1
|
王 许, 张 杨, 罗 刚, 孔 军, 曹 向, 王 庆. [Fibulin-3 Regulates Tissue Inhibitor of Metalloproteinases 3 to Inhibit Senescence in Intervertebral Disc Nucleus Pulposus Cells]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1217-1225. [PMID: 39507955 PMCID: PMC11536236 DOI: 10.12182/20240760604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Indexed: 11/08/2024]
Abstract
Objective To investigate the effect of fibulin-3 on the senescence of intervertebral disc nucleus pulposus cells (NPCs) through the regulation of tissue inhibitor of metalloproteinases 3 (TIMP-3) expression and to elucidate the molecular mechanisms involved. Methods 1). The nucleus pulposus tissues and imaging data of 37 patients who had undergone intervertebral disc surgery were collected. The degree of degeneration of the intervertebral discs were classified according to the Pfirrmann grading system. The senescence degree of NPCs was determined using senescence-associated β-galactosidase (SA-β-gal) staining. Fibulin-3 expression levels were determined using Western blot and ELISA. The relationship between fibulin-3 and disc degeneration and NPCs senescence was investigated. 2). Human intervertebral disc NPCs were cultured in vitro. The proliferation and senescence of NPC across continuous passage were observed via CCK-8 assay and SA-β-gal staining, respectively. Fibulin-3 expression levels and the expression of inflammatory cytokines and matrix metalloproteinases were assessed. Exogenous fibulin-3 was added to verify its effect on the proliferation and senescence of NPCs. 3). The effect of fibulin-3 on the apoptosis and proliferation of NPCs was verified through gene overexpression, which was used in combination with an apoptosis inhibitor for bidirectional verification. 4). Bioinformatics analysis was performed to explore the relationship between fibulin-3 and the TIMP family. Experiments overexpressing fibulin-3 and silencing the TIMP-3 gene were performed to verify their role in NPCs senescence. Results 1). The intervertebral disc degeneration samples from 37 patients were classified according to the Pfirrmann grading system. The higher the degeneration grade, the lower fibulin-3 expression. Spearman correlation analysis showed that the disc grade was negatively correlated with the NPC senescence grade (r=-0.87, P<0.001) and fibulin-3 expression (r=-0.79, P<0.001). 2). As the passage number of NPCs increased, fibulin-3 expression gradually decreased, cell proliferation ability weakened, and the expression of inflammatory cytokines and matrix metalloproteinases increased. After exogenous fibulin-3 was added, cell morphology and growth status were maintained, cell senescence was significantly inhibited, and the expression of inflammatory cytokines and matrix metalloproteinases was markedly reduced. 3). Gene overexpression experiments showed that fibulin-3 reduced NPC apoptosis and promoted cell proliferation, thereby inhibiting NPC senescence. 4). Bioinformatics analysis revealed a significant association between fibulin-3 and TIMP-3 of the TIMP family. Further experiments confirmed that overexpressing fibulin-3 enhanced TIMP-3 expression, while silencing the TIMP-3 gene significantly weakened the inhibitory effect of fibulin-3 on NPCs senescence. This indicates that, through regulating TIMP-3, fibulin-3 inhibits the activity of matrix metalloproteinases, affects the synthesis and degradation of the extracellular matrix, and ultimately inhibits NPCs senescence. Conclusion This study demonstrates that fibulin-3 plays a crucial role in inhibiting the senescence of intervertebral disc NPCs by regulating TIMP-3. The specific mechanisms involved are as follows, fibulin-3 upregulates TIMP-3 expression, inhibits matrix metalloproteinase activity, and reduces extracellular matrix degradation, thereby promoting extracellular matrix synthesis. Additionally, fibulin-3 inhibits NPCs senescence by reducing apoptosis and promoting cell proliferation. Therefore, fibulin-3 and TIMP-3 have potential therapeutic significance in maintaining intervertebral disc health and delaying degeneration.
Collapse
Affiliation(s)
- 许可 王
- 河南省洛阳正骨医院(河南省骨科医院) (洛阳 471002)Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang 471002, China
| | - 杨 张
- 河南省洛阳正骨医院(河南省骨科医院) (洛阳 471002)Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang 471002, China
| | - 刚 罗
- 河南省洛阳正骨医院(河南省骨科医院) (洛阳 471002)Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang 471002, China
| | - 军珂 孔
- 河南省洛阳正骨医院(河南省骨科医院) (洛阳 471002)Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang 471002, China
| | - 向阳 曹
- 河南省洛阳正骨医院(河南省骨科医院) (洛阳 471002)Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang 471002, China
| | - 庆丰 王
- 河南省洛阳正骨医院(河南省骨科医院) (洛阳 471002)Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang 471002, China
| |
Collapse
|
2
|
Tang P, Liu B. Overactivation of NF-kB pathway can induce apoptosis by down-regulating glycolysis in human degenerative nucleus pulposus cells. Heliyon 2024; 10:e36905. [PMID: 39281505 PMCID: PMC11395756 DOI: 10.1016/j.heliyon.2024.e36905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Intervertebral disc herniation, a prevalent condition in spinal surgery that frequently results in low back pain and lower limb dysfunction, significantly impacting patients' quality of life. Several factors, including spine biomechanics, biology, nutrition, injury, and abnormal inflammatory responses, have been associated with the development of intervertebral disc herniation. Among these factors, abnormal inflammatory responses have received considerable attention as a crucial mediator of both clinical symptoms and disease progression during the intervertebral disc herniation process. However, the underlying mechanisms of inflammation-induced intervertebral disc herniation remain inadequately explored. The NF-κB (Nuclear Factor-κB) pathway plays a central role in regulating the expression of proinflammatory cytokines. Research on intervertebral disc herniation has suggested that NF-κB can activate the NLRP3 inflammasome, thereby exacerbating intervertebral disc degeneration. Targeting the NF-κB pathway has shown promise in alleviating disc degeneration and associated pain. Previous research indicated that the upregulation of the NF-κB pathway, achieved through the inhibition of A20 (zinc finger protein A20), accelerated intervertebral disc herniation. In the present study, we observed that increased activation of NF-κB pathway activation suppressed the glycolysis process in nucleus pulposus cells (NPCs), leading to NPC apoptosis. Conversely, inhibition of the NF-κB pathway overactivated promoted the restoration of glycolysis and reversed NPC apoptosis, especially when treated with Lipopolysaccharide (LPS).
Collapse
Affiliation(s)
- Pan Tang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, China
- Orthopaedic Research Laboratory of Chongqing Medical University, China
| | - Bo Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, China
- Orthopaedic Research Laboratory of Chongqing Medical University, China
| |
Collapse
|
3
|
Cannon K, Gill S, Mercuri J. Mesenchymal stromal cell response to intervertebral disc-like pH is tissue source dependent. J Orthop Res 2024; 42:1303-1313. [PMID: 38084765 DOI: 10.1002/jor.25766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/30/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
Intervertebral disc (IVD) degeneration (IVDD) has become increasingly prevalent and is a common contributing factor to low back pain. Current treatment options are limited to either symptom management or surgery. A promising treatment option being explored is intradiscal administration of mesenchymal stromal cells (MSCs). However, there remains a gap in knowledge as to whether MSCs from different tissue sources have similar responses to the low pH microenvironment of the IVD and the possible mechanisms governing these responses. To study this, MSCs from three different tissue sources: adipose (adipose-derived mesenchymal stem cell), bone marrow (bone marrow mesenchymal stem cells), and amnion (amniotic membrane mesenchymal stem cell) were cultured at low pHs representative of IVDD. MSCs were assessed for survival, senescence, apoptosis, metabolic activity, and cytokine release profile. Additionally, western blot was utilized to assess acid sensing ion channel 1 and 3 expression. The results of this study indicated that MSC viability, cell proliferation, senescence, and metabolic activity is negatively affected by low pH and alters MSC cytokine production. This study also demonstrated that MSCs behavior is dependent on tissue source. Understanding how MSC behavior is altered by pH will allow further research aimed at increasing the efficacy of MSC therapy to promote in situ IVD tissue regeneration to combat IVDD.
Collapse
Affiliation(s)
- Kyle Cannon
- Laboratory of Orthopaedic Tissue Regeneration and Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Sanjitpal Gill
- Department of Orthopaedic Surgery, The Steadman Clinic, Vail, Colorado, USA
- Department Spine & Neck, The Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Jeremy Mercuri
- Laboratory of Orthopaedic Tissue Regeneration and Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- Department of Bioengineering, Frank H. Stelling and C. Dayton Riddle, Orthopaedic Education and Research Laboratory, Clemson University Biomedical Engineering Innovation Campus, Greenville, South Carolina, USA
| |
Collapse
|
4
|
Zhou M, An YZ, Guo Q, Zhou HY, Luo XH. Energy homeostasis in the bone. Trends Endocrinol Metab 2024; 35:439-451. [PMID: 38242815 DOI: 10.1016/j.tem.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024]
Abstract
The bone serves as an energy reservoir and actively engages in whole-body energy metabolism. Numerous studies have determined fuel requirements and bioenergetic properties of bone under physiological conditions as well as the dysregulation of energy metabolism associated with bone metabolic diseases. Here, we review the main sources of energy in bone cells and their regulation, as well as the endocrine role of the bone in systemic energy homeostasis. Moreover, we discuss metabolic changes that occur as a result of osteoporosis. Exploration in this area will contribute to an enhanced comprehension of bone energy metabolism, presenting novel possibilities to address metabolic diseases.
Collapse
Affiliation(s)
- Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, PR China; Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, PR China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, PR China
| | - Yu-Ze An
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, PR China; Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, PR China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, PR China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, PR China; Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, PR China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, PR China
| | - Hai-Yan Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, PR China; Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, PR China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, PR China.
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, PR China; Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, PR China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, PR China.
| |
Collapse
|
5
|
Zhu D, Liang H, Du Z, Liu Q, Li G, Zhang W, Wu D, Zhou X, Song Y, Yang C. Altered Metabolism and Inflammation Driven by Post-translational Modifications in Intervertebral Disc Degeneration. RESEARCH (WASHINGTON, D.C.) 2024; 7:0350. [PMID: 38585329 PMCID: PMC10997488 DOI: 10.34133/research.0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent cause of low back pain and a leading contributor to disability. IVDD progression involves pathological shifts marked by low-grade inflammation, extracellular matrix remodeling, and metabolic disruptions characterized by heightened glycolytic pathways, mitochondrial dysfunction, and cellular senescence. Extensive posttranslational modifications of proteins within nucleus pulposus cells and chondrocytes play crucial roles in reshaping the intervertebral disc phenotype and orchestrating metabolism and inflammation in diverse contexts. This review focuses on the pivotal roles of phosphorylation, ubiquitination, acetylation, glycosylation, methylation, and lactylation in IVDD pathogenesis. It integrates the latest insights into various posttranslational modification-mediated metabolic and inflammatory signaling networks, laying the groundwork for targeted proteomics and metabolomics for IVDD treatment. The discussion also highlights unexplored territories, emphasizing the need for future research, particularly in understanding the role of lactylation in intervertebral disc health, an area currently shrouded in mystery.
Collapse
Affiliation(s)
- Dingchao Zhu
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Huaizhen Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Zhi Du
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Qian Liu
- College of Life Sciences,
Wuhan University, Wuhan 430072, Hubei Province, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Weifeng Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Di Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Xingyu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
6
|
Zhang Y, Huang Z, Han W, Wu J, Li S, Qin T, Zhang C, Shi M, Han S, Gao B, Jin S, Xiao Y, Xu K, Ye W. Glutamine suppresses senescence and promotes autophagy through glycolysis inhibition-mediated AMPKα lactylation in intervertebral disc degeneration. Commun Biol 2024; 7:325. [PMID: 38486093 PMCID: PMC10940657 DOI: 10.1038/s42003-024-06000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Regulating metabolic disorders has become a promising focus in treating intervertebral disc degeneration (IDD). A few drugs regulating metabolism, such as atorvastatin, metformin, and melatonin, show positive effects in treating IDD. Glutamine participates in multiple metabolic processes, including glutaminolysis and glycolysis; however, its impact on IDD is unclear. The current study reveals that glutamine levels are decreased in severely degenerated human nucleus pulposus (NP) tissues and aging Sprague-Dawley (SD) rat nucleus pulposus tissues, while lactate accumulation and lactylation are increased. Supplementary glutamine suppresses glycolysis and reduces lactate production, which downregulates adenosine-5'-monophosphate-activated protein kinase α (AMPKα) lactylation and upregulates AMPKα phosphorylation. Moreover, glutamine treatment reduces NP cell senescence and enhances autophagy and matrix synthesis via inhibition of glycolysis and AMPK lactylation, and glycolysis inhibition suppresses lactylation. Our results indicate that glutamine could prevent IDD by glycolysis inhibition-decreased AMPKα lactylation, which promotes autophagy and suppresses NP cell senescence.
Collapse
Affiliation(s)
- Yangyang Zhang
- Department of Spine Surgery, the First Affiliated Hospital of University of South China, Hengyang, 421200, China
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510289, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510289, China
| | - Zhengqi Huang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510289, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510289, China
| | - Weitao Han
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510289, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510289, China
| | - Jiajun Wu
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510289, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510289, China
| | - Shuangxing Li
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510289, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510289, China
| | - Tianyu Qin
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510289, China
- Department of Orthopedics, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518031, China
| | - Chao Zhang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510289, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510289, China
| | - Ming Shi
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510289, China
- Department of Orthopedics, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518031, China
| | - Shun Han
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510289, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510289, China
| | - Bo Gao
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510289, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510289, China
| | - Song Jin
- Department of Orthopedics, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518031, China
| | - Yin Xiao
- School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Brisbane, QLD, Australia
| | - Kang Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510289, China.
| | - Wei Ye
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510289, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510289, China.
| |
Collapse
|
7
|
Johnston SN, Tsingas M, Ain R, Barve RA, Risbud MV. Increased HIF-2α activity in the nucleus pulposus causes intervertebral disc degeneration in the aging mouse spine. Front Cell Dev Biol 2024; 12:1360376. [PMID: 38510179 PMCID: PMC10950937 DOI: 10.3389/fcell.2024.1360376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) are essential to the homeostasis of hypoxic tissues. Although HIF-2α, is expressed in nucleus pulposus (NP) cells, consequences of elevated HIF-2 activity on disc health remains unknown. We expressed HIF-2α with proline to alanine substitutions (P405A; P531A) in the Oxygen-dependent degradation domain (HIF-2αdPA) in the NP tissue using an inducible, nucleus pulposus-specific K19CreERT allele to study HIF-2α function in the adult intervertebral disc. Expression of HIF-2α in NP impacted disc morphology, as evident from small but significantly higher scores of degeneration in NP of 24-month-old K19CreERT; HIF-2αdPA (K19-dPA) mice. Noteworthy, comparisons of grades within each genotype between 14 months and 24 months indicated that HIF-2α overexpression contributed to more pronounced changes than aging alone. The annulus fibrosus (AF) compartment in the 14-month-old K19-dPA mice exhibited lower collagen turnover and Fourier transform-infrared (FTIR) spectroscopic imaging analyses showed changes in the biochemical composition of the 14- and 24-month-old K19-dPA mice. Moreover, there were changes in aggrecan, chondroitin sulfate, and COMP abundance without alterations in NP phenotypic marker CA3, suggesting the overexpression of HIF-2α had some impact on matrix composition but not the cell phenotype. Mechanistically, the global transcriptomic analysis showed enrichment of differentially expressed genes in themes closely related to NP cell function such as cilia, SLIT/ROBO pathway, and HIF/Hypoxia signaling at both 14- and 24-month. Together, these findings underscore the role of HIF-2α in the pathogenesis of disc degeneration in the aged spine.
Collapse
Affiliation(s)
- Shira N. Johnston
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Maria Tsingas
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rahatul Ain
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Pharmacology, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ruteja A. Barve
- Department of Genetics, Genome Technology Access Centre at the McDonnell Genome Institute, Washington University, School of Medicine, St. Louis, MO, United States
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
8
|
Risbud M, Madhu V, Hernandez-Meadows M, Coleman A, Sao K, Inguito K, Haslam O, Boneski P, Sesaki H, Collins J. The loss of OPA1 accelerates intervertebral disc degeneration and osteoarthritis in aged mice. RESEARCH SQUARE 2024:rs.3.rs-3950044. [PMID: 38464287 PMCID: PMC10925423 DOI: 10.21203/rs.3.rs-3950044/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
NP cells of the intervertebral disc and articular chondrocytes reside in avascular and hypoxic tissue niches. As a consequence of these environmental constraints the cells are primarily glycolytic in nature and were long thought to have a minimal reliance on mitochondrial function. Recent studies have challenged this long-held view and highlighted the increasingly important role of mitochondria in the physiology of these tissues. However, the foundational understanding of mechanisms governing mitochondrial dynamics and function in these tissues is lacking. We investigated the role of mitochondrial fusion protein OPA1 in maintaining the spine and knee joint health in mice. OPA1 knockdown in NP cells altered mitochondrial size and cristae shape and increased the oxygen consumption rate without affecting ATP synthesis. OPA1 governed the morphology of multiple organelles, including peroxisomes, early endosomes and cis-Golgi and its loss resulted in the dysregulation of NP cell autophagy. Metabolic profiling and 13C-flux analyses revealed TCA cycle anaplerosis and altered metabolism in OPA1-deficient NP cells. Noteworthy, Opa1AcanCreERT2 mice with Opa1 deletion in disc and cartilage showed age-dependent disc degeneration, osteoarthritis, and vertebral osteopenia. Our findings underscore that OPA1 regulation of mitochondrial dynamics and multi-organelle interactions is critical in preserving metabolic homeostasis of disc and cartilage.
Collapse
|
9
|
Madhu V, Hernandaz-Meadows M, Coleman A, Sao K, Inguito K, Haslam O, Boneski PK, Sesaki H, Collins JA, Risbud MV. OPA1 protects intervertebral disc and knee joint health in aged mice by maintaining the structure and metabolic functions of mitochondria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576115. [PMID: 38293153 PMCID: PMC10827164 DOI: 10.1101/2024.01.17.576115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Due to their glycolytic nature and limited vascularity, nucleus pulposus (NP) cells of the intervertebral disc and articular chondrocytes were long thought to have minimal reliance on mitochondrial function. Recent studies have challenged this long-held view and highlighted the increasingly important role of mitochondria in the physiology of these tissues. We investigated the role of mitochondrial fusion protein OPA1 in maintaining the spine and knee joint health in aging mice. OPA1 knockdown in NP cells altered mitochondrial size and cristae shape and increased the oxygen consumption rate without affecting ATP synthesis. OPA1 governed the morphology of multiple organelles, and its loss resulted in the dysregulation of NP cell autophagy. Metabolic profiling and 13 C-flux analyses revealed TCA cycle anaplerosis and altered metabolism in OPA1-deficient NP cells. Noteworthy, Opa1 AcanCreERT2 mice showed age- dependent disc, and cartilage degeneration and vertebral osteopenia. Our findings suggest that OPA1 regulation of mitochondrial dynamics and multi-organelle interactions is critical in preserving metabolic homeostasis of disc and cartilage. Teaser OPA1 is necessary for the maintenance of intervertebral disc and knee joint health in aging mice.
Collapse
|
10
|
Zhang Y, Liu L, Qi Y, Lou J, Chen Y, Liu C, Li H, Chang X, Hu Z, Li Y, Zhang Y, Feng C, Zhou Y, Zhai Y, Li C. Lactic acid promotes nucleus pulposus cell senescence and corresponding intervertebral disc degeneration via interacting with Akt. Cell Mol Life Sci 2024; 81:24. [PMID: 38212432 PMCID: PMC11071984 DOI: 10.1007/s00018-023-05094-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
The accumulation of metabolites in the intervertebral disc is considered an important cause of intervertebral disc degeneration (IVDD). Lactic acid, which is a metabolite that is produced by cellular anaerobic glycolysis, has been proven to be closely associated with IVDD. However, little is known about the role of lactic acid in nucleus pulposus cells (NPCs) senescence and oxidative stress. The aim of this study was to investigate the effect of lactic acid on NPCs senescence and oxidative stress as well as the underlying mechanism. A puncture-induced disc degeneration (PIDD) model was established in rats. Metabolomics analysis revealed that lactic acid levels were significantly increased in degenerated intervertebral discs. Elimination of excessive lactic acid using a lactate oxidase (LOx)-overexpressing lentivirus alleviated the progression of IVDD. In vitro experiments showed that high concentrations of lactic acid could induce senescence and oxidative stress in NPCs. High-throughput RNA sequencing results and bioinformatic analysis demonstrated that the induction of NPCs senescence and oxidative stress by lactic acid may be related to the PI3K/Akt signaling pathway. Further study verified that high concentrations of lactic acid could induce NPCs senescence and oxidative stress by interacting with Akt and regulating its downstream Akt/p21/p27/cyclin D1 and Akt/Nrf2/HO-1 pathways. Utilizing molecular docking, site-directed mutation and microscale thermophoresis assays, we found that lactic acid could regulate Akt kinase activity by binding to the Lys39 and Leu52 residues in the PH domain of Akt. These results highlight the involvement of lactic acid in NPCs senescence and oxidative stress, and lactic acid may become a novel potential therapeutic target for the treatment of IVDD.
Collapse
Affiliation(s)
- Yuyao Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Libangxi Liu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
- Department of Orthopedics, General Hospital of Central Theater Command of PLA, Wuhan, 430000, China
| | - Yuhan Qi
- Institute of Basic Theory of Traditional Chinese Medicine, China Academy of Chinese Medical Science, Beijing, 100000, China
| | - Jinhui Lou
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Yuxuan Chen
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Chao Liu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Haiyin Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Xian Chang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Zhilei Hu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Yueyang Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Yang Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Chencheng Feng
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Yu Zhai
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China.
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China.
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China.
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
11
|
Zhu P, Wu X, Ni L, Chen K, Dong Z, Du J, Kong F, Mao Y, Tao H, Chu M, Mao H, Yang H, Liu Q, Gan M, Geng D. Inhibition of PP2A ameliorates intervertebral disc degeneration by reducing annulus fibrosus cells apoptosis via p38/MAPK signal pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166888. [PMID: 37722489 DOI: 10.1016/j.bbadis.2023.166888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/05/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is considered one of the main reasons for low back pain (LBP). To date, the specific pathology of IVDD remains unclear. The annulus fibrosus (AF) is an important part of the intervertebral disc, and AF cell oxidative stress, apoptosis plays a vital role in disc degeneration. Protein phosphatase 2 A (PP2A), a serine/threonine phosphatase, has regulatory functions in various processes, including apoptosis and autophagy. However, thus far, the effect of PP2A on IVDD is not clear. METHODS AF cells derived from caudal intervertebral discs in SD rats were used to analyze the levels of oxidative stress, apoptosis and degeneration as well as PP2A expression. A PP2A agonist (FTY720), inhibitor (microcystin-LR) and siRNA (si-PPP2CA) were employed in IVDD induced by H2O2 to investigate the levels of apoptosis and degeneration. The p38/MAPK signal pathways were evaluated, and a p38 inhibitor (SB203580) and ERK inhibitor (U0126) were added for verification. Finally, FTY720 and microcystin-LR were administered to IVDD rats to assess the effects on levels of apoptosis and degeneration and the relief of IVDD. RESULTS The expression of PP2A was increased in rat AF cells after H2O2 intervention. The levels of apoptosis and degeneration were higher with upregulation of PP2A but were significantly reduced after inhibition of PP2A. The PP2A inhibitor relieved cell apoptosis and degeneration by downregulating the p38/MAPK pathway. In vivo, the knockdown of PP2A resulted in a more complete morphology of discs and less apoptotic and degenerative expression. CONCLUSIONS This study suggests that the downregulation of PP2 A could reduce AF cell apoptosis and degeneration via the p38/MAPK pathway. It also revealed that the inhibition of PP2 A is expected to be a therapeutic target for IVDD.
Collapse
Affiliation(s)
- Pengfei Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Xiexing Wu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Li Ni
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Kai Chen
- Department of Orthopedics, Hai'an People's Hospital, Hai'an 226600, Jiangsu, China
| | - Zhongchen Dong
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Jiacheng Du
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Fanchen Kong
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yubo Mao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Huaqiang Tao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Miao Chu
- Department of Orthopedics, Yixing People's Hospital, Yixing 214200, Jiangsu, China
| | - Haiqin Mao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Qinbai Liu
- Department of Orthopaedics, Lianshui People's Hospital of Kangda College Affiliated to Nanjing Medical University, Huai'an 223001, Jiangsu, China; Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China.
| | - Minfeng Gan
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
12
|
Johnston SN, Tsingas M, Ain R, Barve RA, Risbud MV. Increased HIF-2α Activity in the Nucleus Pulposus Causes Intervertebral Disc Degeneration in the Aging Mouse Spine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573086. [PMID: 38187709 PMCID: PMC10769411 DOI: 10.1101/2023.12.22.573086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Hypoxia-inducible factors (HIFs) are essential to the homeostasis of hypoxic tissues. Although HIF-2α, is expressed in nucleus pulposus (NP) cells, consequences of elevated HIF-2 activity on disc health remains unknown. We expressed HIF-2α with proline to alanine substitutions (P405A;P531A) in the Oxygen-dependent degradation domain (HIF-2αdPA) in the NP tissue using an inducible, nucleus pulposus-specific K19 CreERT allele to study HIF-2α function in the adult intervertebral disc. Expression of HIF-2α in NP impacted disc morphology, as evident from small but significantly higher scores of degeneration in NP of 24-month-old K19 CreERT ; HIF-2α dPA (K19-dPA) mice. Noteworthy, comparisons of grades within each genotype between 14 months and 24 months indicated that HIF-2α overexpression contributed to more pronounced changes than aging alone. The annulus fibrosus (AF) compartment in the 14-month-old K19-dPA mice exhibited lower collagen turnover and Fourier transform-infrared (FTIR) spectroscopic imaging analyses showed changes in the biochemical composition of the 14-and 24-month-old K19-dPA mice. Moreover, there were changes in aggrecan, chondroitin sulfate, and COMP abundance without alterations in NP phenotypic marker CA3, suggesting the overexpression of HIF-2α had some impact on matrix composition but not the cell phenotype. Mechanistically, the global transcriptomic analysis showed enrichment of differentially expressed genes in themes closely related to NP cell function such as cilia, SLIT/ROBO pathway, and HIF/Hypoxia signaling at both 14- and 24-months. Together, these findings underscore the role of HIF-2α in the pathogenesis of disc degeneration in the aged spine.
Collapse
|
13
|
Liu Y, Zhao Z, Guo C, Huang Z, Zhang W, Ma F, Wang Z, Kong Q, Wang Y. Application and development of hydrogel biomaterials for the treatment of intervertebral disc degeneration: a literature review. Front Cell Dev Biol 2023; 11:1286223. [PMID: 38130952 PMCID: PMC10733535 DOI: 10.3389/fcell.2023.1286223] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Low back pain caused by disc herniation and spinal stenosis imposes an enormous medical burden on society due to its high prevalence and refractory nature. This is mainly due to the long-term inflammation and degradation of the extracellular matrix in the process of intervertebral disc degeneration (IVDD), which manifests as loss of water in the nucleus pulposus (NP) and the formation of fibrous disc fissures. Biomaterial repair strategies involving hydrogels play an important role in the treatment of intervertebral disc degeneration. Excellent biocompatibility, tunable mechanical properties, easy modification, injectability, and the ability to encapsulate drugs, cells, genes, etc. make hydrogels good candidates as scaffolds and cell/drug carriers for treating NP degeneration and other aspects of IVDD. This review first briefly describes the anatomy, pathology, and current treatments of IVDD, and then introduces different types of hydrogels and addresses "smart hydrogels". Finally, we discuss the feasibility and prospects of using hydrogels to treat IVDD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingquan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Song C, Xu Y, Peng Q, Chen R, Zhou D, Cheng K, Cai W, Liu T, Huang C, Fu Z, Wei C, Liu Z. Mitochondrial dysfunction: a new molecular mechanism of intervertebral disc degeneration. Inflamm Res 2023; 72:2249-2260. [PMID: 37925665 DOI: 10.1007/s00011-023-01813-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023] Open
Abstract
OBJECTIVE Intervertebral disc degeneration (IVDD) is a chronic degenerative orthopedic illness that causes lower back pain as a typical clinical symptom, severely reducing patients' quality of life and work efficiency, and imposing a significant economic burden on society. IVDD is defined by rapid extracellular matrix breakdown, nucleus pulposus cell loss, and an inflammatory response. It is intimately related to the malfunction or loss of myeloid cells among them. Many mechanisms have been implicated in the development of IVDD, including inflammatory factors, oxidative stress, apoptosis, cellular autophagy, and mitochondrial dysfunction. In recent years, mitochondrial dysfunction has become a hot research topic in age-related diseases. As the main source of adenosine triphosphate (ATP) in myeloid cells, mitochondria are essential for maintaining myeloid cell survival and physiological functions. METHODS We searched the PUBMED database with the search term "intervertebral disc degeneration and mitochondrial dysfunction" and obtained 82 articles, and after reading the abstracts and eliminating 30 irrelevant articles, we finally obtained 52 usable articles. RESULTS Through a review of the literature, it was discovered that IVDD and cellular mitochondrial dysfunction are also linked. Mitochondrial dysfunction contributes to the advancement of IVDD by influencing a number of pathophysiologic processes such as mitochondrial fission/fusion, mitochondrial autophagy, cellular senescence, and cell death. CONCLUSION We examine the molecular mechanisms of IVDD-associated mitochondrial dysfunction and present novel directions for quality management of mitochondrial dysfunction as a treatment approach to IVDD.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Longmatan District, No.182, Chunhui Road, Luzhou, 646000, Sichuan Province, China
| | - Yulin Xu
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Qinghua Peng
- College of Integrative Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Rui Chen
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Longmatan District, No.182, Chunhui Road, Luzhou, 646000, Sichuan Province, China
| | - Daqian Zhou
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Longmatan District, No.182, Chunhui Road, Luzhou, 646000, Sichuan Province, China
| | - Kang Cheng
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Longmatan District, No.182, Chunhui Road, Luzhou, 646000, Sichuan Province, China
| | - Weiye Cai
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Longmatan District, No.182, Chunhui Road, Luzhou, 646000, Sichuan Province, China
| | - Tao Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Longmatan District, No.182, Chunhui Road, Luzhou, 646000, Sichuan Province, China
| | - Chenyi Huang
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Longmatan District, No.182, Chunhui Road, Luzhou, 646000, Sichuan Province, China.
| | - Zhijiang Fu
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Longmatan District, No.182, Chunhui Road, Luzhou, 646000, Sichuan Province, China.
| | - Cong Wei
- Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| | - Zongchao Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Longmatan District, No.182, Chunhui Road, Luzhou, 646000, Sichuan Province, China.
- Luzhou Longmatan District People's Hospital, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
15
|
McDonnell EE, Wilson N, Barcellona MN, Ní Néill T, Bagnall J, Brama PAJ, Cunniffe GM, Darwish SL, Butler JS, Buckley CT. Preclinical to clinical translation for intervertebral disc repair: Effects of species-specific scale, metabolism, and matrix synthesis rates on cell-based regeneration. JOR Spine 2023; 6:e1279. [PMID: 37780829 PMCID: PMC10540833 DOI: 10.1002/jsp2.1279] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Background A significant hurdle for potential cell-based therapies is the subsequent survival and regenerative capacity of implanted cells. While many exciting developments have demonstrated promise preclinically, cell-based therapies for intervertebral disc (IVD) degeneration fail to translate equivalent clinical efficacy. Aims This work aims to ascertain the clinical relevance of both a small and large animal model by experimentally investigating and comparing these animal models to human from the perspective of anatomical scale and their cellular metabolic and regenerative potential. Materials and Methods First, this work experimentally investigated species-specific geometrical scale, native cell density, nutrient metabolism, and matrix synthesis rates for rat, goat, and human disc cells in a 3D microspheroid configuration. Second, these parameters were employed in silico to elucidate species-specific nutrient microenvironments and predict differences in temporal regeneration between animal models. Results This work presents in silico models which correlate favorably to preclinical literature in terms of the capabilities of animal regeneration and predict that compromised nutrition is not a significant challenge in small animal discs. On the contrary, it highlights a very fine clinical balance between an adequate cell dose for sufficient repair, through de novo matrix deposition, without exacerbating the human microenvironmental niche. Discussion Overall, this work aims to provide a path towards understanding the effect of cell injection number on the nutrient microenvironment and the "time to regeneration" between preclinical animal models and the large human IVD. While these findings help to explain failed translation of promising preclinical data and the limited results emerging from clinical trials at present, they also enable the research field and clinicians to manage expectations on cell-based regeneration. Conclusion Ultimately, this work provides a platform to inform the design of clinical trials, and as computing power and software capabilities increase in the future, it is conceivable that generation of patient-specific models could be used for patient assessment, as well as pre- and intraoperative planning.
Collapse
Affiliation(s)
- Emily E. McDonnell
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Niamh Wilson
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Marcos N. Barcellona
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Tara Ní Néill
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Jessica Bagnall
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Pieter A. J. Brama
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- School of Veterinary MedicineUniversity College DublinDublinIreland
| | - Gráinne M. Cunniffe
- National Spinal Injuries UnitMater Misericordiae University HospitalDublinIreland
- School of MedicineUniversity College DublinDublinIreland
| | - Stacey L. Darwish
- National Spinal Injuries UnitMater Misericordiae University HospitalDublinIreland
- School of MedicineUniversity College DublinDublinIreland
- National Orthopaedic HospitalDublinIreland
- St Vincent's University HospitalDublinIreland
| | - Joseph S. Butler
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- National Spinal Injuries UnitMater Misericordiae University HospitalDublinIreland
- School of MedicineUniversity College DublinDublinIreland
| | - Conor T. Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College DublinThe University of DublinDublinIreland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
16
|
Ohnishi T, Homan K, Fukushima A, Ukeba D, Iwasaki N, Sudo H. A Review: Methodologies to Promote the Differentiation of Mesenchymal Stem Cells for the Regeneration of Intervertebral Disc Cells Following Intervertebral Disc Degeneration. Cells 2023; 12:2161. [PMID: 37681893 PMCID: PMC10486900 DOI: 10.3390/cells12172161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD), a highly prevalent pathological condition worldwide, is widely associated with back pain. Treatments available compensate for the impaired function of the degenerated IVD but typically have incomplete resolutions because of their adverse complications. Therefore, fundamental regenerative treatments need exploration. Mesenchymal stem cell (MSC) therapy has been recognized as a mainstream research objective by the World Health Organization and was consequently studied by various research groups. Implanted MSCs exert anti-inflammatory, anti-apoptotic, and anti-pyroptotic effects and promote extracellular component production, as well as differentiation into IVD cells themselves. Hence, the ultimate goal of MSC therapy is to recover IVD cells and consequently regenerate the extracellular matrix of degenerated IVDs. Notably, in addition to MSC implantation, healthy nucleus pulposus (NP) cells (NPCs) have been implanted to regenerate NP, which is currently undergoing clinical trials. NPC-derived exosomes have been investigated for their ability to differentiate MSCs from NPC-like phenotypes. A stable and economical source of IVD cells may include allogeneic MSCs from the cell bank for differentiation into IVD cells. Therefore, multiple alternative therapeutic options should be considered if a refined protocol for the differentiation of MSCs into IVD cells is established. In this study, we comprehensively reviewed the molecules, scaffolds, and environmental factors that facilitate the differentiation of MSCs into IVD cells for regenerative therapies for IDD.
Collapse
Affiliation(s)
- Takashi Ohnishi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Kentaro Homan
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Akira Fukushima
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Daisuke Ukeba
- Department of Orthopedic Surgery, Hokkaido University Hospital, Sapporo 060-8648, Japan;
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
17
|
Madhu V, Hernandez-Meadows M, Boneski PK, Qiu Y, Guntur AR, Kurland IJ, Barve RA, Risbud MV. The mitophagy receptor BNIP3 is critical for the regulation of metabolic homeostasis and mitochondrial function in the nucleus pulposus cells of the intervertebral disc. Autophagy 2023; 19:1821-1843. [PMID: 36628478 PMCID: PMC10262801 DOI: 10.1080/15548627.2022.2162245] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
The contribution of mitochondria to the metabolic function of hypoxic NP cells has been overlooked. We have shown that NP cells contain networked mitochondria and that mitochondrial translocation of BNIP3 mediates hypoxia-induced mitophagy. However, whether BNIP3 also plays a role in governing mitochondrial function and metabolism in hypoxic NP cells is not known. BNIP3 knockdown altered mitochondrial morphology, and number, and increased mitophagy. Interestingly, BNIP3 deficiency in NP cells reduced glycolytic capacity reflected by lower production of lactate/H+ and lower ATP production rate. Widely targeted metabolic profiling and flux analysis using 1-2-13C-glucose showed that the BNIP3 loss resulted in redirection of glycolytic flux into pentose phosphate and hexosamine biosynthesis as well as pyruvate resulting in increased TCA flux. An overall reduction in one-carbon metabolism was noted suggesting reduced biosynthesis. U13C-glutamine flux analysis showed preservation of glutamine utilization to maintain TCA intermediates. The transcriptomic analysis of the BNIP3-deficient cells showed dysregulation of cellular functions including membrane and cytoskeletal integrity, ECM-growth factor signaling, and protein quality control with an overall increase in themes related to angiogenesis and innate immune response. Importantly, we observed strong thematic similarities with the transcriptome of a subset of human degenerative samples. Last, we noted increased autophagic flux, decreased disc height index and aberrant COL10A1/collagen X expression, signs of early disc degeneration in young adult bnip3 knockout mice. These results suggested that in addition to mitophagy regulation, BNIP3 plays a role in maintaining mitochondrial function and metabolism, and dysregulation of mitochondrial homeostasis could promote disc degeneration.Abbreviations: ECAR extracellular acidification rate; HIF hypoxia inducible factor; MFA metabolic flux analysis; NP nucleus pulposus; OCR oxygen consumption rate; ShBnip3 short-hairpin Bnip3.
Collapse
Affiliation(s)
- Vedavathi Madhu
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Miriam Hernandez-Meadows
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Paige K Boneski
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yunping Qiu
- Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anyonya R Guntur
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Irwin J. Kurland
- Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ruteja A Barve
- Department of Genetics, Genome Technology Access Centre at the McDonnell Genome Institute, Washington University, School of Medicine, St. Louis, MO, USA
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
18
|
Muthamil S, Kim HY, Jang HJ, Lyu JH, Shin UC, Go Y, Park SH, Lee HG, Park JH. Understanding the relationship between cancer associated cachexia and hypoxia-inducible factor-1. Biomed Pharmacother 2023; 163:114802. [PMID: 37146421 DOI: 10.1016/j.biopha.2023.114802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023] Open
Abstract
Cancer-associated cachexia (CAC) is a multifactorial disorder characterized by an unrestricted loss of body weight as a result of muscle and adipose tissue atrophy. Cachexia is influenced by several factors, including decreased metabolic activity and food intake, an imbalance between energy uptake and expenditure, excessive catabolism, and inflammation. Cachexia is highly associated with all types of cancers responsible for more than half of cancer-related mortalities worldwide. In healthy individuals, adipose tissue significantly regulates energy balance and glucose homeostasis. However, in metastatic cancer patients, CAC occurs mainly because of an imbalance between muscle protein synthesis and degradation which are organized by certain extracellular ligands and associated signaling pathways. Under hypoxic conditions, hypoxia-inducible factor-1 (HIF-1α) accumulated and translocated to the nucleus and activate numerous genes involved in cell survival, invasion, angiogenesis, metastasis, metabolic reprogramming, and cancer stemness. On the other hand, the ubiquitination proteasome pathway is inhibited during low O2 levels which promote muscle wasting in cancer patients. Therefore, understanding the mechanism of the HIF-1 pathway and its metabolic adaptation to biomolecules is important for developing a novel therapeutic method for cancer and cachexia therapy. Even though many HIF inhibitors are already in a clinical trial, their mechanism of action remains unknown. With this background, this review summarizes the basic concepts of cachexia, the role of inflammatory cytokines, pathways connected with cachexia with special reference to the HIF-1 pathway and its regulation, metabolic changes, and inhibitors of HIFs.
Collapse
Affiliation(s)
- Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Hyun Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Younghoon Go
- Korean Medicine (KM)-application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34141, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea; University of Science & Technology (UST), KIOM campus, Korean Convergence Medicine Major, Daejeon 34054, Republic of Korea.
| |
Collapse
|
19
|
Johnston SN, Silagi ES, Madhu V, Nguyen DH, Shapiro IM, Risbud MV. GLUT1 is redundant in hypoxic and glycolytic nucleus pulposus cells of the intervertebral disc. JCI Insight 2023; 8:e164883. [PMID: 36917198 PMCID: PMC10243741 DOI: 10.1172/jci.insight.164883] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
Glycolysis is central to homeostasis of nucleus pulposus (NP) cells in the avascular intervertebral disc. Since the glucose transporter, GLUT1, is a highly enriched phenotypic marker of NP cells, we hypothesized that it is vital for the development and postnatal maintenance of the disc. Surprisingly, primary NP cells treated with 2 well-characterized GLUT1 inhibitors maintained normal rates of glycolysis and ATP production, indicating intrinsic compensatory mechanisms. We showed in vitro that NP cells mitigated GLUT1 loss by rewiring glucose import through GLUT3. Of note, we demonstrated that substrates, such as glutamine and palmitate, did not compensate for glucose restriction resulting from dual inhibition of GLUT1/3, and inhibition compromised long-term cell viability. To investigate the redundancy of GLUT1 function in NP, we generated 2 NP-specific knockout mice: Krt19CreERT Glut1fl/fl and Foxa2Cre Glut1fl/fl. There were no apparent defects in postnatal disc health or development and maturation in mutant mice. Microarray analysis verified that GLUT1 loss did not cause transcriptomic alterations in the NP, supporting that cells are refractory to GLUT1 loss. These observations provide the first evidence to our knowledge of functional redundancy in GLUT transporters in the physiologically hypoxic intervertebral disc and underscore the importance of glucose as the indispensable substrate for NP cells.
Collapse
Affiliation(s)
- Shira N. Johnston
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, and
- Graduate Program in Cell Biology and Regenerative Medicine, College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Elizabeth S. Silagi
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, and
- Graduate Program in Cell Biology and Regenerative Medicine, College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Vedavathi Madhu
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, and
| | - Duc H. Nguyen
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, and
- Graduate Program in Cell Biology and Regenerative Medicine, College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Irving M. Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, and
- Graduate Program in Cell Biology and Regenerative Medicine, College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, and
- Graduate Program in Cell Biology and Regenerative Medicine, College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Liang T, Gao B, Zhou J, Qiu X, Qiu J, Chen T, Liang Y, Gao W, Qiu X, Lin Y. Constructing intervertebral disc degeneration animal model: A review of current models. Front Surg 2023; 9:1089244. [PMID: 36969323 PMCID: PMC10036602 DOI: 10.3389/fsurg.2022.1089244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/08/2022] [Indexed: 03/12/2023] Open
Abstract
Low back pain is one of the top disorders that leads to disability and affects disability-adjusted life years (DALY) globally. Intervertebral disc degeneration (IDD) and subsequent discogenic pain composed major causes of low back pain. Recent studies have identified several important risk factors contributing to IDD's development, such as inflammation, mechanical imbalance, and aging. Based on these etiology findings, three categories of animal models for inducing IDD are developed: the damage-induced model, the mechanical model, and the spontaneous model. These models are essential measures in studying the natural history of IDD and finding the possible therapeutic target against IDD. In this review, we will discuss the technical details of these models, the duration between model establishment, the occurrence of observable degeneration, and the potential in different study ranges. In promoting future research for IDD, each animal model should examine its concordance with natural IDD pathogenesis in humans. We hope this review can enhance the understanding and proper use of multiple animal models, which may attract more attention to this disease and contribute to translation research.
Collapse
Affiliation(s)
- Tongzhou Liang
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bo Gao
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jinlang Zhou
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xianjian Qiu
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jincheng Qiu
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Taiqiu Chen
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yanfang Liang
- Department of Operating Theater, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wenjie Gao
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xuemei Qiu
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
- Correspondence: Xuemei Qiu Youxi Lin
| | - Youxi Lin
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
- Correspondence: Xuemei Qiu Youxi Lin
| |
Collapse
|
21
|
Kodama J, Wilkinson KJ, Otsuru S. Nutrient metabolism of the nucleus pulposus: A literature review. NORTH AMERICAN SPINE SOCIETY JOURNAL 2022; 13:100191. [PMID: 36590450 PMCID: PMC9801222 DOI: 10.1016/j.xnsj.2022.100191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Cells take in, consume, and synthesize nutrients for numerous physiological functions. This includes not only energy production but also macromolecule biosynthesis, which will further influence cellular signaling, redox homeostasis, and cell fate commitment. Therefore, alteration in cellular nutrient metabolism is associated with pathological conditions. Intervertebral discs, particularly the nucleus pulposus (NP), are avascular and exhibit unique metabolic preferences. Clinical and preclinical studies have indicated a correlation between intervertebral degeneration (IDD) and systemic metabolic diseases such as diabetes, obesity, and dyslipidemia. However, a lack of understanding of the nutrient metabolism of NP cells is masking the underlying mechanism. Indeed, although previous studies indicated that glucose metabolism is essential for NP cells, the downstream metabolic pathways remain unknown, and the potential role of other nutrients, like amino acids and lipids, is understudied. In this literature review, we summarize the current understanding of nutrient metabolism in NP cells and discuss other potential metabolic pathways by referring to a human NP transcriptomic dataset deposited to the Gene Expression Omnibus, which can provide us hints for future studies of nutrient metabolism in NP cells and novel therapies for IDD.
Collapse
Affiliation(s)
- Joe Kodama
- Corresponding authors at: 670 W Baltimore St. HSFIII 7173, Baltimore, MD 21201, USA.
| | | | - Satoru Otsuru
- Corresponding authors at: 670 W Baltimore St. HSFIII 7173, Baltimore, MD 21201, USA.
| |
Collapse
|
22
|
Johnston SN, Madhu V, Shapiro IM, Risbud MV. Conditional Deletion of HIF-2α in Mouse Nucleus Pulposus Reduces Fibrosis and Provides Mild and Transient Protection From Age-Dependent Structural Changes in Intervertebral Disc. J Bone Miner Res 2022; 37:2512-2530. [PMID: 36117450 PMCID: PMC9772060 DOI: 10.1002/jbmr.4707] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/05/2022] [Accepted: 07/29/2022] [Indexed: 01/19/2023]
Abstract
Hypoxia-inducible factors (HIFs) are critical to the development and homeostasis of hypoxic tissues. Although HIF-2α, one of the main HIF-α isoforms, is expressed in nucleus pulposus (NP) cells, its functions remain unknown. We deleted HIF-2α in the NP tissue using a notochord-specific FoxA2Cre allele to study HIF-2α function in the adult intervertebral disc. Unlike observations in HIF-1αcKO mice, fate mapping studies using Rosa26-mTmG reporter showed that HIF-2α loss in NP did not negatively impact cell survival or affect compartment development. Rather, loss of HIF-2α resulted in slightly better attributes of NP morphology in 14-month-old HIF-2αcKO mice as evident from lower scores of degeneration. These 14-month-old HIF-2αcKO mice also exhibited significant reduction in NP tissue fibrosis and lower collagen turnover in the annulus fibrosis (AF) compartment. Imaging-Fourier transform-infrared (FTIR) analyses showed decreased collagen and protein content in the NP and maintained chondroitin sulfate levels in 14-month-old HIF-2αcKO . Mechanistically, global transcriptomic analysis showed enrichment of differentially expressed genes with Gene Ontology (GO) terms related to metabolic processes and cell development, molecular functions concerned with histone and protein binding, and associated pathways, including oxidative stress. Noteworthy, these morphological differences were not apparent in 24-month-old HIF-2αcKO , indicating that aging is the dominant factor in governing disc health. Together these data suggest that loss of HIF-2α in the NP compartment is not detrimental to the intervertebral disc development but rather mitigates NP tissue fibrosis and offers mild but transient protection from age-dependent early degenerative changes. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Shira N. Johnston
- Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, PA USA
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA USA
| | - Vedavathi Madhu
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA USA
| | - Irving M. Shapiro
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA USA
| | - Makarand V. Risbud
- Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, PA USA
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA USA
| |
Collapse
|
23
|
Lufkin L, Samanta A, Baker D, Lufkin S, Schulze J, Ellis B, Rose J, Lufkin T, Kraus P. Glis1 and oxaloacetate in nucleus pulposus stromal cell somatic reprogramming and survival. Front Mol Biosci 2022; 9:1009402. [PMID: 36406265 PMCID: PMC9671658 DOI: 10.3389/fmolb.2022.1009402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Regenerative medicine aims to repair degenerate tissue through cell refurbishment with minimally invasive procedures. Adipose tissue (FAT)-derived stem or stromal cells are a convenient autologous choice for many regenerative cell therapy approaches. The intervertebral disc (IVD) is a suitable target. Comprised of an inner nucleus pulposus (NP) and an outer annulus fibrosus (AF), the degeneration of the IVD through trauma or aging presents a substantial socio-economic burden worldwide. The avascular nature of the mature NP forces cells to reside in a unique environment with increased lactate levels, conditions that pose a challenge to cell-based therapies. We assessed adipose and IVD tissue-derived stromal cells through in vitro transcriptome analysis in 2D and 3D culture and suggested that the transcription factor Glis1 and metabolite oxaloacetic acid (OAA) could provide NP cells with survival tools for the harsh niche conditions in the IVD.
Collapse
Affiliation(s)
- Leon Lufkin
- Department of Statistics and Data Science, Yale University, New Haven, CT, United States,The Clarkson School, Clarkson University, Potsdam, NY, United States
| | - Ankita Samanta
- Department of Biology, Clarkson University, Potsdam, NY, United States
| | - DeVaun Baker
- The Clarkson School, Clarkson University, Potsdam, NY, United States,Department of Biology, Clarkson University, Potsdam, NY, United States
| | - Sina Lufkin
- The Clarkson School, Clarkson University, Potsdam, NY, United States,Department of Biology, Clarkson University, Potsdam, NY, United States
| | | | - Benjamin Ellis
- Department of Biology, Clarkson University, Potsdam, NY, United States
| | - Jillian Rose
- Department of Biology, Clarkson University, Potsdam, NY, United States
| | - Thomas Lufkin
- Department of Biology, Clarkson University, Potsdam, NY, United States
| | - Petra Kraus
- Department of Biology, Clarkson University, Potsdam, NY, United States,*Correspondence: Petra Kraus,
| |
Collapse
|
24
|
Mitophagy—A New Target of Bone Disease. Biomolecules 2022; 12:biom12101420. [PMID: 36291629 PMCID: PMC9599755 DOI: 10.3390/biom12101420] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 01/17/2023] Open
Abstract
Bone diseases are usually caused by abnormal metabolism and death of cells in bones, including osteoblasts, osteoclasts, osteocytes, chondrocytes, and bone marrow mesenchymal stem cells. Mitochondrial dysfunction, as an important cause of abnormal cell metabolism, is widely involved in the occurrence and progression of multiple bone diseases, including osteoarthritis, intervertebral disc degeneration, osteoporosis, and osteosarcoma. As selective mitochondrial autophagy for damaged or dysfunctional mitochondria, mitophagy is closely related to mitochondrial quality control and homeostasis. Accumulating evidence suggests that mitophagy plays an important regulatory role in bone disease, indicating that regulating the level of mitophagy may be a new strategy for bone-related diseases. Therefore, by reviewing the relevant literature in recent years, this paper reviews the potential mechanism of mitophagy in bone-related diseases, including osteoarthritis, intervertebral disc degeneration, osteoporosis, and osteosarcoma, to provide a theoretical basis for the related research of mitophagy in bone diseases.
Collapse
|
25
|
Monocarboxylate transporters (MCTs) in skeletal muscle and hypothalamus of less or more physically active mice exposed to aerobic training. Life Sci 2022; 307:120872. [PMID: 35948119 DOI: 10.1016/j.lfs.2022.120872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
AIMS The synthesis of monocarboxylate transporters (MCTs) can be stimulated by aerobic training, but few is known about this effect associated or not with non-voluntary daily activities. We examined the effect of eight weeks of aerobic training in MCTs on the skeletal muscle and hypothalamus of less or more physically active mice, which can be achieved by keeping them in two different housing models, a small cage (SC) and a large cage (LC). MAIN METHODS Forty male C57BL/6J mice were divided into four groups. In each housing condition, mice were divided into untrained (N) and trained (T). For 8 weeks, the trained animals ran on a treadmill with an intensity equivalent to 80 % of the individual critical velocity (CV), considered aerobic capacity, 40 min/day, 5 times/week. Protein expression of MCTs was determined with fluorescence Western Blot. KEY FINDINGS T groups had higher hypothalamic MCT2 than N groups (ANOVA, P = 0.032). Significant correlations were detected between hypothalamic MCT2 and CV. There was a difference between the SC and LC groups in relation to MCT4 in the hypothalamus (LC > SC, P = 0.044). Trained mice housed in LC (but not SC-T) exhibited a reduction in MCT4 muscle (P < 0.001). SIGNIFICANCE Our findings indicate that aerobically trained mice increased the expression of MCT2 protein in the hypothalamus, which has been related to the uptake of lactate in neurons. Changes in energy metabolism in physically active mice (kept in LC) may be related to upregulation of hypothalamic MCT4, probably participating in the regulation of satiety.
Collapse
|
26
|
Ottone OK, Kim C, Collins JA, Risbud MV. The cGAS-STING Pathway Affects Vertebral Bone but Does Not Promote Intervertebral Disc Cell Senescence or Degeneration. Front Immunol 2022; 13:882407. [PMID: 35769461 PMCID: PMC9235924 DOI: 10.3389/fimmu.2022.882407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
The DNA-sensing cGAS-STING pathway promotes the senescence-associated secretory phenotype (SASP) and mediates type-I interferon inflammatory responses to foreign viral and bacterial DNA as well as self-DNA. Studies of the intervertebral disc in humans and mice demonstrate associations between aging, increased cell senescence, and disc degeneration. Herein we assessed the role of STING in SASP promotion in STING gain- (N153S) and loss-of-function mouse models. N153S mice evidenced elevated circulating levels of proinflammatory markers including IL-1β, IL-6, and TNF-α, showed elevated monocyte and macrophage abundance in the vertebral marrow, and exhibited a mild trabecular and cortical bone phenotype in caudal vertebrae. Interestingly, despite systemic inflammation, the structural integrity of the disc and knee articular joint remained intact, and cells did not show a loss of their phenotype or elevated SASP. Transcriptomic analysis of N153S tissues demonstrated an upregulated immune response by disc cells, which did not closely resemble inflammatory changes in human tissues. Interestingly, STING-/- mice also showed a mild vertebral bone phenotype, but the absence of STING did not reduce the abundance of SASP markers or improve the age-associated disc phenotype. Overall, the analyses of N153S and STING-/- mice suggest that the cGAS-STING pathway is not a major contributor to SASP induction and consequent disc aging and degeneration but may play a minor role in the maintenance of trabecular bone in the vertebrae. This work contributes to a growing body of work demonstrating that systemic inflammation is not a key driver of disc degeneration.
Collapse
Affiliation(s)
- Olivia K. Ottone
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Cheeho Kim
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - John A. Collins
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Makarand V. Risbud,
| |
Collapse
|
27
|
Li K, Li S, Zhang H, Lei D, Lo WLA, Ding M. Computational Analysis of the Immune Infiltration Pattern and Candidate Diagnostic Biomarkers in Lumbar Disc Herniation. Front Mol Neurosci 2022; 15:846554. [PMID: 35531067 PMCID: PMC9069112 DOI: 10.3389/fnmol.2022.846554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives Lumbar disc herniation (LDH) is a musculoskeletal disease that contributes to low back pain, sciatica, and movement disorder. Existing studies have suggested that the immune environment factors are the primary contributions to LDH. However, its etiology remains unknown. We sought to identify the potential diagnostic biomarkers and analyze the immune infiltration pattern in LDH. Methods The whole-blood gene expression level profiles of GSE124272 and GSE150408 were downloaded from the Gene Expression Omnibus (GEO) database, including that of 25 patients with LDH and 25 healthy volunteers. After merging the two microarray datasets, Differentially Expressed Genes (DEGs) were screened, and a functional correlation analysis was performed. The Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression algorithm and support vector machine recursive feature elimination (SVM-RFE) were applied to identify diagnostic biomarkers by a cross-validation method. Then, the GSE42611 dataset was used as a validation dataset to detect the expression level of these diagnostic biomarkers in the nucleus pulposus and evaluate their accuracy. The hub genes in the network were identified by the CIBERSORT tool and the Weighted Gene Coexpression Network Analysis (WGCNA). A Spearman correlation analysis between diagnostic markers and infiltrating immune cells was conducted to further illustrate the molecular immune mechanism of LDH. Results The azurophil granule and the systemic lupus erythematosus pathway were significantly different between the healthy group and the LDH group after gene enrichment analysis. The XLOC_l2_012836, lnc-FGD3-1, and scavenger receptor class A member 5 were correlated with the immune cell infiltration in various degrees. In addition, five hub genes that correlated with LDH were identified, including AQP9, SIRPB2, SLC16A3, LILRB3, and HSPA6. Conclusion The XLOC_l2_012836, lnc-FGD3-1, and SCARA5 might be adopted for the early diagnosis of LDH. The five identified hub genes might have similar pathological mechanisms that contribute to the degeneration of the lumbar disc. The identified hub genes and immune infiltrating pattern extend the knowledge on the potential functioning mechanisms, which offer guidance for the development of therapeutic targets of LDH.
Collapse
Affiliation(s)
- Kai Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shijue Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haojie Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Di Lei
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minghui Ding
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Tang Y, Zong H, Kwon H, Qiu Y, Pessin JB, Wu L, Buddo KA, Boykov I, Schmidt CA, Lin CT, Neufer PD, Schwartz GJ, Kurland IJ, Pessin J. TIGAR deficiency enhances skeletal muscle thermogenesis by increasing neuromuscular junction cholinergic signaling. eLife 2022; 11:73360. [PMID: 35254259 PMCID: PMC8947760 DOI: 10.7554/elife.73360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
Cholinergic and sympathetic counter-regulatory networks control numerous physiological functions, including learning/memory/cognition, stress responsiveness, blood pressure, heart rate, and energy balance. As neurons primarily utilize glucose as their primary metabolic energy source, we generated mice with increased glycolysis in cholinergic neurons by specific deletion of the fructose-2,6-phosphatase protein TIGAR. Steady-state and stable isotope flux analyses demonstrated increased rates of glycolysis, acetyl-CoA production, acetylcholine levels, and density of neuromuscular synaptic junction clusters with enhanced acetylcholine release. The increase in cholinergic signaling reduced blood pressure and heart rate with a remarkable resistance to cold-induced hypothermia. These data directly demonstrate that increased cholinergic signaling through the modulation of glycolysis has several metabolic benefits particularly to increase energy expenditure and heat production upon cold exposure.
Collapse
Affiliation(s)
- Yan Tang
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Haihong Zong
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Hyokjoon Kwon
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Yunping Qiu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Jacob B Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Licheng Wu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Katherine A Buddo
- Department of Physiology, East Carolina University, Greenville, United States
| | - Ilya Boykov
- Department of Physiology, East Carolina University, Greenville, United States
| | - Cameron A Schmidt
- Department of Physiology, East Carolina University, Greenville, United States
| | - Chien-Te Lin
- Department of Physiology, East Carolina University, Greenville, United States
| | - P Darrell Neufer
- Department of Physiology, East Carolina University, Greenville, United States
| | - Gary J Schwartz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Irwin J Kurland
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Jeffrey Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
29
|
Lactylation driven by lactate metabolism in the disc accelerates intervertebral disc degeneration: A hypothesis. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2021.110758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Xu H, Wei K, Tu J, Chen Y, He Y, Ding Y, Xu H, Bao X, Xie H, Fang H, Wang H. Reducing Inflammation and Vascular Invasion in Intervertebral Disc Degeneration via Cystathionine-γ-Lyase Inhibitory Effect on E-Selectin. Front Cell Dev Biol 2021; 9:741046. [PMID: 34869327 PMCID: PMC8634256 DOI: 10.3389/fcell.2021.741046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
The incidence of degenerative spinal diseases, such as cervical spondylosis and thoracic and lumbar disc herniation, is increasing. These health problems have adversely affected human life and work. Surgical intervention is effective when intervertebral disc degeneration (IDD) causes nerve compression and/or severely limits daily activity. Early IDD patients generally do not require surgery. However, there is no effective method of impeding IDD progression. Thus, novel approaches to alleviating IDD deterioration are urgently required. Cystathionine-γ-lyase (CSE) and E-selectin (CD62E) are vital factors regulating vascular function and inflammation. However, their effects on IDD and vascular invasion in intervertebral discs (IVDs) are pending further exploration. Here, bioinformatics and human nucleus pulposus (NP) tissues analyses revealed that CSE was significantly downregulated and CD62E was upregulated in the NP tissues of IDD patients. We demonstrated that CSE overexpression, CD62E downregulation, and NF-κB (P65) inhibition mitigate inflammation and recover metabolic function in NP cells. Similarly, CSE attenuated vascular invasion induced by inflammatory irritation. Using a rat IDD model, we showed that CSE improved degeneration, inflammation, and microvascular invasion in NP tissue, whereas CD62E had the opposite effect. Taken together, our results indicated that the CSE/CD62E pathway could effectively improve the inflammatory environment and vascular invasion in IVD. Hence, the findings of this study propose a promising and valuable strategy for the treatment of patients with early IDD as well as postoperative adjuvant therapy in patients with severe IDD.
Collapse
Affiliation(s)
- Haoran Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Wei
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangmengfan Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Ding
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huanhuan Xu
- Department of Obstetrics and Gynecology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyu Bao
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Xie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huang Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Novais EJ, Tran VA, Johnston SN, Darris KR, Roupas AJ, Sessions GA, Shapiro IM, Diekman BO, Risbud MV. Long-term treatment with senolytic drugs Dasatinib and Quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nat Commun 2021; 12:5213. [PMID: 34480023 PMCID: PMC8417260 DOI: 10.1038/s41467-021-25453-2] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Intervertebral disc degeneration is highly prevalent within the elderly population and is a leading cause of chronic back pain and disability. Due to the link between disc degeneration and senescence, we explored the ability of the Dasatinib and Quercetin drug combination (D + Q) to prevent an age-dependent progression of disc degeneration in mice. We treated C57BL/6 mice beginning at 6, 14, and 18 months of age, and analyzed them at 23 months of age. Interestingly, 6- and 14-month D + Q cohorts show lower incidences of degeneration, and the treatment results in a significant decrease in senescence markers p16INK4a, p19ARF, and SASP molecules IL-6 and MMP13. Treatment also preserves cell viability, phenotype, and matrix content. Although transcriptomic analysis shows disc compartment-specific effects of the treatment, cell death and cytokine response pathways are commonly modulated across tissue types. Results suggest that senolytics may provide an attractive strategy to mitigating age-dependent disc degeneration.
Collapse
Affiliation(s)
- Emanuel J. Novais
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA ,grid.265008.90000 0001 2166 5843Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, USA ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s—PT Government Associate Laboratory, Braga, Portugal
| | - Victoria A. Tran
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA
| | - Shira N. Johnston
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA ,grid.265008.90000 0001 2166 5843Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, USA
| | - Kayla R. Darris
- grid.10698.360000000122483208Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC USA ,grid.40803.3f0000 0001 2173 6074Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, and North Carolina State University, Raleigh, NC USA
| | - Alex J. Roupas
- grid.10698.360000000122483208Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC USA ,grid.40803.3f0000 0001 2173 6074Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, and North Carolina State University, Raleigh, NC USA
| | - Garrett A. Sessions
- grid.10698.360000000122483208Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC USA ,grid.40803.3f0000 0001 2173 6074Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, and North Carolina State University, Raleigh, NC USA
| | - Irving M. Shapiro
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA ,grid.265008.90000 0001 2166 5843Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, USA
| | - Brian O. Diekman
- grid.10698.360000000122483208Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC USA ,grid.40803.3f0000 0001 2173 6074Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, and North Carolina State University, Raleigh, NC USA
| | - Makarand V. Risbud
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA ,grid.265008.90000 0001 2166 5843Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
32
|
The role of HIF proteins in maintaining the metabolic health of the intervertebral disc. Nat Rev Rheumatol 2021; 17:426-439. [PMID: 34083809 PMCID: PMC10019070 DOI: 10.1038/s41584-021-00621-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 01/18/2023]
Abstract
The physiologically hypoxic intervertebral disc and cartilage rely on the hypoxia-inducible factor (HIF) family of transcription factors to mediate cellular responses to changes in oxygen tension. During homeostatic development, oxygen-dependent prolyl hydroxylases, circadian clock proteins and metabolic intermediates control the activities of HIF1 and HIF2 in these tissues. Mechanistically, HIF1 is the master regulator of glycolytic metabolism and cytosolic lactate levels. In addition, HIF1 regulates mitochondrial metabolism by promoting flux through the tricarboxylic acid cycle, inhibiting downsteam oxidative phosphorylation and controlling mitochondrial health through modulation of the mitophagic pathway. Accumulation of metabolic intermediates from HIF-dependent processes contribute to intracellular pH regulation in the disc and cartilage. Namely, to prevent changes in intracellular pH that could lead to cell death, HIF1 orchestrates a bicarbonate buffering system in the disc, controlled by carbonic anhydrase 9 (CA9) and CA12, sodium bicarbonate cotransporters and an intracellular H+/lactate efflux mechanism. In contrast to HIF1, the role of HIF2 remains elusive; in disorders of the disc and cartilage, its function has been linked to both anabolic and catabolic pathways. The current knowledge of hypoxic cell metabolism and regulation of HIF1 activity provides a strong basis for the development of future therapies designed to repair the degenerative disc.
Collapse
|
33
|
Melgoza IP, Chenna SS, Tessier S, Zhang Y, Tang SY, Ohnishi T, Novais EJ, Kerr GJ, Mohanty S, Tam V, Chan WCW, Zhou C, Zhang Y, Leung VY, Brice AK, Séguin CA, Chan D, Vo N, Risbud MV, Dahia CL. Development of a standardized histopathology scoring system using machine learning algorithms for intervertebral disc degeneration in the mouse model-An ORS spine section initiative. JOR Spine 2021; 4:e1164. [PMID: 34337338 PMCID: PMC8313179 DOI: 10.1002/jsp2.1164] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/28/2022] Open
Abstract
Mice have been increasingly used as preclinical model to elucidate mechanisms and test therapeutics for treating intervertebral disc degeneration (IDD). Several intervertebral disc (IVD) histological scoring systems have been proposed, but none exists that reliably quantitate mouse disc pathologies. Here, we report a new robust quantitative mouse IVD histopathological scoring system developed by building consensus from the spine community analyses of previous scoring systems and features noted on different mouse models of IDD. The new scoring system analyzes 14 key histopathological features from nucleus pulposus (NP), annulus fibrosus (AF), endplate (EP), and AF/NP/EP interface regions. Each feature is categorized and scored; hence, the weight for quantifying the disc histopathology is equally distributed and not driven by only a few features. We tested the new histopathological scoring criteria using images of lumbar and coccygeal discs from different IDD models of both sexes, including genetic, needle-punctured, static compressive models, and natural aging mice spanning neonatal to old age stages. Moreover, disc sections from common histological preparation techniques and stains including H&E, SafraninO/Fast green, and FAST were analyzed to enable better cross-study comparisons. Fleiss's multi-rater agreement test shows significant agreement by both experienced and novice multiple raters for all 14 features on several mouse models and sections prepared using various histological techniques. The sensitivity and specificity of the new scoring system was validated using artificial intelligence and supervised and unsupervised machine learning algorithms, including artificial neural networks, k-means clustering, and principal component analysis. Finally, we applied the new scoring system on established disc degeneration models and demonstrated high sensitivity and specificity of histopathological scoring changes. Overall, the new histopathological scoring system offers the ability to quantify histological changes in mouse models of disc degeneration and regeneration with high sensitivity and specificity.
Collapse
Affiliation(s)
- Itzel Paola Melgoza
- Orthopedic Soft Tissue Research ProgramHospital for Special SurgeryNew York CityNew YorkUSA
| | - Srish S. Chenna
- Orthopedic Soft Tissue Research ProgramHospital for Special SurgeryNew York CityNew YorkUSA
| | - Steven Tessier
- Department of Orthopaedic SurgerySidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Yejia Zhang
- University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Simon Y. Tang
- Department of Orthopaedic SurgeryWashington University in St LouisMissouriUSA
| | - Takashi Ohnishi
- Department of Orthopaedic SurgerySidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Department of Orthopaedic SurgeryFaculty of Medicine and Graduate School of Medicine, Hokkaido UniversitySapporoJapan
| | - Emanuel José Novais
- Department of Orthopaedic SurgerySidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPennsylvaniaUSA
| | - Geoffrey J. Kerr
- Department of Physiology & PharmacologyBone & Joint Institute, University of Western OntarioLondonOntarioCanada
| | | | - Vivian Tam
- School of Biomedical SciencesThe University of Hong KongPokfulamHong Kong
| | - Wilson C. W. Chan
- School of Biomedical SciencesThe University of Hong KongPokfulamHong Kong
- Department of Orthopaedic and TraumatologyThe University of Hong Kong‐Shenzhen HospitalShenzhenGuangdongChina
| | - Chao‐Ming Zhou
- Department of Orthopaedic SurgeryUniversity of PittsburghPennsylvaniaUSA
| | - Ying Zhang
- School of Biomedical SciencesThe University of Hong KongPokfulamHong Kong
| | - Victor Y. Leung
- Department of Orthopaedics and TraumatologyThe University of Hong KongPokfulamHong Kong
| | | | - Cheryle A. Séguin
- Department of Physiology & PharmacologyBone & Joint Institute, University of Western OntarioLondonOntarioCanada
| | - Danny Chan
- School of Biomedical SciencesThe University of Hong KongPokfulamHong Kong
- Department of Orthopaedic and TraumatologyThe University of Hong Kong‐Shenzhen HospitalShenzhenGuangdongChina
| | - Nam Vo
- Department of Orthopaedic SurgeryUniversity of PittsburghPennsylvaniaUSA
| | - Makarand V. Risbud
- Department of Orthopaedic SurgerySidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Chitra L. Dahia
- Orthopedic Soft Tissue Research ProgramHospital for Special SurgeryNew York CityNew YorkUSA
- Department of Cell & Developmental BiologyWeill Cornell Medicine Graduate School of Medical SciencesNew York CityNew YorkUSA
| |
Collapse
|
34
|
Wang D, Hartman R, Han C, Zhou CM, Couch B, Malkamaki M, Roginskaya V, Van Houten B, Mullett SJ, Wendell SG, Jurczak MJ, Kang J, Lee J, Sowa G, Vo N. Lactate oxidative phosphorylation by annulus fibrosus cells: evidence for lactate-dependent metabolic symbiosis in intervertebral discs. Arthritis Res Ther 2021; 23:145. [PMID: 34020698 PMCID: PMC8139157 DOI: 10.1186/s13075-021-02501-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 04/03/2021] [Indexed: 01/03/2023] Open
Abstract
Background Intervertebral disc degeneration contributes to low back pain. The avascular intervertebral disc consists of a central hypoxic nucleus pulpous (NP) surrounded by the more oxygenated annulus fibrosus (AF). Lactic acid, an abundant end-product of NP glycolysis, has long been viewed as a harmful waste that acidifies disc tissue and decreases cell viability and function. As lactic acid is readily converted into lactate in disc tissue, the objective of this study was to determine whether lactate could be used by AF cells as a carbon source rather than being removed from disc tissue as a waste byproduct. Methods Import and conversion of lactate to tricarboxylic acid (TCA) cycle intermediates and amino acids in rabbit AF cells were measured by heavy-isotope (13C-lactate) tracing experiments using mass spectrometry. Levels of protein expression of lactate converting enzymes, lactate importer and exporter in NP and AF tissues were quantified by Western blots. Effects of lactate on proteoglycan (35S-sulfate) and collagen (3H-proline) matrix protein synthesis and oxidative phosphorylation (Seahorse XFe96 Extracellular Flux Analyzer) in AF cells were assessed. Results Heavy-isotope tracing experiments revealed that AF cells imported and converted lactate into TCA cycle intermediates and amino acids using in vitro cell culture and in vivo models. Addition of exogenous lactate (4mM) in culture media induced expression of the lactate importer MCT1 and increased oxygen consumption rate by 50%, mitochondrial ATP-linked respiration by 30%, and collagen synthesis by 50% in AF cell cultures grown under physiologic oxygen (2-5% O2) and glucose concentration (1-5mM). AF tissue highly expresses MCT1, LDH-H, an enzyme that preferentially converts lactate to pyruvate, and PDH, an enzyme that converts pyruvate to acetyl-coA. In contrast, NP tissue highly expresses MCT4, a lactate exporter, and LDH-M, an enzyme that preferentially converts pyruvate to lactate. Conclusions These findings support disc lactate-dependent metabolic symbiosis in which lactate produced by the hypoxic, glycolytic NP cells is utilized by the more oxygenated AF cells via oxidative phosphorylation for energy and matrix production, thus shifting the current research paradigm of viewing disc lactate as a waste product to considering it as an important biofuel. These scientifically impactful results suggest novel therapeutic targets in disc metabolism and degeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02501-2.
Collapse
Affiliation(s)
- Dong Wang
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, 200 Lothrop Street, E1644 Biomedical Science Tower, Pittsburgh, PA, 15261, USA
| | - Robert Hartman
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, 200 Lothrop Street, E1644 Biomedical Science Tower, Pittsburgh, PA, 15261, USA.,University of Pittsburgh Medical Center Enterprises, Pittsburgh, PA, 15213, USA
| | - Chao Han
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, 200 Lothrop Street, E1644 Biomedical Science Tower, Pittsburgh, PA, 15261, USA.,Tianjin Hospital, 406 Jiefang South Road Hexi District, Tianjin, PR China
| | - Chao-Ming Zhou
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, 200 Lothrop Street, E1644 Biomedical Science Tower, Pittsburgh, PA, 15261, USA
| | - Brandon Couch
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, 200 Lothrop Street, E1644 Biomedical Science Tower, Pittsburgh, PA, 15261, USA
| | - Matias Malkamaki
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, 200 Lothrop Street, E1644 Biomedical Science Tower, Pittsburgh, PA, 15261, USA
| | - Vera Roginskaya
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA.,Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stacy G Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA.,Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael J Jurczak
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - James Kang
- Department of Orthopedics, Brigham and Women's Hospital, School of Medicine, Harvard University, 75 Francis Street, Boston, MA, 02115, USA
| | - Joon Lee
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, 200 Lothrop Street, E1644 Biomedical Science Tower, Pittsburgh, PA, 15261, USA
| | - Gwendolyn Sowa
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, 200 Lothrop Street, E1644 Biomedical Science Tower, Pittsburgh, PA, 15261, USA. .,Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| | - Nam Vo
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, 200 Lothrop Street, E1644 Biomedical Science Tower, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
35
|
Novais EJ, Choi H, Madhu V, Suyama K, Anjo SI, Manadas B, Shapiro IM, Salgado AJ, Risbud MV. Hypoxia and Hypoxia-Inducible Factor-1α Regulate Endoplasmic Reticulum Stress in Nucleus Pulposus Cells: Implications of Endoplasmic Reticulum Stress for Extracellular Matrix Secretion. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:487-502. [PMID: 33307037 PMCID: PMC7927276 DOI: 10.1016/j.ajpath.2020.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/03/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
Endoplasmic reticulum (ER) stress is shown to promote nucleus pulposus (NP) cell apoptosis and intervertebral disc degeneration. However, little is known about ER stress regulation by the hypoxic disc microenvironment and its contribution to extracellular matrix homeostasis. NP cells were cultured under hypoxia (1% partial pressure of oxygen) to assess ER stress status, and gain-of-function and loss-of-function approaches were used to assess the role of hypoxia-inducible factor (HIF)-1α in this pathway. In addition, the contribution of ER stress induction on the NP cell secretome was assessed by a nontargeted quantitative proteomic analysis by sequential windowed data independent acquisition of the total high-resolution mass spectra-mass spectrometry. NP cells exhibited a lower ER stress burden under hypoxia. Knockdown of HIF-1α increased C/EBP homologous protein, protein kinase RNA-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6) levels, whereas HIF-1α stabilization decreased the expression of ER stress markers Ddit3, Hsp5a, Atf6, and Eif2a. Interestingly, ER stress inducers tunicamycin and thapsigargin induced HIF-1α activity under hypoxia while promoting the unfolded protein response. NP cell secretome analysis demonstrated an impact of ER stress induction on extracellular matrix secretion, with decreases in collagens and cell adhesion-related proteins. Moreover, analysis of transcriptomic data of NP tissues from aged mice and degenerated human discs showed higher levels of unfolded protein response markers and decreased levels of matrix components. Our study shows, for the first time, that hypoxia and HIF-1α attenuate ER stress responses in NP cells, and ER stress promotes inefficient extracellular matrix secretion under hypoxia.
Collapse
Affiliation(s)
- Emanuel J Novais
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania; Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal; Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics (ICVS/3B's) - PT Government Associate Laboratory, Braga, Portugal
| | - Hyowon Choi
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania; Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Vedavathi Madhu
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania; Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Kaori Suyama
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Anatomy and Cellular Biology, Tokai University School of Medicine, Isehara, Japan
| | - Sandra I Anjo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Irving M Shapiro
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania; Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - António J Salgado
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal; Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics (ICVS/3B's) - PT Government Associate Laboratory, Braga, Portugal
| | - Makarand V Risbud
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania; Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
36
|
Baumgartner L, Wuertz-Kozak K, Le Maitre CL, Wignall F, Richardson SM, Hoyland J, Ruiz Wills C, González Ballester MA, Neidlin M, Alexopoulos LG, Noailly J. Multiscale Regulation of the Intervertebral Disc: Achievements in Experimental, In Silico, and Regenerative Research. Int J Mol Sci 2021; 22:E703. [PMID: 33445782 PMCID: PMC7828304 DOI: 10.3390/ijms22020703] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a major risk factor of low back pain. It is defined by a progressive loss of the IVD structure and functionality, leading to severe impairments with restricted treatment options due to the highly demanding mechanical exposure of the IVD. Degenerative changes in the IVD usually increase with age but at an accelerated rate in some individuals. To understand the initiation and progression of this disease, it is crucial to identify key top-down and bottom-up regulations' processes, across the cell, tissue, and organ levels, in health and disease. Owing to unremitting investigation of experimental research, the comprehension of detailed cell signaling pathways and their effect on matrix turnover significantly rose. Likewise, in silico research substantially contributed to a holistic understanding of spatiotemporal effects and complex, multifactorial interactions within the IVD. Together with important achievements in the research of biomaterials, manifold promising approaches for regenerative treatment options were presented over the last years. This review provides an integrative analysis of the current knowledge about (1) the multiscale function and regulation of the IVD in health and disease, (2) the possible regenerative strategies, and (3) the in silico models that shall eventually support the development of advanced therapies.
Collapse
Affiliation(s)
- Laura Baumgartner
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY 14623, USA;
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), 81547 Munich, Germany
| | - Christine L. Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Francis Wignall
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Judith Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Carlos Ruiz Wills
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Miguel A. González Ballester
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Michael Neidlin
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Leonidas G. Alexopoulos
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Jérôme Noailly
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| |
Collapse
|
37
|
Lan T, Shiyu-Hu, Shen Z, Yan B, Chen J. New insights into the interplay between miRNAs and autophagy in the aging of intervertebral discs. Ageing Res Rev 2021; 65:101227. [PMID: 33238206 DOI: 10.1016/j.arr.2020.101227] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/27/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
Intervertebral disc degeneration (IDD) has been widely known as a main contributor to low back pain which has a negative socioeconomic impact worldwide. However, the underlying mechanism remains unclear. MicroRNAs (miRNAs) are a class of small noncoding RNAs that post-transcriptionally regulate gene expression and serve key roles in the ageing process of intervertebral disc. Autophagy is an evolutionarily conserved process that maintains cellular homeostasis through recycling of nutrients and degradation of damaged or aged cytoplasmic organelles. Autophagy has been proposed as a "double-edged sword" and autophagy dysfunction of IVD cells is considered as a crucial reason of IDD. A rapidly growing number of recent studies demonstrate that both miRNAs and autophagy play important roles in the progression of IDD. Furthermore, accumulated research has indicated that miRNAs target autophagy-related genes and influence the onset and development of IDD. Hence, this review focuses mainly on the current findings regarding the correlations between miRNA, autophagy, and IDD and provides new insights into the role of miRNA-autophagy pathway involved in IDD pathophysiology.
Collapse
|
38
|
Madhu V, Guntur AR, Risbud MV. Role of autophagy in intervertebral disc and cartilage function: implications in health and disease. Matrix Biol 2020; 100-101:207-220. [PMID: 33301899 DOI: 10.1016/j.matbio.2020.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
The intervertebral disc and cartilage are specialized, extracellular matrix-rich tissues critical for absorbing mechanical loads, providing flexibility to the joints, and longitudinal growth in the case of growth plate cartilage. Specialized niche conditions in these tissues, such as hypoxia, are critical in regulating cellular activities including autophagy, a lysosomal degradation pathway that promotes cell survival. Mounting evidence suggests that dysregulation of autophagic pathways underscores many skeletal pathologies affecting the spinal column, articular and growth plate cartilages. Many lysosomal storage disorders characterized by the accumulation of partially degraded glycosaminoglycans (GAGs) due to the lysosomal dysfunction thus affect skeletal tissues and result in altered ECM structure. Likewise, pathologies that arise from mutations in genes encoding ECM proteins and ECM processing, folding, and post-translational modifications, result in accumulation of misfolded proteins in the ER, ER stress and autophagy dysregulation. These conditions evidence reduced secretion of ECM proteins and/or increased secretion of mutant proteins, thereby impairing matrix quality and the integrity of affected skeletal tissues and causing a lack of growth and degeneration. In this review, we discuss the role of autophagy and mechanisms of its regulation in the intervertebral disc and cartilages, as well as how dysregulation of autophagic pathways affects these skeletal tissues.
Collapse
Affiliation(s)
- Vedavathi Madhu
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Anyonya R Guntur
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA; Tufts University School of Medicine, Tufts University, Boston, MA USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA; Cell Biology and Regenerative Medicine Graduate Program, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
39
|
Tsingas M, Ottone OK, Haseeb A, Barve RA, Shapiro IM, Lefebvre V, Risbud MV. Sox9 deletion causes severe intervertebral disc degeneration characterized by apoptosis, matrix remodeling, and compartment-specific transcriptomic changes. Matrix Biol 2020; 94:110-133. [PMID: 33027692 DOI: 10.1016/j.matbio.2020.09.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022]
Abstract
SOX9 plays an important role in chondrocyte differentiation and, in the developing axial skeleton, maintains the notochord and the demarcation of intervertebral disc compartments. Diminished expression is linked to campomelic dysplasia, resulting in severe scoliosis and progressive disc degeneration. However, the specific functions of SOX9 in the adult spinal column and disc are largely unknown. Accordingly, employing a strategy to conditionally delete Sox9 in Acan-expressing cells (AcanCreERT2Sox9fl/fl), we delineated these functions in the adult intervertebral disc. AcanCreERT2Sox9fl/fl mice (Sox9cKO) showed extensive and progressive remodeling of the extracellular matrix in nucleus pulposus (NP) and annulus fibrosus (AF), consistent with human disc degeneration. Progressive degeneration of the cartilaginous endplates (EP) was also evident in Sox9cKO mice, and it preceded morphological changes seen in the NP and AF compartments. Fate mapping using tdTomato reporter, EdU chase, and quantitative immunohistological studies demonstrated that SOX9 is crucial for disc cell survival and phenotype maintenance. Microarray analysis showed that Sox9 regulated distinct compartment-specific transcriptomic landscapes, with prominent contributions to the ECM, cytoskeleton-related, and metabolic pathways in the NP and ion transport, the cell cycle, and signaling pathways in the AF. In summary, our work provides new insights into disc degeneration in Sox9cKO mice at the cellular, molecular, and transcriptional levels, underscoring tissue-specific roles of this transcription factor. Our findings may direct future cell therapies targeting SOX9 to mitigate disc degeneration.
Collapse
Affiliation(s)
- Maria Tsingas
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Olivia K Ottone
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Abdul Haseeb
- Department of Surgery/Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ruteja A Barve
- Department of Genetics, Genome Technology Access Centre at the McDonnell Genome Institute, Washington University, School of Medicine, St. Louis, MO 63110, USA
| | - Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Véronique Lefebvre
- Department of Surgery/Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
40
|
Binch A, Snuggs J, Le Maitre CL. Immunohistochemical analysis of protein expression in formalin fixed paraffin embedded human intervertebral disc tissues. JOR Spine 2020; 3:e1098. [PMID: 33015573 PMCID: PMC7524243 DOI: 10.1002/jsp2.1098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/18/2020] [Accepted: 05/15/2020] [Indexed: 01/07/2023] Open
Abstract
Immunohistochemistry (IHC) is a useful technique for the localization and semiquantification of protein expression within tissues. Adult human intervertebral disc (IVD) tissues contain a large amount of auto-fluorescence which often makes immunofluorescence techniques inappropriate on tissue samples but can be applied to isolated cell samples. Thus, IHC remains one of, if not the most common application for protein detection within IVD tissue. Immunostaining localizes antigen expression through specific epitope-antibody interactions. Within the field of IVD research, IHC is commonly used on fresh frozen and paraffin embedded tissues to elucidate the expression of antigens. Here, we discuss the principles of IHC applied to formalin fixed paraffin embedded IVD tissue and supply optimized protocols for antibodies used within our group to guide research within the IVD field.
Collapse
Affiliation(s)
- Abbie Binch
- Biomolecular Sciences Research Centre Sheffield Hallam University Sheffield UK
| | - Joseph Snuggs
- Biomolecular Sciences Research Centre Sheffield Hallam University Sheffield UK
| | | |
Collapse
|
41
|
Madhu V, Boneski PK, Silagi E, Qiu Y, Kurland I, Guntur AR, Shapiro IM, Risbud MV. Hypoxic Regulation of Mitochondrial Metabolism and Mitophagy in Nucleus Pulposus Cells Is Dependent on HIF-1α-BNIP3 Axis. J Bone Miner Res 2020; 35:1504-1524. [PMID: 32251541 PMCID: PMC7778522 DOI: 10.1002/jbmr.4019] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/28/2020] [Accepted: 03/15/2020] [Indexed: 12/31/2022]
Abstract
Nucleus pulposus (NP) cells reside in an avascular and hypoxic microenvironment of the intervertebral disc and are predominantly glycolytic due to robust HIF-1 activity. It is generally thought that NP cells contain few functional mitochondria compared with cells that rely on oxidative metabolism. Consequently, the contribution of mitochondria to NP cell metabolism and the role of hypoxia and HIF-1 in mitochondrial homeostasis is poorly understood. Using mitoQC reporter mice, we show for the first time to our knowledge that NP cell mitochondria undergo age-dependent mitophagy in vivo. Mechanistically, in vitro studies suggest that, under hypoxic conditions, mitochondria in primary NP cells undergo HIF-1α-dependent fragmentation, controlled by modulating the levels of key proteins DRP1 and OPA1 that are involved in mitochondrial fission and fusion, respectively. Seahorse assays and steady state metabolic profiling coupled with [1-2-13 C]-glucose flux analysis revealed that in hypoxia, HIF-1α regulated metabolic flux through coordinating glycolysis and the mitochondrial TCA cycle interactions, thereby controlling the overall biosynthetic capacity of NP cells. We further show that hypoxia and HIF-1α trigger mitophagy in NP cells through the mitochondrial translocation of BNIP3, an inducer of receptor-mediated mitophagy. Surprisingly, however, loss of HIF-1α in vitro and analysis of NP-specific HIF-1α null mice do not show a decrease in mitophagic flux in NP cells but a compensatory increase in NIX and PINK1-Parkin pathways with higher mitochondrial number. Taken together, our studies provide novel mechanistic insights into the complex interplay between hypoxia and HIF-1α signaling on the mitochondrial metabolism and quality control in NP cells. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Vedavathi Madhu
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Paige K Boneski
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elizabeth Silagi
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA.,Cell Biology and Regenerative Medicine Graduate Program, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yunping Qiu
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Irwin Kurland
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anyonya R Guntur
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Irving M Shapiro
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA.,Cell Biology and Regenerative Medicine Graduate Program, Thomas Jefferson University, Philadelphia, PA, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA.,Cell Biology and Regenerative Medicine Graduate Program, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
42
|
Tessier S, Risbud MV. Understanding embryonic development for cell-based therapies of intervertebral disc degeneration: Toward an effort to treat disc degeneration subphenotypes. Dev Dyn 2020; 250:302-317. [PMID: 32564440 DOI: 10.1002/dvdy.217] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic low back and neck pain are associated with intervertebral disc degeneration and are major contributors to the global burden of disability. New evidence now suggests that disc degeneration comprises a spectrum of subphenotypes influenced by genetic background, age, and environmental factors, which may be contributing to the mixed outcomes seen in clinical trials of cell-based therapies that aim to treat disc degeneration. This problem is further compounded by the fact that disc degeneration and aging coincide with an exhaustion of endogenous progenitor cells, imposing limitations on the regenerative capacity of the disc. At the bench-side, current work is focused on applying our knowledge of embryonic disc development to direct and refine differentiation of adult and human-induced pluripotent stem cells into notochord-like and nucleus pulposus-like cells for use in novel cell-based therapies. Accordingly, this review presents the salient features of intervertebral disc development, post-natal maintenance, and regeneration, with emphasis on recent advancements. We also discuss how a stratified approach can be undertaken for the development of future cell-based therapies to bring emerging subphenotypes into consideration.
Collapse
Affiliation(s)
- Steven Tessier
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.,Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
43
|
Zhao Y, Qiu C, Wang W, Peng J, Cheng X, Shangguan Y, Xu M, Li J, Qu R, Chen X, Jia S, Luo D, Liu L, Li P, Guo F, Vasilev K, Liu L, Hayball J, Dong S, Pan X, Li Y, Guo L, Cheng L, Li W. Cortistatin protects against intervertebral disc degeneration through targeting mitochondrial ROS-dependent NLRP3 inflammasome activation. Theranostics 2020; 10:7015-7033. [PMID: 32550919 PMCID: PMC7295059 DOI: 10.7150/thno.45359] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Intervertebral disc (IVD) degeneration is a common degenerative disease that can lead to collapse or herniation of the nucleus pulposus (NP) and result in radiculopathy in patients. Methods: NP tissue and cells were isolated from patients and mice, and the expression profile of cortistatin (CST) was analysed. In addition, ageing of the NP was compared between 6-month-old WT and CST-knockout (CST-/-) mice. Furthermore, NP tissues and cells were cultured to validate the role of CST in TNF-α-induced IVD degeneration. Moreover, in vitro and in vivo experiments were performed to identify the potential role of CST in mitochondrial dysfunction, mitochondrial ROS generation and activation of the NLRP3 inflammasome during IVD degeneration. In addition, NF-κB signalling pathway activity was tested in NP tissues and cells from CST-/- mice. Results: The expression of CST in NP cells was diminished in the ageing- and TNF-α-induced IVD degeneration process. In addition, compared with WT mice, aged CST-/- mice displayed accelerated metabolic imbalance and enhanced apoptosis, and these mice showed a disorganized NP tissue structure. Moreover, TNF-α-mediated catabolism and apoptosis were alleviated by exogenous CST treatment. Furthermore, CST inhibited mitochondrial dysfunction in NP cells through IVD degeneration and suppressed activation of the NLRP3 inflammasome. In vitro and ex vivo experiments indicated that increased NF-κB pathway activity might have been associated with the IVD degeneration observed in CST-/- mice. Conclusion: This study suggests the role of CST in mitochondrial ROS and activation of the NLRP3 inflammasome in IVD degeneration, which might shed light on therapeutic targets for IVD degeneration.
Collapse
|
44
|
Han JYS, Kinoshita J, Bisetto S, Bell BA, Nowak RA, Peachey NS, Philp NJ. Role of monocarboxylate transporters in regulating metabolic homeostasis in the outer retina: Insight gained from cell-specific Bsg deletion. FASEB J 2020; 34:5401-5419. [PMID: 32112484 DOI: 10.1096/fj.201902961r] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
The neural retina metabolizes glucose through aerobic glycolysis generating large amounts of lactate. Lactate flux into and out of cells is regulated by proton-coupled monocarboxylate transporters (MCTs), which are encoded by members of the Slc16a family. MCT1, MCT3, and MCT4 are expressed in the retina and require association with the accessory protein basigin, encoded by Bsg, for maturation and trafficking to the plasma membrane. Bsg-/- mice have severely reduced electroretinograms (ERGs) and progressive photoreceptor degeneration, which is presumed to be driven by metabolic dysfunction resulting from loss of MCTs. To understand the basis of the Bsg-/- phenotype, we generated mice with conditional deletion of Bsg in rods (RodΔBsg), cones (Cone∆Bsg), or retinal pigment epithelial cells (RPEΔBsg). RodΔBsg mice showed a progressive loss of photoreceptors, while ConeΔBsg mice did not display a degenerative phenotype. The RPEΔBsg mice developed a distinct phenotype characterized by severely reduced ERG responses as early as 4 weeks of age. The loss of lactate transporters from the RPE most closely resembled the phenotype of the Bsg-/- mouse, suggesting that the regulation of lactate levels in the RPE and the subretinal space is essential for the viability and function of photoreceptors.
Collapse
Affiliation(s)
- John Y S Han
- Department of Pathology, Anatomy, & Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Sara Bisetto
- Department of Pathology, Anatomy, & Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Brent A Bell
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Romana A Nowak
- Animal Sciences, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Neal S Peachey
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA.,Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Nancy J Philp
- Department of Pathology, Anatomy, & Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|