1
|
Osafo SA, Etinosa PO, Obayemi JD, Salifu AA, Asumadu T, Klenam D, Agyei-Tuffour B, Dodoo-Arhin D, Yaya A, Soboyejo WO. Hydroxyapatite nano-pillars on TI-6Al-4V: Enhancements in cell spreading and proliferation during cell/surface integration. J Biomed Mater Res A 2024; 112:1778-1792. [PMID: 38630051 DOI: 10.1002/jbm.a.37726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/02/2024] [Accepted: 04/08/2024] [Indexed: 08/02/2024]
Abstract
Despite the attractive combinations of cell/surface interactions, biocompatibility, and good mechanical properties of Ti-6Al-4V, there is still a need to enhance the early stages of cell/surface integration that are associated with the implantation of biomedical devices into the human body. This paper presents a novel, easy and reproducible method of nanoscale and nanostructured hydroxyapatite (HA) coatings on Ti-6Al-4V. The resulting nanoscale coatings/nanostructures are characterized using a combination of Raman spectroscopy, scanning electron microscopy equipped with energy dispersive x-ray spectroscopy. The nanostructured/nanoscale coatings are shown to enhance the early stages of cell spreading and integration of bone cells (hFOB cells) on Ti-6Al-4V surfaces. The improvements include the acceleration of extra-cellular matrix, cell spreading and proliferation by nanoscale HA structures on the coated surfaces. The implications of the results are discussed for the development of HA nanostructures for the improved osseointegration of Ti-6Al-4V in orthopedic and dental applications.
Collapse
Affiliation(s)
- Sarah Akua Osafo
- Department of Materials Science and Engineering, University of Ghana, Accra, Ghana
- Department of Biomaterial Science, Dental School, University of Ghana, Korle Bu Campus, Accra, Ghana
- Department of Mechanical Engineering, Program in Materials Science and Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Precious Osayamen Etinosa
- Department of Mechanical Engineering, Program in Materials Science and Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - John David Obayemi
- Department of Mechanical Engineering, Program in Materials Science and Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Gateway Park Life Sciences and Bioengineering Centre, Worcester, Massachusetts, USA
| | - Ali Azeko Salifu
- Department of Engineering, Boston College, Chestnut Hill, Massachusetts, USA
| | - Tabiri Asumadu
- Department of Mechanical Engineering, Program in Materials Science and Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Department of Materials Engineering, Sunyani Technical University, Sunyani, Ghana
- Department of Mechanical Engineering, College of Engineering, State University of New York (SUNY) Polytechnic Institute, Utica, New York, USA
| | - Desmond Klenam
- Department of Mechanical Engineering, Program in Materials Science and Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Academic Development Unit and School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | | | - David Dodoo-Arhin
- Department of Materials Science and Engineering, University of Ghana, Accra, Ghana
| | - Abu Yaya
- Department of Materials Science and Engineering, University of Ghana, Accra, Ghana
| | - Winston Oluwole Soboyejo
- Department of Mechanical Engineering, Program in Materials Science and Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Gateway Park Life Sciences and Bioengineering Centre, Worcester, Massachusetts, USA
- Department of Mechanical Engineering, College of Engineering, State University of New York (SUNY) Polytechnic Institute, Utica, New York, USA
| |
Collapse
|
2
|
Behjat A, Sanaei S, Mosallanejad MH, Atapour M, Sheikholeslam M, Saboori A, Iuliano L. A novel titanium alloy for load-bearing biomedical implants: Evaluating the antibacterial and biocompatibility of Ti536 produced via electron beam powder bed fusion additive manufacturing process. BIOMATERIALS ADVANCES 2024; 163:213928. [PMID: 38941776 DOI: 10.1016/j.bioadv.2024.213928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
Additive manufacturing (AM) of Ti-based biomedical implants is a pivotal research topic because of its ability to produce implants with complicated geometries. Despite desirable mechanical properties and biocompatibility of Ti alloys, one major drawback is their lack of inherent antibacterial properties, increasing the risk of postoperative infections. Hence, this research focuses on the Ti536 (Ti5Al3V6Cu) alloy, developed through Electron Beam Powder Bed Fusion (EB-PBF), exploring bio-corrosion, antibacterial features, and cell biocompatibility. The microstructural characterization revealed grain refinement and the formation of Ti2Cu precipitates with different morphologies and sizes in the Ti matrix. Electrochemical tests showed that Cu content minimally influenced the corrosion current density, while it slightly affected the stability, defect density, and chemical composition of the passive film. According to the findings, the Ti536 alloy demonstrated enhanced antibacterial properties without compromising its cell biocompatibility and corrosion behavior, thanks to Ti2Cu precipitates. This can be attributed to both the release of Cu ions and the Ti2Cu precipitates. The current study suggests that the EB-PBF fabricated Ti536 sample is well-suited for use in load-bearing applications within the medical industry. This research also offers an alloy design roadmap for novel biomedical Ti-based alloys with superior biological performance using AM methods.
Collapse
Affiliation(s)
- Amir Behjat
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Integrated Additive Manufacturing Center, Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Saber Sanaei
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammad Hossein Mosallanejad
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Integrated Additive Manufacturing Center, Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Masoud Atapour
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mohammadali Sheikholeslam
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Abdollah Saboori
- Integrated Additive Manufacturing Center, Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Luca Iuliano
- Integrated Additive Manufacturing Center, Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
3
|
Costa do Bomfim FR, Gonzalez Sella VR, Thomasini RL, Plapler H. Photobiomodulation Modulates Proliferation and Gene Expression Related to Calcium Signaling in Human Osteoblast Cells. J Lasers Med Sci 2024; 15:e45. [PMID: 39381787 PMCID: PMC11459251 DOI: 10.34172/jlms.2024.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/29/2024] [Indexed: 10/10/2024]
Abstract
Introduction: Photobiomodulation with low-level laser treatment can enhance bone formation by stimulating the cell division of osteoblasts and increasing the amount of protein deposition, thus encouraging the formation of new bone. The aim of this study was to evaluate the effects of photobiomodulation with a low-level laser on proliferation and gene expression related to calcium signaling in human osteoblasts. Methods: Osteoblastic cell lines of the hFOB1.19 lineage, human osteoblasts, were grown and assigned into two groups, control (C; n=78 cultured wells) and photobiomodulation (L; n=78 cultured wells) with n=6 per day of the experimental period. Cells were cultured (immature at 34 ºC), and after maturation at 37 ºC, group L cells were exposed to laser irradiation with a low-level laser device (gallium and aluminum arsenide), at a wavelength of 808 nm, a power output of 200 mW, and a power density of 200 mW/cm2. The energy delivered to the cells was 37 J/cm2, with a beam area of 0.02 mm2 and an exposure time of 5 seconds. This treatment was applied daily for a period of 13 days. Following this, the number of cells was counted, and RNA was isolated, measured, and then converted into cDNA for further quantification using a comparative Ct method with real-time polymerase chain reaction. The results were then subjected to statistical analysis through a Mann-Whitney test, with a significance level of P<0.05. Results: The cell count in the L group (37.25x10±4±22.02) was statistically higher compared to the control group (22.75x10±4±7.660) with a P value of 0.0259. The values of 2-ΔΔCt for S100A6, plasma membrane calcium ATPase (PMCA), and calmodulin genes indicated hyper-expression on the thirteenth day, while the osteocalcin gene showed hypo-expression. Conclusion: The study suggests that the photobiomodulation mechanism with a low-level laser may regulate gene expression in human osteoblasts in a dose-dependent and cumulative manner.
Collapse
Affiliation(s)
- Fernando Russo Costa do Bomfim
- Postgraduate Program in Interdisciplinary Surgical Science, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
- Laboratory of Molecular Biology, Centro Universitário da Fundação Hermínio Ometto - FHO, Araras, SP, Brazil
| | - Valéria Regina Gonzalez Sella
- Postgraduate Program in Interdisciplinary Surgical Science, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Ronaldo Luis Thomasini
- Medicine Faculty, Universidade Federal dos Vales do Jequitinhonha e Mucuri - UFVJM, Diamantina, MG, Brazil
| | - Hélio Plapler
- Postgraduate Program in Interdisciplinary Surgical Science, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Abood A, Mesner LD, Jeffery ED, Murali M, Lehe MD, Saquing J, Farber CR, Sheynkman GM. Long-read proteogenomics to connect disease-associated sQTLs to the protein isoform effectors of disease. Am J Hum Genet 2024; 111:1914-1931. [PMID: 39079539 PMCID: PMC11393689 DOI: 10.1016/j.ajhg.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
A major fraction of loci identified by genome-wide association studies (GWASs) mediate alternative splicing, but mechanistic interpretation is hindered by the technical limitations of short-read RNA sequencing (RNA-seq), which cannot directly link splicing events to full-length protein isoforms. Long-read RNA-seq represents a powerful tool to characterize transcript isoforms, and recently, infer protein isoform existence. Here, we present an approach that integrates information from GWASs, splicing quantitative trait loci (sQTLs), and PacBio long-read RNA-seq in a disease-relevant model to infer the effects of sQTLs on the ultimate protein isoform products they encode. We demonstrate the utility of our approach using bone mineral density (BMD) GWAS data. We identified 1,863 sQTLs from the Genotype-Tissue Expression (GTEx) project in 732 protein-coding genes that colocalized with BMD associations (H4PP ≥ 0.75). We generated PacBio Iso-Seq data (N = ∼22 million full-length reads) on human osteoblasts, identifying 68,326 protein-coding isoforms, of which 17,375 (25%) were unannotated. By casting the sQTLs onto protein isoforms, we connected 809 sQTLs to 2,029 protein isoforms from 441 genes expressed in osteoblasts. Overall, we found that 74 sQTLs influenced isoforms likely impacted by nonsense-mediated decay and 190 that potentially resulted in the expression of unannotated protein isoforms. Finally, we functionally validated colocalizing sQTLs in TPM2, in which siRNA-mediated knockdown in osteoblasts showed two TPM2 isoforms with opposing effects on mineralization but exhibited no effect upon knockdown of the entire gene. Our approach should be to generalize across diverse clinical traits and to provide insights into protein isoform activities modulated by GWAS loci.
Collapse
Affiliation(s)
- Abdullah Abood
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Larry D Mesner
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA
| | - Erin D Jeffery
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Mayank Murali
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Micah D Lehe
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Jamie Saquing
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Charles R Farber
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA.
| | - Gloria M Sheynkman
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA; UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
5
|
Yan J, Gu X, Gao X, Shao Y, Ji M. USP36 regulates the proliferation, survival, and differentiation of hFOB1.19 osteoblast. J Orthop Surg Res 2024; 19:483. [PMID: 39152465 PMCID: PMC11330066 DOI: 10.1186/s13018-024-04893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/02/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Effective bone formation relies on osteoblast differentiation, a process subject to intricate post-translational regulation. Ubiquitin-specific proteases (USPs) repress protein degradation mediated by the ubiquitin-proteasome pathway. Several USPs have been documented to regulate osteoblast differentiation, but whether other USPs are involved in this process remains elusive. METHODS In this study, we conducted a comparative analysis of 48 USPs in differentiated and undifferentiated hFOB1.19 osteoblasts, identifying significantly upregulated USPs. Subsequently, we generated USP knockdown hFOB1.19 cells and evaluated their osteogenic differentiation using Alizarin red staining. We also assessed cell viability, cell cycle progression, and apoptosis through MTT, 7-aminoactinomycin D staining, and Annexin V/PI staining assays, respectively. Quantitative PCR and Western blotting were employed to measure the expression levels of osteogenic differentiation markers. Additionally, we investigated the interaction between the USP and its target protein using co-immunoprecipitation (co-IP). Furthermore, we depleted the USP in hFOB1.19 cells to examine its effect on the ubiquitination and stability of the target protein using immunoprecipitation (IP) and Western blotting. Finally, we overexpressed the target protein in USP-deficient hFOB1.19 cells and evaluated its impact on their osteogenic differentiation using Alizarin red staining. RESULTS USP36 is the most markedly upregulated USP in differentiated hFOB1.19 osteoblasts. Knockdown of USP36 leads to reduced viability, cell cycle arrest, heightened apoptosis, and impaired osteogenic differentiation in hFOB1.19 cells. USP36 interacts with WD repeat-containing protein 5 (WDR5), and the knockdown of USP36 causes an increased level of WDR5 ubiquitination and accelerated degradation of WDR5. Excessive WDR5 improved the impaired osteogenic differentiation of USP36-deficient hFOB1.19 cells. CONCLUSIONS These observations suggested that USP36 may function as a key regulator of osteoblast differentiation, and its regulatory mechanism may be related to the stabilization of WDR5.
Collapse
Affiliation(s)
- Junfa Yan
- Department of Orthopaedics, Xiamen Humanity Hospital, Xiamen, 361006, Fujian, China
| | - Xiufei Gu
- Department of ICU, Xiang'an Hospital of Xiamen University, Xiamen, 361100, Fujian, China
| | - Xilin Gao
- Department of Orthopaedics, Xiamen Humanity Hospital, Xiamen, 361006, Fujian, China
| | - Yan Shao
- Department of Internal Medicine, Alashan High-tech Industrial Development Zone General Hospital, Alashan, 750300, Inner Mongolia Autonomous Region, China
| | - Minghua Ji
- Department of Orthopaedics, Xiamen Humanity Hospital, Xiamen, 361006, Fujian, China.
| |
Collapse
|
6
|
Finlay M, Hill LA, Neag G, Patel B, Chipara M, Lamont HC, Frost K, Patrick K, Lewis JW, Nicholson T, Edwards J, Jones SW, Grover LM, Naylor AJ. A detailed methodology for a three-dimensional, self-structuring bone model that supports the differentiation of osteoblasts towards osteocytes and the production of a complex collagen-rich mineralised matrix. F1000Res 2024; 12:357. [PMID: 38778815 PMCID: PMC11109547 DOI: 10.12688/f1000research.130779.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 05/25/2024] Open
Abstract
Background There are insufficient in vitro bone models that accommodate long-term culture of osteoblasts and support their differentiation to osteocytes. The increased demand for effective therapies for bone diseases, and the ethical requirement to replace animals in research, warrants the development of such models.Here we present an in-depth protocol to prepare, create and maintain three-dimensional, in vitro, self-structuring bone models that support osteocytogenesis and long-term osteoblast survival (>1 year). Methods Osteoblastic cells are seeded on a fibrin hydrogel, cast between two beta-tricalcium phosphate anchors. Analytical methods optimised for these self-structuring bone model (SSBM) constructs, including RT-qPCR, immunofluorescence staining and XRF, are described in detail. Results Over time, the cells restructure and replace the initial matrix with a collagen-rich, mineralising one; and demonstrate differentiation towards osteocytes within 12 weeks of culture. Conclusions Whilst optimised using a secondary human cell line (hFOB 1.19), this protocol readily accommodates osteoblasts from other species (rat and mouse) and origins (primary and secondary). This simple, straightforward method creates reproducible in vitro bone models that are responsive to exogenous stimuli, offering a versatile platform for conducting preclinical translatable research studies.
Collapse
Affiliation(s)
- Melissa Finlay
- Healthcare Technologies Institute, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Laurence A Hill
- Healthcare Technologies Institute, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Georgiana Neag
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Binal Patel
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Miruna Chipara
- Healthcare Technologies Institute, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Hannah C Lamont
- Healthcare Technologies Institute, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Kathryn Frost
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Kieran Patrick
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Jonathan W Lewis
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Thomas Nicholson
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - James Edwards
- NDORMS, University of Oxford, Oxford, Oxfordshire, OX3 7HE, UK
| | - Simon W Jones
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Liam M Grover
- Healthcare Technologies Institute, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Amy J Naylor
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| |
Collapse
|
7
|
Hadady H, Alam A, Khurana I, Mutreja I, Kumar D, Shankar MR, Dua R. Optimizing alkaline hydrothermal treatment for biomimetic smart metallic orthopedic and dental implants. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:31. [PMID: 38896291 PMCID: PMC11186882 DOI: 10.1007/s10856-024-06794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/04/2024] [Indexed: 06/21/2024]
Abstract
Orthopedic and dental implant failure continues to be a significant concern due to localized bacterial infections. Previous studies have attempted to improve implant surfaces by modifying their texture and roughness or coating them with antibiotics to enhance antibacterial properties for implant longevity. However, these approaches have demonstrated limited effectiveness. In this study, we attempted to engineer the titanium (Ti) alloy surface biomimetically at the nanometer scale, inspired by the cicada wing nanostructure using alkaline hydrothermal treatment (AHT) to simultaneously confer antibacterial properties and support the adhesion and proliferation of mammalian cells. The two modified Ti surfaces were developed using a 4 h and 8 h AHT process in 1 N NaOH at 230 °C, followed by a 2-hour post-calcination at 600 °C. We found that the control plates showed a relatively smooth surface, while the treatment groups (4 h & 8 h AHT) displayed nanoflower structures containing randomly distributed nano-spikes. The results demonstrated a statistically significant decrease in the contact angle of the treatment groups, which increased wettability characteristics. The 8 h AHT group exhibited the highest wettability and significant increase in roughness 0.72 ± 0.08 µm (P < 0.05), leading to more osteoblast cell attachment, reduced cytotoxicity effects, and enhanced relative survivability. The alkaline phosphatase activity measured in all different groups indicated that the 8 h AHT group exhibited the highest activity, suggesting that the surface roughness and wettability of the treatment groups may have facilitated cell adhesion and attachment and subsequently increased secretion of extracellular matrix. Overall, the findings indicate that biomimetic nanotextured surfaces created by the AHT process have the potential to be translated as implant coatings to enhance bone regeneration and implant integration.
Collapse
Affiliation(s)
- Hanieh Hadady
- Polymer & Material Science Research, Department of Innovation & Technology Research, American Dental Association Science & Research Institute, L.L.C., Gaithersburg, MD, USA
| | - Arefin Alam
- Polymer & Material Science Research, Department of Innovation & Technology Research, American Dental Association Science & Research Institute, L.L.C., Gaithersburg, MD, USA
| | - Indu Khurana
- Department of Economics and Business, Hampden-Sydney College, Hampden-, Sydney, VA, USA
| | - Isha Mutreja
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Dhiraj Kumar
- Division of Pediatric Dentistry, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Mamilla Ravi Shankar
- Department of Mechanical Engineering, Indian Institute of Technology, Tirupati, AP, India
| | - Rupak Dua
- Polymer & Material Science Research, Department of Innovation & Technology Research, American Dental Association Science & Research Institute, L.L.C., Gaithersburg, MD, USA.
- Department of Chemical Engineering, Hampton University, Hampton, VA, USA.
| |
Collapse
|
8
|
Krakowian D, Lesiak M, Auguściak-Duma A, Witecka J, Kusz D, Sieroń AL, Gawron K. Analysis of the TID-I and TID-L Splice Variants' Expression Profile under In Vitro Differentiation of Human Mesenchymal Bone Marrow Cells into Osteoblasts. Cells 2024; 13:1021. [PMID: 38920651 PMCID: PMC11201664 DOI: 10.3390/cells13121021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
Bone formation is a complex process regulated by a variety of pathways that are not yet fully understood. One of the proteins involved in multiple osteogenic pathways is TID (DNAJA3). The aim of this work was to study the association of TID with osteogenesis. Therefore, the expression profiles of the TID splice variants (TID-L, TID-I) and their protein products were analyzed during the proliferation and differentiation of bone marrow mesenchymal stromal cells (B-MSCs) into osteoblasts. As the reference, the hFOB1.19 cell line was used. The phenotype of B-MSCs was confirmed by the presence of CD73, CD90, and CD105 surface antigens on ~97% of cells. The osteoblast phenotype was confirmed by increased alkaline phosphatase activity, calcium deposition, and expression of ALPL and SPP1. The effect of silencing the TID gene on the expression of ALPL and SPP1 was also investigated. The TID proteins and the expression of TID splice variants were detected. After differentiation, the expression of TID-L and TID-I increased 5-fold and 3.7-fold, respectively, while their silencing resulted in increased expression of SPP1. Three days after transfection, the expression of SPP1 increased 7.6-fold and 5.6-fold in B-MSCs and differentiating cells, respectively. Our preliminary study demonstrated that the expression of TID-L and TID-I changes under differentiation of B-MSCs into osteoblasts and may influence the expression of SPP1. However, for better understanding the functional association of these results with the relevant osteogenic pathways, further studies are needed.
Collapse
Affiliation(s)
- Daniel Krakowian
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
- Toxicology Research Group, Łukasiewicz Research Network—Institute of Industrial Organic Chemistry Branch Pszczyna, 43-200 Pszczyna, Poland
| | - Marta Lesiak
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Aleksandra Auguściak-Duma
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Joanna Witecka
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
- Department of Parasitology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland
| | - Damian Kusz
- Department of Orthopaedics and Traumatology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Aleksander L. Sieroń
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
9
|
Amorim T, Kumar NG, David NL, Dion W, Pagadala T, Doshi NK, Zhu B, Parkhitko A, Steinhauser ML, Fazeli PK. Methionine as a regulator of bone remodeling with fasting. JCI Insight 2024; 9:e177997. [PMID: 38780544 PMCID: PMC11383369 DOI: 10.1172/jci.insight.177997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Caloric restriction improves metabolic health but is often complicated by bone loss. We studied bone parameters in humans during a 10-day fast and identified candidate metabolic regulators of bone turnover. Pro-collagen 1 intact N-terminal pro-peptide (P1NP), a bone formation marker, decreased within 3 days of fasting. Whereas dual-energy x-ray absorptiometry measures of bone mineral density were unchanged after 10 days of fasting, high-resolution peripheral quantitative CT demonstrated remodeling of bone microarchitecture. Pathway analysis of longitudinal metabolomics data identified one-carbon metabolism as fasting dependent. In cultured osteoblasts, we tested the functional significance of one-carbon metabolites modulated by fasting, finding that methionine - which surged after 3 days of fasting - affected markers of osteoblast cell state in a concentration-dependent manner, in some instances exhibiting a U-shaped response with both low and high concentrations driving putative antibone responses. Administration of methionine to mice for 5 days recapitulated some fasting effects on bone, including a reduction in serum P1NP. In conclusion, a 10-day fast in humans led to remodeling of bone microarchitecture, potentially mediated by a surge in circulating methionine. These data support an emerging model that points to a window of optimal methionine exposure for bone health.
Collapse
Affiliation(s)
- Tânia Amorim
- Aging Institute of UPMC and University of Pittsburgh School of Medicine
- Neuroendocrinology Unit, Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine
- Center for Human Integrative Physiology, Aging Institute of UPMC and University of Pittsburgh School of Medicine
| | - Naveen Gv Kumar
- Aging Institute of UPMC and University of Pittsburgh School of Medicine
| | - Natalie L David
- Aging Institute of UPMC and University of Pittsburgh School of Medicine
- Neuroendocrinology Unit, Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine
- Center for Human Integrative Physiology, Aging Institute of UPMC and University of Pittsburgh School of Medicine
| | - William Dion
- Aging Institute of UPMC and University of Pittsburgh School of Medicine
| | - Trishya Pagadala
- Aging Institute of UPMC and University of Pittsburgh School of Medicine
| | - Nandini K Doshi
- Aging Institute of UPMC and University of Pittsburgh School of Medicine
- Center for Human Integrative Physiology, Aging Institute of UPMC and University of Pittsburgh School of Medicine
| | - Bokai Zhu
- Aging Institute of UPMC and University of Pittsburgh School of Medicine
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine; and
| | - Andrey Parkhitko
- Aging Institute of UPMC and University of Pittsburgh School of Medicine
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine; and
| | - Matthew L Steinhauser
- Aging Institute of UPMC and University of Pittsburgh School of Medicine
- Center for Human Integrative Physiology, Aging Institute of UPMC and University of Pittsburgh School of Medicine
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Pouneh K Fazeli
- Neuroendocrinology Unit, Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine
- Center for Human Integrative Physiology, Aging Institute of UPMC and University of Pittsburgh School of Medicine
| |
Collapse
|
10
|
Marozin S, Simon-Nobbe B, Huth A, Beyerer E, Weber L, Nüssler A, Lepperdinger G. Aggregation of human osteoblasts unlocks self-reliant differentiation and constitutes a microenvironment for 3D-co-cultivation with other bone marrow cells. Sci Rep 2024; 14:10345. [PMID: 38710795 DOI: 10.1038/s41598-024-60986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
Skeletal bone function relies on both cells and cellular niches, which, when combined, provide guiding cues for the control of differentiation and remodeling processes. Here, we propose an in vitro 3D model based on human fetal osteoblasts, which eases the study of osteocyte commitment in vitro and thus provides a means to examine the influences of biomaterials, substances or cells on the regulation of these processes. Aggregates were formed from human fetal osteoblasts (hFOB1.19) and cultivated under proliferative, adipo- and osteoinductive conditions. When cultivated under osteoinductive conditions, the vitality of the aggregates was compromised, the expression levels of the mineralization-related gene DMP1 and the amount of calcification and matrix deposition were lower, and the growth of the spheroids stalled. However, within spheres under growth conditions without specific supplements, self-organization processes occur, which promote extracellular calcium deposition, and osteocyte-like cells develop. Long-term cultivated hFOB aggregates were free of necrotic areas. Moreover, hFOB aggregates cultivated under standard proliferative conditions supported the co-cultivation of human monocytes, microvascular endothelial cells and stromal cells. Overall, the model presented here comprises a self-organizing and easily accessible 3D osteoblast model for studying bone marrow formation and in vitro remodeling and thus provides a means to test druggable molecular pathways with the potential to promote life-long bone formation and remodeling.
Collapse
Affiliation(s)
- Sabrina Marozin
- Department of Biosciences and Medical Biology, University Salzburg, 5020, Salzburg, Austria.
| | - Birgit Simon-Nobbe
- Department of Biosciences and Medical Biology, University Salzburg, 5020, Salzburg, Austria
| | - Astrid Huth
- Department of Biosciences and Medical Biology, University Salzburg, 5020, Salzburg, Austria
| | - Evelyn Beyerer
- Department of Biosciences and Medical Biology, University Salzburg, 5020, Salzburg, Austria
| | - Laurenz Weber
- Department of Biosciences and Medical Biology, University Salzburg, 5020, Salzburg, Austria
| | - Andreas Nüssler
- Siegfried Weller Institut (SWI) | BG Klinik Tübingen, Tübingen, Germany
| | - Günter Lepperdinger
- Department of Biosciences and Medical Biology, University Salzburg, 5020, Salzburg, Austria
| |
Collapse
|
11
|
Buckley C, Wang H, O'Dell R, Del Rosario M, Parimala Chelvi Ratnamani M, Rome M, Wang H. Creation of Porous, Perfusable Microtubular Networks for Improved Cell Viability in Volumetric Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18522-18533. [PMID: 38564436 DOI: 10.1021/acsami.4c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The creation of large, volumetric tissue-engineered constructs has long been hindered due to the lack of effective vascularization strategies. Recently, 3D printing has emerged as a viable approach to creating vascular structures; however, its application is limited. Here, we present a simple and controllable technique to produce porous, free-standing, perfusable tubular networks from sacrificial templates of polyelectrolyte complex and coatings of salt-containing citrate-based elastomer poly(1,8-octanediol-co-citrate) (POC). As demonstrated, fully perfusable and interconnected POC tubular networks with channel diameters ranging from 100 to 400 μm were created. Incorporating NaCl particulates into the POC coating enabled the formation of micropores (∼19 μm in diameter) in the tubular wall upon particulate leaching to increase the cross-wall fluid transport. Casting and cross-linking gelatin methacrylate (GelMA) suspended with human osteoblasts over the free-standing porous POC tubular networks led to the fabrication of 3D cell-encapsulated constructs. Compared to the constructs without POC tubular networks, those with either solid or porous wall tubular networks exhibited a significant increase in cell viability and proliferation along with healthy cell morphology, particularly those with porous networks. Taken together, the sacrificial template-assisted approach is effective to fabricate tubular networks with controllable channel diameter and patency, which can be easily incorporated into cell-encapsulated hydrogels or used as tissue-engineering scaffolds to improve cell viability.
Collapse
Affiliation(s)
- Christian Buckley
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
- Semcer Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Haoyu Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
- Semcer Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Robert O'Dell
- Department of Chemical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Matthew Del Rosario
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Matangi Parimala Chelvi Ratnamani
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
- Semcer Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Mark Rome
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
- Semcer Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| |
Collapse
|
12
|
Jablonská E, Mrázková L, Kubásek J, Vojtěch D, Paulin I, Ruml T, Lipov J. Characterization of hFOB 1.19 Cell Line for Studying Zn-Based Degradable Metallic Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:915. [PMID: 38399166 PMCID: PMC10890055 DOI: 10.3390/ma17040915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
In vitro testing is the first important step in the development of new biomaterials. The human fetal osteoblast cell line hFOB 1.19 is a very promising cell model; however, there are vast discrepancies in cultivation protocols, especially in the cultivation temperature and the presence of the selection reagent, geneticin (G418). We intended to use hFOB 1.19 for the testing of Zn-based degradable metallic materials. However, the sensitivity of hFOB 1.19 to zinc ions has not yet been studied. Therefore, we compared the toxicity of zinc towards hFOB 1.19 under different conditions and compared it with that of the L929 mouse fibroblast cell line. We also tested the cytotoxicity of three types of Zn-based biomaterials in two types of media. The presence of G418 used as a selection reagent decreased the sensitivity of hFOB 1.19 to Zn2+. hFOB 1.19 cell line was more sensitive to Zn2+ at elevated (restrictive) temperatures. hFOB 1.19 cell line was less sensitive to Zn2+ than L929 cell line (both as ZnCl2 and extracts of alloys). Therefore, the appropriate cultivation conditions of hFOB 1.19 during biomaterial testing should be chosen with caution.
Collapse
Affiliation(s)
- Eva Jablonská
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic; (L.M.); (T.R.); (J.L.)
| | - Lucie Mrázková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic; (L.M.); (T.R.); (J.L.)
| | - Jiří Kubásek
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic; (J.K.); (D.V.)
| | - Dalibor Vojtěch
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic; (J.K.); (D.V.)
| | - Irena Paulin
- Institute of Metals and Technology, Ljubljana, Lepi pot 11, SI-1000 Ljubljana, Slovenia;
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic; (L.M.); (T.R.); (J.L.)
| | - Jan Lipov
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic; (L.M.); (T.R.); (J.L.)
| |
Collapse
|
13
|
Dua R, Sharufa O, Terry J, Dunn W, Khurana I, Vadivel J, Zhang Y, Donahue HJ. Surface modification of Polyether-ether-ketone for enhanced cell response: a chemical etching approach. Front Bioeng Biotechnol 2023; 11:1202499. [PMID: 37744253 PMCID: PMC10517429 DOI: 10.3389/fbioe.2023.1202499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Polyether-ether-ketone (PEEK) is increasingly becoming popular in medicine because of its excellent mechanical strength, dimensional stability, and chemical resistance properties. However, PEEK being bioinert, has weak bone osseointegration properties, limiting its clinical applications. In this study, a porous PEEK structure was developed using a chemical etching method with 98 wt% sulfuric acids and three post-treatments were performed to improve bone cell adhesion and proliferation. Four groups of PEEK samples were prepared for the study: Control (untreated; Group 1); Etched with sulfuric acid and washed with distilled water (Group 2); Etched with sulfuric acid and washed with acetone and distilled water (Group 3); and Etched with sulfuric acid and washed with 4 wt% sodium hydroxide and distilled water (Group 4). Surface characterization of the different groups was evaluated for surface topology, porosity, roughness, and wettability using various techniques, including scanning electron microscopy, profilometer, and goniometer. Further chemical characterization was done using Energy-dispersive X-ray spectroscopy to analyze the elements on the surface of each group. Bone cell studies were conducted using cell toxicity and alkaline phosphatase activity (ALP) assays. The SEM analysis of the different groups revealed porous structures in the treatment groups, while the control group showed a flat topology. There was no statistically significant difference between the pore size within the treated groups. This was further confirmed by the roughness values measured with the profilometer. We found a statistically significant increase in the roughness from 7.22 × 10-3 μm for the control group to the roughness range of 0.1 µm for the treated groups (Groups 2-4). EDX analysis revealed the presence of a 0.1% weight concentration of sodium on the surface of Group 4, while sulfur weight percentage concentration was 1.1%, 0.1%, and 1.4% in groups 2, 3, and 4, respectively, indicating different surface chemistry on the surface due to different post-treatments. Cell toxicity decreased, and ALP activity increased in groups 3 and 4 over 7 days compared with the control group. It is demonstrated that the surface modification of PEEK using a chemical etching method with post-processing with either acetone or sodium hydroxide provides a nano-porous structure with improved properties, leading to enhanced osteoblastic cell differentiation and osteogenic potential.
Collapse
Affiliation(s)
- Rupak Dua
- American Dental Association Science and Research Institute (ADASRI), Gaithersburg, MD, United States
- Department of Chemical Engineering, Hampton University, Hampton, VA, United States
| | - Onessa Sharufa
- Department of Chemical Engineering, Hampton University, Hampton, VA, United States
| | - Joi Terry
- Department of Biology, Hampton University, Hampton, VA, United States
| | - William Dunn
- The New Horizons Governor’s School for Science and Technology, Hampton, VA, United States
| | - Indu Khurana
- Department of Economics and Business, Hampden-Sydney College, Hampden-Sydney, VA, United States
| | - Jagasivamani Vadivel
- Department of Chemical Engineering, Hampton University, Hampton, VA, United States
| | - Yue Zhang
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Henry J. Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
14
|
Dvorakova J, Wiesnerova L, Chocholata P, Kulda V, Landsmann L, Cedikova M, Kripnerova M, Eberlova L, Babuska V. Human cells with osteogenic potential in bone tissue research. Biomed Eng Online 2023; 22:33. [PMID: 37013601 PMCID: PMC10069154 DOI: 10.1186/s12938-023-01096-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Bone regeneration after injury or after surgical bone removal due to disease is a serious medical challenge. A variety of materials are being tested to replace a missing bone or tooth. Regeneration requires cells capable of proliferation and differentiation in bone tissue. Although there are many possible human cell types available for use as a model for each phase of this process, no cell type is ideal for each phase. Osteosarcoma cells are preferred for initial adhesion assays due to their easy cultivation and fast proliferation, but they are not suitable for subsequent differentiation testing due to their cancer origin and genetic differences from normal bone tissue. Mesenchymal stem cells are more suitable for biocompatibility testing, because they mimic natural conditions in healthy bone, but they proliferate more slowly, soon undergo senescence, and some subpopulations may exhibit weak osteodifferentiation. Primary human osteoblasts provide relevant results in evaluating the effect of biomaterials on cellular activity; however, their resources are limited for the same reasons, like for mesenchymal stem cells. This review article provides an overview of cell models for biocompatibility testing of materials used in bone tissue research.
Collapse
Affiliation(s)
- Jana Dvorakova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Lucie Wiesnerova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Petra Chocholata
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Vlastimil Kulda
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Lukas Landsmann
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Miroslava Cedikova
- Biomedical Center, Laboratory of Tumor Biology and Immunotherapy, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Michaela Kripnerova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Lada Eberlova
- Department of Anatomy, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Vaclav Babuska
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic.
| |
Collapse
|
15
|
Vélez GQ, Carmona-Sarabia L, Santiago AP, Figueroa Guzmán AF, Hu C, Peterson-Peguero E, López-Mejías V. Beyond Antiresorptive Activity: Risedronate-Based Coordination Complexes To Potentially Treat Osteolytic Metastases. ACS APPLIED BIO MATERIALS 2023; 6:973-986. [PMID: 36786674 DOI: 10.1021/acsabm.2c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Coordination of clinically employed bisphosphonate, risedronate (RISE), to bioactive metals, Ca2+, Mg2+, and Zn2+, allowed the formation of bisphosphonate-based coordination complexes (BPCCs). Three RISE-based BPCCs, RISE-Ca, RISE-Mg, and RISE-Zn, were produced, and their structures were elucidated by single crystal X-ray diffraction. Interestingly, the addition of an auxiliary ligand, etidronic acid (HEDP), resulted in the recrystallized protonated form of the ligand, H-RISE. The pH-dependent structural stability of the RISE-based BPCCs was measured by means of dissolution profiles under neutral and acidic simulated physiological conditions (PBS and FaSSGF, respectively). In comparison to RISE (Actonel), the complexes showed a lower equilibrium solubility (∼70-85% in 18-24 h) in PBS, while a higher equilibrium solubility (∼100% in 3 h) in acidic media. The results point to the capacity to release this BP in a pH-dependent manner from the RISE-based BPCCs. Subsequently, the particle size of RISE-Ca was reduced, from 300 μm to ∼350 d.nm, employing the phase inversion temperature (PIT)-nanoemulsion method, resulting in nano-Ca@RISE. Aggregation measurements of nano-Ca@RISE in 1% fetal bovine serum (FBS):H2O was monitored after 24, 48, and 72 h to study the particle size longevity in physiological media, showing that the suspended material has the potential to maintain its particle size over time. Furthermore, binding assays were performed to determine the potential binding of nano-Ca@RISE to the bone, where results show higher binding (∼1.7×) for the material to hydroxyapatite (HA, 30%) when compared to RISE (17%) in 1 d. The cytotoxicity effects of nano-Ca@RISE were compared to those of RISE against the human breast cancer MDA-MB-231 and normal osteoblast-like hFOB 1.19 cell lines by dose-response curves and relative cell viability assays in an in vitro setting. The results demonstrate that nano-Ca@RISE significantly decreases the viability of MDA-MB-231 with high specificity, at concentrations ∼2-3× lower than the ones reported employing other third-generation BPs. This is supported by the fact that when normal osteoblast cells (hFOB 1.19), which are part of the tissue microenvironment at metastatic sites, were treated with nano-Ca@RISE no significant decrease in viability was observed. This study expands on the therapeutic potential of RISE beyond its antiresorptive activity through the design of BPCCs, specifically nano-Ca@RISE, that bind to the bone and degrade in a pH-dependent manner under acidic conditions.
Collapse
Affiliation(s)
- Gabriel Quiñones Vélez
- Department of Chemistry, University of Puerto Rico, Río Piedras, San Juan, Puerto Rico 00931, United States
- Crystallization Design Institute and the Molecular Sciences Research Center Inc., University of Puerto Rico, San Juan, Puerto Rico 00926, United States
| | - Lesly Carmona-Sarabia
- Department of Chemistry, University of Puerto Rico, Río Piedras, San Juan, Puerto Rico 00931, United States
- Crystallization Design Institute and the Molecular Sciences Research Center Inc., University of Puerto Rico, San Juan, Puerto Rico 00926, United States
| | - Alexandra París Santiago
- Department of Chemistry, University of Puerto Rico, Río Piedras, San Juan, Puerto Rico 00931, United States
- Crystallization Design Institute and the Molecular Sciences Research Center Inc., University of Puerto Rico, San Juan, Puerto Rico 00926, United States
| | - Angélica F Figueroa Guzmán
- Department of Chemistry, University of Puerto Rico, Río Piedras, San Juan, Puerto Rico 00931, United States
- Crystallization Design Institute and the Molecular Sciences Research Center Inc., University of Puerto Rico, San Juan, Puerto Rico 00926, United States
| | - Chunhua Hu
- Department of Chemistry and the Molecular Design Institute, New York University, 100 Washington Square East, New York, New York 10003-6688, United States
| | - Esther Peterson-Peguero
- Department of Biology, University of Puerto Rico, Río Piedras, San Juan, Puerto Rico 00931, United States
| | - Vilmalí López-Mejías
- Department of Chemistry, University of Puerto Rico, Río Piedras, San Juan, Puerto Rico 00931, United States
- Crystallization Design Institute and the Molecular Sciences Research Center Inc., University of Puerto Rico, San Juan, Puerto Rico 00926, United States
| |
Collapse
|
16
|
Bioglass obtained via one-pot synthesis as osseointegrative drug delivery system. Int J Pharm 2023; 633:122610. [PMID: 36669580 DOI: 10.1016/j.ijpharm.2023.122610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Osseointegration is a fundamental process during which implantable biomaterial integrates with host bone tissue. The surgical procedure of biomaterial implantation is highly associated with the risk of bacterial infection. Thus, the research continues for biodegradable bone void fillers which are able to stimulate the bone tissue regeneration and locally deliver the antibacterial agent. Herein, we obtained bifunctional bioglass (BG) using novel, preoptimized, rapid one-pot synthesis. Following the ISO Standards, the influence of the obtained BG on osteoblast-mediated phenomena, such as osteoconduction and osteoinduction was assessed and compared to two commercial materials: bioactive glass powder 45S and bioactive glass powder 85S. Direct-contact tests revealed osteoblast adhesion to BG particles; whereas, tests on extracts confirmed high viability of cells incubated with BG extract. Analyses of gene expression, alkaline phosphatase activity, and calcium phosphates deposition confirmed the stimulation of early and late stages of osteoblast differentiation and mineralization. Additionally, an extended evaluation of intracellular calcium fluctuations revealed a possible correlation between osteoblast calcium uptake and extracellular matrix mineralization. Moreover, proposed bioglass exhibited satisfactory doxycycline adsorption capacity and release profile. The obtained results confirmed the bifunctionality of the proposed BG and indicated its potential as osseointegrative bone drug delivery system.
Collapse
|
17
|
Quiñones
Vélez G, París Santiago A, Soto Nieves D, Figueroa Guzmán A, Peterson-Peguero E, López-Mejías V. Functionalization of Titanium Dioxide by In Situ Surface Crystallization of Bisphosphonate-Based Coordination Complexes. Inorg Chem 2023; 62:201-212. [PMID: 36546849 PMCID: PMC9833122 DOI: 10.1021/acs.inorgchem.2c03203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 12/24/2022]
Abstract
Functionalization of highly pure rutile phase titanium dioxide (TiO2) particles with a selected bisphosphonate-based coordination complex (BPCC), ZOLE-Ca form II, was achieved through in situ surface crystallization. The hydrothermal reaction of the selected BPCC was carried out in the presence of photoactivated rutile phase TiO2 by ultraviolet irradiation. The reaction time was varied to control the crystal growth of the BPCC around the TiO2 core, resulting in a functionalized material with different shell thicknesses: TiO2-core:nano-Ca@ZOLE-shell-† (5 min) and TiO2-core:nano-Ca@ZOLE-shell-‡ (10 min). The crystal phase assessment of the BPCC and the polymorphic phase purity of the metal oxide were determined after immobilization through Raman spectroscopy and powder X-ray diffraction. The results initially suggested that the crystallization of a shell comprising the selected BPCC surrounding a highly pure rutile phase TiO2 core was achieved through controlled in situ surface crystallization. Morphological changes, elemental composition and exact atomic distribution in the functionalized materials were addressed employing scanning electron microscopy coupled with energy-dispersive spectroscopy. These analyses unambiguously confirmed that after 5 min, successful incorporation of a thin BPCC shell on the surface of the metal oxide particles was achieved. Particle size distribution measurements revealed an average particle size of 495 d.nm for the functionalized material after the immobilization process. Quantitative determination of the BPCC shell content in TiO2-core:nano-Ca@ZOLE-shell-† was determined through thermogravimetric analysis, estimating a ratio of ∼1:3 (TiO2:BPCC). The cytotoxicity of TiO2-core:nano-Ca@ZOLE-shell-† against MDA-MB-231 (cancer cell model) and hFOB 1.19 (normal osteoblast-like cell model) cell lines was investigated. The results demonstrated significant cell growth inhibition for TiO2-core:nano-Ca@ZOLE-shell-† against MDA-MB-231, specifically at a concentration of 7.5 μM (% RCL = 46 ± 2%, 72 h). Under the same conditions, the functionalized material did not present cytotoxicity against hFOB 1.19 (% RCL ∼ 100%). These important outcomes provide evidence of the surface crystallization of BPCCs onto rutile phase TiO2 for the development of a novel functionalized material with the potential to treat and prevent osteolytic metastases.
Collapse
Affiliation(s)
- Gabriel Quiñones
Vélez
- Department
of Chemistry, University of Puerto Rico, Río Piedras, San Juan, Puerto Rico00931, United States
- Crystallization
Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San
Juan, Puerto Rico00926, United States
| | - Alexandra París Santiago
- Department
of Chemistry, University of Puerto Rico, Río Piedras, San Juan, Puerto Rico00931, United States
- Crystallization
Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San
Juan, Puerto Rico00926, United States
| | - Diego Soto Nieves
- Department
of Chemistry, University of Puerto Rico, Río Piedras, San Juan, Puerto Rico00931, United States
- Crystallization
Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San
Juan, Puerto Rico00926, United States
| | - Angélica Figueroa Guzmán
- Department
of Chemistry, University of Puerto Rico, Río Piedras, San Juan, Puerto Rico00931, United States
- Crystallization
Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San
Juan, Puerto Rico00926, United States
| | - Esther Peterson-Peguero
- Department
of Biology, University of Puerto Rico, Río Piedras, San Juan, Puerto Rico00931, United States
| | - Vilmalí López-Mejías
- Department
of Chemistry, University of Puerto Rico, Río Piedras, San Juan, Puerto Rico00931, United States
- Crystallization
Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San
Juan, Puerto Rico00926, United States
| |
Collapse
|
18
|
Eugen G, Claus M, Anna-Maria S, Niklas D, Philipp S, Andrea E, Andrea ML, Elke V. Degradation of 3D-printed magnesium phosphate ceramics in vitro and a prognosis on their bone regeneration potential. Bioact Mater 2023; 19:376-391. [PMID: 35574054 PMCID: PMC9062425 DOI: 10.1016/j.bioactmat.2022.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/30/2022] [Accepted: 04/17/2022] [Indexed: 12/13/2022] Open
Abstract
Regenerative bone implants promote new bone formation and ideally degrade simultaneously to osteogenesis. Although clinically established calcium phosphate bone grafts provide excellent osseointegration and osteoconductive efficacy, they are limited in terms of bioresorption. Magnesium phosphate (MP) based ceramics are a promising alternative, because they are biocompatible, mechanically extremely stable, and degrade much faster than calcium phosphates under physiological conditions. Bioresorption of an implant material can include both chemical dissolution as well as cellular resorption. We investigated the bioresorption of 3D powder printed struvite and newberyite based MP ceramics in vitro by a direct human osteoclast culture approach. The osteoclast response and cellular resorption was evaluated by means of fluorescence and TRAP staining, determination of osteoclast activities (CA II and TRAP), SEM imaging as well as by quantification of the ion release during cell culture. Furthermore, the bioactivity of the materials was investigated via SBF immersion, whereas hydroxyapatite precipitates were analyzed by SEM and EDX measurements. This bioactive coating was resorbed by osteoclasts. In contrast, only chemical dissolution contributed to bioresorption of MP, while no cellular resorption of the materials was observed. Based on our results, we expect an increased bone regeneration effect of MP compared to calcium phosphate based bone grafts and complete chemical degradation within a maximum of 1.5-3.1 years.
Collapse
Affiliation(s)
- Gefel Eugen
- Institute and Department for Functional Materials in Medicine and Dentistry, University Clinic Wuerzburg, Wuerzburg, Germany
| | - Moseke Claus
- Institute for Biomedical Engineering (IBMT), University of Applied Sciences Mittelhessen (THM), Wiesenstraße 14, Gießen, Germany
| | - Schmitt Anna-Maria
- Institute and Department for Functional Materials in Medicine and Dentistry, University Clinic Wuerzburg, Wuerzburg, Germany
| | - Dümmler Niklas
- Institute and Department for Functional Materials in Medicine and Dentistry, University Clinic Wuerzburg, Wuerzburg, Germany
| | - Stahlhut Philipp
- Institute and Department for Functional Materials in Medicine and Dentistry, University Clinic Wuerzburg, Wuerzburg, Germany
| | - Ewald Andrea
- Institute and Department for Functional Materials in Medicine and Dentistry, University Clinic Wuerzburg, Wuerzburg, Germany
| | - Meyer-Lindenberg Andrea
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| | - Vorndran Elke
- Institute and Department for Functional Materials in Medicine and Dentistry, University Clinic Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
19
|
N’Gatta KM, Belaid H, El Hayek J, Assanvo EF, Kajdan M, Masquelez N, Boa D, Cavaillès V, Bechelany M, Salameh C. 3D printing of cellulose nanocrystals based composites to build robust biomimetic scaffolds for bone tissue engineering. Sci Rep 2022; 12:21244. [PMID: 36482172 PMCID: PMC9732347 DOI: 10.1038/s41598-022-25652-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Cellulose nanocrystals (CNC) are drawing increasing attention in the fields of biomedicine and healthcare owing to their durability, biocompatibility, biodegradability and excellent mechanical properties. Herein, we fabricated using fused deposition modelling technology 3D composite scaffolds from polylactic acid (PLA) and CNC extracted from Ficus thonningii. Scanning electron microscopy revealed that the printed scaffolds exhibit interconnected pores with an estimated average pore size of approximately 400 µm. Incorporating 3% (w/w) of CNC into the composite improved PLA mechanical properties (Young's modulus increased by ~ 30%) and wettability (water contact angle decreased by ~ 17%). The mineralization process of printed scaffolds using simulated body fluid was validated and nucleation of hydroxyapatite confirmed. Additionally, cytocompatibility tests revealed that PLA and CNC-based PLA scaffolds are non-toxic and compatible with bone cells. Our design, based on rapid 3D printing of PLA/CNC composites, combines the ability to control the architecture and provide improved mechanical and biological properties of the scaffolds, which opens perspectives for applications in bone tissue engineering and in regenerative medicine.
Collapse
Affiliation(s)
- Kanga Marius N’Gatta
- grid.4444.00000 0001 2112 9282Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France ,grid.452889.a0000 0004 0450 4820Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, UFR SFA, Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d’Ivoire
| | - Habib Belaid
- grid.4444.00000 0001 2112 9282Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France ,grid.121334.60000 0001 2097 0141IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, 34298 Montpellier, France
| | - Joelle El Hayek
- grid.4444.00000 0001 2112 9282Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Edja Florentin Assanvo
- grid.452889.a0000 0004 0450 4820Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, UFR SFA, Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d’Ivoire
| | - Marilyn Kajdan
- grid.121334.60000 0001 2097 0141IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, 34298 Montpellier, France
| | - Nathalie Masquelez
- grid.4444.00000 0001 2112 9282Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - David Boa
- grid.452889.a0000 0004 0450 4820Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, UFR SFA, Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d’Ivoire
| | - Vincent Cavaillès
- grid.121334.60000 0001 2097 0141IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, 34298 Montpellier, France
| | - Mikhael Bechelany
- grid.4444.00000 0001 2112 9282Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Chrystelle Salameh
- grid.4444.00000 0001 2112 9282Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| |
Collapse
|
20
|
Effects of Resveratrol, Curcumin and Quercetin Supplementation on Bone Metabolism—A Systematic Review. Nutrients 2022; 14:nu14173519. [PMID: 36079777 PMCID: PMC9459740 DOI: 10.3390/nu14173519] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Phenolic compounds are natural phytochemicals that have recently reported numerous health benefits. Resveratrol, curcumin, and quercetin have recently received the most attention among these molecules due to their documented antioxidant effects. The review aims to investigate the effects of these molecules on bone metabolism and their role in several diseases such as osteopenia and osteoporosis, bone tumours, and periodontitis. The PubMed/Medline, Web of Science, Google Scholar, Scopus, Cochrane Library, and Embase electronic databases were searched for papers in line with the study topic. According to an English language restriction, the screening period was from January 2012 to 3 July 2022, with the following Boolean keywords: (“resveratrol” AND “bone”); (“curcumin” AND “bone”); (“quercetin” AND “bone”). A total of 36 papers were identified as relevant to the purpose of our investigation. The studies reported the positive effects of the investigated phenolic compounds on bone metabolism and their potential application as adjuvant treatments for osteoporosis, bone tumours, and periodontitis. Furthermore, their use on the titanium surfaces of orthopaedic prostheses could represent a possible application to improve the osteogenic processes and osseointegration. According to the study findings, resveratrol, curcumin, and quercetin are reported to have a wide variety of beneficial effects as supplement therapies. The investigated phenolic compounds seem to positively mediate bone metabolism and osteoclast-related pathologies.
Collapse
|
21
|
Quiñones Vélez G, Carmona-Sarabia L, Rivera Raíces AA, Hu T, Peterson-Peguero EA, López-Mejías V. High affinity zoledronate-based metal complex nanocrystals to potentially treat osteolytic metastases. MATERIALS ADVANCES 2022; 3:3251-3266. [PMID: 35445197 PMCID: PMC8978309 DOI: 10.1039/d1ma01127h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/15/2022] [Indexed: 05/16/2023]
Abstract
Formation of several materials, denoted as bisphosphonate-based coordination complexes (BPCCs), resulted from the reaction between clinically employed bisphosphonate, zoledronate (ZOLE) and bioactive metals (M2+ = Ca2+, Mg2+ and Zn2+). Six ZOLE-based BPCCs were synthesized using different variables (M2+ : ZOLE molar ratio, temperature, pH, and anion) and their structures were elucidated by single crystal X-ray diffraction (ZOLE-Ca forms I and II, ZOLE-Mg forms I and II, and ZOLE-Zn forms I and II). The dissolution of the ZOLE-based BPCCs was compared to that of ZOLE (Reclast®). Most of the ZOLE-based BPCCs (60-85%, in 18-24 h) present a lower dissolution and equilibrium solubility than ZOLE (∼100%, 30 min) in phosphate buffered saline (PBS), while a significantly higher dissolution is observed in acidic media (88% in 1 h). This suggests the ability to release the ZOLE content in a pH-dependent manner. Moreover, a phase inversion temperature (PIT)-nano-emulsion synthesis was performed, which demonstrated the ability to significantly decrease the crystal size of ZOLE-Ca form II from a micron-range (∼200 μm) to a nano-range (∼150 d nm), resulting in nano-Ca@ZOLE. Furthermore, low aggregation of nano-Ca@ZOLE in 10% fetal bovine serum (FBS) : PBS after 0, 24 and 48 h was demonstrated. Additionally, nano-Ca@ZOLE showed an ∼2.5x more binding to hydroxyapatite (HA, 36%) than ZOLE (15%) in 1 d. The cytotoxicity of nano-Ca@ZOLE against MDA-MB-231 (cancer cell model) and hFOB 1.19 (normal osteoblast-like cell model) cell lines was investigated. The results demonstrated significant cell growth inhibition for nano-Ca@ZOLE against MDA-MB-231, specifically at a low concentration of 3.8 μM (%RCL = 55 ± 1%, 72 h). Under the same conditions, the nanocrystals did not present cytotoxicity against hFOB 1.19 (%RCL = 100 ± 2%). These results evidence that nano-ZOLE-based BPCCs possess viable properties in terms of structure, dissolution, stability, binding, and cytotoxicity, which render them suitable for osteolytic metastasis therapy.
Collapse
Affiliation(s)
- Gabriel Quiñones Vélez
- Department of Chemistry, University of Puerto Rico Río Piedras San Juan Puerto Rico 00931 USA
- Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico San Juan Puerto Rico 00926 USA
| | - Lesly Carmona-Sarabia
- Department of Chemistry, University of Puerto Rico Río Piedras San Juan Puerto Rico 00931 USA
- Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico San Juan Puerto Rico 00926 USA
| | - Alondra A Rivera Raíces
- Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico San Juan Puerto Rico 00926 USA
- Department of Biology, University of Puerto Rico, Río Piedras San Juan Puerto Rico 00931 USA
| | - Tony Hu
- Department of Chemistry and the Molecular Design Institute, New York University 100 Washington Square East New York New York 10003-6688 USA
| | | | - Vilmalí López-Mejías
- Department of Chemistry, University of Puerto Rico Río Piedras San Juan Puerto Rico 00931 USA
- Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico San Juan Puerto Rico 00926 USA
| |
Collapse
|
22
|
Nemcakova I, Litvinec A, Mandys V, Potocky S, Plencner M, Doubkova M, Nanka O, Olejnickova V, Sankova B, Bartos M, Ukraintsev E, Babčenko O, Bacakova L, Kromka A, Rezek B, Sedmera D. Coating Ti6Al4V implants with nanocrystalline diamond functionalized with BMP-7 promotes extracellular matrix mineralization in vitro and faster osseointegration in vivo. Sci Rep 2022; 12:5264. [PMID: 35347219 PMCID: PMC8960880 DOI: 10.1038/s41598-022-09183-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
The present study investigates the effect of an oxidized nanocrystalline diamond (O-NCD) coating functionalized with bone morphogenetic protein 7 (BMP-7) on human osteoblast maturation and extracellular matrix mineralization in vitro and on new bone formation in vivo. The chemical structure and the morphology of the NCD coating and the adhesion, thickness and morphology of the superimposed BMP-7 layer have also been assessed. The material analysis proved synthesis of a conformal diamond coating with a fine nanostructured morphology on the Ti6Al4V samples. The homogeneous nanostructured layer of BMP-7 on the NCD coating created by a physisorption method was confirmed by AFM. The osteogenic maturation of hFOB 1.19 cells in vitro was only slightly enhanced by the O-NCD coating alone without any increase in the mineralization of the matrix. Functionalization of the coating with BMP-7 resulted in more pronounced cell osteogenic maturation and increased extracellular matrix mineralization. Similar results were obtained in vivo from micro-CT and histological analyses of rabbit distal femurs with screws implanted for 4 or 12 weeks. While the O-NCD-coated implants alone promoted greater thickness of newly-formed bone in direct contact with the implant surface than the bare material, a further increase was induced by BMP-7. It can be therefore concluded that O-NCD coating functionalized with BMP-7 is a promising surface modification of metallic bone implants in order to improve their osseointegration.
Collapse
Affiliation(s)
- Ivana Nemcakova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Andrej Litvinec
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Vaclav Mandys
- Department of Pathology, Charles University, Third Faculty of Medicine, Ruska 2411, 100 00, Prague 10, Czech Republic
| | - Stepan Potocky
- Institute of Physics, Czech Academy of Sciences, Cukrovarnicka 10, 162 00, Prague 6, Czech Republic
| | - Martin Plencner
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Martina Doubkova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Ondrej Nanka
- Institute of Anatomy, Charles University, First Faculty of Medicine, U Nemocnice 3, 128 00, Prague 2, Czech Republic
| | - Veronika Olejnickova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.,Institute of Anatomy, Charles University, First Faculty of Medicine, U Nemocnice 3, 128 00, Prague 2, Czech Republic
| | - Barbora Sankova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.,Institute of Anatomy, Charles University, First Faculty of Medicine, U Nemocnice 3, 128 00, Prague 2, Czech Republic
| | - Martin Bartos
- Institute of Dental Medicine, Charles University, First Faculty of Medicine, U Nemocnice 2, 1280 00, Prague 2, Czech Republic
| | - Egor Ukraintsev
- Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27, Prague 6, Czech Republic
| | - Oleg Babčenko
- Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27, Prague 6, Czech Republic
| | - Lucie Bacakova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Alexander Kromka
- Institute of Physics, Czech Academy of Sciences, Cukrovarnicka 10, 162 00, Prague 6, Czech Republic
| | - Bohuslav Rezek
- Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27, Prague 6, Czech Republic
| | - David Sedmera
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic. .,Institute of Anatomy, Charles University, First Faculty of Medicine, U Nemocnice 3, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
23
|
Oliveira Pinho F, Pinto Joazeiro P, Santos AR. Evaluation of the Growth and Differentiation of Human Fetal Osteoblasts (hFOB) Cells on Demineralized Bone Matrix (DBM). Organogenesis 2021; 17:136-149. [PMID: 34845978 DOI: 10.1080/15476278.2021.2003134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Cells with osteogenic potential are believed to be an ideal source for bone tissue bioengineering. Large bone defects require temporary substitution of the damaged parts. In this respect, the transplantation of bone cells cultured on osteogenic substrates has been investigated. To use the natural bone matrix, one approach is the so-called demineralized bone matrix (DBM). In this study, we evaluated the interaction of human fetal osteoblasts (hFOB 1.19 cells, a human fetal osteoblastic cell line) with DBM fragments. No additional bone differentiation inducer was used other than the DBM itself. The samples were processed, had adhesion pattern evaluated and analyzed by light microscopy (cytochemical and immunocytochemical analysis) and electron microscopy (scanning and transmission). The adhesion pattern of hFOB cells on DBM was similar to what was observed on the cell culture plate. Morphological analysis showed that the hFOB cells had emitted filopodia and cellular projections on both controls and DBM. On DBM, the adhered cells emitted prolongations and migrated into the matrix. The monolayer growth pattern was observed as well as the accumulation of filamentous and reticulate extracellular materials when hFOB cells were cultured on the DBM surface. EDS analysis revealed the deposition of calcium on DBM. Immunocytochemical data showed that the hFOB cells were able to secrete extracellular matrix molecules such as fibronectin and laminin on DBM. Our data indicate that DBM successfully stimulates the osteoblastic phenotype of osteoblast-like cells and corroborate with the fact that DBM is a considerable natural matrix that promotes fractured-bone healing.
Collapse
Affiliation(s)
- Flavia Oliveira Pinho
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, UNICAM, Campinas, SP Brazil
| | - Paulo Pinto Joazeiro
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, UNICAM, Campinas, SP Brazil
| | - Arnaldo R Santos
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| |
Collapse
|
24
|
Up-regulation of SIRT1 induced by 17beta-estradiol promotes autophagy and inhibits apoptosis in osteoblasts. Aging (Albany NY) 2021; 13:23652-23671. [PMID: 34711685 PMCID: PMC8580331 DOI: 10.18632/aging.203639] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/11/2021] [Indexed: 12/11/2022]
Abstract
Osteoporosis is a common systemic skeletal metabolism disorder resulting in bone fragility and increased fracture risk. Silent information regulator factor 2 homolog 1 (SIRT1) is crucial in the regulation of several biological processes, including bone metabolism, autophagy, apoptosis, and aging. This study aimed to assess whether the up-regulation of SIRT1 induced by 17beta-estradiol (17β-E2) could promote autophagy and inhibit apoptosis in osteoblasts via the AMPK-mTOR and FOXO3a pathways, respectively. The study found that 17β-E2 (10-6 M) administration induced the up-regulation of SIRT1 in osteoblasts. Up-regulation of SIRT1 induced by 17β-E2 increased the expression level of LC3, Beclin-1, Bcl-2, p-AMPK, FOXO3a but decreased caspase-3 and p-mTOR expression, and then promoted autophagy and inhibited apoptosis. More autophagosomes were observed under a transmission electron microscope (TEM) in 17β-E2 and SRT1720 (a selective SIRT1 activator) co-treated group. When Ex527 (a SIRT1-specific inhibitor) was pretreated, the reversed changes were observed. Taken together, our findings demonstrated that the up-regulation of SIRT1 induced by 17β-E2 could promote autophagy via the AMPK-mTOR pathway and inhibit apoptosis via the FOXO3a activation in osteoblasts, and SIRT1 might become a more significant target in osteoporosis treatment.
Collapse
|
25
|
Knocking out TMEM38B in human foetal osteoblasts hFOB 1.19 by CRISPR/Cas9: A model for recessive OI type XIV. PLoS One 2021; 16:e0257254. [PMID: 34582479 PMCID: PMC8478202 DOI: 10.1371/journal.pone.0257254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022] Open
Abstract
Osteogenesis imperfecta (OI) type XIV is a rare recessive bone disorder characterized by variable degree of severity associated to osteopenia. It is caused by mutations in TMEM38B encoding for the trimeric intracellular cation channel TRIC-B, specific for potassium and ubiquitously present in the endoplasmic reticulum (ER) membrane. OI type XIV molecular basis is largely unknown and, due to the rarity of the disease, the availability of patients’ osteoblasts is challenging. Thus, CRISPR/Cas9 was used to knock out (KO) TMEM38B in the human Foetal Osteoblast hFOB 1.19 to obtain an OI type XIV model. CRISPR/Cas9 is a powerful technology to generate in vitro and in vivo models for heritable disorders. Its limited cost and ease of use make this technique widely applicable in most laboratories. Nevertheless, to fully take advantage of this approach, it is important to be aware of its strengths and limitations. Three gRNAs were used and several KO clones lacking the expression of TRIC-B were obtained. Few clones were validated as good models for the disease since they reproduce the altered ER calcium flux, collagen I structure and impaired secretion and osteoblastic markers expression detected in patients’ cells. Impaired proliferation and mineralization in KO clones unveiled the relevance of TRIC-B in osteoblasts functionality.
Collapse
|
26
|
Kim HS, Kim HJ, Lee MR, Han I. EMMPRIN expression is associated with metastatic progression in osteosarcoma. BMC Cancer 2021; 21:1059. [PMID: 34565336 PMCID: PMC8474954 DOI: 10.1186/s12885-021-08774-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/10/2021] [Indexed: 11/10/2022] Open
Abstract
Background Extracellular matrix metalloproteinase inducer (EMMPRIN), a cell-surface glycoprotein, is overexpressed in several cancer types. EMMPRIN induces a metastatic phenotype by triggering the production of matrix metalloproteinase proteins (MMPs) such as MMP1 and MMP2, and vascular endothelial growth factor (VEGF) in cancer cells and the surrounding stromal cells. The purpose of this study was to investigate the expression and role of EMMPRIN in osteosarcoma. Methods The level of EMMPRIN expression was evaluated using reverse transcriptase polymerase chain reaction (RT-PCR) in 6 tumor-derived osteosarcoma cell lines and compared with that in normal osteoblasts. To study the prognostic significance of EMMPRIN expression, immunohistochemistry was carried out in prechemotherapy biopsies of 54 patients. siRNA knockdown of EMMPRIN in SaOS-2 cells was conducted to explore the role of EMMPRIN. To study the role of EMMPRIN in tumor-stromal interaction in MMP production and invasion, co-culture of SaOS-2 cells with osteoblasts and fibroblasts was performed. Osteosarcoma 143B cells were injected into the tail vein of BALB/c mice and lung metastasis was analyzed. Results EMMRIN mRNA expression was significantly higher in 5 of 6 (83%) tumor-derived cells than in MG63 cells. 90% of specimens (50/54) stained positive for EMMPRIN by immunohistochemistry, and higher expression of EMMPRIN was associated with shorter metastasis-free survival (p = 0.023). Co-culture of SaOS-2 with osteoblasts resulted in increased production of pro-MMP2 and VEGF expression, which was inhibited by EMMPRIN-targeting siRNA. siRNA knockdown of EMMPRIN resulted in decreased invasion. EMMPRIN shRNA-transfected 143B cells showed decreased lung metastasis in vivo. Conclusions Our data suggest that EMMPRIN acts as a mediator of osteosarcoma metastasis by regulating MMP and VEGF production in cancer cells as well as stromal cells. EMMPRIN could serve as a therapeutic target in osteosarcoma.
Collapse
Affiliation(s)
- Han-Soo Kim
- Department of Orthopaedic Surgery, Seoul National University Hospital, 101 Daehak-ro Jongno-gu, Seoul, 03080, South Korea.,Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Ha Jeong Kim
- Department of Orthopaedic Surgery, Seoul National University Hospital, 101 Daehak-ro Jongno-gu, Seoul, 03080, South Korea
| | - Mi Ra Lee
- Department of Orthopaedic Surgery, Seoul National University Hospital, 101 Daehak-ro Jongno-gu, Seoul, 03080, South Korea
| | - Ilkyu Han
- Department of Orthopaedic Surgery, Seoul National University Hospital, 101 Daehak-ro Jongno-gu, Seoul, 03080, South Korea. .,Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
27
|
Huang J, Lin F, Xu C, Xu Y. LINC00662 facilitates osteosarcoma progression via sponging miR-103a-3p and regulating SIK2 expression. J Tissue Eng Regen Med 2021; 15:1082-1091. [PMID: 34559955 DOI: 10.1002/term.3242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 11/07/2022]
Abstract
Long non-coding RNA (lncRNA) involvement in regulating assorted cancers has been determined. Long intergenic non-protein coding RNA 662 (LINC00662) has been studied in gastric cancer. However, its function was not elucidated in osteosarcoma (OS). Thus, we aimed to discover LINC00662 function and the corresponding mechanism in OS. In this study, we found that LINC00662 displayed high expression in OS cells. LINC00662 down-regulation negatively affected OS cell malignant behaviors and tumor growth. Subsequently, miR-103a-3p was proven to bind with LINC00662 and overexpression of miR-103a-3p inhibited OS cell proliferation, migration and invasion. Then, SIK2, the downstream of miR-103a-3p, was up-regulated in OS cells and positively regulated by LINC00662. In addition, knockdown of SIK2 exerted inhibitory effects on proliferative, migratory and invaded capacities of OS cells. More interestingly, miR-103a-3p depletion or SIK2 overexpression restored the impacts of down-regulated LINC00662 on OS cells. In conclusion, LINC00662 could facilitate OS progression via miR-103a-3p/SIK2 axis.
Collapse
Affiliation(s)
- Jianghu Huang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Feiyue Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Chuncai Xu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yang Xu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
28
|
Pippin JA, Chesi A, Wagley Y, Su C, Pahl MC, Hodge KM, Johnson ME, Wells AD, Hankenson KD, Grant SFA. CRISPR-Cas9-Mediated Genome Editing Confirms EPDR1 as an Effector Gene at the BMD GWAS-Implicated ' STARD3NL' Locus. JBMR Plus 2021; 5:e10531. [PMID: 34532616 PMCID: PMC8441377 DOI: 10.1002/jbm4.10531] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/02/2021] [Indexed: 11/12/2022] Open
Abstract
Genome-wide-association studies (GWASs) have discovered genetic signals robustly associated with BMD, but typically not the precise localization of effector genes. By intersecting genome-wide promoter-focused Capture C and assay for transposase-accessible chromatin using sequencing (ATAC-seq) data generated in human mesenchymal progenitor cell (hMSC)-derived osteoblasts, consistent contacts were previously predicted between the EPDR1 promoter and multiple BMD-associated candidate causal variants at the 'STARD3NL' locus. RNAi knockdown of EPDR1 expression in hMSC-derived osteoblasts was shown to lead to inhibition of osteoblastogenesis. To fully characterize the physical connection between these putative noncoding causal variants at this locus and the EPDR1 gene, clustered regularly interspaced short-palindromic repeat Cas9 endonuclease (CRISPR-Cas9) genome editing was conducted in hFOB1.19 cells across the single open-chromatin region harboring candidates for the underlying causal variant, rs1524068, rs6975644, and rs940347, all in close proximity to each other. RT-qPCR and immunoblotting revealed dramatic and consistent downregulation of EPDR1 specifically in the edited differentiated osteoblast cells. Consistent with EPDR1 expression changes, alkaline phosphatase staining was also markedly reduced in the edited differentiated cells. Collectively, CRISPR-Cas9 genome editing in the hFOB1.19 cell model supports previous observations, where this regulatory region harboring GWAS-implicated variation operates through direct long-distance physical contact, further implicating a key role for EPDR1 in osteoblastogenesis and BMD determination. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- James A Pippin
- Center for Spatial and Functional GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Alessandra Chesi
- Center for Spatial and Functional GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Yadav Wagley
- Department of Orthopedic SurgeryUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Chun Su
- Center for Spatial and Functional GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Matthew C Pahl
- Center for Spatial and Functional GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Kenyaita M Hodge
- Genetics and Molecular Biology Graduate Program, Laney Graduate SchoolEmory UniversityAtlantaGAUSA
| | - Matthew E Johnson
- Center for Spatial and Functional GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Andrew D Wells
- Center for Spatial and Functional GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Kurt D Hankenson
- Department of Orthopedic SurgeryUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Struan F A Grant
- Center for Spatial and Functional GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of PediatricsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
- Divisions of Genetics and EndocrinologyChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
| |
Collapse
|
29
|
Torres HM, VanCleave AM, Vollmer M, Callahan DL, Smithback A, Conn JM, Rodezno-Antunes T, Gao Z, Cao Y, Afeworki Y, Tao J. Selective Targeting of Class I Histone Deacetylases in a Model of Human Osteosarcoma. Cancers (Basel) 2021; 13:4199. [PMID: 34439353 PMCID: PMC8394112 DOI: 10.3390/cancers13164199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 02/01/2023] Open
Abstract
Dysregulation of histone deacetylases (HDACs) is associated with the pathogenesis of human osteosarcoma, which may present an epigenetic vulnerability as well as a therapeutic target. Domatinostat (4SC-202) is a next-generation class I HDAC inhibitor that is currently being used in clinical research for certain cancers, but its impact on human osteosarcoma has yet to be explored. In this study, we report that 4SC-202 inhibits osteosarcoma cell growth in vitro and in vivo. By analyzing cell function in vitro, we show that the anti-tumor effect of 4SC-202 involves the combined induction of cell-cycle arrest at the G2/M phase and apoptotic program, as well as a reduction in cell invasion and migration capabilities. We also found that 4SC-202 has little capacity to promote osteogenic differentiation. Remarkably, 4SC-202 revised the global transcriptome and induced distinct signatures of gene expression in vitro. Moreover, 4SC-202 decreased tumor growth of established human tumor xenografts in immunodeficient mice in vivo. We further reveal key targets regulated by 4SC-202 that contribute to tumor cell growth and survival, and canonical signaling pathways associated with progression and metastasis of osteosarcoma. Our study suggests that 4SC-202 may be exploited as a valuable drug to promote more effective treatment of patients with osteosarcoma and provide molecular insights into the mechanism of action of class I HDAC inhibitors.
Collapse
Affiliation(s)
- Haydee M. Torres
- Cancer Biology & Immunotherapies Group at Sanford Research, Sioux Falls, SD 57104, USA; (H.M.T.); (A.M.V.); (T.R.-A.); (Y.C.)
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA
| | - Ashley M. VanCleave
- Cancer Biology & Immunotherapies Group at Sanford Research, Sioux Falls, SD 57104, USA; (H.M.T.); (A.M.V.); (T.R.-A.); (Y.C.)
| | - Mykayla Vollmer
- Medical Student Research Program, University of South Dakota, Vermillion, SD 57069, USA;
| | - Dakota L. Callahan
- Sanford Program for Undergraduate Research, University of Sioux Falls, Sioux Falls, SD 57104, USA;
| | - Austyn Smithback
- Sanford PROMISE Scholar Program, Harrisburg High School, Sioux Falls, SD 57104, USA;
| | - Josephine M. Conn
- Sanford Program for Undergraduate Research, Carleton College, Northfield, MN 55057, USA;
| | - Tania Rodezno-Antunes
- Cancer Biology & Immunotherapies Group at Sanford Research, Sioux Falls, SD 57104, USA; (H.M.T.); (A.M.V.); (T.R.-A.); (Y.C.)
| | - Zili Gao
- Flow Cytometry Core at Sanford Research, Sioux Falls, SD 57104, USA;
| | - Yuxia Cao
- Cancer Biology & Immunotherapies Group at Sanford Research, Sioux Falls, SD 57104, USA; (H.M.T.); (A.M.V.); (T.R.-A.); (Y.C.)
| | - Yohannes Afeworki
- Functional Genomics & Bioinformatics Core Facility at Sanford Research, Sioux Falls, SD 57104, USA;
| | - Jianning Tao
- Cancer Biology & Immunotherapies Group at Sanford Research, Sioux Falls, SD 57104, USA; (H.M.T.); (A.M.V.); (T.R.-A.); (Y.C.)
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
30
|
Gaitán-Salvatella I, López-Villegas EO, González-Alva P, Susate-Olmos F, Álvarez-Pérez MA. Case Report: Formation of 3D Osteoblast Spheroid Under Magnetic Levitation for Bone Tissue Engineering. Front Mol Biosci 2021; 8:672518. [PMID: 34235178 PMCID: PMC8255365 DOI: 10.3389/fmolb.2021.672518] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal reconstruction is necessary in cases of bone defects created by tumors, trauma, and abnormalities. Regeneration of bone defects remains a critical problem, and current approaches are based on biocompatible scaffolds. Spheroids represent a simple 3D system since no supporting material is required for cell growth. Different techniques are used to generate spheroids, such as hanging drop, low-attachment plates, and magnetic nanoparticles. The idea of using magnetic nanoparticles is to cross-link through cell membrane overnight to create complex 3D cellular spheroid by using magnets to guide the cellular response. Herein, the current study aimed to achieve 3D human fetal osteoblast (hFOB) spheroid under magnetic levitation. Formation of 3D spheroid culture under magnetic levitation was evaluated by cell viability at 3, 7, and 14 days. Morphology of the 3D hFOB spheroid was analyzed by SEM and fluorescence microscopy and the differentiation towards mineralized lineage by ALP assay, qPCR, and alizarin red staining. The cell viability indicated that the 3D hFOB spheroid still viable after 14 days of culture. ALP assay, qPCR analysis expression of Col1, ALP, and Itg-β1 molecules, and calcium deposition with alizarin red showed a high level of bioactivity of the 3D hFOB spheroid. SEM images allowed the morphological analysis of the 3D microtissue-like spheroid with the presence of matrix deposition. These results indicate that magnetic levitation culture enables 3D stable osteoblast spheroids and could be a promising strategy for engineering application in the 3D construct in surgery regeneration of mineralized tissue.
Collapse
Affiliation(s)
- Iñigo Gaitán-Salvatella
- Tissue Bioengineering Laboratory, Postgraduate Studies and Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), México City, Mexico
| | | | - Patricia González-Alva
- Tissue Bioengineering Laboratory, Postgraduate Studies and Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), México City, Mexico
| | | | - Marco Antonio Álvarez-Pérez
- Tissue Bioengineering Laboratory, Postgraduate Studies and Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), México City, Mexico
| |
Collapse
|
31
|
Marozin S, Simon-Nobbe B, Irausek S, Chung LWK, Lepperdinger G. Kinship of conditionally immortalized cells derived from fetal bone to human bone-derived mesenchymal stroma cells. Sci Rep 2021; 11:10933. [PMID: 34035368 PMCID: PMC8149839 DOI: 10.1038/s41598-021-90161-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022] Open
Abstract
The human fetal osteoblast cell line (hFOB 1.19) has been proposed as an accessible experimental model for study of osteoblast biology relating to drug development and biomaterial engineering. For their multilineage differentiation potential, hFOB has been compared to human mesenchymal progenitor cells and used to investigate bone-metabolism in vitro. Hereby, we studied whether and to what extent the conditionally immortalized cell line hFOB 1.19 can serve as a surrogate model for bone-marrow derived mesenchymal stromal cells (bmMSC). hFOB indeed exhibit specific characteristics reminiscent of bmMSC, as colony formation, migration capacity and the propensity to grow as multicellular aggregates. After prolonged culture, in contrast to the expected effect of immortalization, hFOB acquired a delayed growth rate. In close resemblance to bmMSC at increasing passages, also hFOB showed morphological abnormalities, enlargement and finally reduced proliferation rates together with enhanced expression of the cell cycle inhibitors p21 and p16. hFOB not only have the ability to undergo multilineage differentiation but portray several important aspects of human bone marrow mesenchymal stromal cells. Superior to primary MSC and osteoblasts, hFOB enabled the generation of continuous cell lines. These provide an advanced basis for investigating age-related dysfunctions of MSCs in an in vitro 3D-stem cell microenvironment.
Collapse
Affiliation(s)
- S Marozin
- Department of Biosciences, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria.
| | - B Simon-Nobbe
- Department of Biosciences, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - S Irausek
- Department of Biosciences, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - L W K Chung
- Cedars-Sinai Medical Center, Dept. of Medicine, 8700 Beverly Blvd b106, Los Angeles, CA, 90048, USA
| | - G Lepperdinger
- Department of Biosciences, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| |
Collapse
|
32
|
Kim DK, Bandara G, Cho YE, Komarow HD, Donahue DR, Karim B, Baek MC, Kim HM, Metcalfe DD, Olivera A. Mastocytosis-derived extracellular vesicles deliver miR-23a and miR-30a into pre-osteoblasts and prevent osteoblastogenesis and bone formation. Nat Commun 2021; 12:2527. [PMID: 33953168 PMCID: PMC8100305 DOI: 10.1038/s41467-021-22754-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis and other manifestations of bone disease are frequent in patients with systemic mastocytosis (SM) in association with the presence of mast cell infiltrates in bone marrow, although the mechanisms behind bone disease remain poorly understood. We find that extracellular vesicles (EVs) released by neoplastic mast cells and present in the serum of patients with SM (SM-EVs) block osteoblast differentiation and mineralization in culture, and when injected into mice diminish the expression of osteoblast markers, and trabecular bone volume and microarchitecture. We demonstrate that miRNA-30a and miRNA-23a, increased in SM-EVs and neoplastic mast cell-derived EVs, attenuate osteoblast maturation by suppressing expression of RUNX2 and SMAD1/5, essential drivers of osteogenesis. Thus, SM-EVs carry and deliver miRNAs that epigenetically interfere with bone formation and can contribute to bone mass reduction in SM. These findings also suggest possibilities for novel approaches to the management of bone disease in mast cell proliferative disorders.
Collapse
Affiliation(s)
- Do-Kyun Kim
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea
| | - Geethani Bandara
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Young-Eun Cho
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
- Department of Food and Nutrition, Andong National University, Andong, Kyungpook, Republic of Korea
| | - Hirsh D Komarow
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Danielle R Donahue
- Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ho Min Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
33
|
Prostate Cancer Cell Extracellular Vesicles Increase Mineralisation of Bone Osteoblast Precursor Cells in an In Vitro Model. BIOLOGY 2021; 10:biology10040318. [PMID: 33920233 PMCID: PMC8069461 DOI: 10.3390/biology10040318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 12/26/2022]
Abstract
Simple Summary Prostate cancer frequently metastasizes to the bone, where it forms primarily osteoblastic lesions. Currently there is no real therapeutic option for this late stage of disease, and understanding prostate cancer-bone interaction and communication is vital. Using a simple in vitro model of os-teoblast differentiation and mineralization, we studied this interaction and observed that prostate cancer cells secreted large quantities of extracellular vesicles containing microRNAs. When ex-posed to the extracellular vesicles, increased osteoblast differentiation and mineralization could be observed, and upon RNA-seq several of these microRNAs were implicated as upstream regulators of the mineralization process. These microRNAs also correlated with poor survival in online analysis of patient datasets. We characterized and validated four genes known to be targeted by microRNA-16, and found that extracellular vesicles could deliver miR-16, and increase minerali-zation. Abstract Skeletal metastases are the most common form of secondary tumour associated with prostate cancer (PCa). The aberrant function of bone cells neighbouring these tumours leads to the devel-opment of osteoblastic lesions. Communication between PCa cells and bone cells in bone envi-ronments governs both the formation/development of the associated lesion, and growth of the secondary tumour. Using osteoblasts as a model system, we observed that PCa cells and their conditioned medium could stimulate and increase mineralisation and osteoblasts’ differentiation. Secreted factors within PCa-conditioned medium responsible for osteoblastic changes included small extracellular vesicles (sEVs), which were sufficient to drive osteoblastogenesis. Using MiR-seq, we profiled the miRNA content of PCa sEVs, showing that miR-16-5p was highly ex-pressed. MiR-16 was subsequently higher in EV-treated 7F2 cells and a miR-16 mimic could also stimulate mineralisation. Next, using RNA-seq of extracellular vesicle (EV)-treated 7F2 cells, we observed a large degree of gene downregulation and an increased mineralisation. Ingenuity® Pathway Analysis (IPA®) revealed that miR-16-5p (and other miRs) was a likely upstream effec-tor. MiR-16-5p targets in 7F2 cells, possibly involved in osteoblastogenesis, were included for val-idation, namely AXIN2, PLSCR4, ADRB2 and DLL1. We then confirmed the targeting and dow-regulation of these genes by sEV miR-16-5p using luciferase UTR (untranslated region) reporters. Conversely, the overexpression of PLSCR4, ADRB2 and DLL1 lead to decreased osteoblastogene-sis. These results indicate that miR-16 is an inducer of osteoblastogenesis and is transmitted through prostate cancer-derived sEVs. The mechanism is a likely contributor towards the for-mation of osteoblastic lesions in metastatic PCa.
Collapse
|
34
|
Jablonská E, Horkavcová D, Rohanová D, Brauer DS. A review of in vitro cell culture testing methods for bioactive glasses and other biomaterials for hard tissue regeneration. J Mater Chem B 2021; 8:10941-10953. [PMID: 33169773 DOI: 10.1039/d0tb01493a] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bioactive glasses are used to regenerate bone by a mechanism which involves surface degradation, the release of ions such as calcium, soluble silica and phosphate and the precipitation of a biomimetic apatite surface layer on the glass. One major area of bioactive glass research is the incorporation of therapeutically active ions to broaden the application range of these materials. When developing such new compositions, in vitro cell culture studies are a key part of their characterisation. However, parameters of cell culture studies vary widely, and depending on the intended use of bioactive glass compositions, different layouts, cell types and assays need to be used. The aim of this publication is to provide materials scientists, particularly those new to cell culture studies, with a tool for selecting the most appropriate assays to give insight into the properties of interest.
Collapse
Affiliation(s)
- Eva Jablonská
- Laboratory of Molecular Biology and Virology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Czech Republic.
| | - Diana Horkavcová
- Laboratory of Chemistry and Technology of Glasses, Department of Glass and Ceramics, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Dana Rohanová
- Laboratory of Chemistry and Technology of Glasses, Department of Glass and Ceramics, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Delia S Brauer
- Otto Schott Institute of Materials Research, Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743 Jena, Germany.
| |
Collapse
|
35
|
Staphylococcus aureus Internalization in Osteoblast Cells: Mechanisms, Interactions and Biochemical Processes. What Did We Learn from Experimental Models? Pathogens 2021; 10:pathogens10020239. [PMID: 33669789 PMCID: PMC7922271 DOI: 10.3390/pathogens10020239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Bacterial internalization is a strategy that non-intracellular microorganisms use to escape the host immune system and survive inside the human body. Among bacterial species, Staphylococcus aureus showed the ability to interact with and infect osteoblasts, causing osteomyelitis as well as bone and joint infection, while also becoming increasingly resistant to antibiotic therapy and a reservoir of bacteria that can make the infection difficult to cure. Despite being a serious issue in orthopedic surgery, little is known about the mechanisms that allow bacteria to enter and survive inside the osteoblasts, due to the lack of consistent experimental models. In this review, we describe the current knowledge about S. aureus internalization mechanisms and various aspects of the interaction between bacteria and osteoblasts (e.g., best experimental conditions, bacteria-induced damages and immune system response), focusing on studies performed using the MG-63 osteoblastic cell line, the best traditional (2D) model for the study of this phenomenon to date. At the same time, as it has been widely demonstrated that 2D culture systems are not completely indicative of the dynamic environment in vivo, and more recent 3D models—representative of bone infection—have also been investigated.
Collapse
|
36
|
Reichenbach M, Mendez P, da Silva Madaleno C, Ugorets V, Rikeit P, Boerno S, Jatzlau J, Knaus P. Differential Impact of Fluid Shear Stress and YAP/TAZ on BMP/TGF‐β Induced Osteogenic Target Genes. Adv Biol (Weinh) 2021; 5:e2000051. [DOI: 10.1002/adbi.202000051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 12/08/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Maria Reichenbach
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
| | - Paul‐Lennard Mendez
- International Max Planck Research School for Biology and Computation Max Planck Institute for Molecular Genetics Ihnestr. 63 Berlin 14195 Germany
| | - Carolina da Silva Madaleno
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
- Berlin‐Brandenburg School for Regenerative Therapies (BSRT) Charité—Universitätsmedizin Berlin Föhrer Str. 15 Berlin 13353 Germany
| | - Vladimir Ugorets
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
| | - Paul Rikeit
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
- Berlin‐Brandenburg School for Regenerative Therapies (BSRT) Charité—Universitätsmedizin Berlin Föhrer Str. 15 Berlin 13353 Germany
| | - Stefan Boerno
- Sequencing Core Facility Max Planck Institute for Molecular Genetics Ihnestr. 63 Berlin 14195 Germany
| | - Jerome Jatzlau
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
- Berlin‐Brandenburg School for Regenerative Therapies (BSRT) Charité—Universitätsmedizin Berlin Föhrer Str. 15 Berlin 13353 Germany
| | - Petra Knaus
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
| |
Collapse
|
37
|
Parra-Torres AY, Enríquez J, Jiménez-Ortega RF, Patiño N, Castillejos-López MDJ, Torres-Espíndola LM, Ramírez-Salazar EG, Velázquez-Cruz R. Expression profiles of the Wnt/β-catenin signaling-related extracellular antagonists during proliferation and differentiation in human osteoblast-like cells. Exp Ther Med 2020; 20:254. [PMID: 33178352 PMCID: PMC7654218 DOI: 10.3892/etm.2020.9384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 09/08/2020] [Indexed: 11/23/2022] Open
Abstract
Bone formation is a dynamic process directed by osteoblast activity. The transition from the proliferation to differentiation stage during osteoblast maturation involves the downregulation of the Wnt/β-catenin signaling pathway, and extracellular antagonists are important for the regulation of Wnt signaling. However, the expression levels of Wnt antagonists in these stages of human osteoblast maturation have not been fully elucidated. Therefore, the aim of the present study was to investigate the expression levels of extracellular Wnt antagonists during proliferation and differentiation in osteoblast-like cell lines. The results demonstrated an overlap between the differential expression of secreted Frizzled-related protein (SFPR)2, SFRP3, SFRP4 and Dickkopf (DKK) 2 genes during the differentiation stage in the MG-63 and Saos-2 cells. Furthermore, high expression levels of DKK3 in MG-63 cells, Wnt inhibitory factor 1 (WIF1) in Saos-2 cells and DKK4 in hFOB 1.19 cells during the same stage (differentiation), were observed. The upregulated expression levels of Wnt antagonists were also correlated with the high expression of anxin 2 during the differentiation stage. These findings suggested that Wnt-related antagonists could modulate the Wnt/β-catenin signaling pathway. By contrast, DKK1 was the only gene that was found to be upregulated during the proliferation stage in hFOB 1.19 and Saos-2 cells. To the best of our knowledge, the present study provides, for the first time, the expression profile of Wnt antagonists during the proliferation stage and the initial phases of differentiation in osteoblast-like cell lines. The current results offer a basis to investigate potential targets for bone-related Wnt-signaling modulation in bone metabolism research.
Collapse
Affiliation(s)
- Alma Y Parra-Torres
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| | - Juana Enríquez
- Department of Reproduction Biology Carlos Gual Castro, National Institute of Medical Sciences and Nutrition Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - Rogelio F Jiménez-Ortega
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| | - Nelly Patiño
- Subdirection of Clinical Applications Development, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| | - Manuel De Jesús Castillejos-López
- Epidemiological Surveillance Unit, National Institute of Respiratory Diseases (INER) 'Ismael Cosío Villegas', Mexico City 14080, Mexico
| | - Luz M Torres-Espíndola
- Pharmacology Laboratory, National Institute of Pediatrics (INP), Mexico City 04530, Mexico
| | - Eric G Ramírez-Salazar
- National Council for Science and Technology (CONACYT)-National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| | - Rafael Velázquez-Cruz
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| |
Collapse
|
38
|
Khanijou M, Zhang R, Boonsiriseth K, Srisatjaluk RL, Suphangul S, Pairuchvej V, Wongsirichat N, Seriwatanachai D. Physicochemical and osteogenic properties of chairside processed tooth derived bone substitute and bone graft materials. Dent Mater J 2020; 40:173-183. [PMID: 32999217 DOI: 10.4012/dmj.2019-341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To analyze physicochemical such as surface structures, the crystallinity, chemical composition, calcium phosphate dissolution and osteogenic properties of tooth derived bone substitute (TDBS) processed chair-side and other grafting materials. The number of anaerobic and facultative anaerobic bacteria in the supernatant of processed TDBS was determined. Human osteoblasts were co-cultured with TDBS or allograft in transwell system to examine cell migration. BMP2 released from TDBS was measured by ELISA. TDBS had high crystallinity similar to BoneCeramic while it had a broad pattern to ramus bone, OraGRAFT, and Bio-Oss. TDBS contained carbon, calcium, oxygen, phosphate, sodium and magnesium elements like others. Calcium/phosphorus dissolution of TDBS show closely related to those of mandibular ramus bone and OraGRAFT. In addition, microbial decontamination of TDBS by the chemical processing revealed a hundred percent efficacy. The osteoconductive and osteoinductive properties demonstrated in the TDBS processed chairside suggested the potential of an alternative for bone grafting material.
Collapse
Affiliation(s)
- Manop Khanijou
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Mahidol University
| | - Rui Zhang
- Department of Oral Biology, Faculty of Dentistry, Mahidol University.,Department of Periodontics, The Affiliated Stomatology Hospital of Kunming Medical University
| | | | | | - Suphachai Suphangul
- Department of Advanced General Dentistry, Faculty of Dentistry, Mahidol University
| | - Verasak Pairuchvej
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Mahidol University
| | | | | |
Collapse
|
39
|
Brezulier D, Pellen-Mussi P, Tricot-Doleux S, Novella A, Sorel O, Jeanne S. Development of a 3D human osteoblast cell culture model for studying mechanobiology in orthodontics. Eur J Orthod 2020; 42:387-395. [PMID: 32144430 DOI: 10.1093/ejo/cjaa017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVES Mechanobiology phenomena constitute a major element of the cellular and tissue response during orthodontic treatment and the implantation of a biomaterial. Better understanding these phenomena will improve the effectiveness of our treatments. The objective of this work is to validate a model of three-dimensional (3D) culture of osteoblasts to study mechanobiology. MATERIALS AND METHODS The hFOB 1.19 cell line was cultured either traditionally on a flat surface or in aggregates called spheroids. They were embedded in 0.8% low-melting agarose type VII and placed in a polyethylene terephthalate transwell insert. Compressive forces of 1 and 4 g/cm2 were applied with an adjustable weight. Proliferation was evaluated by measuring diameters, monitoring glucose levels, and conducting Hoechst/propidium iodide staining. Enzyme-linked immunosorbent assays focusing on the pro-inflammatory mediators interleukin (IL)-6 and IL-8 and bone remodelling factor osteoprotegerin were performed to evaluate soluble factor synthesis. quantitative reverse transcription-polymerase chain reaction was performed to evaluate bone marker transcription. RESULTS The 3D model shows good cell viability and permits IL dosing. Additionally, three gene expression profiles are analysable. LIMITATIONS The model allows analysis of conventional markers; larger exploration is needed for better understanding osteoblast mechanobiology. However, it only allows an analysis over 3 days. CONCLUSION The results obtained by applying constant compressive forces to 3D osteoblastic cultures validate this model system for exploring biomolecule release and analysing gene transcription. In particular, it highlights a disturbance in the expression of markers of osteogenesis.
Collapse
Affiliation(s)
- Damien Brezulier
- Univ Rennes, CHU Rennes, Pole Odontologie, Rennes, France
- ISCR, CNRS-UMR 6226, Rennes, France
| | | | | | | | - Olivier Sorel
- Univ Rennes, CHU Rennes, Pole Odontologie, Rennes, France
| | - Sylvie Jeanne
- Univ Rennes, CHU Rennes, Pole Odontologie, Rennes, France
- ISCR, CNRS-UMR 6226, Rennes, France
| |
Collapse
|
40
|
Tao L, Zhao S, Tao Z, Wen K, Zhou S, Da W, Zhu Y. Septin4 regulates endoplasmic reticulum stress and apoptosis in melatonin‑induced osteoblasts. Mol Med Rep 2020; 22:1179-1186. [PMID: 32626973 PMCID: PMC7339638 DOI: 10.3892/mmr.2020.11228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/15/2020] [Indexed: 12/16/2022] Open
Abstract
Idiopathic scoliosis (IS) is a spinal 3-dimensional deformity with an unknown cause. Melatonin is secreted by the pineal body and contributes to the occurrence and progression of IS. In our previous preliminary study, it was reported that high concentrations of melatonin can induce osteoblast apoptosis, thus acting as an IS treatment, but the mechanism of action is unknown. Therefore, the present study was performed to further investigate the possible mechanism underlying the efficacy of melatonin as a treatment for IS. The present results indicated that high concentrations of melatonin mediate endoplasmic reticulum stress (ERS)-induced apoptosis in hFOB 1.19 cells, and this resulted in a significant and dose-dependent increase in the expression of Septin4, as well as the expression levels of glucose-regulated protein (GRP)78, GRP94 and cleaved caspase-3. Furthermore, osteoblasts were overexpressed with Septin4 and the mechanism via which melatonin induces osteoblast ERS was demonstrated to be via the regulation of Septin4. In addition, it was indicated that cytoskeleton destruction, cell morphology changes and the decrease in the number of cells were aggravated after osteoblasts were overexpressed with Septin4, as indicated by phalloidin and DAPI staining. Collectively, the present results suggest that the Septin4 protein may be a target of ERS in melatonin-induced osteoblast apoptosis, which is involved in bone metabolism diseases, thus providing novel evidence for clinical melatonin treatment of IS.
Collapse
Affiliation(s)
- Lin Tao
- Department of Orthopedics, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Sichao Zhao
- Department of Orthopedics, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhengbo Tao
- Department of Orthopedics, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Kaicheng Wen
- Department of Orthopedics, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Siming Zhou
- Department of Orthopedics, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wacili Da
- Department of Orthopedics, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yue Zhu
- Department of Orthopedics, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
41
|
Smeester BA, Slipek NJ, Pomeroy EJ, Laoharawee K, Osum SH, Larsson AT, Williams KB, Stratton N, Yamamoto K, Peterson JJ, Rathe SK, Mills LJ, Hudson WA, Crosby MR, Wang M, Rahrmann EP, Moriarity BS, Largaespada DA. PLX3397 treatment inhibits constitutive CSF1R-induced oncogenic ERK signaling, reduces tumor growth, and metastatic burden in osteosarcoma. Bone 2020; 136:115353. [PMID: 32251854 DOI: 10.1016/j.bone.2020.115353] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022]
Abstract
Osteosarcoma (OSA) is a heterogeneous and aggressive solid tumor of the bone. We recently identified the colony stimulating factor 1 receptor (Csf1r) gene as a novel driver of osteosarcomagenesis in mice using the Sleeping Beauty (SB) transposon mutagenesis system. Here, we report that a CSF1R-CSF1 autocrine/paracrine signaling mechanism is constitutively activated in a subset of human OSA cases and is critical for promoting tumor growth and contributes to metastasis. We examined CSF1R and CSF1 expression in OSAs. We utilized gain-of-function and loss-of-function studies (GOF/LOF) to evaluate properties of cellular transformation, downstream signaling, and mechanisms of CSF1R-CSF1 action. Genetic perturbation of CSF1R in immortalized osteoblasts and human OSA cell lines significantly altered oncogenic properties, which were dependent on the CSF1R-CSF1 autocrine/paracrine signaling. These functional alterations were associated with changes in the known CSF1R downstream ERK effector pathway and mitotic cell cycle arrest. We evaluated the recently FDA-approved CSF1R inhibitor Pexidartinib (PLX3397) in OSA cell lines in vitro and in vivo in cell line and patient-derived xenografts. Pharmacological inhibition of CSF1R signaling recapitulated the in vitro genetic alterations. Moreover, in orthotopic OSA cell line and subcutaneous patient-derived xenograft (PDX)-injected mouse models, PLX3397 treatment significantly inhibited local OSA tumor growth and lessened metastatic burden. In summary, CSF1R is utilized by OSA cells to promote tumorigenesis and may represent a new molecular target for therapy.
Collapse
Affiliation(s)
- Branden A Smeester
- Department of Pediatrics, University of Minnesota, United States of America; Center for Genome Engineering, University of Minnesota, United States of America; Masonic Cancer Center, University of Minnesota, United States of America
| | - Nicholas J Slipek
- Department of Pediatrics, University of Minnesota, United States of America; Center for Genome Engineering, University of Minnesota, United States of America; Masonic Cancer Center, University of Minnesota, United States of America
| | - Emily J Pomeroy
- Department of Pediatrics, University of Minnesota, United States of America; Center for Genome Engineering, University of Minnesota, United States of America; Masonic Cancer Center, University of Minnesota, United States of America
| | - Kanut Laoharawee
- Department of Pediatrics, University of Minnesota, United States of America; Center for Genome Engineering, University of Minnesota, United States of America; Masonic Cancer Center, University of Minnesota, United States of America
| | - Sara H Osum
- Department of Pediatrics, University of Minnesota, United States of America; Center for Genome Engineering, University of Minnesota, United States of America; Masonic Cancer Center, University of Minnesota, United States of America
| | - Alex T Larsson
- Masonic Cancer Center, University of Minnesota, United States of America
| | - Kyle B Williams
- Department of Pediatrics, University of Minnesota, United States of America; Center for Genome Engineering, University of Minnesota, United States of America; Masonic Cancer Center, University of Minnesota, United States of America
| | - Natalie Stratton
- Department of Pediatrics, University of Minnesota, United States of America
| | - Kenta Yamamoto
- Department of Pediatrics, University of Minnesota, United States of America; Center for Genome Engineering, University of Minnesota, United States of America
| | - Joseph J Peterson
- Department of Pediatrics, University of Minnesota, United States of America
| | - Susan K Rathe
- Department of Pediatrics, University of Minnesota, United States of America; Masonic Cancer Center, University of Minnesota, United States of America
| | - Lauren J Mills
- Department of Pediatrics, University of Minnesota, United States of America; Childhood Cancer Genomics Group, University of Minnesota, United States of America
| | - Wendy A Hudson
- Department of Pediatrics, University of Minnesota, United States of America; Masonic Cancer Center, University of Minnesota, United States of America
| | - Margaret R Crosby
- Department of Pediatrics, University of Minnesota, United States of America; Masonic Cancer Center, University of Minnesota, United States of America
| | - Minjing Wang
- Department of Pediatrics, University of Minnesota, United States of America; Center for Genome Engineering, University of Minnesota, United States of America; Masonic Cancer Center, University of Minnesota, United States of America
| | - Eric P Rahrmann
- Cancer Research UK Cambridge Institute, University of Cambridge, United Kingdom of Great Britain and Northern Ireland
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, United States of America; Center for Genome Engineering, University of Minnesota, United States of America; Masonic Cancer Center, University of Minnesota, United States of America.
| | - David A Largaespada
- Department of Pediatrics, University of Minnesota, United States of America; Department of Genetics, Cell Biology and Development, University of Minnesota, United States of America; Center for Genome Engineering, University of Minnesota, United States of America; Masonic Cancer Center, University of Minnesota, United States of America.
| |
Collapse
|
42
|
Nemcakova I, Jirka I, Doubkova M, Bacakova L. Heat treatment dependent cytotoxicity of silicalite-1 films deposited on Ti-6Al-4V alloy evaluated by bone-derived cells. Sci Rep 2020; 10:9456. [PMID: 32528137 PMCID: PMC7289882 DOI: 10.1038/s41598-020-66228-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/18/2020] [Indexed: 11/24/2022] Open
Abstract
A silicalite-1 film (SF) deposited on Ti-6Al-4V alloy was investigated in this study as a promising coating for metallic implants. Two forms of SFs were prepared: as-synthesized SFs (SF-RT), and SFs heated up to 500 °C (SF-500) to remove the excess of template species from the SF surface. The SFs were characterized in detail by X-ray photoelectron spectroscopy (XPS), by Fourier transform infrared spectroscopy (FTIR), by scanning electron microscopy (SEM) and water contact angle measurements (WCA). Two types of bone-derived cells (hFOB 1.19 non-tumor fetal osteoblast cell line and U-2 OS osteosarcoma cell line) were used for a biocompatibility assessment. The initial adhesion of hFOB 1.19 cells, evaluated by cell numbers and cell spreading area, was better supported by SF-500 than by SF-RT. While no increase in cell membrane damage, in ROS generation and in TNF-alpha secretion of bone-derived cells grown on both SFs was found, gamma H2AX staining revealed an elevated DNA damage response of U-2 OS cells grown on heat-treated samples (SF-500). This study also discusses differences between osteosarcoma cell lines and non-tumor osteoblastic cells, stressing the importance of choosing the right cell type model.
Collapse
Affiliation(s)
- Ivana Nemcakova
- Institute of Physiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Ivan Jirka
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i., Dolejskova 3, 182 23, Prague 8, Czech Republic
| | - Martina Doubkova
- Institute of Physiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20, Prague 4, Czech Republic.,Second Faculty of Medicine, Charles University, V Uvalu 84, 150 06, Prague 5, Czech Republic
| | - Lucie Bacakova
- Institute of Physiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20, Prague 4, Czech Republic
| |
Collapse
|
43
|
Bone regenerative potential of the selective sphingosine 1-phosphate receptor modulator siponimod: In vitro characterisation using osteoblast and endothelial cells. Eur J Pharmacol 2020; 882:173262. [PMID: 32534075 DOI: 10.1016/j.ejphar.2020.173262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/31/2022]
Abstract
The repair of critical bone defects remains a significant therapeutic challenge. While the implantation of drug-eluting scaffolds is an option, a drug with the optimal pharmacological properties has not yet been identified. Agents acting at sphingosine 1-phosphate (S1P) receptors have been considered, but those investigated so far do not discriminate between the five known S1P receptors. This work was undertaken to investigate the potential of the specific S1P1/5 modulator siponimod as a bone regenerative agent, by testing in vitro its effect on cell types critical to the bone regeneration process. hFOB osteoblasts and HUVEC endothelial cells were treated with siponimod and other S1P receptor modulators and investigated for changes in intracellular cyclic AMP content, viability, proliferation, differentiation, attachment and cellular motility. Siponimod showed no effect on the viability and proliferation of osteoblasts and endothelial cells, but increased osteoblast differentiation (as shown by increased alkaline phosphatase activity). Furthermore, siponimod significantly increased endothelial cell motility in scratch and transwell migration assays. These effects on osteoblast differentiation and endothelial cell migration suggest that siponimod may be a potential agent for the stimulation of localised differentiation of osteoblasts in critical bone defects.
Collapse
|
44
|
Wang L, Lan Y, Du Y, Xiang X, Tian W, Yang B, Li T, Zhai Q. Plastin 1 promotes osteoblast differentiation by regulating intracellular Ca2. Acta Biochim Biophys Sin (Shanghai) 2020; 52:563-569. [PMID: 32318696 DOI: 10.1093/abbs/gmaa027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/12/2019] [Accepted: 03/13/2020] [Indexed: 11/13/2022] Open
Abstract
Osteoblast differentiation is a key process in bone homeostasis. Mutations in plastin 3 have been reported to be responsible for X-linked osteoporosis. Plastin 3 and plastin 2 act synergistically to regulate osteoblast differentiation. However, the bone-related function of plastin 1, another family member of plastins, has not been assessed. In this study, we addressed the functional importance of plastin 1 in osteoblasts. We characterized the expression patterns of plastin 1 during osteoblast differentiation and revealed its important role in this process. In both HEK 293T and hFOB1.19 cells, plastin 1 was demonstrated to regulate intracellular Ca2+. Accordingly, we revealed that higher Ca2+ concentration promotes osteoblast differentiation. Finally, we found that plastin 1 may play a compensatory role in osteoporosis patients with plastin 3 deficiency. Together, our results indicate that plastin 1 promotes osteoblast differentiation by regulating intracellular Ca2+. Our work sheds new light on the role played by plastins in bone homeostasis.
Collapse
Affiliation(s)
- Lianqing Wang
- Center of Translational Medicine, Zibo Central Hospital, Shandong University, Zibo 255036, China
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yongting Lan
- Division of Gastroenterology, Zibo Central Hospital, Shandong University, Zibo 255036, China
| | - Yanqin Du
- Department of Gynecology, Peking University Care Luzhong Hospital, Zibo 255400, China
| | - Xinxin Xiang
- Center of Translational Medicine, Zibo Central Hospital, Shandong University, Zibo 255036, China
| | - Wenxiu Tian
- Center of Translational Medicine, Zibo Central Hospital, Shandong University, Zibo 255036, China
| | - Baoye Yang
- Center of Translational Medicine, Zibo Central Hospital, Shandong University, Zibo 255036, China
| | - Tao Li
- Center of Translational Medicine, Zibo Central Hospital, Shandong University, Zibo 255036, China
| | - Qiaoli Zhai
- Center of Translational Medicine, Zibo Central Hospital, Shandong University, Zibo 255036, China
| |
Collapse
|
45
|
Reinforcement of hydroxyethyl cellulose / poly (vinyl alcohol) with cellulose nanocrystal as a bone tissue engineering scaffold. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02112-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Khoo LK, Kiattavorncharoen S, Pairuchvej V, Lakkhanachatpan N, Wongsirichat N, Seriwatanachai D. The Affinity of Human Fetal Osteoblast to Laser-Modified Titanium Implant Fixtures. Open Dent J 2020. [DOI: 10.2174/1874210602014010052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Introduction:
Implant surface modification methods have recently involved laser treatment to achieve the desired implant surface characteristics. Meanwhile, surface modification could potentially introduce foreign elements to the implant surface during the manufacturing process.
Objectives:
The study aimed to investigate the surface chemistry and topography of commercially available laser-modified titanium implants, together with evaluating the cell morphology and cell adhesion of human fetal osteoblast (hFOB) seeded onto the same implants.
Method:
Six (6) samples of commercially available laser-modified titanium implants were investigated. These implants were manufactured by two different companies. Three (3) implants were made from commercially pure grade 4 Titanium (Brand X); and three were made from grade 5 Ti6Al4V (Brand Y). The surface topography of these implants was analyzed by scanning electron microscope (SEM) and the surface chemistry was evaluated with electron dispersive x-ray spectroscopy(EDS). Human fetal osteoblasts were seeded onto the implant fixtures to investigate the biocompatibility and adhesion.
Results & Discussion:
Brand X displayed dark areas under SEM while it was rarely found on brand Y. These dark areas were consistent with their organic matter. The hFOB cell experiments revealed cell adhesion with filopodia on Brand X samples which is consistent with cell maturation. The cells on Brand Y were morphologically round and lacked projections, one sample was devoid of any noticeable cells under SEM. Cell adhesion was observed early at 48 hrs in laser-irradiated titanium fixtures from both the brands.
Conclusion:
The presence of organic impurities in Brand X should not be overlooked because disruption of the osseointegration process may occur due to the rejection of the biomaterial in an in-vivo model. Nevertheless, there was insufficient evidence to link implant failure directly with carbon contaminated implant surfaces. Further studies to determine the toxicity of Vanadium from Ti6Al4V in an in-vivo environment should indicate the reason for different cell maturation.
Collapse
|
47
|
Xu A, Yang Y, Shao Y, Wu M, Sun Y. Activation of cannabinoid receptor type 2-induced osteogenic differentiation involves autophagy induction and p62-mediated Nrf2 deactivation. Cell Commun Signal 2020; 18:9. [PMID: 31941496 PMCID: PMC6964093 DOI: 10.1186/s12964-020-0512-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/04/2020] [Indexed: 02/05/2023] Open
Abstract
Background Dysfunction in survival and differentiation of osteoblasts commonly occurs in patients with osteoporosis. Cannabinoid receptor type 2 (CNR2) is a major receptor of endocannabinoid system that is crucial for bone mass homeostasis. Our group prior demonstrated that activation of CNR2 signaling promoted osteogenic differentiation of bone marrow derived mesenchymal stem cells in vitro. Autophagy is reported to participate in osteoblastic differentiation. Whether autophagy is regulated by CNR2-mediated cannabinoid signaling is unknown, and how the autophagy-CNR2 interaction affects osteoblastic differentiation requires further elucidation. Methods hFOB 1.19 osteoblasts were treated with CNR2 agonists HU308 (5, 10, 25, 50 or 100 nM) and JWH133 (1, 2, 5, 10 or 20 μM) in presence or absence of autophagy inhibitor 3-Methyladenine (3-MA). The differentiation of hFOB 1.19 cells was determined via evaluating their alkaline phosphatase (ALP) activity and mineralization ability (Alizarin red staining). Alterations in autophagy-related molecules and osteogenic markers were analyzed via real-time PCR and/or immunoblotting assays. Results hFOB 1.19 cells spontaneously differentiated towards mature osteoblasts under 39 °C, during which CNR2 expression increased, and autophagy was activated. The strongest autophagy flux was observed at 192 h post differentiation─LC3I to LC3II conversion was enhanced and Beclin 1 expression was upregulated considerably, while p62 expression was downregulated. Treatment of HU308 and JWH133 promoted autophagy in a dose-dependent manner, and suppressed mTOR signaling pathway in hFOB 1.19 cells. In CNR2-silenced cells, HU308’s and JWH133’s effects on autophagy were weakened. HU308 and JWH133 enhanced the ALP activity and mineralization, and upregulated the expression of osteogenic markers, osteopontin and osteocalcin, in hFOB 1.19 cells. Intriguingly, such pro-osteogenic effects induced by CNR2 activation were markedly mitigated by 3-MA. In addition to provoking autophagy, CNR2 agonists also reduced nuclear Nrf2 accumulation and increased Keap1 expression. Further, re-expression of p62 inhibited CNR2 agonists-induced Nrf2 degradation. Conclusions Osteogenic differentiation induced by CNR2 signaling activation involves autophagy induction and p62-mediated Nrf2 deactivation.
Collapse
Affiliation(s)
- Aihua Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, 110001, People's Republic of China
| | - Yang Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, 110001, People's Republic of China
| | - Yang Shao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, 110001, People's Republic of China
| | - Meng Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, 110001, People's Republic of China
| | - Yongxin Sun
- Department of Rehabilitation Medicine, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, 110001, People's Republic of China.
| |
Collapse
|
48
|
Ferguson J, Wilcock DJ, McEntegart S, Badrock AP, Levesque M, Dummer R, Wellbrock C, Smith MP. Osteoblasts contribute to a protective niche that supports melanoma cell proliferation and survival. Pigment Cell Melanoma Res 2020; 33:74-85. [PMID: 31323160 PMCID: PMC6972519 DOI: 10.1111/pcmr.12812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/17/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
Melanoma is the deadliest form of skin cancer; a primary driver of this high level of morbidity is the propensity of melanoma cells to metastasize. When malignant tumours develop distant metastatic lesions the new local tissue niche is known to impact on the biology of the cancer cells. However, little is known about how different metastatic tissue sites impact on frontline targeted therapies. Intriguingly, melanoma bone lesions have significantly lower response to BRAF or MEK inhibitor therapies. Here, we have investigated how the cellular niche of the bone can support melanoma cells by stimulating growth and survival via paracrine signalling between osteoblasts and cancer cells. Melanoma cells can enhance the differentiation of osteoblasts leading to increased production of secreted ligands, including RANKL. Differentiated osteoblasts in turn can support melanoma cell proliferation and survival via the secretion of RANKL that elevates the levels of the transcription factor MITF, even in the presence of BRAF inhibitor. By blocking RANKL signalling, either via neutralizing antibodies, genetic alterations or the RANKL receptor inhibitor SPD304, the survival advantage provided by osteoblasts could be overcome.
Collapse
Affiliation(s)
- Jennifer Ferguson
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Daniel J. Wilcock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Sophie McEntegart
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Andrew P. Badrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Mitch Levesque
- Department of Dermatology, Universitäts Spital ZürichUniversity of ZürichZurichSwitzerland
| | - Reinhard Dummer
- Department of Dermatology, Universitäts Spital ZürichUniversity of ZürichZurichSwitzerland
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Michael P. Smith
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| |
Collapse
|
49
|
Bartolozzi A, Viti F, De Stefano S, Sbrana F, Petecchia L, Gavazzo P, Vassalli M. Development of label-free biophysical markers in osteogenic maturation. J Mech Behav Biomed Mater 2019; 103:103581. [PMID: 32090910 DOI: 10.1016/j.jmbbm.2019.103581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/23/2022]
Abstract
The spatial and temporal changes of morphological and mechanical properties of living cells reflect complex functionally-associated processes. Monitoring these modifications could provide a direct information on the cellular functional state. Here we present an integrated biophysical approach to the quantification of the morphological and mechanical phenotype of single cells along a maturation pathway. Specifically, quantitative phase microscopy and single cell biomechanical testing were applied to the characterization of the maturation of human foetal osteoblasts, demonstrating the ability to identify effective label-free biomarkers along this fundamental biological process.
Collapse
Affiliation(s)
- Alice Bartolozzi
- Institute of Biophysics, National Research Council of Italy, Genoa, Italy; Dipartimento di Ingegneria dell'Informazione, Università di Firenze, Florence, Italy
| | - Federica Viti
- Institute of Biophysics, National Research Council of Italy, Genoa, Italy.
| | - Silvia De Stefano
- Institute of Biophysics, National Research Council of Italy, Genoa, Italy
| | - Francesca Sbrana
- Institute of Biophysics, National Research Council of Italy, Genoa, Italy; Schaefer South-East Europe Srl, Rovigo, Italy
| | - Loredana Petecchia
- Institute of Biophysics, National Research Council of Italy, Genoa, Italy
| | - Paola Gavazzo
- Institute of Biophysics, National Research Council of Italy, Genoa, Italy
| | - Massimo Vassalli
- Institute of Biophysics, National Research Council of Italy, Genoa, Italy
| |
Collapse
|
50
|
Zhou X, Li CH, He P, Wu LF, Lu X, Lei SF, Deng FY. Abl interactor 1: A novel biomarker for osteoporosis in Chinese elderly men. J Proteomics 2019; 207:103440. [PMID: 31325607 DOI: 10.1016/j.jprot.2019.103440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 11/26/2022]
Abstract
Low bone mineral density (BMD) is a high-risk factor of osteoporosis (OP) and osteoporotic fracture (OF). Peripheral blood monocytes (PBM) can give birth to osteoclasts to resorb bone. Herein, we attempted to identify OP susceptible proteins in human PBM and characterize their functions in bone. Employing the label-free quantitative proteomics methodology (Easy-nLC1000 and Q-exactive) and traditional Western Blotting (WB), we discovered and validated that a key protein, i.e. Abl Interactor 1(ABI1), was significantly down-regulated in PBM in Chinese elderly men with extremely low vs. high BMD (n = 18, p < .05), as well as in OF patients vs. non-fractured (NF) subjects (n = 36, p < .05). The above down-regulation tendency was also observed in Chinese elderly women (n = 51, P < .05). For translational purpose, plasma ABI1 protein was assessed by ELISA in Chinese elderly men, which was found significantly down-regulated in OF (n = 20) vs. NF (n = 64) subjects (Mean: 0.41 vs. 1.03 ng/ml, FC = 0.39, p = .039), as well as in low (n = 32) vs. high (n = 32) BMD subjects (Mean: 0.5 vs. 1.57 ng/ml, FC = 0.32,p = .0012). ROC analyses in another independent study sample (n = 75) showed that the plasma ABI1 protein has superior performance in discriminating osteopenia and healthy subjects (AUC = 0.755, 95% CI: 0.632-0.877, p = .001). Follow-up cellular functional studies revealed that ABI1 protein significantly promoted osteoblast growth (optimal concentration 2.0 ng/ml), osteoblastic gene expression (OPN, ALP, COL1A1, p < .05) and osteoblast differentiation.ABI1 protein also significantly attenuated monocyte trans-endothelial migration and osteoclast differentiation and activity. In conclusion, ABI1 is a novel protein biomarker for OP in Chinese elderly. ABI1 protein, via promoting osteoblast growth, differentiation and activity, and attenuating monocyte trans-endothelial migration and osteoclast differentiation, influences BMD variation and fracture risk in humans. SIGNIFICANCE: Previous plentiful studies indicated that protein ABI1 played an essential role in the progression of several malignancies, including hepatoma, colon cancer and epithelial ovarian cancer. However, there was relatively limited understandings regarding its molecular and cellular functions relevant to bone phenotypes. Employing the label-free quantitative proteomics methodology (Easy-nLC1000 and Q-exactive) and traditional Western Blotting (WB), we discovered and validated that ABI1 was significantly down-regulated in PBM in Chinese elderly men with extremely low BMD as well as in OF patients. The down-regulation trend was consistent in plasma samples in Chinese elderly men. Follow-up cellular functional studies revealed that, on the one hand, ABI1 protein significantly promoted osteoblast growth, osteoblastic gene expression and osteoblast differentiation; on the other hand, it also significantly attenuated monocyte trans-endothelial migration and osteoclast differentiation and activity. It suggested that ABI1 is a promising biomarker with translational value.
Collapse
Affiliation(s)
- Xu Zhou
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Chun-Hui Li
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Pei He
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Long-Fei Wu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Xin Lu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|