1
|
Soans SH, Chonche MJ, Sharan K, Srinivasan A, Archer AC. Apoptotic and anti-inflammatory effect of nisin-loaded sodium alginate-gum arabic nanoparticles against colon cancer cells. Int J Biol Macromol 2025; 305:141747. [PMID: 40049503 DOI: 10.1016/j.ijbiomac.2025.141747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
Colon cancer is one of the leading causes of mortality and morbidity worldwide. Nisin, a polycyclic antibacterial peptide and food preservative has shown potential to combat cancer. However, it is susceptible to proteolytic cleavage in the gut. The current study investigates the protective and cytotoxic effects of nisin loaded sodium alginate gum arabic nanoparticles (Nis/ALG-GA NPs) in Caco2 cells. The physicochemical properties, loading efficiency and release kinetics were studied. Cytotoxicity (MTT assay), apoptotic effect (Ethidium bromide and acridine orange staining) and internalisation (FITC tagging) were evaluated. Gene expression of apoptotic markers and IL-10 were analysed by qPCR. The Nis/ALG-GA NPs were spherical, small with a smooth outer surface and mean size of 193 ± 4 nm. The loading efficacy was 88 ± 2 % exhibiting slow sustained release of the peptide under different gut pH conditions. The IC50 value obtained was 500 μg for 48 h and 80 μg for 72 h of incubation. The Nis/ALG-GA NPs were internalised into Caco2 cells and induced apoptosis with an increased expression of bax gene and converse decrease of bcl-2 gene. Anti-inflammatory gene IL10 was upregulated upon treatment with NPs. Thus, the Nis/ALG-GA NPs may be promising oral drug delivery systems against colon cancers.
Collapse
Affiliation(s)
- Sanya Hazel Soans
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, India
| | - Muzaffar Jahangir Chonche
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Asha Srinivasan
- Division of Nanoscience and Technology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Ann Catherine Archer
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, India.
| |
Collapse
|
2
|
Rajput S, Kulkarni C, Sharma S, Tomar MS, Khatoon S, Gupta A, Sanyal S, Shrivastava A, Ghosh JK, Chattopadhyay N. Osteogenic effect of an adiponectin-derived short peptide that rebalances bone remodeling: a potential disease-modifying approach for postmenopausal osteoporosis therapy. Arch Pharm Res 2024; 47:736-755. [PMID: 39073743 DOI: 10.1007/s12272-024-01509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Adiponectin, an adipokine, regulates metabolic processes, including glucose flux, lipid breakdown, and insulin response, by activating adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2). We have previously shown that globular adiponectin (gAd), an endogenous form of adiponectin, has osteoanabolic and anti-catabolic effects in rodent models of postmenopausal osteopenia. Moreover, we reported the identification of a 13-mer peptide (ADP-1) from the collagen domain of adiponectin, which exhibited significant adiponectin-mimetic properties. Since the clinical development of gAd is constrained by its large size, here, we investigated the osteogenic property of ADP-1. ADP-1 induced osteoblast differentiation more potently than gAd. ADP-1 elicited osteoblast differentiation through two downstream pathways that involved the participation of adiponectin receptors. Firstly, it enhanced mitochondrial biogenesis and OxPhos, leading to osteoblast differentiation. Secondly, it activated the Akt-glycogen synthase kinase 3β-Wnt pathway, thereby increasing osteoblast differentiation. Additionally, ADP-1 suppressed the production of receptor-activator of nuclear kappa B ligand from osteoblasts, enabling it to act as a dual-action molecule (suppressing osteoclast function besides promoting osteoblast function). In osteopenic ovariectomized rats, ADP-1 increased bone mass and strength and improved trabecular integrity by stimulating bone formation and inhibiting bone resorption. Furthermore, by increasing ATP-producing intermediates within the tricarboxylic acid cycle in bones, ADP-1 likely fueled osteoblast function. Given its dual-action mechanism and high potency, ADP-1 offers a unique opportunity to address the unmet clinical need to reset the aberrant bone remodeling in osteoporosis to normalcy, potentially offering a disease-modifying impact.
Collapse
Affiliation(s)
- Swati Rajput
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chirag Kulkarni
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shivani Sharma
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manendra Singh Tomar
- Centre for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, India
| | - Shamima Khatoon
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Arvind Gupta
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sabyasachi Sanyal
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Ashutosh Shrivastava
- Centre for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, India
| | - Jimut Kanti Ghosh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Joshi DD, Deb L, Somkuwar BG, Rana VS. Potential use of barks of woody vascular plants in bone mending: A review. Saudi Pharm J 2023; 31:101714. [PMID: 37559869 PMCID: PMC10406872 DOI: 10.1016/j.jsps.2023.101714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/23/2023] [Indexed: 08/11/2023] Open
Abstract
The use of synthetic drugs to overcome bone ailments causes severe side effects, but the application of herbals is helpful in maintaining bone health and accelerating bone mending. Currently, there is no oral allopathic medicine to hasten bone healing, though folk and traditional practices have adopted herbal to fasten the recovery from bone ailments. Earliest recovery is a universally desired phenomenon, especially for elderly people where many more cases of traumatic injuries are common along the compromised body immunity. The computerized database search engines, such as Google Scholar, PubMed, ScienceDirect, Springer Link, etc., and textbooks were used to collect all relevant information about barks for bone mending activity published from 1990 onwards using certain keywords such as bark, folklore/ traditional bone healing practices, and phytopharmacology. The results obtained were compiled to make this review and related information is tabulated herewith. Traditional herbal bone healing exists in every society in the world. The plant barks of a few species (e.g., Ficus religiosa, Prunus cerasoides, Terminalia arjuna, etc.) have outstanding significance for bone healing because of their special chemical composition and novel properties to reduce swelling, pain, soreness, and speedy recovery of functions. Mostly bark extracts are rich in polyphenols, and minerals, represented with antioxidant, immunostimulatory, antibacterial properties, etc. There is a diversity of bark utilization for bone healing from different plant species, globally, of which only a few have been phytopharmacologically deciphered. Validated bark ingredients as medicine or food supplements are more useful due to the least side effects. Entrepreneurs have a scope to use bioactive obtained from plant barks that have not been scientifically screened till now. The research focused on the commercial application of plant barks as green medicine needs fingerprints of bioactive and clinically validated data including the concentration of biomarkers in the blood (IC50) for reducing the healing period. Phytopharmacological screening of barks used in folk medicine and synthesizing the therapeutics at mega quantities in industries is an array of hopes for sustainable utilization of natural resources. The bio-stimulating knowledge of certain herbal ingredients will be helpful in the development of synergistic formulations for rapid bone mending.
Collapse
Affiliation(s)
- Devi Datt Joshi
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida 201313, UP, India
- Amity Herbal Consortium, Amity University Uttar Pradesh, Noida 201313, UP, India
| | - Lokesh Deb
- Institute of Bioresources and Sustainable Development (IBSD)-Regional Centre, Sikkim, 5th Mile, Tadong, Gangtok-737102, Sikkim, India
| | - Bharat G. Somkuwar
- Institute of Bioresources and Sustainable Development, Node Mizoram, A-1, C/o P. Lalthangzauva Building, Chawnga Road, Nursery Veng, Aizawl, 796005, Mizoram, India
| | - Virendra Singh Rana
- Division of Agricultural Chemicals, Indian Agricultural Research Institute (ICAR), Pusa Campus, New Delhi 110 012. India
| |
Collapse
|
4
|
Patel K, Mangu SR, Sukhdeo SV, Sharan K. Sesamol improves bone mass in ovary intact growing and adult rats but accelerates bone deterioration in the ovariectomized rats. J Nutr Biochem 2023:109384. [PMID: 37209954 DOI: 10.1016/j.jnutbio.2023.109384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Sesamol, an active component in sesame seeds, is known for its health benefits. However, its effect on bone metabolism remains unexplored. The present study aims to investigate the effect of sesamol on growing, adult and osteoporotic skeleton and its mechanism of action. Sesamol at various doses were administered orally to growing, ovariectomized, and ovary-intact rats. Alterations in bone parameters were examined using micro-CT and histological studies. Western blot and mRNA expression from long bones were performed. We further evaluated the effect of sesamol on osteoblast and osteoclast function and its mode of action in the cell culture system. These data showed that sesamol was able to promote peak bone mass in growing rats. However, sesamol had the opposite effect in ovariectomized rats, evident from gross deterioration of trabecular and cortical microarchitecture. Concurrently, it improved the bone mass in adult rats. In vitro results revealed that sesamol enhances the bone formation by stimulating osteoblast differentiation through MAPK, AKT, and BMP-2 signaling. In contrast, it enhances osteoclast differentiation and expression of osteoclast-specific genes in osteoclast differentiation medium. Interestingly, in presence of estrogen, the effect reversed and sesamol decreased osteoclast differentiation, in vitro. Sesamol improves bone microarchitecture in growing and ovary-intact rats, whereas it enhances the bone deterioration in ovariectomized rats. While sesamol promotes bone formation, its opposing effect on the skeleton can be attributed to its dual effect on osteoclastogenesis in presence and absence of estrogen. These findings in the preclinical context suggests a special attention towards the detrimental effect of sesamol in postmenopausal women.
Collapse
Affiliation(s)
- Kalpana Patel
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Svvs Ravi Mangu
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shinde Vijay Sukhdeo
- Department of Meat and Marine Sciences, CSIR- Central Food Technological Research Institute, Mysuru, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Vamadeva SG, Patel K, Ravi Mangu S, Ellur G, Sukhdeo SV, Sharan K. Maternal omega-3 LC-PUFA supplementation programs an improved bone mass in the offspring with a more pronounced effect in females than males at adulthood. J Nutr Biochem 2023; 113:109245. [PMID: 36473540 DOI: 10.1016/j.jnutbio.2022.109245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Early balanced nutrition is vital in achieving optimal skeletal mass and its maintenance. Although a lower omega-6 (n-6): omega-3 (n-3) long-chain polyunsaturated fatty acid (LC-PUFA) ratio is strongly linked with bone health, its maternal effect in the programming of the offspring's skeleton remains to be elucidated. Plugged C57BL/6 mice were fed either n-3 LC-PUFA Enriched Diet (LED) or a control diet (C) throughout their gestation and lactation. Offspring born to both the groups were weaned onto C till 6, 12, and 24 weeks of their age. Offspring's skeleton metabolism and serum fatty acid composition was studied. In humans, seventy-five mother-female newborns pairs from term gestation were tested for their maternal LC-PUFA status relationships to venous cord blood bone biomarkers. Offspring of maternal LED supplemented mice exhibited a superior bone phenotype over C, more prominent in females than males. A lower serum n-6/n-3 LC-PUFA in the LED group offspring was strongly associated with blood biomarkers of bone metabolism. Sexual dimorphism evidenced had a strong correlation between offspring's LC-PUFA levels and bone turnover markers in serum. A higher potential for osteoblastic differentiation in both LED offspring genders and reduced osteoclastogenesis in females was cell-autonomous effect. The human cross-sectional study also showed a positive correlation between maternal n-3 PUFA and cord blood markers of bone formation in female newborns at birth. Maternal dietary n-6/ n-3 fat quality determines offspring's bone growth and development. Our data suggest that the skeleton of female offspring is likely to be more sensitive to this early exposure.
Collapse
Affiliation(s)
- Sowmya Giriyapura Vamadeva
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Kalpana Patel
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Svvs Ravi Mangu
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Govindraj Ellur
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Shinde Vijay Sukhdeo
- Department of Meat and Marine Sciences, CSIR- Central Food Technological Research Institute, Mysuru, Karnataka, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
6
|
Kulkarni C, Sharma S, Porwal K, Rajput S, Sadhukhan S, Singh V, Singh A, Baranwal S, Kumar S, Girme A, Pandey AR, Singh SP, Sashidhara KV, Kumar N, Hingorani L, Chattopadhyay N. A standardized extract of Coleus forskohlii root protects rats from ovariectomy-induced loss of bone mass and strength, and impaired bone material by osteogenic and anti-resorptive mechanisms. Front Endocrinol (Lausanne) 2023; 14:1130003. [PMID: 36926021 PMCID: PMC10011618 DOI: 10.3389/fendo.2023.1130003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/20/2023] [Indexed: 03/08/2023] Open
Abstract
INTRODUCTION In obese humans, Coleus forskohlii root extract (CF) protects against weight gain owing to the presence of forskolin, an adenylate cyclase (AC) activator. As AC increases intracellular cyclic adenosine monophosphate (cAMP) levels in osteoblasts that has an osteogenic effect, we thus tested the skeletal effects of a standardized CF (CFE) in rats. METHODS Concentrations of forskolin and isoforskolin were measured in CFE by HPLC. CFE and forskolin (the most abundant compound present in CFE) were studied for their osteogenic efficacy in vitro by alkaline phosphatase (ALP), cAMP and cyclic guanosine monophosphate (cGMP) assays. Femur osteotomy model was used to determine the osteogenic dose of CFE. In growing rats, CFE was tested for its osteogenic effect in intact bone. In adult ovariectomized (OVX) rats, we assessed the effect of CFE on bone mass, strength and material. The effect of forskolin was assessed in vivo by measuring the expression of osteogenic genes in the calvarium of rat pups. RESULTS Forskolin content in CFE was 20.969%. CFE increased osteoblast differentiation and intracellular cAMP and cGMP levels in rat calvarial osteoblasts. At 25 mg/kg (half of human equivalent dose), CFE significantly enhanced calcein deposition at the osteotomy site. In growing rats, CFE promoted modeling-directed bone formation. In OVX rats, CFE maintained bone mass and microarchitecture to the level of sham-operated rats. Moreover, surface-referent bone formation in CFE treated rats was significantly increased over the OVX group and was comparable with the sham group. CFE also increased the pro-collagen type-I N-terminal propeptide: cross-linked C-telopeptide of type-I collagen (PINP : CTX-1) ratio over the OVX rats, and maintained it to the sham level. CFE treatment decreased the OVX-induced increases in the carbonate-to-phosphate, and carbonate-to-amide-I ratios. CFE also prevented the OVX-mediated decrease in mineral crystallinity. Nanoindentation parameters, including modulus and hardness, were decreased by OVX but CFE maintained these to the sham levels. Forskolin stimulated ALP, cAMP and cGMP in vitro and upregulated osteogenic genes in vivo. CONCLUSION CFE, likely due to the presence of forskolin displayed a bone-conserving effect via osteogenic and anti-resorptive mechanisms resulting in the maintenance of bone mass, microarchitecture, material, and strength.
Collapse
Affiliation(s)
- Chirag Kulkarni
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shivani Sharma
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Konica Porwal
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Swati Rajput
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sreyanko Sadhukhan
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vaishnavi Singh
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Akanksha Singh
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Sanjana Baranwal
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Saroj Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Aboli Girme
- Pharmanza Herbal Pvt. Ltd., Anand, Gujarat, India
| | - Alka Raj Pandey
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Medicinal and Process Chemistry Division, Council of Scientific & Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
- Sophisticated Analytical Instrument Facility & Research, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Suriya Pratap Singh
- Medicinal and Process Chemistry Division, Council of Scientific & Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
- Sophisticated Analytical Instrument Facility & Research, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Koneni V. Sashidhara
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Medicinal and Process Chemistry Division, Council of Scientific & Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
- Sophisticated Analytical Instrument Facility & Research, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Lal Hingorani
- Pharmanza Herbal Pvt. Ltd., Anand, Gujarat, India
- *Correspondence: Naibedya Chattopadhyay, ; Lal Hingorani,
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- *Correspondence: Naibedya Chattopadhyay, ; Lal Hingorani,
| |
Collapse
|
7
|
Nehme R, Diab-Assaf M, Decombat C, Delort L, Caldefie-Chezet F. Targeting Adiponectin in Breast Cancer. Biomedicines 2022; 10:2958. [PMID: 36428526 PMCID: PMC9687473 DOI: 10.3390/biomedicines10112958] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Obesity and breast cancer are two major health issues that could be categorized as sincere threats to human health. In the last few decades, the relationship between obesity and cancer has been well established and extensively investigated. There is strong evidence that overweight and obesity increase the risk of postmenopausal breast cancer, and adipokines are the central players in this relationship. Produced and secreted predominantly by white adipose tissue, adiponectin is a bioactive molecule that exhibits numerous protective effects and is considered the guardian angel of adipokine. In the obesity-cancer relationship, more and more evidence shows that adiponectin may prevent and protect individuals from developing breast cancer. Recently, several updates have been published on the implication of adiponectin in regulating tumor development, progression, and metastases. In this review, we provide an updated overview of the metabolic signaling linking adiponectin and breast cancer in all its stages. On the other hand, we critically summarize all the available promising candidates that may reactivate these pathways mainly by targeting adiponectin receptors. These molecules could be synthetic small molecules or plant-based proteins. Interestingly, the advances in genomics have made it possible to create peptide sequences that could specifically replace human adiponectin, activate its receptor, and mimic its function. Thus, the obvious anti-cancer activity of adiponectin on breast cancer should be better exploited, and adiponectin must be regarded as a serious biomarker that should be targeted in order to confront this threatening disease.
Collapse
Affiliation(s)
- Rawan Nehme
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Moléculaire et Pharmacologie Anticancéreuse, Faculté des Sciences II, Université Libanaise Fanar, Beyrouth 1500, Lebanon
| | - Caroline Decombat
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
8
|
Mangu SR, Patel K, Sukhdeo SV, Savitha MR, Sharan K. Maternal high-cholesterol diet negatively programs offspring bone development and downregulates hedgehog signaling in osteoblasts. J Biol Chem 2022; 298:102324. [PMID: 35931113 PMCID: PMC9440389 DOI: 10.1016/j.jbc.2022.102324] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Cholesterol is one of the essential intrauterine factors required for fetal growth and development. Maternal high cholesterol levels are known to be detrimental for offspring health. However, its long-term effect on offspring skeletal development remains to be elucidated. We performed our studies in two strains of mice (C57BL6/J and Swiss Albino) and human subjects (65 mother-female newborn dyads) to understand the regulation of offspring skeletal growth by maternal high cholesterol. We found that mice offspring from high-cholesterol-fed dams had low birth weight, smaller body length, and delayed skeletal ossification at the E18.5 embryonic stage. Moreover, we observed that the offspring did not recover from the reduced skeletal mass and exhibited a low bone mass phenotype throughout their life. We attributed this effect to reduced osteoblast cell activity with a concomitant increase in the osteoclast cell population. Our investigation of the molecular mechanism revealed that offspring from high-cholesterol-fed dams had a decrease in the expression of ligands and proteins involved in hedgehog signaling. Further, our cross-sectional study of human subjects showed a significant inverse correlation between maternal blood cholesterol levels and cord blood bone formation markers. Moreover, the bone formation markers were significantly lower in the female newborns of hypercholesterolemic mothers compared with mothers with normal cholesterolemic levels. Together, our results suggest that maternal high cholesterol levels deleteriously program offspring bone mass and bone quality and downregulate the hedgehog signaling pathway in their osteoblasts.
Collapse
Affiliation(s)
- Svvs Ravi Mangu
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kalpana Patel
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shinde Vijay Sukhdeo
- Department of Meat and Marine Sciences, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - M R Savitha
- Department of Paediatrics, Mysore Medical College and Research Institute, Mysuru, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
9
|
Zhang D, Du J, Yu M, Suo L. Ginsenoside Rb1 prevents osteoporosis via the AHR/PRELP/NF-κB signaling axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154205. [PMID: 35716470 DOI: 10.1016/j.phymed.2022.154205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Accumulating clinical and experimental evidence shows multiple biological effects of ginsenoside Rb1 (GRb1) in the treatment of aging related diseases such as osteoporosis (OP). Recently, GRb1 has attracted extensive attention as an anti-osteoporosis agent. Here, we sought to identify the mechanism by which GRb1 improves OP. METHODS A dexamethasone (DEX)-induced rat model of OP was constructed and the rats were treated with GRb1 to examine its role in OP. We screened the action targets of GRb1 online and validated by performing functional experiments. The correlation between aryl hydrocarbon receptor (AHR) and proline/arginine-rich end leucine-rich repeat protein (PRELP) was identified through luciferase and chromatin immunoprecipitation assays. In the isolated osteoblasts from DEX-induced OP rats, the expression of osteogenic differentiation-associated genes, and nuclear factor-kappa B (NF-κB) pathway-related genes, mineralization, and number of calcium nodules were assessed. RESULTS GRb1 enhanced the differentiation of osteoblasts, the mechanism of which was related to upregulation of AHR. AHR could promote the transcription of PRELP by binding to the PRELP promoter region and consequently caused its upregulation. Meanwhile, PRELP inhibited the activation of the NF-κB pathway, which underlay the promoting impact of AHR in the osteogenic differentiation. Additionally, GRb1 could ameliorate OP in DEX-induced rats via the AHR/PRELP/NF-κB axis. CONCLUSIONS Our findings demonstrate that GRb1 might function as an effective candidate to prevent the progression of OP via regulation of the AHR/PRELP/NF-κB axis, revealing a new molecular mechanism underpinning the impact of GRb1 in the progression of OP and offering a theoretical contribution to the treatment of OP.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Endocrinology, The Forth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, Liaoning 110032, China
| | - Jian Du
- Department of Endocrinology, The Forth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, Liaoning 110032, China
| | - Min Yu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Linna Suo
- Department of Endocrinology, The Forth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, Liaoning 110032, China.
| |
Collapse
|
10
|
Rossato Viana A, Godoy Noro B, Lenz JC, Luiza Machado Teixeira M, Bolson Serafin M, Hörner R, Franco C, Maria Fontanari Krause L, Stefanello Vizzotto B, Jalfim Maraschin B. Cytotoxic screening and antibacterial activity of Withaferin A. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:685-698. [PMID: 35579288 DOI: 10.1080/15287394.2022.2071787] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cancer and bacterial infections are among the leading causes of death worldwide. Plant-derived bioactive compounds constitute promising alternatives for development of new therapeutics. This study aimed at evaluating the biological activity of Withaferin A using 6 tumor cell lines: A549 (lung cancer), U87MG (glioblastoma), SH-SY5Y (neuroblastoma), B16-F10 (mouse melanoma), HeLa (uterine colon cancer) and K562 (chronic myeloid leukemia). In addition, 17 other standard bacterial strains and several multidrug resistant bacteria (MDR) clinical isolates were examined. Cell viability was assessed using the following assays: MTT, neutral red, and dsDNA PicoGreen®. Further, oxidative stress was measured by quantification of reactive oxygen species (ROS) production. The activity against bacteria was determined by the minimum inhibitory concentration (MIC), minimum bacterial concentration (CBM) and antibiofilm activity in the production of strains. Withaferin A was effective, as evidenced by its cytotoxic activity in tumor cell lines, enhanced ROS production in tumor cells and bactericidal and antibiofilm activity. Data demonstrated that Withaferin A may be therapeutically considered as an antitumor and antibacterial agent.
Collapse
Affiliation(s)
- Altevir Rossato Viana
- Programa de Pós-graduação em Nanociências, Universidade Franciscana, Santa Maria, Brasil
| | - B Godoy Noro
- Curso de Biomedicina, Universidade Franciscana, Santa Maria, Brasil
| | - J C Lenz
- Curso de Biomedicina, Universidade Franciscana, Santa Maria, Brasil
| | | | - M Bolson Serafin
- Programa de Pós-graduação em Ciências Farmacêutica, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brasil
| | - R Hörner
- Programa de Pós-graduação em Ciências Farmacêutica, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brasil
| | - C Franco
- Mestrado em Ciências da Saúde e da Vida, Universidade Franciscana, Santa Maria, Brasil
| | | | - B Stefanello Vizzotto
- Programa de Pós-graduação em Nanociências, Universidade Franciscana, Santa Maria, Brasil
| | | |
Collapse
|
11
|
Pal S, Sharma S, Porwal K, Riyazuddin M, Kulkarni C, Chattopadhyay S, Sanyal S, Gayen JR, Chattopadhyay N. Oral Administration of Isovitexin, a Naturally Occurring Apigenin Derivative Showed Osteoanabolic Effect in Ovariectomized Mice: A Comparative Study with Teriparatide. Calcif Tissue Int 2022; 111:196-210. [PMID: 35451627 DOI: 10.1007/s00223-022-00979-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/03/2022] [Indexed: 12/13/2022]
Abstract
Isovitexin (apigenin-6C-glucopyranose) is found in several food items and medicinal plants. Recently, we showed that isovitexin stimulated osteoblast differentiation through mitochondrial biogenesis and respiration that required adiponectin receptors (AdipoRs). Here, we studied whether oral isovitexin has a bone anabolic effect in vivo. At first, using a femur osteotomy model in adult mice, we compared the bone regenerative effect of isovitexin and apigenin. Whereas isovitexin-stimulated bone formation at the osteotomy site at 2.5 mg/kg and 5 mg/kg dose, apigenin had no effect. Subsequently, we tested the effect of isovitexin (5 mg/kg) in ovariectomized (OVX) osteopenic mice and observed that it restored bone mass and architecture of trabecular bones (femur metaphysis and fifth lumbar vertebra/L5) and cortical bones (femur diaphysis). Isovitexin completely restored bone strength at L5 (compressive strength) and femur (bending strength) in OVX mice. The bone anabolic effect of isovitexin was demonstrated by the increased surface referent bone formation parameters, increased expression of osteogenic genes (Runx2, bone morphogenetic protein-2 and type 1 collagen) in bones, and increased serum procollagen type 1N-terminal propeptide in OVX mice and these were on a par with teriparatide. Isovitexin inhibited bone and serum sclerostin as well as the serum type I collagen cross-linked C-telopeptide in OVX mice. Isovitexin has an oral bioavailability of 14.58%. Taken together, our data show that isovitexin had a significant oral bioavailability that translated to osteoanabolic effect equivalent to teriparatide and inhibited bone resorption, which implied a durable effect over teriparatide.
Collapse
Affiliation(s)
- Subhashis Pal
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Shivani Sharma
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Konica Porwal
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Mohammed Riyazuddin
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Chirag Kulkarni
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sourav Chattopadhyay
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Sabyasachi Sanyal
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
12
|
Patel K, Mangu SR, Sukhdeo SV, Sharan K. Ethanolic extract from the root and leaf of Sida cordifolia promotes osteoblast activity and prevents ovariectomy-induced bone loss in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154024. [PMID: 35263671 DOI: 10.1016/j.phymed.2022.154024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sida cordifolia is traditionally found in the Indian system of medicine, well known for its medicinal and nutritional properties among local natives. PURPOSE The present study aims to investigate the osteo-protective effect of root and leaf ethanolic extract of S. cordifolia (RE and LE) and its underlying mechanism. METHODS Antioxidant activity of RE and LE was assessed. Total phenolic and flavonoid content were determined. HPLC profiling of RE and LE was performed to examine the polyphenol content. The effect of RE and LE on osteoblast cells proliferation, differentiation, mineralization, and expression of the protein associated with osteogenesis were evaluated using primary calvarial osteoblast culture. Skeletal effects of RE and LE of S. cordifolia were investigated in C57BL/6J ovariectomized mice. Micro CT was employed to evaluate the alteration in trabecular and cortical bone microarchitecture. Histology studies were performed on the isolated vertebra. qPCR analysis and western blotting was done to check the key bone markers. RESULTS RE and LE showed a potent antioxidant activity, owing to a notable polyphenol content. Both RE and LE did not alter the cell viability but significantly increased the osteoblast cell proliferation, differentiation, and mineralization. Moreover, they enhanced the mRNA expression of osteogenic genes. Both RE and LE stimulated the activation of ERK, AKT, and CREB. Both RE and LE had no direct effect on osteoclastogenesis, but both increased Opg/Rankl ratio expression in osteoblast cells. Both RE and LE at 750 mg/kg/day significantly improved the trabecular and cortical microarchitecture of femur and tibia by increasing bone mineral density, bone volume fraction, trabecular number, and trabecular thickness, and decreasing trabecular separation and structural model index in ovariectomized mice. Furthermore, vertebral histology of lumbar vertebrae revealed that RE and LE significantly enhance the vertebral bone mass and exert osteo-protective effects by stimulating osteoblast function and inhibiting osteoclast function. CONCLUSION In conclusion, both RE and LE stimulate osteoblast differentiation through activating ERK, AKT, and CREB signalling pathways and indirectly inhibits osteoclast differentiation. RE and LE also improve the trabecular and cortical microarchitecture of ovariectomized mice, making it a promising agent to prevent postmenopausal bone loss.
Collapse
Affiliation(s)
- Kalpana Patel
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Svvs Ravi Mangu
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shinde Vijay Sukhdeo
- Department of Meat and Marine Sciences, CSIR- Central Food Technological Research Institute, Mysuru, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
13
|
Cao L, Wang J, Zhang Y, Tian F, Wang C. Osteoprotective effects of flavonoids: Evidence from in vivo and in vitro studies (Review). Mol Med Rep 2022; 25:200. [PMID: 35475514 DOI: 10.3892/mmr.2022.12716] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
Osteoporosis is a systemic bone disease characterized by decreased bone mass and quality and bone micro‑architecture degradation. Its primary cause is disorder of bone metabolism: Over‑formation of osteoclasts, resulting in increased bone resorption and insufficient osteogenesis. Traditional herbal flavonoids can be used as alternative drugs to prevent and treat osteoporosis due to their wide range of sources, structural diversity and less adverse effects. The present paper reviewed six flavonoids, including quercetin, icariin, hesperitin, naringin, chrysin and pueraria, that promote bone formation and have been widely studied in the literature over the past five years, with the aim of providing novel ideas for the development of drugs for bone‑associated disease.
Collapse
Affiliation(s)
- Lili Cao
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jiawei Wang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yujuan Zhang
- Experimental Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Feng Tian
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, P.R. China
| | - Chunfang Wang
- Experimental Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
14
|
Ye Q, Xi X, Fan D, Cao X, Wang Q, Wang X, Zhang M, Wang B, Tao Q, Xiao C. Polycyclic aromatic hydrocarbons in bone homeostasis. Biomed Pharmacother 2021; 146:112547. [PMID: 34929579 DOI: 10.1016/j.biopha.2021.112547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 01/16/2023] Open
Abstract
Prolonged exposure to polycyclic aromatic hydrocarbons (PAHs) may result in autoimmune diseases, such as rheumatoid arthritis (RA) and osteoporosis (OP), which are based on an imbalance in bone homeostasis. These diseases are characterized by bone erosion and even a disruption in homeostasis, including in osteoblasts and osteoclasts. Current evidence indicates that multiple factors affect the progression of bone homeostasis, such as genetic susceptibility and epigenetic modifications. However, environmental factors, especially PAHs from various sources, have been shown to play an increasingly prominent role in the progression of bone homeostasis. Hence, it is essential to investigate the effects and pathogenesis of PAHs in bone homeostasis. In this review, recent progress is summarized concerning the effects and mechanisms of PAHs and their ligands and receptors in bone homeostasis. Moreover, strategies based on the effects and mechanisms of PAHs in the regulation of the bone balance and alleviation of bone destruction are also reviewed. We further discuss the future challenges and perspectives regarding the roles of PAHs in autoimmune diseases based on bone homeostasis.
Collapse
Affiliation(s)
- Qinbin Ye
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiaoyu Xi
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Danping Fan
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100193, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100193, China
| | - Qiong Wang
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xing Wang
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Bailiang Wang
- Department of Orthopaedic Surgery, Center for Osteonecrosis and Joint Preserving & Reconstruction, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Qingwen Tao
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
15
|
Pal S, Singh M, Porwal K, Rajak S, Das N, Rajput S, Trivedi AK, Maurya R, Sinha RA, Siddiqi MI, Sanyal S, Chattopadhyay N. Adiponectin receptors by increasing mitochondrial biogenesis and respiration promote osteoblast differentiation: Discovery of isovitexin as a new class of small molecule adiponectin receptor modulator with potential osteoanabolic function. Eur J Pharmacol 2021; 913:174634. [PMID: 34785210 DOI: 10.1016/j.ejphar.2021.174634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/29/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
Previously, we established adiponectin receptors (AdipoRs) as osteoanabolic target. To discover small molecule agonists of AdipoRs, we studied apigenin and apigenin-6C-glucopyranose (isovitexin) that induced osteoblast differentiation. In-silico, in vitro and omics-based studies were performed. Molecular docking using the crystal structures of AdipoRs showed different interaction profiles of isovitexin and apigenin. In osteoblasts, isovitexin but not apigenin rapidly phosphorylated AMP-activated protein kinase (pAMPK) which is downstream of AdipoRs and a master regulator of cellular energy metabolism, and upregulated expression of AdipoRs. Blocking AMPK abolished the osteogenic effect of isovitexin and its effect on AdipoR expression. Isovitexin upregulated the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), the mitochondrial biogenesis factor in osteoblasts, and the effect was blocked by AMPK inhibition. Upregulation of PGC-1α by isovitexin was accompanied by increased mitochondrial membrane proteins and mitochondrial DNA (mtDNA). Isovitexin via AdipoRs and PGC-1α induced oxidative phosphorylation (OxPhos) and ATP synthesis that resulted in osteoblast differentiation. Isovitexin had no agonistic/antagonistic activity and stimulatory/inhibitory effect in screening platforms for G protein-coupled receptors and kinases, respectively. In vivo, isovitexin upregulated AdipoRs and osteogenic genes, and increased mtDNA in rat calvarium. We conclude that isovitexin selectively via AdipoRs induced osteoblast differentiation that was fuelled by mitochondrial respiration.
Collapse
Affiliation(s)
- Subhashis Pal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Maninder Singh
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Konica Porwal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Nabanita Das
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Swati Rajput
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Arun K Trivedi
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Rakesh Maurya
- Division of Medicinal & Process Chemistry, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Mohammad I Siddiqi
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Sabyasachi Sanyal
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India.
| |
Collapse
|
16
|
Nigro E, Daniele A, Salzillo A, Ragone A, Naviglio S, Sapio L. AdipoRon and Other Adiponectin Receptor Agonists as Potential Candidates in Cancer Treatments. Int J Mol Sci 2021; 22:ijms22115569. [PMID: 34070338 PMCID: PMC8197554 DOI: 10.3390/ijms22115569] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 12/18/2022] Open
Abstract
The high mortality rate together with an ever-growing number of annual cases have defined neoplastic disorders as “the real 21st-century disease”. Its dubious distinction also results from conventional therapy failure, which has made cancer an orphan disease. Therefore, innovative and alternative therapeutic strategies are mandatory. The ability to leverage human naturally occurring anti-tumor defenses has always represented a fascinating perspective, and the immuno blockage approval in cancer treatment represents in timeline the latest success. As a multifunctional organ, adipose tissue releases a large amount of adipokines having both carcinogenic and antitumor properties. The negative correlation between serum levels and risk for developing malignancies, as well as the huge number of existing preclinical studies, have identified adiponectin as a potential anticancer adipokine. Nevertheless, its usage in clinical has constantly clashed with the inability to reproduce a mimic synthetic compound. Between 2011 and 2013, two distinct adiponectin receptor agonists were recognized, opening new scenarios even in cancer. Here, we review the first orally active adiponectin receptor agonists AdipoRon, from the discovery to the anticancer evidence. Including our latest findings in osteosarcoma models, we summarize AdipoRon and other existing agonists state-of-art, questioning about the feasibility assessment of this strategy in cancer treatment.
Collapse
Affiliation(s)
- Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (E.N.); (A.D.)
- CEINGE-Biotecnologie Avanzate Scarl, 80145 Napoli, Italy
| | - Aurora Daniele
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (E.N.); (A.D.)
- CEINGE-Biotecnologie Avanzate Scarl, 80145 Napoli, Italy
| | - Alessia Salzillo
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (A.S.); (A.R.); (L.S.)
| | - Angela Ragone
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (A.S.); (A.R.); (L.S.)
| | - Silvio Naviglio
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (A.S.); (A.R.); (L.S.)
- Correspondence:
| | - Luigi Sapio
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (A.S.); (A.R.); (L.S.)
| |
Collapse
|
17
|
Sun S, Tang L, Zhao T, Kang Y, Sun L, Liu C, Li Y, Xu F, Qin YX, Ta D. Longitudinal effects of low-intensity pulsed ultrasound on osteoporosis and osteoporotic bone defect in ovariectomized rats. ULTRASONICS 2021; 113:106360. [PMID: 33561635 DOI: 10.1016/j.ultras.2021.106360] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Low-intensity pulsed ultrasound (LIPUS) with an intensity (spatial average temporal average, ISATA) of 30 mW/cm2 has been widely proved to be effective on impaired bone healing, but showing little effectiveness in the treatment of osteoporosis. We hypothesized that the intensity of LIPUS may be a key factor in explaining this difference, thus two intensity levels, the widely used 30 mW/cm2 and a higher 150 mW/cm2, were used to simultaneously treat osteoporosis and osteoporotic bone defect in ovariectomized (OVX) rats with a 1-mm drill hole on their left femurs.Results showed that 150 mW/cm2 LIPUS augmented the healing rate of the drill hole than 30 mW/cm2 after 3-week LIPUS treatment, although did not further enhance the healing rate after 6-week LIPUS treatment. For ameliorating osteoporosis, 150 mW/cm2 LIPUS achieved more advantages over 30 mW/cm2 in improving bone density, microstructure and biomechanics 6 weeks after LIPUS intervention. In conclusion, LIPUS with an intensity of 30 mW/cm2 was sufficient to facilitate bone defect healing, but a higher intensity can be considered as a rapid trigger for osteoporotic bone repair. In addition, improving the intensity of LIPUS may be a potentially effective consideration for alleviation of osteoporosis, and the LIPUS regimen in the treatment of osteoporosis remains to be optimized.
Collapse
Affiliation(s)
- Shuxin Sun
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Tingting Zhao
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Yiting Kang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Chengcheng Liu
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Ying Li
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Feng Xu
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, United States
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China; Academy for Engineering and Technology, Fudan University, Shanghai 200433, China.
| |
Collapse
|
18
|
Wang Z, Chen Z, Fang F, Qiu W. The role of adiponectin in periodontitis: Current state and future prospects. Biomed Pharmacother 2021; 137:111358. [PMID: 33561644 DOI: 10.1016/j.biopha.2021.111358] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/10/2021] [Accepted: 01/31/2021] [Indexed: 12/14/2022] Open
Abstract
Adiponectin (APN), which is an adipokine primarily secreted by adipose tissue into the peripheral blood, exerts anti-inflammatory and metabolic regulatory functions in many systemic inflammatory diseases. Periodontitis is a localized inflammatory disease and is also the sixth-leading complication of diabetes. Uncontrolled periodontal inflammation gradually destructs the periodontal supporting apparatus and leads to the consequent loss of teeth. Recently, emerging evidence has revealed an association between APN and periodontitis. Herein, we summarize the basic information of APN and its receptor agonists. We also overview current studies considering the role of APN in periodontitis and discuss the potential mechanisms in terms of inflammation and bone metabolism. At last, we outline the correlation between APN and systemic diseases related periodontitis. Above all, APN and its agonists are promising candidates for the treatment of periodontitis, while the underlying mechanisms and clinical translational application require further exploration.
Collapse
Affiliation(s)
- Zhaodan Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, PR China
| | - Zehao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, PR China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, PR China.
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, PR China.
| |
Collapse
|
19
|
Ellur G, Sukhdeo SV, Khan MT, Sharan K. Maternal high protein-diet programs impairment of offspring's bone mass through miR-24-1-5p mediated targeting of SMAD5 in osteoblasts. Cell Mol Life Sci 2021; 78:1729-1744. [PMID: 32734584 PMCID: PMC11071892 DOI: 10.1007/s00018-020-03608-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022]
Abstract
Maternal nutrition is crucial for the offspring's skeleton development and the onset of osteoporosis later in life. While maternal low protein diet has been shown to regulate bone mass negatively, the effect of a high protein diet (HP) remains unexplored. Here, we found that C57BL/6 mice fed with HP delivered offspring with decreased skeletal mineralization at birth and reduced bone mass throughout their life due to a decline in their osteoblast maturation. A small RNA sequencing study revealed that miR-24-1-5p was highly upregulated in HP group osteoblasts. Target prediction and validation studies identified SMAD-5 as a direct target of miR-24-1-5p. Furthermore, mimic and inhibitor studies showed a negative correlation between miR-24-1-5p expression and osteoblast function. Moreover, ex vivo inhibition of miR-24-1-5p reversed the reduced maturation and SMAD-5 expression in the HP group osteoblasts. Together, we show that maternal HP diminishes the bone mass of the offspring through miR-24-1-5p.
Collapse
Affiliation(s)
- Govindraj Ellur
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shinde Vijay Sukhdeo
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India
| | - Md Touseef Khan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysore, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
20
|
Doan TQ, Connolly L, Igout A, Muller M, Scippo ML. In vitro differential responses of rat and human aryl hydrocarbon receptor to two distinct ligands and to different polyphenols. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114966. [PMID: 32563119 DOI: 10.1016/j.envpol.2020.114966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) and several other environment/food-borne toxic compounds induce their toxicity via the aryl hydrocarbon receptor (AhR). AhR is also modulated by various endogenous ligands e.g. highly potent tryptophan (Trp)-derivative FICZ (6-formylindolo[3,2-b]carbazole) and natural ligands abundant in the human diet e.g. polyphenols. Therefore, evaluating AhR species-specific responses is crucial for understanding AhR physiological functions, establishing risk assessments, and exploring the applicability of AhR mediators in drug and food industry towards human-based usages. We studied AhR transactivation of FICZ/TCDD in vitro in a time-dependent and species-specific manner using dioxin responsive luciferase reporter gene assays derived from rat (DR-H4IIE) and human (DR-HepG2) hepatoma cells. We observed for the first time that FICZ potency was similar in both cell lines and was 40 times higher than TCDD in DR-HepG2 cells. Depleting Trp-derivative endogenously produced ligands by using culture medium without Trp, resulted in 3-fold higher AhR activation upon adding FICZ in DR-H4IIE cells, in contrast to DR-HepG2 cells which revealed a fast degradation of FICZ induction from 10 h post-exposure to complete disappearance after 24 h. Seven polyphenols and a mixture thereof, chosen based on commercially recommended doses and adjusted to human realistic exposure, caused rat and human species-specific AhR responses. Two isoflavones (daidzein and genistein) induced rat AhR synergistic effects with FICZ and/or TCDD, while quercetin, chrysin, curcumin, resveratrol, and the mixture exerted a strong inhibitory effect on the human AhR. Strikingly, resveratrol and quercetin at their realistic nanomolar concentrations acted additively in the mixture to abolish human AhR activation induced by various TCDD concentrations. Taken together, these results illustrate the species-specific complexity of AhR transcriptional activities modulated by various ligands and highlight the need for studies of human-based approaches.
Collapse
Affiliation(s)
- T Q Doan
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium
| | - L Connolly
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, BT9 5DL, UK
| | - A Igout
- Department of Biomedical and Preclinical Sciences, University of Liège, Liège, 4000, Belgium
| | - M Muller
- GIGA-R, Laboratory for Organogenesis and Regeneration, University of Liège, Liège, 4000, Belgium
| | - M L Scippo
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium.
| |
Collapse
|
21
|
Monocrotophos, an organophosphorus insecticide, induces cortical and trabecular bone loss in Swiss albino mice. Chem Biol Interact 2020; 329:109112. [PMID: 32360284 DOI: 10.1016/j.cbi.2020.109112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 11/24/2022]
Abstract
Till now monocrotophos (MCP) has been addressed as a neurotoxic stressor. Limited studies investigate its aftermath on bone pathologies. Given the fact that MCP is a propensely used insecticide in developing countries, this study investigates its potential to mirror osteoporotic features and bone loss incurred in a rodent model. Briefly, Swiss albino mice were orally gavaged daily with varying doses of MCP for 8 weeks. Musculoskeletal changes were analyzed through micro-computed tomography and histology. A series of in vitro and ex vivo cell culture experiments were performed on MC3T3E-1 and primary osteoclast cultures. Results highlight that oral gavaging with MCP causes bone loss from the cortico-trabecular interface by decreasing the osteoblast and increasing the osteoclast number. Results from in vitro studies establish that MCP treatment increases the TRAP-positive multinucleated cell number during osteoclast differentiation. Ex-vivo experiments with MCP-treated animal sera further substantiate the in vivo claims with significant decreases seen in cell viability, proliferation, mineralization and differentiation studies. In conclusion MCP induces osteoclastogenesis (bone loss) on direct stimulation and alters the circulating factors in MCP-treated serum. Holistically, this work would be of potential significance to patients suffering from pesticide induced osteoporosis.
Collapse
|
22
|
Pahwa H, Khan MT, Sharan K. Hyperglycemia impairs osteoblast cell migration and chemotaxis due to a decrease in mitochondrial biogenesis. Mol Cell Biochem 2020; 469:109-118. [PMID: 32304005 DOI: 10.1007/s11010-020-03732-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
Abstract
Diabetes is associated with an increase in skeletal fragility and risk of fracture. However, the underlying mechanism for the same is not well understood. Specifically, the results from osteoblast cell culture studies are ambiguous due to contradicting reports. The use of supraphysiological concentrations in these studies, unachievable in vivo, might be the reason for the same. Therefore, here, we studied the effect of physiologically relevant levels of high glucose during diabetes (11.1 mM) on MC3T3-E1 osteoblast cell functions. The results showed that high glucose exposure to osteoblast cells increases their differentiation and mineralization without any effect on the proliferation. However, high glucose decreases their migratory potential and chemotaxis with a decrease in the associated cell signaling. Notably, this decrease in cell migration in high glucose conditions was accompanied by aberrant localization of Dynamin 2 in osteoblast cells. Besides, high glucose also caused a shift in mitochondrial dynamics towards the appearance of more fused and lesser fragmented mitochondria, with a concomitant decrease in the expression of DRP1, suggesting decreased mitochondrial biogenesis. In conclusion, here we are reporting for the first time that hyperglycemia causes a reduction in osteoblast cell migration and chemotaxis. This decrease might lead to an inefficient movement of osteoblasts to the erosion site resulting in uneven mineralization and skeletal fragility found in type 2 diabetes patients, in spite of having normal bone mineral density (BMD).
Collapse
Affiliation(s)
- Heena Pahwa
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
| | - Md Touseef Khan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
23
|
Miranda LL, Guimarães-Lopes VDP, Altoé LS, Sarandy MM, Melo FCSA, Novaes RD, Gonçalves RV. Plant Extracts in the Bone Repair Process: A Systematic Review. Mediators Inflamm 2019; 2019:1296153. [PMID: 31885494 PMCID: PMC6899290 DOI: 10.1155/2019/1296153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/01/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022] Open
Abstract
Bone lesions are an important public health problem, with high socioeconomic costs. Bone tissue repair is coordinated by an inflammatory dynamic process mediated by osteoprogenitor cells of the periosteum and endosteum, responsible for the formation of a new bone matrix. Studies using antioxidant products from plants for bone lesion treatment have been growing worldwide. We developed a systematic review to compile the results of works with animal models investigating the anti-inflammatory activity of plant extracts in the treatment of bone lesions and analyze the methodological quality of the studies on this subject. Studies were selected in the PubMed/MEDLINE, Scopus, and Web of Science databases according to the PRISMA statement. The research filters were constructed using three parameters: animal model, bone repair, and plant extracts. 31 full-text articles were recovered from 10 countries. Phytochemical prospecting was reported in 15 studies (48.39%). The most common secondary metabolites were flavonoids, cited in 32.26% studies (n = 10). Essential criteria to in vivo animal studies were frequently underreported, suggesting publication bias. The animals treated with plant extracts presented positive results in the osteoblastic proliferation, and consequently, this treatment accelerated osteogenic differentiation and bone callus formation, as well as bone fracture repair. Possibly, these results are associated with antioxidant, regenerative, and anti-inflammatory power of the extracts. The absence or incomplete characterization of the animal models, treatment protocols, and phytochemical and toxicity analyses impairs the internal validity of the evidence, making it difficult to determine the effectiveness and safety of plant-derived products in bone repair.
Collapse
Affiliation(s)
- Lyvia Lopes Miranda
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | - Luciana Schulthais Altoé
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Mariáurea Matias Sarandy
- Department of Animal Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | - Rômulo Dias Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais 37130-001, Brazil
| | | |
Collapse
|
24
|
A nutraceutical composition containing diosmin and hesperidin has osteogenic and anti-resorptive effects and expands the anabolic window of teriparatide. Biomed Pharmacother 2019; 118:109207. [DOI: 10.1016/j.biopha.2019.109207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 02/05/2023] Open
|
25
|
Asis M, Hemmati N, Moradi S, Nagulapalli Venkata KC, Mohammadi E, Farzaei MH, Bishayee A. Effects of resveratrol supplementation on bone biomarkers: a systematic review and meta-analysis. Ann N Y Acad Sci 2019; 1457:92-103. [PMID: 31490554 DOI: 10.1111/nyas.14226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/14/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
The current study presents a comprehensive systematic review and meta-analysis of randomized controlled trials (RCTs) on resveratrol and bone health biomarkers. PubMed, Scopus, and Web of Science (until September 2018) were searched to identify the potential RCTs with information on resveratrol supplementation and bone metabolism biomarkers. Mean differences (MD) were analyzed using a random-effects model. Pooling six RCTs (eight treatment arms with 264 subjects) together identified no significant reduction of serum Ca, osteocalcin, C-terminal telopeptide of type I collagen, and procollagen I N-terminal propeptide values after resveratrol supplementation over placebo treatment. However, a significant increase in serum alkaline phosphatase (ALP) (MD: 5.69 mg/mL, 95% CI: 3.58-7.80, I2 = 95.7%, P < 0.001) and bone alkaline phosphatase (BAP) (MD: 10.57 mmHg, 95% CI: 5.36-15.78, I2 = 99.2%, P < 0.001) values was observed after resveratrol treatment relative to placebo. The findings of this study indicate that resveratrol supplementation increased some key bone biomarkers, such as ALP and BAP. Further precise clinical trials of the effects of resveratrol supplementation on bone health should be conducted.
Collapse
Affiliation(s)
- Marzieh Asis
- Internal Medicine Department, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Niloufar Hemmati
- Internal Medicine Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajjad Moradi
- Halal Research Center of IRI, FDA, Tehran, Iran.,Nutritional Sciences Department, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | | | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, Florida
| |
Collapse
|
26
|
Pal S, Porwal K, Singh H, Malik MY, Rashid M, Kulkarni C, Khan Y, Jagavelu K, Wahajuddin M, Chattopadhyay N. Reversal of Osteopenia in Ovariectomized Rats by Pentoxifylline: Evidence of Osteogenic and Osteo-Angiogenic Roles of the Drug. Calcif Tissue Int 2019; 105:294-307. [PMID: 31175387 DOI: 10.1007/s00223-019-00567-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/23/2019] [Indexed: 02/05/2023]
Abstract
Pentoxifylline (PTX) is a non-selective phosphodiesterase inhibitor and is used for the management of intermittent claudication. We tested whether PTX has oral efficacy in stimulating new bone formation. Rat calvarial osteoblasts (RCO) were used to study the effect of PTX on osteoblast differentiation and angiogenesis. Pharmacokinetic and pharmacodynamic studies were carried out in rats to determine an oral dose of PTX. In ovariectomized (OVX) rats with osteopenia, the effect of PTX on various skeletal parameters was studied, and compared with teriparatide. Effect of PTX on angiogenic signaling was studied by immunoblotting and relevant pharmacologic inhibitors. Bone vascularity was measured by intravenous injection of polystyrene fluorospheres followed by in vivo imaging, and angiogenesis was studied in vitro by tubulogenesis of endothelial cells and in vivo by Matrigel plug assay. Effective concentration (EC50) of PTX in RCO was 8.2 nM and plasma PTX level was 7 nM/mL after single oral dosing of 25 mg/kg, which was 1/6th the clinically used dose. At this dose, PTX enhanced bone regeneration at femur osteotomy site and completely restored bone mass, microarchitecture, and strength in OVX rats. Furthermore, PTX increased surface referent bone formation parameters and serum bone formation marker (PINP) without affecting the resorption marker (CTX-1). PTX increased the expression of vascular endothelial growth factor and its receptor in bones and osteoblasts. PTX also increased skeletal vascularity, tubulogenesis of endothelial cells and in vivo angiogenesis. Taken together, our study suggested that PTX at 16% of adult human oral dose completely reversed osteopenia in OVX rats by osteogenic and osteo-angiogenic mechanisms.
Collapse
Affiliation(s)
- Subhashis Pal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Konica Porwal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Himalaya Singh
- Division of Pharmacology, CSIR-CDRI, Lucknow, 226031, India
| | | | - Mamunur Rashid
- Division of Pharmaceutics, CSIR-CDRI, Lucknow, 226031, India
| | - Chirag Kulkarni
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Yasir Khan
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | | | | | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India.
| |
Collapse
|
27
|
Porwal K, Pal S, Tewari D, Pal China S, Singh P, Chandra Tewari M, Prajapati G, Singh P, Cheruvu S, Khan YA, Sanyal S, Gayen JR, Ampapathi R, Mridha AR, Chattopadhyay N. Increased Bone Marrow-Specific Adipogenesis by Clofazimine Causes Impaired Fracture Healing, Osteopenia, and Osteonecrosis Without Extraskeletal Effects in Rats. Toxicol Sci 2019; 172:167-180. [PMID: 31393584 DOI: 10.1093/toxsci/kfz172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022] Open
Abstract
AbstractMycobacterium leprae infection causes bone lesions and osteoporosis, however, the effect of antileprosy drugs on the bone is unknown. We, therefore, set out to address it by investigating osteogenic differentiation from bone marrow (BM)-derived mesenchymal stem cells (MSCs). Out of 7 antileprosy drugs, only clofazimine (CFZ) reduced MSCs viability (IC50 ∼ 1 μM) and their osteogenic differentiation but increased adipogenic differentiation on a par with rosiglitazone, and this effect was blocked by a peroxisome proliferator-activated receptor gamma antagonist, GW9662. CFZ also decreased osteoblast viability and resulted in impaired bone regeneration in a rat femur osteotomy model at one-third human drug dose owing to increased callus adipogenesis as GW9662 prevented this effect. CFZ treatment decreased BM MSC population and homing of MSC to osteotomy site despite drug levels in BM being much less than its in vitro IC50 value. In adult rats, CFZ caused osteopenia in long bones marked by suppressed osteoblast function due to enhanced adipogenesis and increased osteoclast functions. A robust increase in marrow adipose tissue (MAT) by CFZ did not alter the hematologic parameters but likely reduced BM vascular bed leading to osteonecrosis (ON) characterized by empty osteocyte lacunae. However, CFZ had no effect on visceral fat content and was not associated with any metabolic and hematologic changes. Levels of unsaturated fatty acids in MAT were higher than saturated fatty acids and CFZ further increased the former. From these data, we conclude that CFZ has adverse skeletal effects and could be used for creating a rodent ON model devoid of extraskeletal effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sabyasachi Sanyal
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226 031, India
| | | | | | - Asit R Mridha
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110023, India
| | | |
Collapse
|
28
|
Chlorpyrifos Exposure Induces Parkinsonian Symptoms and Associated Bone Loss in Adult Swiss Albino Mice. Neurotox Res 2019; 36:700-711. [PMID: 31367921 DOI: 10.1007/s12640-019-00092-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022]
Abstract
Prenatal and early life exposure of chlorpyrifos (CPF), a widely used pesticide, is known to cause neuronal deficits and Parkinson's disease (PD). However, data about the effect of its exposure at adult stages on PD-like symptoms and associated bone loss is scanty. In the present study, we investigated the impact of CPF on the behavioral alterations seen in PD using adult Swiss albino mice. PD is often associated with bone loss. Hence, skeletal changes were also evaluated using micro-computed tomography and histology. MPTP was used as a positive control. Cell culture studies using MC3T3E-1, SHSY5Y, and primary osteoclast cultures were done to understand the cellular mechanism for the behavioral and skeletal changes. Our results showed that CPF treatment leads to PD-like symptoms due to the loss of dopaminergic neurons. Moreover, CPF has a deleterious effect on the trabecular bone through both indirect changes in circulating factors and direct stimulation of multinucleate osteoclast cell formation. The impact on the bone mass was even stronger than MPTP. In conclusion, this is the first report demonstrating that CPF induces parkinsonian features in adult Swiss albino mice and it is accompanied by loss of trabecular bone.
Collapse
|
29
|
Pal S, Maurya SK, Chattopadhyay S, Pal China S, Porwal K, Kulkarni C, Sanyal S, Sinha RA, Chattopadhyay N. The osteogenic effect of liraglutide involves enhanced mitochondrial biogenesis in osteoblasts. Biochem Pharmacol 2019; 164:34-44. [PMID: 30885766 DOI: 10.1016/j.bcp.2019.03.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/14/2019] [Indexed: 12/31/2022]
Abstract
Liraglutide (Lira), a long-acting glucagon-like peptide 1 receptor (GLP1R) agonist reduces glycosylated hemoglobin in type 2 diabetes mellitus patients. Lira is reported to have bone conserving effect in ovariectomized (OVX) rats. Here, we investigated the osteoanabolic effect of Lira and studied the underlying mechanism. In established osteopenic OVX rats, Lira completely restored bone mass and strength comparable to parathyroid hormone (PTH 1-34). Body mass index normalized bone mineral density of Lira was higher than PTH. The serum levels of osteogenic surrogate pro-collagen type 1 N-terminal pro-peptide (P1NP) and surface referent bone formation parameters were comparable between Lira and PTH. GLP1R, adiponectin receptor 1 (AdipoR1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) levels in bones were downregulated in the OVX group but restored in the Lira group whereas PTH had no effect. In cultured osteoblasts, Lira time-dependently increased GLP1R, AdipoR1 and PGC1α expression. In osteoblasts, Lira rapidly phosphorylated AMP-dependent protein kinase (AMPK), the cellular energy sensor. Exendin 3, a selective GLP1R antagonist and PKA inhibitor H89 blocked Lira-induced increases in osteoblast differentiation, and expression levels of AdipoR1 and PGC1α. Furthermore, H89 inhibited Lira-induced phosphorylation of AMPK and dorsomorphin, an AMPK inhibitor blocked the Lira-induced increases in osteoblast differentiation and AdipoR1 and PGC1α levels. Lira increased mitochondrial number, respiratory proteins and respiration in osteoblasts in vitro and in vivo, and blocking mitochondrial respiration mitigated Lira-induced osteoblast differentiation. Taken together, our data show that Lira has a strong osteoanabolic effect which involves upregulation of mitochondrial function.
Collapse
Affiliation(s)
- Subhashis Pal
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India
| | - Shailendra K Maurya
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India
| | - Sourav Chattopadhyay
- Division of Biochemistry, Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India
| | - Shyamsundar Pal China
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India
| | - Konica Porwal
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India
| | - Chirag Kulkarni
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow 226031, India
| | - Sabyasachi Sanyal
- Division of Biochemistry, Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India
| | - Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow 226031, India.
| |
Collapse
|
30
|
Ali SJ, Ellur G, Khan MT, Sharan K. Bone loss in MPTP mouse model of Parkinson's disease is triggered by decreased osteoblastogenesis and increased osteoclastogenesis. Toxicol Appl Pharmacol 2018; 363:154-163. [PMID: 30529163 DOI: 10.1016/j.taap.2018.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/16/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022]
Abstract
Bone loss is a non-motor symptom of Parkinson's disease (PD). It is unclear whether a patient's immobility or the endocrine changes in the body causes bone deterioration. To address this issue, we used an animal model of the disease where Swiss albino mice were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on day 1 and were left untreated for eight weeks. Behavioral phenotypes of PD, and striatal acetylcholinesterase and dopamine levels were measured. Cortical and trabecular bones were assessed by μ-CT and histology. Gene expression studies were done through quantitative real-time PCR. Effect of MPP+ and MPTP-treated mice serum on MC3T3E-1, SH-SY5Y, and primary osteoclast cells were also studied. Our results demonstrated that MPTP treatment leads to PD like symptoms. It shows a loss of trabecular bone mass and quality by decreasing osteoblast and increased osteoclast number and activity. This effect was accompanied by reduced osteogenic and elevated osteoclastogenic genes expression. While MPP+ had a cytotoxic effect on dopaminergic neurons, it did not affect bone cells. However, ex-vivo treatment of the serum from MPTP-treated mice decreased osteoblastogenesis and increased osteoclastogenesis in cell culture. In conclusion, our study suggests that MPTP-induced parkinsonian features in mice leads to trabecular bone loss by decreased bone formation and increased bone resorption due to changes in the serum circulating factors. This study characterizes the microarchitectural and cellular changes in the skeleton of a mouse model of PD that can be further utilized to investigate therapeutic avenues to treat bone loss in PD patients.
Collapse
Affiliation(s)
- Shaheen Jafri Ali
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Govindraj Ellur
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Md Touseef Khan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
31
|
Parveen B, Tiwari AK, Jain M, Pal S, Chattopadhyay N, Tripathi M, Vohora D. The anti-epileptic drugs valproate, carbamazepine and levetiracetam cause bone loss and modulate Wnt inhibitors in normal and ovariectomised rats. Bone 2018; 113:57-67. [PMID: 29758362 DOI: 10.1016/j.bone.2018.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/23/2018] [Accepted: 05/11/2018] [Indexed: 01/21/2023]
Abstract
Secondary osteoporosis is the major concern associated with long term intake of antiepileptic drugs (AEDs). Women are the vulnerable targets owing to post-menopausal bone loss. In the present work, we evaluated the effect of 10 weeks of treatment with AED therapy (carbamazepine, CBZ, 75 mg/kg; sodium valproate, SVP, 300 mg/kg; levetiracetam, LTM, 150 mg/kg) on bone mineral density and microarchitecture at femoral epiphysis, lumbar vertebrae and proximal tibia of normal and ovariectomised Wistar rats. In addition, we measured serum levels of vitamin D, receptor activator of nuclear factor kappa β-ligand (RANKL), procollagen type 1 amino-terminal propeptide (P1NP) and wnt inhibitors (sclerostin and DKK-1) following AED therapy. Micro-computed tomography analysis of bones revealed significant reduction in BMD at femur epiphysis and lumbar vertebrae with all the three AEDs evaluated. At proximal tibia, only CBZ showed a significant decline. The reduction in BMD was more pronounced in ovariectomised rats. AEDs also resulted in alteration of micro-CT parameters. These changes were accompanied by an increased serum RANKL with all AEDs while vitamin D levels were reduced only with CBZ treatment and P1NP levels were reduced with SVP and CBZ. Serum sclerostin levels were elevated following all AEDs in normal and ovariectomised rats except with CBZ in normal rats. However, increase in DKK-1 levels was observed with only LTM. Ovariectomy itself resulted in increased RANKL, sclerostin and DKK-1 and reduced vitamin D and P1NP levels. Significant differences were discernible between normal and ovariectomised rats treated with AEDs in all the parameters. However, while sclerostin increased further upon AEDs treatment, P1NP decreased with SVP and CBZ and serum DKK-1 levels showed a declining trend with all the three AEDs studied. We confirm adverse effects on bone following AEDs in female rats. Further, our results demonstrate for the first time that these effects are more pronounced in ovariectomised rats as compared to normal rats and that this could be related to estrogen deficiency which in turn enhances bone resorption via increased RANKL and reduces bone formation via increased sclerostin and reduced P1NP. Finally, our study demonstrated for the first time that AED treatment displayed changes in the serum levels of wnt inhibitors and hence modulation of wnt inhibitors might be partly involved in their adverse effects on bone.
Collapse
Affiliation(s)
- Bushra Parveen
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | | | - Moon Jain
- Central Drug Research Institute, Division of Pharmacology, Lucknow 226031, Uttar Pradesh, India
| | - Subhashis Pal
- Central Drug Research Institute, Division of Endocrinology, Lucknow 226031, Uttar Pradesh, India
| | - Naibedya Chattopadhyay
- Central Drug Research Institute, Division of Endocrinology, Lucknow 226031, Uttar Pradesh, India
| | - Manjari Tripathi
- Department of Neurology, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Divya Vohora
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
32
|
Sawa M, Wakitani S, Kamei N, Kotaka S, Adachi N, Ochi M. Local administration of WP9QY (W9) peptide promotes bone formation in a rat femur delayed-union model. J Bone Miner Metab 2018; 36:383-391. [PMID: 28660377 DOI: 10.1007/s00774-017-0852-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/30/2017] [Indexed: 12/22/2022]
Abstract
The WP9QY peptide (W9) consists of nine amino acids. It binds to RANKL and blocks RANKL-induced increases in bone resorption and osteoclastogenesis. W9 has a unique effect on the coupling mechanism between osteoclasts and osteoblasts, which promotes bone formation while working to suppress bone resorption. In this study, with the aim of clinical application of W9 for fracture treatment, we aimed to clarify the bone repair-promoting effect of W9 when administered locally to a rat femur model of delayed union. Using Sprague-Dawley rats, a model of delayed union was created in the right femur by cauterizing the periosteum. Injection of W9 (1 mg in 100 μl) or phosphate-buffered saline (PBS) (100 μl) at the fracture site was performed at the operation and every week thereafter until death (sacrifice). The bone union rate was 14% in the PBS group and 57% in the W9 group at 8 weeks postoperatively. The X-ray score of the W9 group was significantly higher than that of the PBS group at 8 weeks postoperatively. When bone morphometry was analyzed by micro-computed tomography (CT), total callus volume (TV) and mineralized callus bone volume (BV) were measured. TV showed no significant difference between the two groups, but BV/TV was significantly higher in the W9 group. This finding suggests that local administration of W9 can promote bone maturation from callus and can be considered to contribute to fracture healing. These results reveal that W9 has an effect on fractures of promoting healing and could be applied as a fracture treatment.
Collapse
Affiliation(s)
- Mikiya Sawa
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Shigeyuki Wakitani
- Department of Health and Sports Sciences, Mukogawa Women's University, 6-46 Ikebiraki, Nishinomiya, Hyogo, 663-8558, Japan
| | - Naosuke Kamei
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shinji Kotaka
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Mitsuo Ochi
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
33
|
Karvande A, Khan S, Khan I, Singh D, Khedgikar V, Kushwaha P, Ahmad N, Kothari P, Dhasmana A, Kant R, Trivedi R, Chauhan PMS. Discovery of a tetrazolyl β-carboline with in vitro and in vivo osteoprotective activity under estrogen-deficient conditions. MEDCHEMCOMM 2018; 9:1213-1225. [PMID: 30109010 PMCID: PMC6072419 DOI: 10.1039/c8md00109j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/02/2018] [Indexed: 11/21/2022]
Abstract
β-Carbolines have been assessed for osteoclastogenesis. However, their effect on osteoblasts during estrogen deficiency is still unclear. Here, a series of novel piperazine and tetrazole tag β-carbolines have been synthesized and examined for osteoblast differentiation in vitro. In vitro data suggest that compound 8g is the most promising osteoblast differentiating agent that was evaluated for in vivo studies. Compound 8g promoted osteoblast mineralization, stimulated Runx2, BMP-2 and OCN expression levels, increased BrdU incorporation and inhibited generation of free radicals as well as nitric oxide. Since a piperazine group is involved in bone repair activity and β-carboline in IκB kinase (IKK) inhibition, compound 8g inhibited tumor necrosis factor α (TNFα) directed IκBα phosphorylation, preventing nuclear translocation of NF-κB thereby alleviating osteoblast apoptosis. In vivo studies show that compound 8g was able to restore estrogen deficiency-induced bone loss in ovariectomized rats without any toxicity, thus signifying its potential in bone-protection chemotherapy under postmenopausal conditions.
Collapse
Affiliation(s)
- Anirudha Karvande
- Endocrinology Division , CSIR-Central Drug Research Institute (CSIR-CDRI) , Lucknow , 226031 , India .
| | - Shahnawaz Khan
- Chemistry Division , BHUPAL NOBLES' UNIVERSITY , Udaipur-313001 , India
| | - Irfan Khan
- Medicinal and Process Chemistry Division , CSIR-Central Drug Research Institute , Lucknow-226031 , U.P , India .
| | - Deepti Singh
- Medicinal and Process Chemistry Division , CSIR-Central Drug Research Institute , Lucknow-226031 , U.P , India .
| | - Vikram Khedgikar
- Endocrinology Division , CSIR-Central Drug Research Institute (CSIR-CDRI) , Lucknow , 226031 , India .
| | - Priyanka Kushwaha
- Endocrinology Division , CSIR-Central Drug Research Institute (CSIR-CDRI) , Lucknow , 226031 , India .
| | - Naseer Ahmad
- Endocrinology Division , CSIR-Central Drug Research Institute (CSIR-CDRI) , Lucknow , 226031 , India .
| | - Priyanka Kothari
- Endocrinology Division , CSIR-Central Drug Research Institute (CSIR-CDRI) , Lucknow , 226031 , India .
| | - Anupam Dhasmana
- Research Himalayan School of Bio sciences , Swami Rama Himalayan University , Dehradun , India
| | - Ruchir Kant
- Molecular and Structural Biology Central Drug Research Institute , CSIR , Lucknow 226031 , India
| | - Ritu Trivedi
- Endocrinology Division , CSIR-Central Drug Research Institute (CSIR-CDRI) , Lucknow , 226031 , India .
| | - Prem M S Chauhan
- Medicinal and Process Chemistry Division , CSIR-Central Drug Research Institute , Lucknow-226031 , U.P , India .
| |
Collapse
|
34
|
Pal China S, Sanyal S, Chattopadhyay N. Adiponectin signaling and its role in bone metabolism. Cytokine 2018; 112:116-131. [PMID: 29937410 DOI: 10.1016/j.cyto.2018.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/06/2018] [Accepted: 06/09/2018] [Indexed: 12/14/2022]
Abstract
Adiponectin, the most prevalent adipo-cytokine in plasma plays critical metabolic and anti-inflammatory roles is fast emerging as an important molecular target for the treatment of metabolic disorders. Adiponectin action is critical in multiple organs including cardio-vascular system, muscle, liver, adipose tissue, brain and bone. Adiponectin signaling in bone has been a topic of active investigation lately. Human association studies and multiple mice models of gene deletion/modification failed to define a clear cause and effect of adiponectin signaling in bone. The most plausible reason could be the multimeric forms of adiponectin that display differential binding to receptors (adipoR1 and adipoR2) with cell-specific receptor variants in bone. Discovery of small molecule agonist of adipoR1 suggested a salutary role of this receptor in bone metabolism. The downstream signaling of adipoR1 in osteoblasts involves stimulation of oxidative phosphorylation leading to increased differentiation via the likely suppression of wnt inhibitor, sclerostin. On the other hand, the inflammation modulatory effect of adiponectin signaling suppresses the RANKL (receptor activator of nuclear factor κ-B ligand) - to - OPG (osteprotegerin) ratio in osteoblasts leading to the suppression of osteoclastogenic response. This review will discuss the adiponectin signaling and its role in skeletal homeostasis and critically assess whether adipoR1 could be a therapeutic target for the treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Shyamsundar Pal China
- Division of Endocrinology and CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, India
| | - Sabyasachi Sanyal
- Division of Biochemistry, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, India.
| |
Collapse
|
35
|
Fernández I, Gavaia PJ, Laizé V, Cancela ML. Fish as a model to assess chemical toxicity in bone. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:208-226. [PMID: 29202272 DOI: 10.1016/j.aquatox.2017.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/14/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Environmental toxicology has been expanding as growing concerns on the impact of produced and released chemical compounds over the environment and human health are being demonstrated. Among the toxic effects observed in organisms exposed to pollutants, those affecting skeletal tissues (osteotoxicity) have been somehow overlooked in comparison to hepato-, immune-, neuro- and/or reproductive toxicities. Nevertheless, sub-lethal effects of toxicants on skeletal development and/or bone maintenance may result in impaired growth, reduced survival rate, increased disease susceptibility and diminished welfare. Osteotoxicity may occur by acute or chronic exposure to different environmental insults. Because of biologically and technically advantagous features - easy to breed and inexpensive to maintain, external and rapid rate of development, translucent larvae and the availability of molecular and genetic tools - the zebrafish (Danio rerio) has emerged in the last decade as a vertebrate model system of choice to evaluate osteotoxicity. Different experimental approaches in fish species and analytical tools have been applied, from in vitro to in vivo systems, from specific to high throughput methodologies. Current knowledge on osteotoxicity and underlying mechanisms gained using fish, with a special emphasis on zebrafish systems, is reviewed here. Osteotoxicants have been classified into four categories according to the pathway involved in the transduction of the osteotoxic effects: activation/inhibition of membrane and/or nuclear receptors, alteration of redox condition, mimicking of bone constituents and unknown pathways. Knowledge on these pathways is also reported here as it may provide critical insights into the development, production and release of future chemical compounds with none or low osteotoxicity, thus promoting the green/environmental friendly chemistry.
Collapse
Affiliation(s)
- Ignacio Fernández
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal.
| | - Paulo J Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Campus de Gambelas, Faro, Portugal; Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
36
|
China SP, Pal S, Chattopadhyay S, Porwal K, Kushwaha S, Bhattacharyya S, Mittal M, Gurjar AA, Barbhuyan T, Singh AK, Trivedi AK, Gayen JR, Sanyal S, Chattopadhyay N. Globular adiponectin reverses osteo-sarcopenia and altered body composition in ovariectomized rats. Bone 2017; 105:75-86. [PMID: 28811200 DOI: 10.1016/j.bone.2017.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/01/2017] [Accepted: 08/11/2017] [Indexed: 01/13/2023]
Abstract
Adiponectin regulates various metabolic processes including glucose flux, lipid breakdown and insulin response. We recently reported that adiponectin receptor1 (adipoR1) activation by a small molecule reverses osteopenia in leptin receptor deficient db/db (diabetic) mice. However, the role of adiponectin in bone metabolism under the setting of post-menopausal (estrogen-deficiency) osteopenia and associated metabolic derangements has not been studied. Here, we studied the therapeutic effect of the globular form of adiponectin (gAd), which is predominantly an adipoR1 agonist, in aged ovariectomized (OVX) rats and compared it with standard-of-care anti-osteoporosis drugs. In OVX rats with established osteopenia, gAd completely restored BMD and load bearing capacity and improved bone quality. Skeletal effects of gAd were comparable to PTH (osteoanabolic) but better than alendronate (anti-catabolic). Both osteoanabolic and anti-catabolic mechanisms led to the anti-osteoporosis effect of gAd. In cultured osteoblasts and bones, gAd increased a) adipoR1 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) expression to promote mitochondrial respiration, which likely fueled osteoblast differentiation, b) suppressed sclerostin (a wnt antagonist) in a sirtuin1-dependent manner and c) decreased receptor-activator of nuclear factor κB ligand (RANKL) to achieve its anti-catabolic effect. The OVX-induced sarcopenia and insulin resistance were also improved by gAd. We conclude that gAd has therapeutic efficacy in estrogen deficiency-induced osteoporosis, sarcopenia and insulin resistance and hold metabolic disease modifying potential in postmenopausal women.
Collapse
Affiliation(s)
- Shyamsundar Pal China
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow 226031, India
| | - Subhashis Pal
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India
| | - Sourav Chattopadhyay
- AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow 226031, India; Division of Biochemistry, CSIR-CDRI, Lucknow 226031, India
| | - Konica Porwal
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India
| | | | - Sharmishtha Bhattacharyya
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India
| | - Monika Mittal
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow 226031, India
| | - Anagha A Gurjar
- AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow 226031, India; Division of Biochemistry, CSIR-CDRI, Lucknow 226031, India
| | - Tarun Barbhuyan
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India
| | | | - Arun K Trivedi
- Division of Biochemistry, CSIR-CDRI, Lucknow 226031, India
| | - Jiaur R Gayen
- Division of Pharmacokinetics and Metabolism, CSIR-CDRI, Lucknow 226031, India
| | - Sabyasachi Sanyal
- AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow 226031, India; Division of Biochemistry, CSIR-CDRI, Lucknow 226031, India.
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow 226031, India.
| |
Collapse
|
37
|
Modukuri RK, Choudhary D, Gupta S, Rao KB, Adhikary S, Sharma T, Siddiqi MI, Trivedi R, Sashidhara KV. Benzofuran-dihydropyridine hybrids: A new class of potential bone anabolic agents. Bioorg Med Chem 2017; 25:6450-6466. [PMID: 29097030 DOI: 10.1016/j.bmc.2017.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/04/2017] [Accepted: 10/16/2017] [Indexed: 12/31/2022]
Abstract
A series of novel benzofuran-dihydropyridine hybrids were designed by molecular hybridization approach and evaluated for bone anabolic activities. Among the screened library, ethyl 4-(7-(sec-butyl)-2-(4-methylbenzoyl)benzofuran-5-yl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (compound 21) significantly enhanced the ALP production and mineralized nodule formation, which are primary requisites in the process of in vitro osteogenesis. Oral administration of compound 21 at 10 mg.kg-1 day-1 for two weeks led to restoration of trabecular bone microarchitecture in drill hole fracture model by significantly increasing BV/TV and Tb.N. Furthermore, histological and molecular studies showed compound 21 triggering the new bone regeneration in a drill hole defect site by increasing BMP expression. Furthermore, molecular modeling studies were performed to gain insight into the binding approach, which revealed that both benzofuran and dihydropyridine moieties are essential to show similar binding interactions to fit into the active site of BMP2 receptor, an important target of the osteogenic agents. Our results suggest that compound 21 stimulates BMP2 synthesis in osteoblast cells that promotes new bone formation (∼40%) at the fracture site which helps in shorten the healing period.
Collapse
Affiliation(s)
- Ram K Modukuri
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Dharmendra Choudhary
- Endocrinology Division, CSIR-Central Drug Research Institute, (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Sampa Gupta
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - K Bhaskara Rao
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Sulekha Adhikary
- Endocrinology Division, CSIR-Central Drug Research Institute, (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Tanuj Sharma
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Ritu Trivedi
- Endocrinology Division, CSIR-Central Drug Research Institute, (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| |
Collapse
|
38
|
Stimulation of liver IGF-1 expression promotes peak bone mass achievement in growing rats: a study with pomegranate seed oil. J Nutr Biochem 2017; 52:18-26. [PMID: 29121593 DOI: 10.1016/j.jnutbio.2017.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/14/2017] [Accepted: 09/28/2017] [Indexed: 01/08/2023]
Abstract
Peak bone mass (PBM) achieved at adulthood is a strong determinant of future onset of osteoporosis, and maximizing it is one of the strategies to combat the disease. Recently, pomegranate seed oil (PSO) has been shown to have bone-sparing effect in ovariectomized mice. However, its effect on growing skeleton and its molecular mechanism remain unclear. In the present study, we evaluated the effect of PSO on PBM in growing rats and associated mechanism of action. PSO was given at various doses to 21-day-old growing rats for 90 days by oral gavage. The changes in bone parameters were assessed by micro-computed tomography and histology. Enzyme-linked immunosorbent assay was performed to analyze the levels of serum insulin-like growth factor type 1 (IGF-1). Western blotting from bone and liver tissues was done. Chromatin immunoprecipitation assay was performed to study the histone acetylation levels at IGF-1 gene. The results of the study show that PSO treatment significantly increases bone length, bone formation rate, biomechanical parameters, bone mineral density and bone microarchitecture along with enhancing muscle and brown fat mass. This effect was due to the increased serum levels of IGF-1 and stimulation of its signaling in the bones. Studies focusing on acetylation of histones in the liver, the major site of IGF-1 synthesis, showed enrichment of acetylated H3K9 and H3K14 at IGF-1 gene promoter and body. Further, the increased acetylation at H3K9 and H3K14 was associated with a reduced HDAC1 protein level. Together, our data suggest that PSO promotes the PBM achievement via increased IGF-1 expression in liver and IGF-1 signaling in bone.
Collapse
|
39
|
Morales-Hernández A, Nacarino-Palma A, Moreno-Marín N, Barrasa E, Paniagua-Quiñones B, Catalina-Fernández I, Alvarez-Barrientos A, Bustelo XR, Merino JM, Fernández-Salguero PM. Lung regeneration after toxic injury is improved in absence of dioxin receptor. Stem Cell Res 2017; 25:61-71. [PMID: 29107893 DOI: 10.1016/j.scr.2017.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/07/2017] [Accepted: 10/09/2017] [Indexed: 12/26/2022] Open
Abstract
Recent experimental evidences from cellular systems and from mammalian and non-mammalian animal models highlight novel functions for the aryl hydrocarbon/dioxin receptor (AhR) in maintaining cell differentiation and tissue homeostasis. Notably, AhR depletion stimulates an undifferentiated and pluripotent phenotype likely associated to a mesenchymal transition in epithelial cells and to increased primary tumorigenesis and metastasis in melanoma. In this work, we have used a lung model of epithelial regeneration to investigate whether AhR regulates proper tissue repair by adjusting the expansion of undifferentiated stem-like cells. AhR-null mice developed a faster and more efficient repair of the lung bronchiolar epithelium upon naphthalene injury that required increased cell proliferation and the earlier activation of stem-like Clara, Basal and neuroepithelial cells precursors. Increased basal content in multipotent Sca1+/CD31-/CD4- cells and in cells expressing pluripotency factors NANOG and OCT4 could also improve re-epithelialization in AhR-null lungs. The reduced response of AhR-deficient lungs to Sonic Hedgehog (Shh) repression shortly after injury may also help their improved bronchiolar epithelium repair. These results support a role for AhR in the regenerative response against toxins, and open the possibility of modulating its activation level to favor recovery from lesions caused by environmental contaminants.
Collapse
Affiliation(s)
| | - Ana Nacarino-Palma
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Nuria Moreno-Marín
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Eva Barrasa
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Beroé Paniagua-Quiñones
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | | | | | - Xosé R Bustelo
- Centro de Investigación del Cáncer and CIBERONC, CSIC-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Jaime M Merino
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain.
| | - Pedro M Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain.
| |
Collapse
|
40
|
Dioxin Receptor Adjusts Liver Regeneration After Acute Toxic Injury and Protects Against Liver Carcinogenesis. Sci Rep 2017; 7:10420. [PMID: 28874739 PMCID: PMC5585208 DOI: 10.1038/s41598-017-10984-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) has roles in cell proliferation, differentiation and organ homeostasis, including the liver. AhR depletion induces undifferentiation and pluripotency in normal and transformed cells. Here, AhR-null mice (AhR-/-) were used to explore whether AhR controls liver regeneration and carcinogenesis by restricting the expansion of stem-like cells and the expression of pluripotency genes. Short-term CCl4 liver damage was earlier and more efficiently repaired in AhR-/- than in AhR+/+ mice. Stem-like CK14 + and TBX3 + and pluripotency-expressing OCT4 + and NANOG + cells expanded sooner in AhR-/- than in AhR+/+ regenerating livers. Stem-like side population cells (SP) isolated from AhR-/- livers had increased β-catenin (β-Cat) signaling with overexpression of Axin2, Dkk1 and Cyclin D1. Interestingly, β-Cat, Axin2 and Dkk1 also increased during regeneration but more notably in AhR-null livers. Liver carcinogenesis induced by diethylnitrosamine (DEN) produced large carcinomas in all AhR-/- mice but mostly premalignant adenomas in less than half of AhR+/+ mice. AhR-null tumoral tissue, but not their surrounding non-tumoral parenchyma, had nuclear β-Cat and Axin2 overexpression. OCT4 and NANOG were nevertheless similarly expressed in AhR+/+ and AhR-/- lesions. We suggest that AhR may serve to adjust liver repair and to block tumorigenesis by modulating stem-like cells and β-Cat signaling.
Collapse
|
41
|
Formononetin, a methoxy isoflavone, enhances bone regeneration in a mouse model of cortical bone defect. Br J Nutr 2017; 117:1511-1522. [PMID: 28689509 DOI: 10.1017/s0007114517001556] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The bone regeneration and healing effect of formononetin was evaluated in a cortical bone defect model that predominantly heals by intramembranous ossification. For this study, female Balb/c mice were ovariectomised (OVx) and a drill-hole injury was generated in the midfemoral bones of all animals. Treatment with formononetin commenced the day after and continued for 21 d. Parathyroid hormone (PTH1-34) was used as a reference standard. Animals were killed at days 10 and 21. Femur bones were collected at the injury site for histomorphometry studies using microcomputed tomography (μCT) and confocal microscopy. RNA and protein were harvested from the region surrounding the drill-hole injury. For immunohistochemistry, 5 µm sections of decalcified femur bone adjoining the drill-hole site were cut. μCT analysis showed that formononetin promoted bone healing at days 10 and 21 and the healing effect observed was significantly better than in Ovx mice and equal to PTH treatment in many aspects. Formononetin also significantly enhanced bone regeneration as assessed by calcein-labelling studies. In addition, formononetin enhanced the expression of osteogenic markers at the injury site in a manner similar to PTH. Formononetin treatment also led to predominant runt-related transcription factor 2 and osteocalcin localisation at the injury site. These results support the potential of formononetin to be a bone-healing agent and are suggestive of its promising role in the fracture-repair process.
Collapse
|
42
|
Karvande A, Khedgikar V, Kushwaha P, Ahmad N, Kothari P, Verma A, Kumar P, Nagar GK, Mishra PR, Maurya R, Trivedi R. Heartwood extract from Dalbergia sissoo promotes fracture healing and its application in ovariectomy-induced osteoporotic rats. ACTA ACUST UNITED AC 2017; 69:1381-1397. [PMID: 28664619 DOI: 10.1111/jphp.12764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/07/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVES This study was undertaken to investigate the effects of a heartwood ethanolic extract (HEE) made from the Dalbergia sissoo on facture healing and in the prevention of pathological bone loss resulting from estrogen deficiency in ovariectomized (Ovx) rats. METHODS Heartwood ethanolic extract (250, 500 and 1000 mg/kg per day) was administered orally immediately next day after drill-hole injury and continued for 2 weeks. Ovx rats received HEE at same doses for 12 weeks and compared with 17-β estradiol (E2; 100 μg/kg for 5 days/week subcutaneously) group. Confocal imaging for fracture healing, micro-architecture of long bones, biomechanical strength, formation of mineralized nodule by bone marrow osteoprogenitor cells, bone turnover markers and gene expression were studied. One-way ANOVA was used to test significance. KEY FINDINGS Heartwood ethanolic extract treatment promoted fracture healing, formation of new bone at the drill-hole site and stimulated osteogenic genes at callus region. HEE administration to the Ovx rats exhibited better micro-architectural parameters at various anatomical positions, better bone biomechanical strength and more osteoprogenitor cells in the bone marrow compared with Ovx + vehicle group. HEE exhibited no uterine estrogenicity. CONCLUSIONS Oral administration of HEE was found to promote fracture healing and exhibited osteoprotective effect by possibly stimulation of osteoblast function.
Collapse
Affiliation(s)
- Anirudha Karvande
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Vikram Khedgikar
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Priyanka Kushwaha
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Naseer Ahmad
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Priyanka Kothari
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Ashwni Verma
- Division of Pharmaceutics, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Padam Kumar
- Division of Medicinal & Process Chemistry, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Geet Kumar Nagar
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Rakesh Maurya
- Division of Medicinal & Process Chemistry, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Ritu Trivedi
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| |
Collapse
|
43
|
Porwal K, Pal S, Dev K, China SP, Kumar Y, Singh C, Barbhuyan T, Sinha N, Sanyal S, Trivedi AK, Maurya R, Chattopadhyay N. Guava fruit extract and its triterpene constituents have osteoanabolic effect: Stimulation of osteoblast differentiation by activation of mitochondrial respiration via the Wnt/β-catenin signaling. J Nutr Biochem 2017; 44:22-34. [PMID: 28343085 DOI: 10.1016/j.jnutbio.2017.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/05/2017] [Accepted: 02/08/2017] [Indexed: 12/18/2022]
Abstract
The aim of this study was to evaluate the skeletal effect of guava triterpene-enriched extract (GE) in rats and identify osteogenic compounds thereof, and determine their modes of action. In growing female rats, GE at 250 mg/kg dose increased parameters of peak bone mass including femur length, bone mineral density (BMD) and biomechanical strength, suggesting that GE promoted modeling-directed bone growth. GE also stimulated bone regeneration at the site of bone injury. In adult osteopenic rats (osteopenia induced by ovariectomy, OVX) GE completely restored the lost bones at both axial and appendicular sites, suggesting a strong osteoanabolic effect. Serum metabolomics studies showed changes in several metabolites (some of which are related to bone metabolism) in OVX compared with ovary-intact control and GE treatment to OVX rats reversed those. Out of six abundantly present triterpenes in GE, ursolic acid (UA) and 2α-hydroxy ursolic acid (2α-UA) induced osteogenic differentiation in vitro as did GE by activating Wnt/β-catenin pathway assessed by phosphorylation of GSK-3β. Over-expressing of constitutively active GSK-3β (caGSK-3β) in osteoblasts abolished the differentiation-promoting effect of GE, UA and 2α-UA. All three increased both glycolysis and mitochondrial respiration but only rotenone (inhibitor of mitochondrial electron transfer) and not 2-deoxyglucose (to block glycolysis) inhibited osteoblast differentiation. In addition, caGSK-3β over-expression attenuated the enhanced mitochondrial respiration caused by GE, UA and 2α-UA. We conclude that GE has osteoanabolic effect which is contributed by UA and 2α-UA, and involve activation of canonical Wnt signaling which in turn modulates cellular energy metabolism leading to osteoblast differentiation.
Collapse
Affiliation(s)
- Konica Porwal
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow, 226031, India
| | - Subhashis Pal
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow, 226031, India
| | - Kapil Dev
- Division of Medicinal and Process Chemistry, CDRI-CSIR, Lucknow, 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India
| | - Shyamsundar Pal China
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow, 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India
| | - Yogesh Kumar
- Division of Biochemistry, CDRI-CSIR, Lucknow, 226031, India
| | - Chandan Singh
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, India
| | - Tarun Barbhuyan
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow, 226031, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, India
| | | | | | - Rakesh Maurya
- Division of Medicinal and Process Chemistry, CDRI-CSIR, Lucknow, 226031, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow, 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India.
| |
Collapse
|
44
|
Florence NT, Huguette STS, Hubert DJ, Raceline GK, Desire DDP, Pierre K, Theophile D. Aqueous extract of Peperomia pellucida (L.) HBK accelerates fracture healing in Wistar rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:188. [PMID: 28372562 PMCID: PMC5379737 DOI: 10.1186/s12906-017-1686-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/15/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Peperomia pellucida (L.) HBK is consumed as vegetable and used in Cameroonian traditional medicine for the management of diseases and for fracture healing. Therefore the aim of this study was to evaluate the effects of the aqueous whole plant extract of Peperomia pellucida on fracture healing in female Wistar rats. METHODS A drill hole injury was created by inserting a drill bit inthe diaphysis of the femur. The aqueous extract of the whole plant of Peperomia pellucida was administered orally at the doses of 100, 200 and 400 mg/kg to adult female Wistar rats. The vehicle (distilled water) was given to the control. Besides these rats, one group of rats without fracture received the extract (400 mg/kg). After 14 days of treatment, the rats were sacrificed under anesthesia and the effects of the extract were evaluated on body weight, the relative weights of organs (femurs, uteri and ovaries) and on hematology. Bone (calcium, phosphorus, alkaline phosphatase) and serum biochemical parameters (calcium, phosphorus, alkaline phosphatase) were also evaluated. Radiological and histological tests were carried out on the femurs. The mineral content of the plant extract was also investigated. RESULTS The extract induced an increase in body weight at high dose and in WBCs count at low doses. Aqueous extract from Peperomia pellucida increased bone calcium at lowest dose but maintained this parameter at normal range at high dose in fractured rat. Alkaline phophatase and phosphorus concentrations reduced significantly (p < 0.01) at the dose of 400 mg/kg as compared to fractured rats. Moreover, radiological tests revealed a dose dependent formation of callus at the level of the fracture gap, confirmed by the formation of a highly dense and compact fibrocartilagenous callus. The mineral content of the plant extract revealed the presence of calcium, phosphorus, magnesium, sodium and potassium. CONCLUSION The aqueous extract of P. pellucida accelerates bone healing due partly to the mineral content of the extract. These results confirm its traditional use in the treatment of bone fractures.
Collapse
|
45
|
Pharmacological activation of aldehyde dehydrogenase 2 promotes osteoblast differentiation via bone morphogenetic protein-2 and induces bone anabolic effect. Toxicol Appl Pharmacol 2017; 316:63-73. [DOI: 10.1016/j.taap.2016.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/10/2016] [Accepted: 12/19/2016] [Indexed: 02/08/2023]
|
46
|
Kalam A, Talegaonkar S, Vohora D. Effects of raloxifene against letrozole-induced bone loss in chemically-induced model of menopause in mice. Mol Cell Endocrinol 2017; 440:34-43. [PMID: 27832985 DOI: 10.1016/j.mce.2016.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/10/2016] [Accepted: 11/05/2016] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The deleterious effects of letrozole, an aromatase inhibitor, used in the adjuvant treatment of breast cancer in postmenopausal women, on bone are well-documented and represent a major drawback to its clinical use. Raloxifene, a selective estrogen receptor modulator and a clinically approved anti-osteoporotic drug, has been recently demonstrated to be efficacious in women with breast cancer. The present study evaluated the effects of preventive and curative treatment with raloxifene on letrozole-induced alterations of bone microarchitecture and turnover markers in a chemically-induced menopause model in mice. METHOD Swiss strain albino female mice were made menopausal by inducing ovotoxicity using vinyl cyclohexene di epoxide (VCD, 160 mg/kg for 15 days followed by 30 days drug-free period) confirmed by ovarian histology and serum estradiol levels. Effects on femoral and lumbar bones were evaluated by micro CT determination of bone volume, trabecular number, separation, thickness, connective density and trabecular pattern factor and bone turnover markers including ALP, TRAP5b, hydroxyproline and RANKL. In addition to these, markers of Wnt signaling (sclerostin and dickkopf-1) were also evaluated. To rule out the involvement of pharmacokinetic interaction, plasma levels of letrozole and raloxifene were measured following drugs alone and in combination. RESULTS Though bone loss was observed in VCD treated mice (as indicated by micro CT measurements), it was further enhanced with letrozole administration (1 mg/kg) for one month particularly in epiphysis of femoral bones. Raloxifene (15 mg/kg), whether administered concurrently or post-letrozole was able to revert the structural alterations and changes in turnover markers caused by letrozole to varying degrees (p < 0.01 or p < 0.001). Further, estrogen deficiency following letrozole treatment in ovotoxic mice was associated with significant increase in sclerostin and dickkopf-1 in both lumbar and femur bones (p < 0.001) which was attenuated with preventive and curative treatment with raloxifene (p < 0.05). The plasma levels of letrozole remained unaffected by raloxifene administration and vice versa. CONCLUSIONS Our study indicates the potential of raloxifene in preventing and attenuating letrozole-induced bone loss. Further, these effects were found to be independent of a pharmacokinetic interaction between the two drugs.
Collapse
Affiliation(s)
- Abul Kalam
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Divya Vohora
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi 110062, India.
| |
Collapse
|
47
|
Singh AK, Shree S, Chattopadhyay S, Kumar S, Gurjar A, Kushwaha S, Kumar H, Trivedi AK, Chattopadhyay N, Maurya R, Ramachandran R, Sanyal S. Small molecule adiponectin receptor agonist GTDF protects against skeletal muscle atrophy. Mol Cell Endocrinol 2017; 439:273-285. [PMID: 27645900 DOI: 10.1016/j.mce.2016.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/23/2016] [Accepted: 09/14/2016] [Indexed: 02/02/2023]
Abstract
Skeletal muscle atrophy is a debilitating response to several major diseases, muscle disuse and chronic steroid treatment for which currently no therapy is available. Since adiponectin signaling plays key roles in muscle energetics, we assessed if globular adiponectin (gAd) or the small molecule adiponectin mimetic 6-C-β-D-glucopyranosyl-(2S,3S)-(+)-5,7,3',4'-tetrahydroxydihydroflavonol (GTDF) could ameliorate muscle atrophy. Both GTDF and gAd induced C2C12 myoblast differentiation. GTDF and gAd effectively prevented reduction in myotube area and suppressed the expressions of atrophy markers; atrogin-1 and muscle ring finger protein-1 (MuRF1) in models of steroid, cytokine and starvation -induced muscle atrophy. The protective effects of GTDF and gAd were routed through AMPK and AKT activation and thereby stimulation of PPAR gamma coactivator 1α and inhibition of forkhead box O transcription factors. Finally, GTDF and gAd mitigated dexamethasone-induced muscle atrophy in vivo. Together, our results demonstrate that activating adiponectin signaling may be an effective therapeutic strategy against skeletal muscle atrophy.
Collapse
Affiliation(s)
- Abhishek Kumar Singh
- Division of Biochemistry, CSIR-Central Drug Research Institute, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India
| | - Sonal Shree
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India
| | - Sourav Chattopadhyay
- Division of Biochemistry, CSIR-Central Drug Research Institute, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Central Drug Research Institute Campus, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India
| | - Sudhir Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India
| | - Anagha Gurjar
- Division of Biochemistry, CSIR-Central Drug Research Institute, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Central Drug Research Institute Campus, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India
| | - Sapana Kushwaha
- Division of Biochemistry, CSIR-Central Drug Research Institute, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India
| | - Harish Kumar
- Division of Biochemistry, CSIR-Central Drug Research Institute, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India
| | - Arun Kumar Trivedi
- Division of Biochemistry, CSIR-Central Drug Research Institute, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR-Central Drug Research Institute, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India
| | - Rakesh Maurya
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India
| | - Ravishankar Ramachandran
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India
| | - Sabyasachi Sanyal
- Division of Biochemistry, CSIR-Central Drug Research Institute, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Central Drug Research Institute Campus, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India.
| |
Collapse
|
48
|
Xue Z, Li D, Yu W, Zhang Q, Hou X, He Y, Kou X. Mechanisms and therapeutic prospects of polyphenols as modulators of the aryl hydrocarbon receptor. Food Funct 2017; 8:1414-1437. [DOI: 10.1039/c6fo01810f] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyphenolic AhR modulators displayed concentration-, XRE-, gene-, species- and cell-specific agonistic/antagonistic activity.
Collapse
Affiliation(s)
- Zhaohui Xue
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Dan Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Wancong Yu
- Medical Plant Laboratory
- Tianjin Research Center of Agricultural Biotechnology
- Tianjin 3000381
- China
| | - Qian Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaonan Hou
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yulong He
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
49
|
Syed AA, Lahiri S, Mohan D, Valicherla GR, Gupta AP, Kumar S, Maurya R, Bora HK, Hanif K, Gayen JR. Cardioprotective Effect of Ulmus wallichiana Planchon in β-Adrenergic Agonist Induced Cardiac Hypertrophy. Front Pharmacol 2016; 7:510. [PMID: 28066255 PMCID: PMC5174112 DOI: 10.3389/fphar.2016.00510] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 12/09/2016] [Indexed: 01/01/2023] Open
Abstract
Ulmus wallichiana Planchon (Family: Ulmaceae), a traditional medicinal plant, was used in fracture healing in the folk tradition of Uttarakhand, Himalaya, India. The present study investigated the cardioprotective effect of ethanolic extract (EE) and butanolic fraction (BF) of U. wallichiana in isoprenaline (ISO) induced cardiac hypertrophy in Wistar rats. Cardiac hypertrophy was induced by ISO (5 mg/kg/day, subcutaneously) in rats. Treatment was performed by oral administration of EE and BF of U. wallichiana (500 and 50 mg/kg/day). The blood pressure (BP) and heart rate (HR) were measured by non-invasive blood pressure measurement technique. Plasma renin, Ang II, NO, and cGMP level were estimated using an ELISA kit. Angiotensin converting enzyme activity was estimated. BP and HR were significantly increased in ISO group (130.33 ± 1.67 mmHg vs. 111.78 ± 1.62 mmHg, p < 0.001 and 450.51 ± 4.90 beats/min vs. 347.82 ± 6.91 beats/min, respectively, p < 0.001). The BP and HR were significantly reduced (EE: 117.53 ± 2.27 mmHg vs. 130.33 ± 1.67 mmHg, p < 0.001, BF: 119.74 ± 3.32 mmHg vs. 130.33 ± 1.67 mmHg, p < 0.001); HR: (EE: 390.22 ± 8.24 beats/min vs. 450.51 ± 4.90 beats/min, p < 0.001, BF: 345.38 ± 6.79 beats/min vs. 450.51 ± 4.90 beats/min, p < 0.001) after the treatment of EE and BF of U. wallichiana, respectively. Plasma renin, Ang II, ACE activity was decreased and NO, cGMP level were increased. The EE and BF of U. wallichiana down regulated the expression of ANP, BNP, TNF-α, IL-6, MMP9, β1-AR, TGFβ1 and up regulated NOS3, ACE2 and Mas expression level, respectively. Thus, this study demonstrated that U. wallichiana has cardioprotective effect against ISO induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Anees A Syed
- Division of Pharmacokinetics and Metabolism, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Shibani Lahiri
- Division of Pharmacokinetics and Metabolism, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Divya Mohan
- Division of Pharmacology, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Guru R Valicherla
- Division of Pharmacokinetics and Metabolism, Council of Scientific and Industrial Research-Central Drug Research InstituteLucknow, India; Academy of Scientific and Innovative ResearchNew Delhi, India
| | - Anand P Gupta
- Division of Pharmacokinetics and Metabolism, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Sudhir Kumar
- Division of Medicinal and Process Chemistry, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Rakesh Maurya
- Academy of Scientific and Innovative ResearchNew Delhi, India; Division of Medicinal and Process Chemistry, Council of Scientific and Industrial Research-Central Drug Research InstituteLucknow, India
| | - Himanshu K Bora
- Division of Laboratory Animals, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Kashif Hanif
- Division of Pharmacology, Council of Scientific and Industrial Research-Central Drug Research InstituteLucknow, India; Academy of Scientific and Innovative ResearchNew Delhi, India
| | - Jiaur R Gayen
- Division of Pharmacokinetics and Metabolism, Council of Scientific and Industrial Research-Central Drug Research InstituteLucknow, India; Academy of Scientific and Innovative ResearchNew Delhi, India
| |
Collapse
|
50
|
Syed AA, Lahiri S, Mohan D, Valicherla GR, Gupta AP, Riyazuddin M, Kumar S, Maurya R, Hanif K, Gayen JR. Evaluation of anti-hypertensive activity of Ulmus wallichiana extract and fraction in SHR, DOCA-salt- and L-NAME-induced hypertensive rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:555-565. [PMID: 27720848 DOI: 10.1016/j.jep.2016.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 09/06/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulmus wallichiana Planchon (Himalayan Elm), a traditional medicinal plant, used in fracture healing in folk tradition of Uttarakhand, Himalaya, India. It is also used as diuretic. U. rhynchophylla, native to China, known as Gou Teng in Chinese medicine, is used for hypertension (WHO). U. macrocarpa has antihypertensive and vasorelaxant activity. However, no detailed studies related to hypertension have been reported previously, so we have explored the antihypertensive activity of U. wallichiana. AIM OF THE STUDY To investigate the pharmacological effect of ethanolic extract (EE) and butanolic fraction (BF) of U. wallichiana in hypertensive rats. MATERIALS AND METHODS SHR, DOCA-salt- and L-NAME-induced hypertension models were used. Treatment was performed by oral administration of EE and BF of U. wallichiana (500mg/kg/day and 50mg/kg/day) for 14 days. Then blood pressure was measured by non-invasive blood pressure (NIBP) measurement technique. Invasive blood pressure (IBP) was also reported to support the NIBP data. Concentrations of plasma renin, angiotensin II (Ang II), nitrate/nitrite (NO), cGMP were estimated. Angiotensin-converting enzyme (ACE) activity and ROS activity were also estimated. RESULTS Blood pressure was significantly higher in SHR as compared to normotensive wistar group (170.59±0.83mmHg vs 121.54±1.24mmHg, respectively). SBP was increased in DOCA-salt induced group compared to their control (132.77±3.90mmHg vs 107.85±5.95mmHg, respectively) and L-NAME-induced group compared to their control (168.55±5.07mmHg vs 113.03±4.13mmHg, respectively). The treatment of extract and fraction of U. wallichiana significantly decreased the blood pressure in SHR+EE (151.26±1.85mmHg, p<0.001), SHR+BF (140.44±1.16mmHg, p<0.001); DOCA+EE (113.43±5.44mmHg, p<0.05), DOCA+BF (105.09±5.12mmHg, p<0.05) and L-NAME+EE (119.76±4.39mmHg, p<0.001), L-NAME+BF (117.50±7.27mmHg, p<0.001) compared to their respective diseased control groups. The plasma renin, Ang II and ACE activity were also significantly decreased and augmented the NO and cGMP levels. It also down regulated the expression of Renin, ACE, NOS3 and TGF-β1 at mRNA levels. CONCLUSIONS The EE and BF probably reducing the BP via Renin-angiotensin-aldosterone system and NO/cGMP signaling pathway. The decrease in blood pressure may be due to presence of quercetin analogue flavonoids (2S,3S)-(+)-3',4',5,7-tetrahydroxydihydroflavonol-6-C-β-D-glucopyranoside; 6-Glucopyranosyl-3,3',4',5,7-pentahydroxyflavone; 6-Glucopyranosyl-4',5,7-trihydroxyflavanone and (2S,3S)-(+)-4',5,7-trihydroxydihydroflavonol-6-C-β-D-glucopyranoside, may be due to its antioxidant activity. Thus EE and BF of U. wallichiana found to have the potential ability to be used as herbal medicament to treat hypertension.
Collapse
Affiliation(s)
- Anees A Syed
- Division of Pharmacokinetics & Metabolism, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India
| | - Shibani Lahiri
- Division of Pharmacokinetics & Metabolism, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India
| | - Divya Mohan
- Division of Pharmacology, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India
| | - Guru R Valicherla
- Division of Pharmacokinetics & Metabolism, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Anand P Gupta
- Division of Pharmacokinetics & Metabolism, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India
| | - Mohammed Riyazuddin
- Division of Pharmacokinetics & Metabolism, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India
| | - Sudhir Kumar
- Division of Medicinal & Process Chemistry, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India
| | - Rakesh Maurya
- Division of Medicinal & Process Chemistry, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Kashif Hanif
- Division of Pharmacology, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| | - Jiaur R Gayen
- Division of Pharmacokinetics & Metabolism, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|