi
- National Research Council (CNR), Institute of Clinical Physiology, Section of Biostatistics, 89124 Reggio Calabria, Italy;
| | - Serge Ferrari
- Department of Medicine, Service of Bone Diseases, Geneva University Hospital and Faculty of Medicine, 1205 Geneva, Switzerland;
| | - Jordi Bover
- Department of Nephrology, University Hospital Germans Trias i Pujol, 08916 Badalona, Spain;
- REMAR-IGTP Group, Research Institute Germans Trias i Pujol, Can Ruti Campus, 08916 Badalona, Spain
| | - Maura Ravera
- Nephrology, Dialysis, and Transplantation, University of Genoa and Policlinico San Martino, 16132 Genoa, Italy;
| | - Simona Barbuto
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (S.B.); (G.C.)
| | - Giuseppe Cianciolo
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (S.B.); (G.C.)
| | - Luca De Nicola
- Division of Nephrology, University of Campania “Luigi Vanvitelli”, 80137 Naples, Italy;
| | - Maria Luisa Brandi
- Fondazione Italiana Ricerca sulle Malattie dell’Osso (FIRMO Onlus), 50129 Florence, Italy;
| | - Salvatore Minisola
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy;
| | | | - Giovanni Corrao
- Unit of Biostatistics, Epidemiology and Public Health, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, 20126 Milan, Italy;
| | - Lucia Del Vecchio
- Department of Nephrology and Dialysis, Sant’ Anna Hospital, ASST Lariana, 22042 Como, Italy;
| | - Maria Fusaro
- National Research Council (CNR), Institute of Clinical Physiology, 56124 Pisa, Italy
- Department of Medicine, University of Padua, 35128 Padua, Italy
| |
Collapse
|
20
|
Aurégan JC, Bosser C, Bachy-Razzouk M, Bensidhoum M, Hoc T. In Vivo Assessment of Skin Surface Pattern: Exploring Its Potential as an Indicator of Bone Biomechanical Properties. Bioengineering (Basel) 2023; 10:1338. [PMID: 38135929 PMCID: PMC10741173 DOI: 10.3390/bioengineering10121338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
The mechanical properties of bone tissue are the result of a complex process involving collagen-crystal interactions. The mineral density of the bone tissue is correlated with bone strength, whereas the characteristics of collagen are often associated with the ductility and toughness of the bone. From a clinical perspective, bone mineral density alone does not satisfactorily explain skeletal fragility. However, reliable in vivo markers of collagen quality that can be easily used in clinical practice are not available. Hence, the objective of the present study is to examine the relationship between skin surface morphology and changes in the mechanical properties of the bone. An experimental study was conducted on healthy children (n = 11), children with osteogenesis imperfecta (n = 13), and women over 60 years of age (n = 22). For each patient, the skin characteristic length (SCL) of the forearm skin surface was measured. The SCL quantifies the geometric patterns formed by wrinkles on the skin's surface, both in terms of size and elongation. The greater the SCL, the more deficient was the organic collagen matrix. In addition, the bone volume fraction and mechanical properties of the explanted femoral head were determined for the elderly female group. The mean SCL values of the healthy children group were significantly lower than those of the elderly women and osteogenesis imperfecta groups. For the aged women group, no significant differences were indicated in the elastic mechanical parameters, whereas bone toughness and ductility decreased significantly as the SCL increased. In conclusion, in bone collagen pathology or bone aging, the SCL is significantly impaired. This in vivo skin surface parameter can be a non-invasive tool to improve the estimation of bone matrix quality and to identify subjects at high risk of bone fracture.
Collapse
Affiliation(s)
- Jean-Charles Aurégan
- B3OA, UMR CNRS 7052, Inserm U1271 Université de Paris, 10 avenue de Verdun, 75010 Paris, France; (J.-C.A.); (M.B.-R.); (M.B.)
- Orthopedics Department, Université Paris-Saclay, AP-HP, Hôpital Antoine Béclère, 157, Rue de la Porte-de-Trivaux, 92140 Clamart, France
| | - Catherine Bosser
- HealthDataSciences, 45, Chemin du Barthélémy, 69260 Charbonnières-les-Bains, France
| | - Manon Bachy-Razzouk
- B3OA, UMR CNRS 7052, Inserm U1271 Université de Paris, 10 avenue de Verdun, 75010 Paris, France; (J.-C.A.); (M.B.-R.); (M.B.)
- Orthopedics Department, Sorbonne Université, AP-HP, Hôpital Trousseau, 26, Avenue du Docteur-Arnold-Netter, 75012 Paris, France
| | - Morad Bensidhoum
- B3OA, UMR CNRS 7052, Inserm U1271 Université de Paris, 10 avenue de Verdun, 75010 Paris, France; (J.-C.A.); (M.B.-R.); (M.B.)
| | - Thierry Hoc
- B3OA, UMR CNRS 7052, Inserm U1271 Université de Paris, 10 avenue de Verdun, 75010 Paris, France; (J.-C.A.); (M.B.-R.); (M.B.)
- Mechanical Department, École Centrale de Lyon, MSGMGC, 36, Avenue Guy-de-Collongue, 69134 Ecully, France
| |
Collapse
|
21
|
Wang B, Vashishth D. Advanced glycation and glycoxidation end products in bone. Bone 2023; 176:116880. [PMID: 37579812 PMCID: PMC10529863 DOI: 10.1016/j.bone.2023.116880] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/21/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Hyperglycemia and oxidative stress, enhanced in diabetes and aging, result in excessive accumulation of advanced glycation and glycoxidation end products (AGEs/AGOEs) in bone. AGEs/AGOES are considered to be "the missing link" in explaining increased skeletal fragility with diabetes, aging, and osteoporosis where increased fracture risk cannot be solely explained by bone mass and/or fall incidences. AGEs/AGOEs disrupt bone turnover and deteriorate bone quality through alterations of organic matrix (collagen and non-collagenous proteins), mineral, and water content. AGEs and AGOEs are also associated with bone fragility in other conditions such as Alzheimer's disease, circadian rhythm disruption, and cancer. This review explains how AGEs and AGOEs accumulate in bone and impact bone quality and bone fracture, and how AGES/AGOEs are being targeted in preclinical and clinical investigations for inhibition or removal, and for prediction and management of diabetic, osteoporotic and insufficiency fractures.
Collapse
Affiliation(s)
- Bowen Wang
- Shirley Ann Jackson Ph.D. Center of Biotechnology and Interdisciplinary Studies, Troy, NY 12180, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Deepak Vashishth
- Shirley Ann Jackson Ph.D. Center of Biotechnology and Interdisciplinary Studies, Troy, NY 12180, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Rensselaer - Icahn School of Medicine at Mount Sinai Center for Engineering and Precision Medicine, New York, NY 10019, USA.
| |
Collapse
|
22
|
Pal R, Bhadada SK. AGEs accumulation with vascular complications, glycemic control and metabolic syndrome: A narrative review. Bone 2023; 176:116884. [PMID: 37598920 DOI: 10.1016/j.bone.2023.116884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Multiple pathogenetic mechanisms are involved in the genesis of various microvascular and macrovascular complications of diabetes mellitus. Of all these, advanced glycation end products (AGEs) have been strongly implicated. OBJECTIVES The present narrative review aims to summarize the available literature on the genesis of AGEs and their potential role in the causation of both micro- and macrovascular complications of diabetes mellitus. RESULTS Uncontrolled hyperglycemia triggers the formation of AGEs through non-enzymatic glycation reactions between reducing sugars and proteins, lipids, or nucleic acids. AGEs accumulate in bloodstream and bodily tissues under chronic hyperglycemia. AGEs create irreversible cross-linkages of various intra- and extracellular molecules and activate the receptor for advanced glycation end products (RAGE), which stimulates downstream signaling pathways that generate reactive oxygen species (ROS) and contribute to oxidative stress. Additionally, intracellular glycation of mitochondrial respiratory chain proteins by AGEs contributes to the further generation of ROS, which, in turn, sets a vicious cycle that further promotes the production of endogenous AGEs. Through these pathways, AGEs play a principal role in the pathogenesis of various diabetic complications, including diabetic retinopathy, nephropathy, neuropathy, bone disease, atherosclerosis and non-alcoholic fatty liver disease. Multiple clinical studies and meta-analyses have revealed a positive association between tissue or circulating levels of AGEs and development of various diabetic complications. Besides, exogenous AGEs, primarily those derived from diets, promote insulin resistance, obesity, and metabolic syndrome. CONCLUSIONS AGEs, triggered by chronic hyperglycemia, play a pivotal role in the pathogenesis of various complications of diabetes mellitus.
Collapse
Affiliation(s)
- Rimesh Pal
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Sanjay K Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India.
| |
Collapse
|
23
|
Ferreyro-Bravo F, Ceballos-Cruz Á, Urruchua-Rodríguez MJ, Martínez-Reyes G, Cortés-Pastrana C, Pacheco-Pantoja EL. Differential Association of Glycation Products with Bone Mineral Density and Fat Mass in Healthy and Diabetes Type 2 Subjects from Mexican Southeastern: A Cross Sectional Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1451. [PMID: 37629742 PMCID: PMC10456706 DOI: 10.3390/medicina59081451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
Background: Glycation products have been linked to decreased bone mineral density (BMD) in a number of clinical settings. This study examined the correlation between early glycation products (HbA1c and glycated albumin (ALB-g)) and advanced glycation end products (pentosidine (PTD)) with BMD in two groups of participants: those with type 2 diabetes mellitus (DM2) and those without diabetes or any other comorbidities (noDM). All of the participants had resided in southeastern Mexico for a minimum of 10 years. Material and Methods: This study included 204 participants: 112 (55%) with DM2 and 92 (45%) healthy subjects. We utilized dual X-ray absorptiometry (DXA) to measure both the total and segment-specific BMD and adipose mass. In addition, the fasting blood glucose, HbA1c, PTD, and ALB-g parameters were measured. Correlation and logistic regression analyses were conducted. Results: There was an inverse correlation between PTD and BMD in all anatomical regions among postmenopausal women (PMW) in the DM2 group, whereas in non-PMW, only the waist-to-height ratio was statistically significant. A negative correlation was observed between HbA1c levels and BMD in the arms and legs of DM2 individuals. However, in the noDM group, a negative correlation was found between HbA1c levels and BMD in the pelvis, while a positive association was observed between HbA1c and indicators of adipose tissue. ALB-g, demonstrated a negative correlation with fat mass. After performing binary logistic regressions, the following odds ratios (OR) for osteopenia/osteoporosis risk were determined: PTD OR 1.1 (p = 0.047) for DM2 PMW, HbA1c OR 1.4 (p = 0.048), and fat mass content OR 1.011 (p = 0.023) for the entire sample. Conclusions: Glycation products are associated with BMD differentially depending on the analyzed anatomical segment, but PTD, HbA1c, and fat mass are significant predictors of low bone mass. In prospective studies, this association could be determined using other techniques involving three-dimensional analysis of bone architecture to evaluate bone architecture.
Collapse
Affiliation(s)
- Fernando Ferreyro-Bravo
- Health Sciences PhD Program, Universidad Católica de Murcia UCAM, 30107 Guadalupe de Maciascoque, Murcia, Spain;
| | - Ángel Ceballos-Cruz
- Health Sciences Division, School of Medicine, Anahuac Mayab University, Mérida 97308, Yuc., Mexico; (Á.C.-C.); (M.J.U.-R.); (G.M.-R.); (C.C.-P.)
| | - Mary Jose Urruchua-Rodríguez
- Health Sciences Division, School of Medicine, Anahuac Mayab University, Mérida 97308, Yuc., Mexico; (Á.C.-C.); (M.J.U.-R.); (G.M.-R.); (C.C.-P.)
| | - Gabriela Martínez-Reyes
- Health Sciences Division, School of Medicine, Anahuac Mayab University, Mérida 97308, Yuc., Mexico; (Á.C.-C.); (M.J.U.-R.); (G.M.-R.); (C.C.-P.)
| | - Carolina Cortés-Pastrana
- Health Sciences Division, School of Medicine, Anahuac Mayab University, Mérida 97308, Yuc., Mexico; (Á.C.-C.); (M.J.U.-R.); (G.M.-R.); (C.C.-P.)
| | - Elda Leonor Pacheco-Pantoja
- Health Sciences Division, School of Medicine, Anahuac Mayab University, Mérida 97308, Yuc., Mexico; (Á.C.-C.); (M.J.U.-R.); (G.M.-R.); (C.C.-P.)
| |
Collapse
|
24
|
Kamml J, Acevedo C, Kammer DS. Advanced-Glycation Endproducts: How cross-linking properties affect the collagen fibril behavior. ARXIV 2023:arXiv:2308.05514v1. [PMID: 37608934 PMCID: PMC10441443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Advanced-Glycation-Endproducts (AGEs) are known to be a major cause of impaired tissue material properties. In collagen fibrils, which constitute a major building component of human tissue, these AGEs appear as fibrillar cross-links. It has been shown that when AGEs accumulate in collagen fibrils, a process often caused by diabetes and aging, the mechanical properties of the collagen fibril are altered. However, current knowledge about the mechanical properties of different types of AGEs, and their quantity in collagen fibrils is limited owing to the scarcity of available experimental data. Consequently, the precise relationship between the nano-scale cross-link properties, which differ from type to type, their density in collagen fibrils, and the mechanical properties of the collagen fibrils at larger scales remains poorly understood. In our study, we use coarse-grained molecular dynamics simulations and perform destructive tensile tests on collagen fibrils to evaluate the effect of different cross-link densities and their mechanical properties on collagen fibril deformation and fracture behavior. We observe that the collagen fibril stiffens at high strain levels when either the AGEs density or the loading energy capacity of AGEs are increased. Based on our results, we demonstrate that this stiffening is caused by a mechanism that favors energy absorption via stretching rather than inter-molecular sliding. Hence, in these cross-linked collagen fibrils, the absorbed energy is stored rather than dissipated through friction, resulting in brittle fracture upon fibrillar failure. Further, by varying multiple AGEs nano-scale parameters, we show that the AGEs loading energy capacity is, aside from their density in the fibril, the unique factor determining the effect of different types of AGEs on the mechanical behavior of collagen fibrils. Our results show that knowing AGEs properties is crucial for a better understanding of the nano-scale origin of impaired tissue behavior. We further suggest that future experimental investigations should focus on the quantification of the loading energy capacity of AGEs as a key property for their influence on collagen fibrils.
Collapse
Affiliation(s)
- Julia Kamml
- Institute for Building Materials, ETH Zurich, Switzerland
| | - Claire Acevedo
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | | |
Collapse
|
25
|
Kamml J, Ke CY, Acevedo C, Kammer DS. The influence of AGEs and enzymatic cross-links on the mechanical properties of collagen fibrils. J Mech Behav Biomed Mater 2023; 143:105870. [PMID: 37156073 PMCID: PMC11522032 DOI: 10.1016/j.jmbbm.2023.105870] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Collagen, one of the main building blocks for various tissues, derives its mechanical properties directly from its structure of cross-linked tropocollagen molecules. The cross-links are considered to be a key component of collagen fibrils as they can change the fibrillar behavior in various ways. For instance, enzymatic cross-links (ECLs), one particular type of cross-links, are known for stabilizing the structure of the fibril and improving material properties, while cross-linking AGEs (Advanced-Glycation Endproducts) have been shown to accumulate and impair the mechanical properties of collageneous tissues. However, the reasons for whether and how a given type of cross-link improves or impairs the material properties remain unknown, and the exact relationship between the cross-link properties and density, and the fibrillar behavior is still not well understood. Here, we use coarse-grained steered molecular models to evaluate the effect of AGEs and ECLs cross-links content on the deformation and failure properties of collagen fibrils. Our simulations show that the collagen fibrils stiffen at high strain levels when the AGEs content exceeds a critical value. In addition, the strength of the fibril increases with AGEs accumulation. By analyzing the forces within the different types of cross-links (AGEs and ECLs) as well as their failure, we demonstrate that a change of deformation mechanism is at the origin of these observations. A high AGEs content reinforces force transfer through AGEs cross-links rather than through friction between sliding tropocollagen molecules, which leads to failure by breaking of bonds within the tropocollagen molecules. We show that this failure mechanism, which is associated with lower energy dissipation, results in more abrupt failure of the collagen fibril. Our results provide a direct and causal link between increased AGEs content, inhibited intra-fibrillar sliding, increased stiffness, and abrupt fibril fracture. Therefore, they explain the mechanical origin of bone brittleness as commonly observed in elderly and diabetic populations. Our findings contribute to a better understanding of the mechanisms underlying impaired tissue behavior due to elevated AGEs content and could enable targeted measures regarding the reduction of specific collagen cross-linking levels.
Collapse
Affiliation(s)
- Julia Kamml
- Institute for Building Materials, ETH Zurich, Switzerland
| | - Chun-Yu Ke
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA
| | - Claire Acevedo
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - David S Kammer
- Institute for Building Materials, ETH Zurich, Switzerland.
| |
Collapse
|
26
|
Mehta D, Sihota P, Tikoo K, Kumar S, Kumar N. Type 2 diabetes alters the viscoelastic behavior and macromolecular composition of vertebra. Bone Rep 2023; 18:101680. [PMID: 37187573 PMCID: PMC10176031 DOI: 10.1016/j.bonr.2023.101680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/01/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Type 2 diabetes (T2D) affects the functional behavior of vertebra bone by altering its structural and mechanical properties. The vertebral bones are responsible to carry the body weight and it remains under prolonged constant load which results to viscoelastic deformation. The effect of T2D on the viscoelastic behavior of vertebral bone is not well explored yet. In this study, the effects of T2D on the creep and stress relaxation behavior of vertebral bone are investigated. Also, this study established a correlation between T2D associated alteration in macromolecular structure and viscoelastic behavior of vertebra. In this study T2D female rat SD model was used. The obtained results demonstrated a significant reduction in the amount of creep strain (p ≤ 0.05) and stress relaxation (p ≤ 0.01) in T2D specimens than the control. Also, the creep rate was found significantly lower in T2D specimens. On the other hand, molecular structural parameters such as mineral-to-matrix ratio (control vs T2D: 2.93 ± 0.78 vs 3.72 ± 0.53; p = 0.02), and non-enzymatic cross link ratio (NE-xL) (control vs T2D: 1.53 ± 0.07 vs 3.84 ± 0.20; p = 0.01) were found significantly altered in T2D specimens. Pearson linear correlation tests show a significant correlation; between creep rate and NE-xL (r = -0.94, p < 0.01), and between stress relaxation and NE-xL (r = -0.946, p < 0.01). Overall this study explored the understanding about the disease associated alteration in viscoelastic response of vertebra and its correlation with macromolecular composition which can help to understand the disease related impaired functioning of the vertebrae body.
Collapse
Affiliation(s)
- Deepak Mehta
- Department of Mechanical Engineering Indian Institute of Technology Ropar, India
| | - Praveer Sihota
- Department of Mechanical Engineering Indian Institute of Technology Ropar, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Mohali, India
| | - Sachin Kumar
- Department of Mechanical Engineering Indian Institute of Technology Ropar, India
| | - Navin Kumar
- Department of Mechanical Engineering Indian Institute of Technology Ropar, India
| |
Collapse
|
27
|
Monahan GE, Schiavi-Tritz J, Britton M, Vaughan TJ. Longitudinal alterations in bone morphometry, mechanical integrity and composition in Type-2 diabetes in a Zucker diabetic fatty (ZDF) rat. Bone 2023; 170:116672. [PMID: 36646266 DOI: 10.1016/j.bone.2023.116672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
Individuals with Type-2 Diabetes (T2D) have an increased risk of bone fracture, without a reduction in bone mineral density. It is hypothesised that the hyperglycaemic state caused by T2D forms an excess of Advanced Glycated End-products (AGEs) in the organic matrix of bone, which are thought to stiffen the collagen network and lead to impaired mechanical properties. However, the mechanisms are not well understood. This study aimed to investigate the geometrical, structural and material properties of diabetic cortical bone during the development and progression of T2D in ZDF (fa/fa) rats at 12-, 26- and 46-weeks of age. Longitudinal bone growth was impaired as early as 12-weeks of age and by 46-weeks bone size was significantly reduced in ZDF (fa/fa) rats versus controls (fa/+). Diabetic rats had significant structural deficits, such as bending rigidity, ultimate moment and energy-to-failure measured via three-point bend testing. Tissue material properties, measured by taking bone geometry into account, were altered as the disease progressed, with significant reductions in yield and ultimate strength for ZDF (fa/fa) rats at 46-weeks. FTIR analysis on cortical bone powder demonstrated that the tissue material deficits coincided with changes in tissue composition, in ZDF (fa/fa) rats with long-term diabetes having a reduced carbonate:phosphate ratio and increased acid phosphate content when compared to age-matched controls, indicative of an altered bone turnover process. AGE accumulation, measured via fluorescent assays, was higher in the skin of ZDF (fa/fa) rats with long-term T2D, bone AGEs did not differ between strains and neither AGEs correlated with bone strength. In conclusion, bone fragility in the diabetic ZDF (fa/fa) rats likely occurs through a multifactorial mechanism influenced initially by impaired bone growth and development and proceeding to an altered bone turnover process that reduces bone quality and impairs biomechanical properties as the disease progresses.
Collapse
Affiliation(s)
- Genna E Monahan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Jessica Schiavi-Tritz
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland; Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS UMR, 7274 Nancy, France
| | - Marissa Britton
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Ted J Vaughan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland.
| |
Collapse
|
28
|
Xiong Z, Rouquier L, Chappard C, Bachy M, Huang X, Potier E, Bensidhoum M, Hoc T. A New Microarchitecture-Based Parameter to Predict the Micromechanical Properties of Bone Allografts. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093349. [PMID: 37176232 PMCID: PMC10179528 DOI: 10.3390/ma16093349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/05/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Scaffolds are an essential component of bone tissue engineering. They provide support and create a physiological environment for cells to proliferate and differentiate. Bone allografts extracted from human donors are promising scaffolds due to their mechanical and structural characteristics. Bone microarchitecture is well known to be an important determinant of macroscopic mechanical properties, but its role at the microscopic, i.e., the trabeculae level is still poorly understood. The present study investigated linear correlations between microarchitectural parameters obtained from X-ray computed tomography (micro-CT) images of bone allografts, such as bone volume fraction (BV/TV), degree of anisotropy (DA), or ellipsoid factor (EF), and micromechanical parameters derived from micro-finite element calculations, such as mean axial strain (εz) and strain energy density (We). DAEF, a new parameter based on a linear combination of the two microarchitectural parameters DA and EF, showed a strong linear correlation with the bone mechanical characteristics at the microscopic scale. Our results concluded that the spatial distribution and the plate-and-rod structure of trabecular bone are the main determinants of the mechanical properties of bone at the microscopic level. The DAEF parameter could, therefore, be used as a tool to predict the level of mechanical stimulation at the local scale, a key parameter to better understand and optimize the mechanism of osteogenesis in bone tissue engineering.
Collapse
Affiliation(s)
- Zhuang Xiong
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, 75010 Paris, France
| | - Léa Rouquier
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, 75010 Paris, France
| | | | - Manon Bachy
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, 75010 Paris, France
- Department of Pediatric Orthopedic Surgery, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Sorbonne University, 75012 Paris, France
| | - Xingrong Huang
- Laboratory of Complex Systems, Ecole Centrale de Pékin, Beihang University, Beijing 100191, China
| | - Esther Potier
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, 75010 Paris, France
| | - Morad Bensidhoum
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, 75010 Paris, France
| | - Thierry Hoc
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, 75010 Paris, France
- Mechanical Department, MSGMGC, Ecole Centrale de Lyon, 69134 Ecully, France
| |
Collapse
|
29
|
Heilbronner AK, Dash A, Straight BE, Snyder LJ, Ganesan S, Adu KB, Jae A, Clare S, Billings E, Kim HJ, Cunningham M, Lebl DR, Donnelly E, Stein EM. Peripheral cortical bone density predicts vertebral bone mineral properties in spine fusion surgery patients. Bone 2023; 169:116678. [PMID: 36646265 PMCID: PMC10081687 DOI: 10.1016/j.bone.2023.116678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Spine fusion surgery is one of the most common orthopedic procedures, with over 400,000 performed annually to correct deformities and pain. However, complications occur in approximately one third of cases. While many of these complications may be related to poor bone quality, it is difficult to detect bone abnormalities prior to surgery. Areal BMD (aBMD) assessed by DXA may be artifactually high in patients with spine pathology, leading to missed diagnosis of deficits. In this study, we related preoperative imaging characteristics of both central and peripheral sites to direct measurements of bone quality in vertebral biopsies. We hypothesized that pre-operative imaging outcomes would relate to vertebral bone mineralization and collagen properties. Pre-operative assessments included DXA measurements of aBMD of the spine, hip, and forearm, central quantitative computed tomography (QCT) of volumetric BMD (vBMD) at the lumbar spine, and high resolution peripheral quantitative computed tomography (HRpQCT; Xtreme CT2) measurements of vBMD and microarchitecture at the distal radius and tibia. Bone samples were collected intraoperatively from the lumbar vertebrae and analyzed using Fourier-transform Infrared (FTIR) spectroscopy. Bone samples were obtained from 23 postmenopausal women (mean age 67 ± 7 years, BMI 28 ± 8 kg/m2). We found that patients with more mature bone by FTIR, measured as lower acid phosphate content and carbonate to phosphate ratio, and greater collagen maturity and mineral maturity/crystallinity (MMC), had greater cortical vBMD at the tibia and greater aBMD at the lumbar spine and one-third radius. Our data suggests that bone quality at peripheral sites may predict bone quality at the spine. As bone quality at the spine is challenging to assess prior to surgery, there is a great need for additional screening tools. Pre-operative peripheral bone imaging may provide important insight into vertebral bone quality and may foster identification of patients with bone quality deficits.
Collapse
Affiliation(s)
- Alison K Heilbronner
- Division of Endocrinology, Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Alexander Dash
- Division of Endocrinology, Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Beth E Straight
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Leah J Snyder
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Sandhya Ganesan
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Kobby B Adu
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Andy Jae
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Shannon Clare
- Division of Endocrinology, Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Emma Billings
- Division of Endocrinology, Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Han Jo Kim
- Spine Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Matthew Cunningham
- Spine Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Darren R Lebl
- Spine Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America; Research Institute, Hospital for Special Surgery, New York, NY, United States of America
| | - Emily M Stein
- Division of Endocrinology, Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY, United States of America.
| |
Collapse
|
30
|
Cianferotti L, Cipriani C, Corbetta S, Corona G, Defeudis G, Lania AG, Messina C, Napoli N, Mazziotti G. Bone quality in endocrine diseases: determinants and clinical relevance. J Endocrinol Invest 2023:10.1007/s40618-023-02056-w. [PMID: 36918505 DOI: 10.1007/s40618-023-02056-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/01/2023] [Indexed: 03/15/2023]
Abstract
PURPOSE Bone is one of the main targets of hormones and endocrine diseases are frequent causes of secondary osteoporosis and fractures in real-world clinical practice. However, diagnosis of skeletal fragility and prediction of fractures in this setting could be a challenge, since the skeletal alterations induced by endocrine disorders are not generally captured by dual-energy X-ray absorptiometry (DXA) measurement of bone mineral density (BMD), that is the gold standard for diagnosis of osteoporosis in the general population. The aim of this paper is to review the existing evidence related to bone quality features in endocrine diseases, proposing assessment with new techniques in the future. METHODS A comprehensive search within electronic databases was performed to collect reports of bone quality in primary hyperparathyroidism, hypoparathyroidism, hyperthyroidism, hypercortisolism, growth hormone deficiency, acromegaly, male hypogonadism and diabetes mellitus. RESULTS Using invasive and non-invasive techniques, such as high-resolution peripheral quantitative computed tomography or DXA measurement of trabecular bone score (TBS), several studies consistently reported altered bone quality as predominant determinant of fragility fractures in subjects affected by chronic endocrine disorders. CONCLUSIONS Assessment of skeletal fragility in endocrine diseases might take advantage from the use of techniques to detect perturbation in bone architecture with the aim of best identifying patients at high risk of fractures.
Collapse
Affiliation(s)
- L Cianferotti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - C Cipriani
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - S Corbetta
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Endocrinology and Diabetology Service, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - G Corona
- Endocrinology Unit, Medical Department, Azienda Usl, Maggiore-Bellaria Hospital, Bologna, Italy
| | - G Defeudis
- Unit of Endocrinology and Diabetes, Department of Medicine, University Campus Bio-Medico di Roma, 00128, Rome, Italy
- Department of Movement, Human and Health Sciences, Health Sciences Section, University "Foro Italico", Rome, Italy
| | - A G Lania
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Via A Manzoni 56, 20089, Rozzano, MI, Italy
| | - C Messina
- Radiology Unit, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- University of Milan, Department of Biomedical Sciences for Health, Milan, Italy
| | - N Napoli
- Unit of Endocrinology and Diabetes, Department of Medicine, University Campus Bio-Medico di Roma, 00128, Rome, Italy
- Division of Bone and Mineral Diseases, Washington University in St Louis, St Louis, MO, USA
| | - G Mazziotti
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy.
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Via A Manzoni 56, 20089, Rozzano, MI, Italy.
| |
Collapse
|
31
|
Liu CJ, Yang X, Wang SH, Wu XT, Mao Y, Shi JW, Fan YB, Sun LW. Preventing Disused Bone Loss through Inhibition of Advanced Glycation End Products. Int J Mol Sci 2023; 24:ijms24054953. [PMID: 36902384 PMCID: PMC10003672 DOI: 10.3390/ijms24054953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Bone loss occurs in astronauts during long-term space flight, but the mechanisms are still unclear. We previously showed that advanced glycation end products (AGEs) were involved in microgravity-induced osteoporosis. Here, we investigated the improvement effects of blocking AGEs formation on microgravity-induced bone loss by using the AGEs formation inhibitor, irbesartan. To achieve this objective, we used a tail-suspended (TS) rat model to simulate microgravity and treated the TS rats with 50 mg/kg/day irbesartan, as well as the fluorochrome biomarkers injected into rats to label dynamic bone formation. To assess the accumulation of AGEs, pentosidine (PEN), non-enzymatic cross-links (NE-xLR), and fluorescent AGEs (fAGEs) were identified in the bone; 8-hydroxydeoxyguanosine (8-OHdG) was analyzed for the reactive oxygen species (ROS) level in the bone. Meanwhile, bone mechanical properties, bone microstructure, and dynamic bone histomorphometry were tested for bone quality assessment, and Osterix and TRAP were immunofluorescences stained for the activities of osteoblastic and osteoclastic cells. Results showed AGEs increased significantly and 8-OHdG expression in bone showed an upward trend in TS rat hindlimbs. The bone quality (bone microstructure and mechanical properties) and bone formation process (dynamic bone formation and osteoblastic cells activities) were inhibited after tail-suspension, and showed a correlation with AGEs, suggesting the elevated AGEs contributed to the disused bone loss. After being treated with irbesartan, the increased AGEs and 8-OHdG expression were significantly inhibited, suggesting irbesartan may reduce ROS to inhibit dicarbonyl compounds, thus suppressing AGEs production after tail-suspension. The inhibition of AGEs can partially alter the bone remodeling process and improve bone quality. Both AGEs accumulation and bone alterations almost occurred in trabecular bone but not in cortical bone, suggesting AGEs effects on bone remodeling under microgravity are dependent on the biological milieu.
Collapse
Affiliation(s)
| | - Xiao Yang
- Correspondence: (X.Y.); (L.-W.S.); Tel.: +86-13811922096 (X.Y.); Fax: +86-10-82339349 (L.-W.S.)
| | | | | | | | | | | | - Lian-Wen Sun
- Correspondence: (X.Y.); (L.-W.S.); Tel.: +86-13811922096 (X.Y.); Fax: +86-10-82339349 (L.-W.S.)
| |
Collapse
|
32
|
Lekkala S, Sacher SE, Taylor EA, Williams RM, Moseley KF, Donnelly E. Increased Advanced Glycation Endproducts, Stiffness, and Hardness in Iliac Crest Bone From Postmenopausal Women With Type 2 Diabetes Mellitus on Insulin. J Bone Miner Res 2023; 38:261-277. [PMID: 36478472 PMCID: PMC9898222 DOI: 10.1002/jbmr.4757] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Individuals with type 2 diabetes mellitus (T2DM) have a greater risk of bone fracture compared with those with normal glucose tolerance (NGT). In contrast, individuals with impaired glucose tolerance (IGT) have a lower or similar risk of fracture. Our objective was to understand how progressive glycemic derangement affects advanced glycation endproduct (AGE) content, composition, and mechanical properties of iliac bone from postmenopausal women with NGT (n = 35, age = 65 ± 7 years, HbA1c = 5.8% ± 0.3%), IGT (n = 26, age = 64 ± 5 years, HbA1c = 6.0% ± 0.4%), and T2DM on insulin (n = 25, age = 64 ± 6 years, HbA1c = 9.1% ± 2.2%). AGEs were assessed in all samples using high-performance liquid chromatography to measure pentosidine and in NGT/T2DM samples using multiphoton microscopy to spatially resolve the density of fluorescent AGEs (fAGEs). A subset of samples (n = 14 NGT, n = 14 T2DM) was analyzed with nanoindentation and Raman microscopy. Bone tissue from the T2DM group had greater concentrations of (i) pentosidine versus IGT (cortical +24%, p = 0.087; trabecular +35%, p = 0.007) and versus NGT (cortical +40%, p = 0.003; trabecular +35%, p = 0.004) and (ii) fAGE cross-link density versus NGT (cortical +71%, p < 0.001; trabecular +44%, p < 0.001). Bone pentosidine content in the IGT group was lower than in the T2DM group and did not differ from the NGT group, indicating that the greater AGE content observed in T2DM occurs with progressive diabetes. Individuals with T2DM on metformin had lower cortical bone pentosidine compared with individuals not on metformin (-35%, p = 0.017). Cortical bone from the T2DM group was stiffer (+9%, p = 0.021) and harder (+8%, p = 0.039) versus the NGT group. Bone tissue AGEs, which embrittle bone, increased with worsening glycemic control assessed by HbA1c (Pen: R2 = 0.28, p < 0.001; fAGE density: R2 = 0.30, p < 0.001). These relationships suggest a potential mechanism by which bone fragility may increase despite greater tissue stiffness and hardness in individuals with T2DM; our results suggest that it occurs in the transition from IGT to overt T2DM. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Sashank Lekkala
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
| | - Sara E. Sacher
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
| | - Erik A. Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
| | | | - Kendall F. Moseley
- Division of Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
- Research Division, Hospital for Special Surgery, New York, NY
| |
Collapse
|
33
|
Britton M, Parle E, Vaughan TJ. An investigation on the effects of in vitro induced advanced glycation end-products on cortical bone fracture mechanics at fall-related loading rates. J Mech Behav Biomed Mater 2023; 138:105619. [PMID: 36525877 DOI: 10.1016/j.jmbbm.2022.105619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
It has been suggested that adverse changes in bone quality due to the accumulation of advanced glycation end-products (AGEs) may play a role in the increased skeletal fragility. These non-enzymatic glycation mediated crosslinks are caused due to the presence of sugars in the extracellular space and can be induced in-vitro. AGEs exist naturally in bone, but with diseases such as type-2 diabetes, they are found at higher levels. While previous studies have examined the relationships between AGE accumulation and some mechanical properties, there is a lack of understanding of how AGE accumulation affects the fracture mechanics behaviour of bone tissue at fall-related loading rates. The objective of this study was to investigate the relationship between AGE accumulation and the fracture mechanics of cortical bone tissue. An in vitro glycation model was used to simulate diabetic conditions in twenty anatomically adjacent pairs of bone from a single bovine femur, which reduced the possibility of inter-specimen variability. Mechanical characterisation was carried out using 3-point bend, fracture toughness and nanoindentation testing, while bone composition was analysed by quantifying the accumulation of fluorescent AGEs. Under three-point bend testing, it was found that the yield stress, ultimate flexural strength, and secant modulus of the glycated samples were significantly higher than the controls. Furthermore, fracture toughness testing showed that the critical fracture toughness was increased by 16% in glycated samples compared to controls. These results provide no evidence that AGEs alone play a role in bone fragility at fall-related loading rates, with AGE accumulation actually found to enhance several pre- and post-yield properties of the tissue.
Collapse
Affiliation(s)
- Marissa Britton
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Eoin Parle
- Department of Mechanical & Industrial Engineering, Atlantic Technological University, Galway, Ireland
| | - Ted J Vaughan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland.
| |
Collapse
|
34
|
Kamml J, Ke CY, Acevedo C, Kammer DS. The influence of AGEs and enzymatic cross-links on the mechanical properties of collagen fibrils. ARXIV 2023:arXiv:2301.13010v1. [PMID: 36776815 PMCID: PMC9915749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Cross-links are considered to be a key component of collagen fibrils as they can change the fibrillar behavior in various ways. Advanced-Glycation Endproducts (AGEs), one particular type of cross-links, have been shown to accumulate and impair the mechanical properties of collageneous tissues, whereas enzymatic cross-links (ECLs) are known for stabilizing the structure of the fibril. However, the reasons for whether a given type of cross-link improves or impairs the material properties remain unknown. Here, we use coarse-grained steered molecular models to evaluate the effect of AGEs and ECLs cross-links content on the deformation and failure properties of collagen fibrils. Our simulations show that the collagen fibrils stiffen at high strain levels when the AGEs content exceeds a critical value. In addition, the strength of the fibril increases with AGEs accumulation. By analyzing the forces within the different types of cross-links (AGEs and ECLs) as well as their failure, we demonstrate that a change of deformation mechanism is at the origin of these observations. A high AGEs content reinforces force transfer through AGEs cross-links rather than through friction between sliding tropocollagen molecules. We show that this failure mechanism, which is associated with lower energy dissipation, results in more abrupt failure of the collagen fibril. Our results provide a direct and causal link between increased AGEs content, inhibited intra-fibrillar sliding, increased stiffness, and abrupt fibril fracture. Therefore, they explain the mechanical origin of bone brittleness as commonly observed in elderly and diabetic populations. Our findings contribute to a better understanding of the mechanisms underlying impaired tissue behaviour due to elevated AGEs content and could enable targeted measures regarding the reduction of specific collagen cross-linking levels.
Collapse
Affiliation(s)
- Julia Kamml
- Institute for Building Materials, ETH Zurich, Switzerland
| | - Chun-Yu Ke
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA
| | - Claire Acevedo
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | | |
Collapse
|
35
|
Muacevic A, Adler JR, Konstantopoulos P, Driva TS, Kontos A, Papagianni E, Kourkoulis S, Dimitroulis D, Perrea DN, Vlamis J. Effects of Incretin Pathway Elements on Bone Properties. Cureus 2023; 15:e33656. [PMID: 36643078 PMCID: PMC9833274 DOI: 10.7759/cureus.33656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Introduction The effects of incretin-based drugs, such as receptor agonists of glucagon-like peptide-1 and inhibitors of dipeptidyl peptidase-4, on bone metabolism are not completely clear yet. The aim of this study is to compare the effects of glucagon-like peptide-1 and inhibitors of dipeptidyl peptidase-4 on the bone to see how different elements of the incretin pathway affect bone quality in terms of biomechanical properties, bone turnover, and mineral properties. Materials and methods Forty 10-week-old Wistar rats were divided into four groups: a control group, a control diabetic group, a diabetic group treated with sitagliptin, and a diabetic group treated with exenatide. Type 2 diabetes was simulated by dietary manipulation in addition to low-dose streptozotocin, and then two different incretin-based drugs were administered. The rats were sacrificed after five weeks of therapeutic treatment. Their serum was analyzed with the enzyme-linked immunosorbent assay (ELISA) method for basic bone turnover markers, and their right femur was subjected to a three-point bending test. Finally, Hematoxylin & Eosin staining, in addition to Raman spectroscopy, were employed to access the collagen and mineral properties of the bone. Results Both incretin-based drugs reduced osteoclast function; however, they were not able to restore osteoblastic function to normal. The net effect on bone strength was surprising: bone elasticity was restored by the antidiabetic treatment, but bone strength deteriorated. Exenatide had a slightly more pronounced effect, which, although not significant, points to the direction that dipeptidyl peptidase-4 (DPP4) may be a linking factor between reduced osteoclastic function and reduced bone formation, as suggested by the literature. Conclusion DPP4 receptors seem to be one of the links between reduced osteoclast function and reduced bone remodeling, so DPP4 inhibition can be more detrimental to the bone than glucagon-like peptide-1 (GLP-1) receptor agonists.
Collapse
|
36
|
Wölfel EM, Fiedler IAK, Dragoun Kolibova S, Krug J, Lin MC, Yazigi B, Siebels AK, Mushumba H, Wulff B, Ondruschka B, Püschel K, Glüer CC, Jähn-Rickert K, Busse B. Human tibial cortical bone with high porosity in type 2 diabetes mellitus is accompanied by distinctive bone material properties. Bone 2022; 165:116546. [PMID: 36113843 DOI: 10.1016/j.bone.2022.116546] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/23/2022]
Abstract
Diabetes mellitus is a metabolic disease affecting bone tissue at different length-scales. Higher fracture risk in diabetic patients is difficult to detect with common clinical fracture risk assessment due to normal or high bone mineral density in diabetic patients. The observed higher fracture risk despite normal to high areal bone mineral density in diabetic patients points towards impaired bone material quality. Here, we analyze tibial bone from individuals with type 2 diabetes mellitus using a multiscale-approach, which includes clinical and laboratory-based bone quality measures. Tibial cortical bone tissue from individuals with type 2 diabetes mellitus (T2DM) and age-matched healthy controls (n = 15 each) was analyzed with in situ impact indentation, dual energy X-ray absorptiometry (DXA), high resolution peripheral microcomputed tomography (HR-pQCT), micro-computed tomography (microCT), cyclic indentation, quantitative backscattered electron microscopy (qBEI), vibrational spectroscopy (Raman), nanoindentation, and fluorescence spectroscopy. With this approach, a high cortical porosity subgroup of individuals with T2DM was discriminated from two study groups: individuals with T2DM and individuals without T2DM, while both groups were associated with similar cortical porosity quantified by means of microCT. The high porosity T2DM group, but not the T2DM group, showed compromised bone quality expressed by altered cyclic indentation properties (transversal direction) in combination with a higher carbonate-to-amide I ratio in endocortical bone. In addition, in the T2DM group with high cortical porosity group, greater cortical pore diameter was identified with HR-pQCT and lower tissue mineral density using microCT, both compared to T2DM group. Micromechanical analyses of cross-sectioned osteons (longitudinal direction) with cyclic indentation, qBEI, and nanoindentation showed no differences between the three groups. High tibial cortical porosity in T2DM can be linked to locally altered bone material composition. As the tibia is an accessible skeletal site for fracture risk assessment in the clinics (CT, indentation), our findings may contribute to further understanding the site-specific structural and compositional factors forming the basis of bone quality in diabetes mellitus. Refined diagnostic strategies are needed for a comprehensive fracture risk assessment in diabetic bone disease.
Collapse
Affiliation(s)
- Eva M Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Imke A K Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Sofie Dragoun Kolibova
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Johannes Krug
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Mei-Chun Lin
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Bashar Yazigi
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Anna K Siebels
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Herbert Mushumba
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Birgit Wulff
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Klaus Püschel
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Claus C Glüer
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Christian-Albrechts-Universitat zu Kiel, MOIN CC, 24118 Kiel, Germany
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany; Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany.
| |
Collapse
|
37
|
Brandt IAG, Jessen MH, Rimestad DE, Højgaard MKF, Vestergaard P. Advanced glycation end products and bone - How do we measure them and how do they correlate with bone mineral density and fractures? A systematic review and evaluation of precision of measures. Bone 2022; 165:116569. [PMID: 36174927 DOI: 10.1016/j.bone.2022.116569] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/20/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022]
Abstract
The role of advanced glycation end products (AGEs) in bone fragility especially in diabetic bone disease is increasingly recognized and researched. As skeletal frailty in diabetes does not correlate to bone mineral density (BMD) in the same way as in postmenopausal osteoporosis, BMD may not be a suitable measure of bone quality in persons with diabetes. Abundant research exists upon the effect of AGEs on bone, and though full understanding of the mechanisms of actions does not yet exist, there is little doubt of the clinical relevance. Thus, the measurement of AGEs as well as possible treatment effects on AGEs have become issues of interest. The aim of this report is to summarize results of measurements of AGEs. It consists of a systematic review of the existing literature on AGE measurements in clinical research, an evaluation of the precision of skin autofluorescence (SAF) measurement by AGE Reader® (Diagnoptics), and a short commentary on treatment of osteoporosis in patients with and without diabetes with respects to AGEs. We conclude that various AGE measures correlate well, both fluorescent and non-fluorescent and in different tissues, and that more than one target of measure may be used. However, pentosidine has shown good correlation with both bone measures and fracture risk in existing literature and results on SAF as a surrogate measurement is promising as some corresponding associations with fracture risk and bone measures are reported. As SAF measurements performed with the AGE Reader® display high precision and allow for a totally noninvasive procedure, conducting AGE measurements using this method has great potential and further research of its applicability is encouraged.
Collapse
|
38
|
Romanowicz GE, Terhune AH, Bielajew BJ, Sexton B, Lynch M, Mandair GS, McNerny EM, Kohn DH. Collagen cross-link profiles and mineral are different between the mandible and femur with site specific response to perturbed collagen. Bone Rep 2022; 17:101629. [PMID: 36325166 PMCID: PMC9618783 DOI: 10.1016/j.bonr.2022.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Compromises to collagen and mineral lead to a decrease in whole bone quantity and quality in a variety of systemic diseases, yet, clinically, disease manifestations differ between craniofacial and long bones. Collagen alterations can occur through post-translational modification via lysyl oxidase (LOX), which catalyzes enzymatic collagen cross-link formation, as well as through non-enzymatic advanced glycation end products (AGEs) such as pentosidine and carboxymethyl-lysine (CML). Characterization of the cross-links and AGEs, and comparison of the mineral and collagen modifications in craniofacial and long bones represent a critical gap in knowledge. However, alterations to either the mineral or collagen in bone may contribute to disease progression and, subsequently, the anatomical site dependence of a variety of diseases. Therefore, we hypothesized that collagen cross-links and AGEs differ between craniofacial and long bones and that altered collagen cross-linking reduces mineral quality in an anatomic location dependent. To study the effects of cross-link inhibition on mineralization between anatomical sites, beta-aminoproprionitrile (BAPN) was administered to rapidly growing, 5-8 week-old male mice. BAPN is a dose-dependent inhibitor of LOX that pharmacologically alters enzymatic cross-link formation. Long bones (femora) and craniofacial bones (mandibles) were compared for mineral quantity and quality, collagen cross-link and AGE profiles, and tissue level mechanics, as well as the response to altered cross-links via BAPN. A highly sensitive liquid chromatography/mass spectrometry (LC-MS) method was developed which allowed for quantification of site-dependent accumulation of the advanced glycation end-product, carboxymethyl-lysine (CML). CML was ∼8.3× higher in the mandible than the femur. The mandible had significantly higher collagen maturation, mineral crystallinity, and Young's modulus, but lower carbonation, than the femur. BAPN also had anatomic specific effects, leading to significant decreases in mature cross-links in the mandible, and an increase in mineral carbonation in the femur. This differential response of both the mineral and collagen composition to BAPN between the mandible and femur highlights the need to further understand how inherent compositional differences in collagen and mineral contribute to anatomic-site specific manifestations of disease in both craniofacial and long bones.
Collapse
Key Words
- AGE, advanced glycation end product
- Advanced glycation end products
- BAPN, beta-aminoproprionitrile
- Biomechanical properties
- Bone quality
- CML, carboxymethyl-lysine
- Collagen cross-link
- DHLNL, dihydroxylysinonorleucine
- DPD, lysylpyridinoline
- Femur
- HLKNL, hydroxylysinoketonorleucine
- HLNL, hydroxylysinonorleucine
- HPLC-FLD, high-performance liquid chromatography with fluorescence detection
- LC-MS, liquid chromatography/mass spectrometry
- LH, lysyl hydroxylase
- LKNL, lysinoketonorleucine
- LOX, lysyl oxidase
- Mandible
- Mineralization
- PEN, pentosidine
- PMMA, poly-methyl-methacrylate
- PYD, hydroxylysylpyridinoline
- Pyr, pyrroles
Collapse
Affiliation(s)
- Genevieve E. Romanowicz
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Aidan H. Terhune
- Department of Mechanical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Benjamin J. Bielajew
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Benjamin Sexton
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Michelle Lynch
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Gurjit S. Mandair
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Erin M.B. McNerny
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| | - David H. Kohn
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| |
Collapse
|
39
|
Vaidya R, Rezaee T, Edwards T, Bender R, Vickneswaran A, Chalivendra V, Karim L. Accumulation of fluorescent advanced glycation end products and carboxymethyl-lysine in human cortical and trabecular bone. Bone Rep 2022; 17:101634. [DOI: 10.1016/j.bonr.2022.101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
|
40
|
Wölfel EM, Schmidt FN, Vom Scheidt A, Siebels AK, Wulff B, Mushumba H, Ondruschka B, Püschel K, Scheijen J, Schalkwijk CG, Vettorazzi E, Jähn-Rickert K, Gludovatz B, Schaible E, Amling M, Rauner M, Hofbauer LC, Zimmermann EA, Busse B. Dimorphic Mechanisms of Fragility in Diabetes Mellitus: the Role of Reduced Collagen Fibril Deformation. J Bone Miner Res 2022; 37:2259-2276. [PMID: 36112316 DOI: 10.1002/jbmr.4706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 08/25/2022] [Accepted: 09/10/2022] [Indexed: 11/06/2022]
Abstract
Diabetes mellitus (DM) is an emerging metabolic disease, and the management of diabetic bone disease poses a serious challenge worldwide. Understanding the underlying mechanisms leading to high fracture risk in DM is hence of particular interest and urgently needed to allow for diagnosis and treatment optimization. In a case-control postmortem study, the whole 12th thoracic vertebra and cortical bone from the mid-diaphysis of the femur from male individuals with type 1 diabetes mellitus (T1DM) (n = 6; 61.3 ± 14.6 years), type 2 diabetes mellitus (T2DM) (n = 11; 74.3 ± 7.9 years), and nondiabetic controls (n = 18; 69.3 ± 11.5) were analyzed with clinical and ex situ imaging techniques to explore various bone quality indices. Cortical collagen fibril deformation was measured in a synchrotron setup to assess changes at the nanoscale during tensile testing until failure. In addition, matrix composition was analyzed including determination of cross-linking and non-crosslinking advanced glycation end-products like pentosidine and carboxymethyl-lysine. In T1DM, lower fibril deformation was accompanied by lower mineralization and more mature crystalline apatite. In T2DM, lower fibril deformation concurred with a lower elastic modulus and tendency to higher accumulation of non-crosslinking advanced glycation end-products. The observed lower collagen fibril deformation in diabetic bone may be linked to altered patterns mineral characteristics in T1DM and higher advanced glycation end-product accumulation in T2DM. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eva M Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Vom Scheidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Anna K Siebels
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birgit Wulff
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Herbert Mushumba
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jean Scheijen
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM) School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM) School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Eik Vettorazzi
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, Australia
| | - Eric Schaible
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Elizabeth A Zimmermann
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
41
|
Toniolo I, Berardo A, Foletto M, Fiorillo C, Quero G, Perretta S, Carniel EL. Patient-specific stomach biomechanics before and after laparoscopic sleeve gastrectomy. Surg Endosc 2022; 36:7998-8011. [PMID: 35451669 PMCID: PMC9028903 DOI: 10.1007/s00464-022-09233-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/29/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Obesity has become a global epidemic. Bariatric surgery is considered the most effective therapeutic weapon in terms of weight loss and improvement of quality of life and comorbidities. Laparoscopic sleeve gastrectomy (LSG) is one of the most performed procedures worldwide, although patients carry a nonnegligible risk of developing post-operative GERD and BE. OBJECTIVES The aim of this work is the development of computational patient-specific models to analyze the changes induced by bariatric surgery, i.e., the volumetric gastric reduction, the mechanical response of the stomach during an inflation process, and the related elongation strain (ES) distribution at different intragastric pressures. METHODS Patient-specific pre- and post-surgical models were extracted from Magnetic Resonance Imaging (MRI) scans of patients with morbid obesity submitted to LSG. Twenty-three patients were analyzed, resulting in forty-six 3D-geometries and related computational analyses. RESULTS A significant difference between the mechanical behavior of pre- and post-surgical stomach subjected to the same internal gastric pressure was observed, that can be correlated to a change in the global stomach stiffness and a minor gastric wall tension, resulting in unusual activations of mechanoreceptors following food intake and satiety variation after LSG. CONCLUSIONS Computational patient-specific models may contribute to improve the current knowledge about anatomical and physiological changes induced by LSG, aiming at reducing post-operative complications and improving quality of life in the long run.
Collapse
Affiliation(s)
- Ilaria Toniolo
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
| | - Alice Berardo
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy.
- Department of Civil, Environmental and Architectural Engineering, University of Padova, Padova, Italy.
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - Mirto Foletto
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
- Bariatric Surgery Unit, Azienda Ospedaliera, University of Padova, Padova, Italy
| | - Claudio Fiorillo
- Digestive Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giuseppe Quero
- Digestive Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Catholic University of Sacred Heart of Rome, Rome, Italy
| | - Silvana Perretta
- IHU Strasbourg, Strasbourg, France
- IRCAD France, Strasbourg, France
- Department of Digestive and Endocrine Surgery, NHC, Strasbourg, France
| | - Emanuele Luigi Carniel
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
| |
Collapse
|
42
|
Zhao Q, Khedkar SV, Johnson KC. Weight Loss Interventions and Skeletal Health in Persons with Diabetes. Curr Osteoporos Rep 2022; 20:240-248. [PMID: 36040543 PMCID: PMC9522834 DOI: 10.1007/s11914-022-00744-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE OF REVIEW Weight loss is recommended for improving glycemic control and reducing cardiovascular risk factors in persons with diabetes. However, both diabetes and weight loss have been associated with detrimental skeletal health. This review aims to summarize recent study findings on the effects of lifestyle interventions for weight loss on skeletal health among persons with type 2 diabetes (T2D). RECENT FINDINGS A few large-scale observational studies have demonstrated an increased fragility fracture risk associated with weight loss among persons with T2D. Randomized control trials in persons with T2D also have shown that intentional lifestyle interventions for weight loss are associated with a greater decrease in bone mineral density (BMD) and an increase in the risk of fracture. The biological mechanisms underlying the compromised bone health during lifestyle interventions for weight loss are complex and not yet conclusive. However, there is evidence to suggest that bone loss and increased fracture risk during intentional weight loss may be mitigated by some intervention approaches, such as high protein intake, calcium supplementation, and resistance and balance training. There is still a lack of studies investigating the effects of different interventions for weight loss on skeletal health among persons with T2D. However, certain types of diet and physical activity intervention combined with bone monitoring and fracture risk prediction may help achieve weight loss goals and maintain skeletal health among persons with T2D during intentional weight loss.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sonal V Khedkar
- College of Medicine, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Karen C Johnson
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
43
|
Willett TL, Voziyan P, Nyman JS. Causative or associative: A critical review of the role of advanced glycation end-products in bone fragility. Bone 2022; 163:116485. [PMID: 35798196 PMCID: PMC10062699 DOI: 10.1016/j.bone.2022.116485] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
Abstract
The accumulation of advanced glycation end-products (AGEs) in the organic matrix of bone with aging and chronic disease such as diabetes is thought to increase fracture risk independently of bone mass. However, to date, there has not been a clinical trial to determine whether inhibiting the accumulation of AGEs is effective in preventing low-energy, fragility fractures. Moreover, unlike with cardiovascular or kidney disease, there are also no pre-clinical studies demonstrating that AGE inhibitors or breakers can prevent the age- or diabetes-related decrease in the ability of bone to resist fracture. In this review, we critically examine the case for a long-standing hypothesis that AGE accumulation in bone tissue degrades the toughening mechanisms by which bone resists fracture. Prior research into the role of AGEs in bone has primarily measured pentosidine, an AGE crosslink, or bulk fluorescence of hydrolysates of bone. While significant correlations exist between these measurements and mechanical properties of bone, multiple AGEs are both non-fluorescent and non-crosslinking. Since clinical studies are equivocal on whether circulating pentosidine is an indicator of elevated fracture risk, there needs to be a more complete understanding of the different types of AGEs including non-crosslinking adducts and multiple non-enzymatic crosslinks in bone extracellular matrix and their specific contributions to hindering fracture resistance (biophysical and biological). By doing so, effective strategies to target AGE accumulation in bone with minimal side effects could be investigated in pre-clinical and clinical studies that aim to prevent fragility fractures in conditions that bone mass is not the underlying culprit.
Collapse
Affiliation(s)
- Thomas L Willett
- Biomedical Engineering Program, Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada.
| | - Paul Voziyan
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
44
|
Jolic M, Sharma S, Palmquist A, Shah FA. The impact of medication on osseointegration and implant anchorage in bone determined using removal torque-A review. Heliyon 2022; 8:e10844. [PMID: 36276721 PMCID: PMC9582727 DOI: 10.1016/j.heliyon.2022.e10844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/16/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Permanently anchored metal implants are frequently used in dental, craniomaxillofacial, and orthopaedic rehabilitation. The success of such therapies is owed to the phenomenon of osseointegration-the direct connection between the living bone and the implant. The extent of biomechanical anchorage (i.e., physical interlocking between the implant and bone) can be assessed with removal torque (RTQ) measurement. Implant anchorage is strongly influenced by underlying bone quality, involving physicochemical and biological properties such as composition and structural organisation of extracellular matrix, extent of micro-damage, and bone turnover. In this review, we evaluated the impact of various pharmacological agents on osseointegration, from animal experiments conducting RTQ measurements. In addition to substances whose antiresorptive and/or anti-catabolic effects on bone are well-documented (e.g., alendronate, zoledronate, ibandronate, raloxifene, human parathyroid hormone, odanacatib, and the sclerostin monoclonal antibody), positive effects on RTQ have been reported for substances that do not primarily target bone (e.g., aminoguanidine, insulin, losartan, simvastatin, bone morphogenetic protein, alpha-tocopherol, and the combination of silk fibroin powder and platelet-rich fibrin). On the contrary, several substances (e.g., prednisolone, cyclosporin A, cisplatin, and enamel matrix derivative) tend to adversely impact RTQ. While morphometric parameters such as bone-implant contact appear to influence the biomechanical anchorage, increased or decreased RTQ is not always accompanied by corresponding fluctuations in bone-implant contact. This further confirms that factors such as bone quality underpin biomechanical anchorage of metal implants. Several fundamental questions on drug metabolism and bioavailability, drug dosage, animal-to-human translation, and the consequences of treatment interruption remain yet unanswered.
Collapse
Affiliation(s)
- Martina Jolic
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE-405 30, Sweden
| | - Sonali Sharma
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE-405 30, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE-405 30, Sweden
| | - Furqan A. Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE-405 30, Sweden
| |
Collapse
|
45
|
Ballato E, Deepika FNU, Russo V, Fleires-Gutiérrez A, Colleluori G, Fuenmayor V, Chen R, Villareal DT, Qualls C, Armamento-Villareal R. One-Year Mean A1c of > 7% is Associated with Poor Bone Microarchitecture and Strength in Men with Type 2 Diabetes Mellitus. Calcif Tissue Int 2022; 111:267-278. [PMID: 35665818 PMCID: PMC9549604 DOI: 10.1007/s00223-022-00993-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/15/2022] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is associated with normal or slightly elevated bone mineral density (BMD) but paradoxically increased fracture risk. Although multiple mechanisms have been proposed to explain this observation, one thing is clear from prior studies, T2DM is associated with poor bone quality rather than a defect in bone quantity. The objective of our study is to evaluate the effect of longitudinal glycemic control on bone quality and bone turnover in men with T2DM. METHODS This was a secondary analysis of baseline data from 169 male participants, aged 35-65 in 3 clinical trials. Participants were grouped according to the average of all their A1C measurements between 9 and 15 months prior to study entry (group 1: no T2DM, group 2: T2DM with A1C ≤ 7%, group 3: T2DM with A1C > 7%). At study entry serum osteocalcin and C-terminal telopeptide of type 1 collagen (CTx) were measured by ELISA, and testosterone and estradiol by liquid-chromatography/mass-spectrometry. Areal BMD, trabecular bone score and body composition were measured by dual-energy X-ray absorptiometry while volumetric BMD, bone microarchitecture, and bone strength were assessed by high-resolution peripheral quantitative computed tomography. RESULTS At the tibia, trabecular separation was higher and trabecular number was significantly lower in group 3 compared to both groups 2 and 1, even after adjustments for covariates (p = 0.02 for both). Bone strength indices at the tibia such as stiffness and failure load were lowest in group 3, the difference being significant when compared to group 1 (p = 0.01, p = 0.009 respectively) but not to group 2, after adjustments for covariates. Bone turnover markers (osteocalcin and CTx) were significantly lower in group 3 relative to group 1, with CTx also being significantly lower in group 3 compared with group 2 (p < 0.001, p = 0.001 respectively). CONCLUSION Poor glycemic control over the course of a year in men with T2DM is associated with poorer bone microarchitecture and strength, and reduced bone turnover. Conversely, good glycemic control in the setting of T2DM appears to attenuate this observed impairment in bone quality.
Collapse
Affiliation(s)
- Elliot Ballato
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey VA Medical Center, Houston, TX, USA
| | - F N U Deepika
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey VA Medical Center, Houston, TX, USA
| | - Vittoria Russo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Alcibiades Fleires-Gutiérrez
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey VA Medical Center, Houston, TX, USA
| | - Georgia Colleluori
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey VA Medical Center, Houston, TX, USA
| | - Virginia Fuenmayor
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey VA Medical Center, Houston, TX, USA
| | - Rui Chen
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey VA Medical Center, Houston, TX, USA
| | - Dennis T Villareal
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey VA Medical Center, Houston, TX, USA
| | - Clifford Qualls
- Biomedical Research Institute of New Mexico, Albuquerque, NM, USA
- New Mexico VA Health Care System, Albuquerque, NM, USA
| | - Reina Armamento-Villareal
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey VA Medical Center, Houston, TX, USA.
| |
Collapse
|
46
|
D’Erminio DN, Krishnamoorthy D, Lai A, Hoy RC, Natelson DM, Poeran J, Torres A, Laudier DM, Nasser P, Vashishth D, Illien-Jünger S, Iatridis JC. High fat diet causes inferior vertebral structure and function without disc degeneration in RAGE-KO mice. J Orthop Res 2022; 40:1672-1686. [PMID: 34676612 PMCID: PMC9021327 DOI: 10.1002/jor.25191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 08/12/2021] [Accepted: 09/30/2021] [Indexed: 02/04/2023]
Abstract
Back pain and spinal pathologies are associated with obesity in juveniles and adults, yet studies identifying causal relationships are lacking and none investigate sex differences. This study determined if high fat (HF) diet causes structural and functional changes to vertebrae and intervertebral discs (IVDs); if these changes are modulated in mice with systematic ablation for the receptor for advanced glycation endproducts (RAGE-KO); and if these changes are sex-dependent. Wild-type (WT) and RAGE-KO mice were fed a low fat (LF) or HF diet for 12 weeks starting at 6 weeks, representing the juvenile population. HF diet led to weight/fat gain, glucose intolerance, and increased cytokine levels (IL-5, MIG, and RANTES); with less fat gain in RAGE-KO females. Most importantly, HF diet reduced vertebral trabecular bone volume fraction and compressive and shear moduli, without a modifying effect of RAGE-KO, but with a more pronounced effect in females. HF diet caused reduced cortical area fraction only in WT males. Neither HF diet nor RAGE-KO affected IVD degeneration grade. Biomechanical properties of coccygeal motion segments were affected by RAGE-KO but not diet, with some interactions identified. In conclusion, HF diet resulted in inferior vertebral structure and function with some sex differences, no IVD degeneration, and few modifying effects of RAGE-KO. These structural and functional deficiencies with HF diet provide further evidence that diet can affect spinal structures and may increase the risk for spinal injury and degeneration with aging and additional stressors. Back pain and spinal pathologies are associated with obesity in juveniles and adults, yet studies identifying causal relationships are lacking and none investigate sex differences.
Collapse
Affiliation(s)
- Danielle N D’Erminio
- Leni & Peter W. May Dept. of Orthopaedics, Mount Sinai Health System, New York, NY
- Dept. of Biomedical Engineering, The City College of New York at CUNY, NY, NY
| | - Divya Krishnamoorthy
- Leni & Peter W. May Dept. of Orthopaedics, Mount Sinai Health System, New York, NY
- 3DBio Therapeutics, New York, NY
| | - Alon Lai
- Leni & Peter W. May Dept. of Orthopaedics, Mount Sinai Health System, New York, NY
| | - Robert C Hoy
- Leni & Peter W. May Dept. of Orthopaedics, Mount Sinai Health System, New York, NY
| | - Devorah M Natelson
- Leni & Peter W. May Dept. of Orthopaedics, Mount Sinai Health System, New York, NY
| | - Jashvant Poeran
- Dept. of Population Health Science & Policy, and Medicine, Mount Sinai Health System, New York, NY
| | - Andrew Torres
- Leni & Peter W. May Dept. of Orthopaedics, Mount Sinai Health System, New York, NY
| | - Damien M Laudier
- Leni & Peter W. May Dept. of Orthopaedics, Mount Sinai Health System, New York, NY
| | - Philip Nasser
- Leni & Peter W. May Dept. of Orthopaedics, Mount Sinai Health System, New York, NY
| | - Deepak Vashishth
- Ctr. for Biotechnology & Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY
| | - Svenja Illien-Jünger
- Leni & Peter W. May Dept. of Orthopaedics, Mount Sinai Health System, New York, NY
- Emory University School of Medicine, Department of Orthopaedics, Atlanta, GA
| | - James C Iatridis
- Leni & Peter W. May Dept. of Orthopaedics, Mount Sinai Health System, New York, NY
| |
Collapse
|
47
|
Hu X, Gong H, Hou A, Wu X, Shi P, Zhang Y. Effects of continuous subcutaneous insulin infusion on the microstructures, mechanical properties and bone mineral compositions of lumbar spines in type 2 diabetic rats. BMC Musculoskelet Disord 2022; 23:511. [PMID: 35637472 PMCID: PMC9150354 DOI: 10.1186/s12891-022-05452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Continuous subcutaneous insulin infusion (CSII) for the treatment of type 2 diabetes (T2D) can improve the structure and strength of femur of rats, but the effect of CSII treatment on the lumbar spine of T2D rats is unknown. The purpose of this study is to investigate the effects of CSII on the microstructure, multi-scale mechanical properties and bone mineral composition of the lumbar spine in T2D rats. METHODS Seventy 6-week-old male Sprague-Dawley (SD) rats were divided into two batches, each including Control, T2D, CSII and Placebo groups, and the duration of insulin treatment was 4-week and 8-week, respectively. At the end of the experiment, the rats were sacrificed to take their lumbar spine. Microstructure, bone mineral composition and nanoscopic-mesoscopic-apparentand-macroscopic mechanical properties were evaluated through micro-computed tomography (micro-CT), Raman spectroscopy, nanoindentation test, nonlinear finite element analysis and compression test. RESULTS It was found that 4 weeks later, T2D significantly decreased trabecular thickness (Tb.Th), nanoscopic-apparent and partial mesoscopic mechanical parameters of lumbar spine (P < 0.05), and significantly increased bone mineral composition parameters of cortical bone (P < 0.05). It was shown that CSII significantly improved nanoscopic-apparent mechanical parameters (P < 0.05). In addition, 8 weeks later, T2D significantly decreased bone mineral density (BMD), bone volume fraction (BV/TV) and macroscopic mechanical parameters (P < 0.05), and significantly increased bone mineral composition parameters of cancellous bone (P < 0.05). CSII treatment significantly improved partial mesoscopic-macroscopic mechanical parameters and some cortical bone mineral composition parameters (P < 0.05). CONCLUSIONS CSII treatment can significantly improve the nanoscopic-mesoscopic-apparent-macroscopic mechanical properties of the lumbar spine in T2D rats, as well as the bone structure and bone mineral composition of the lumbar vertebrae, but it will take longer treatment time to restore the normal level. In addition, T2D and CSII treatment affected bone mineral composition of cortical bone earlier than cancellous bone of lumbar spine in rat. Our study can provide evidence for clinical prevention and treatment of T2D-related bone diseases.
Collapse
Affiliation(s)
- Xiaorong Hu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - He Gong
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Aiqi Hou
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaodan Wu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Peipei Shi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yingying Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China.
| |
Collapse
|
48
|
Wu X, Gong H, Hu X, Shi P, Cen H, Li C. Effect of verapamil on bone mass, microstructure and mechanical properties in type 2 diabetes mellitus rats. BMC Musculoskelet Disord 2022; 23:363. [PMID: 35436905 PMCID: PMC9016927 DOI: 10.1186/s12891-022-05294-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Verapamil was mainly used to treat hypertension, cardiovascular disease, inflammation and improve blood glucose in patients with diabetes, but its effects on bone mass, microstructure and mechanical properties were unclear. This study described the effects of verapamil on bone mass, microstructure, macro and nano mechanical properties in type 2 diabetic rats. METHODS Rat models of type 2 diabetes were treated with verapamil at doses of 4, 12, 24 and 48 mg/kg/day by gavage respectively, twice a day. After 12 weeks, all rats were sacrificed under general anesthesia. Blood glucose, blood lipid, renal function and biochemical markers of bone metabolism were obtained by serum analysis, Micro-CT scanning was used to assess the microstructure parameters of cancellous bone of femoral head, three-point bending test was used to measure maximum load and elastic modulus of femoral shaft, and nano-indentation tests were used to measure indentation moduli and hardnesses of longitudinal cortical bone in femoral shaft, longitudinal and transverse cancellous bones in femoral head. RESULTS Compared with T2DM group, transverse indentation moduli of cancellous bones in VER 24 group, longitudinal and transverse indentation moduli and hardnesses of cancellous bones in VER 48 group were significantly increased (p < 0.05). Furthermore, the effects of verapamil on blood glucoses, microstructures and mechanical properties in type 2 diabetic rats were dependent on drug dose. Starting from verapamil dose of 12 mg/kg/day, with dose increasing, the concentrations of P1NP, BMD, BV/TV, Tb. Th, Tb. N, maximum loads, elastic moduli, indentation moduli and hardnesses of femurs in rats in treatment group increased gradually, the concentrations of CTX-1 decreased gradually, but these parameters did not return to the level of the corresponding parameters of normal rats. Verapamil (48 mg/kg/day) had the best therapeutic effect. CONCLUSION Verapamil treatment (24, 48 mg/kg/day) significantly affected nano mechanical properties of the femurs, and tended to improve bone microstructures and macro mechanical properties of the femurs, which provided guidance for the selection of verapamil dose in the treatment of type 2 diabetic patients.
Collapse
Affiliation(s)
- Xiaodan Wu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - He Gong
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Xiaorong Hu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Peipei Shi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Haipeng Cen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Chenchen Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
49
|
Martínez-Montoro JI, García-Fontana B, García-Fontana C, Muñoz-Torres M. Evaluation of Quality and Bone Microstructure Alterations in Patients with Type 2 Diabetes: A Narrative Review. J Clin Med 2022; 11:2206. [PMID: 35456299 PMCID: PMC9024806 DOI: 10.3390/jcm11082206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 01/25/2023] Open
Abstract
Bone fragility is a common complication in subjects with type 2 diabetes mellitus (T2DM). However, traditional techniques for the evaluation of bone fragility, such as dual-energy X-ray absorptiometry (DXA), do not perform well in this population. Moreover, the Fracture Risk Assessment Tool (FRAX) usually underestimates fracture risk in T2DM. Importantly, novel technologies for the assessment of one microarchitecture in patients with T2DM, such as the trabecular bone score (TBS), high-resolution peripheral quantitative computed tomography (HR-pQCT), and microindentation, are emerging. Furthermore, different serum and urine bone biomarkers may also be useful for the evaluation of bone quality in T2DM. Hence, in this article, we summarize the limitations of conventional tools for the evaluation of bone fragility and review the current evidence on novel approaches for the assessment of quality and bone microstructure alterations in patients with T2DM.
Collapse
Affiliation(s)
- José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA), Faculty of Medicine, University of Malaga, 29010 Malaga, Spain;
| | - Beatriz García-Fontana
- Bone Metabolic Unit, Endocrinology and Nutrition Division, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina García-Fontana
- Bone Metabolic Unit, Endocrinology and Nutrition Division, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Muñoz-Torres
- Bone Metabolic Unit, Endocrinology and Nutrition Division, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
50
|
Sacher SE, Hunt HB, Lekkala S, Lopez KA, Potts J, Heilbronner AK, Stein EM, Hernandez CJ, Donnelly E. Distributions of Microdamage Are Altered Between Trabecular Rods and Plates in Cancellous Bone From Men With Type 2 Diabetes Mellitus. J Bone Miner Res 2022; 37:740-752. [PMID: 35064941 PMCID: PMC9833494 DOI: 10.1002/jbmr.4509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 01/13/2023]
Abstract
Individuals with type 2 diabetes mellitus (T2DM) have an increased risk of fragility fracture despite exhibiting normal to high bone mineral density (BMD). Conditions arising from T2DM, such as reduced bone turnover and alterations in microarchitecture, may contribute to skeletal fragility by influencing bone morphology and microdamage accumulation. The objectives of this study were (i) to characterize the effect of T2DM on microdamage quantity and morphology in cancellous bone, and (ii) relate the accumulation of microdamage to the cancellous microarchitecture. Cancellous specimens from the femoral neck were collected during total hip arthroplasty (T2DM: n = 22, age = 65 ± 9 years, glycated hemoglobin [HbA1c] = 7.00% ± 0.98%; non-diabetic [non-DM]: n = 25, age = 61 ± 8 years, HbA1c = 5.50% ± 0.4%), compressed to 3% strain, stained with lead uranyl acetate to isolate microdamage, and scanned with micro-computed tomography (μCT). Individual trabeculae segmentation was used to isolate rod-like and plate-like trabeculae and their orientations with respect to the loading axis. The T2DM group trended toward a greater BV/TV (+27%, p = 0.07) and had a more plate-like trabecular architecture (+8% BVplates , p = 0.046) versus non-DM specimens. Rods were more damaged relative to their volume compared to plates in the non-DM group (DVrods /BVrods versus DVplates /BVplates : +49%, p < 0.0001), but this difference was absent in T2DM specimens. Longitudinal rods were more damaged in the non-DM group (DVlongitudinal rods /BVlongitudinal rods : +73% non-DM versus T2DM, p = 0.027). Total damage accumulation (DV/BV) and morphology (DS/DV) did not differ in T2DM versus non-DM specimens. These results provide evidence that cancellous microarchitecture does not explain fracture risk in T2DM, pointing to alterations in material matrix properties. In particular, cancellous bone from men with T2DM may have an attenuated ability to mitigate microdamage accumulation through sacrificial rods. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Sara E Sacher
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Heather B Hunt
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Sashank Lekkala
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Kelsie A Lopez
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Jesse Potts
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Alison K Heilbronner
- Department of Medicine, Endocrinology and Metabolic Bone Service, Hospital for Special Surgery, New York, NY, USA
| | - Emily M Stein
- Department of Medicine, Endocrinology and Metabolic Bone Service, Hospital for Special Surgery, New York, NY, USA
| | - Christopher J Hernandez
- Research Division, Hospital for Special Surgery, New York, NY, USA.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA.,Research Division, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|