1
|
Tsouloufi TK. An overview of mycotoxicoses in rabbits. J Vet Diagn Invest 2024; 36:638-654. [PMID: 38804173 PMCID: PMC11457744 DOI: 10.1177/10406387241255945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Mycotoxicoses are usually a consideration in large animal species but can affect companion animals as well. Due to increasing interest and the ease of using rabbits as laboratory models, a growing number of published experimental studies discuss the effects of various mycotoxins on this species. However, the available evidence is fragmented and heterogeneous, and has not recently been collated in a review, to my knowledge. Although mycotoxicoses in rabbits are typically subclinical, clinical signs can include weight loss, anorexia, gastrointestinal disorders, stunted growth, reproductive abnormalities, and susceptibility to infections. An antemortem diagnosis typically relies on a comprehensive clinical history, and assessment of clinical signs and relevant laboratory findings, with confirmation of exposure achieved through the measurement of mycotoxin concentrations in feed or target organs. My review focuses on the clinicopathologic and histopathologic effects of the mycotoxins most important in rabbits, including fumonisins, ochratoxins, aflatoxins, trichothecenes, and zearalenone. This review offers a thorough overview of the effects of mycotoxins in rabbits, serving as a one-stop resource for veterinary practitioners, diagnosticians, and researchers.
Collapse
|
2
|
Kim WH, Lee DH, Kim JE, Jeong HW, Chung JO, Roh J, Kim W, Fu X, Shim SM. Characterization of the intestinal transport mechanism of polystyrene microplastics (MPs) and the potential inhibitory effect of green tea extracts on MPs intestinal absorption. Toxicol In Vitro 2024; 97:105813. [PMID: 38522493 DOI: 10.1016/j.tiv.2024.105813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
The aims of the current study included characterizing the intestinal transport mechanism of polystyrene microplastics (MPs) with different charges and sizes in the intestinal epithelial cell model and determining the inhibitory effect of green tea extracts (GTEs) on the intestinal absorption of MPs in Caco-2 cells. The smaller sizes, which included diameters of 0.2 μm, of amine-modified MPs compared to either larger size (1 μm diameter, or carboxylate-MPs (0.2 and 1 μm diameter) significantly lowered the cell viability of caco-2 cells that were measured by MTT assay (p < 0.05). The transported amount (particles/mL of the cell media) of amine-modified MPs by the Caco-2 cell, was not dependent according to the concentrations, energy, or temperature, but it was higher than the carboxylate-modified MPs. The co-treatment of GTEs with the amine-modified MPs inhibited Caco-2 cell cytotoxicity as well as reduced the production of intracellular reactive oxygen species (ROS) in HepG2 generated by the exposure of amine-modified MPs. The GTEs co-treatment also increased trans-epithelial electrical resistances (TEER) and reduced the transportation of Lucifer Yellow via the Caco-2 monolayer compared to only the amine-modified MPs exposure. The GTEs treatment led to a decrease in the number of amine-modified MPs transported to the basal side of the Caco-2 monolayer. The results from our study suggest that the consumption of GTEs could enhance the intestinal barrier function by recovering intestinal epithelial cell damage induced by MPs, which resulted in a decrease of the intestinal absorption of MPs.
Collapse
Affiliation(s)
- Woo-Hyun Kim
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Seoul 143-747, South Korea
| | - Dong-Ho Lee
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Seoul 143-747, South Korea
| | - Jeong-Eun Kim
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Seoul 143-747, South Korea
| | - Hyun Woo Jeong
- Healthcare Research Division, AMOREPACIFIC Research and Innovation (R&I) Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - Jin-Oh Chung
- Healthcare Research Division, AMOREPACIFIC Research and Innovation (R&I) Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - JongHwa Roh
- Healthcare Research Division, AMOREPACIFIC Research and Innovation (R&I) Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - WanGi Kim
- Healthcare Research Division, AMOREPACIFIC Research and Innovation (R&I) Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - Xiaoting Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266005, China
| | - Soon-Mi Shim
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Seoul 143-747, South Korea.
| |
Collapse
|
3
|
Wang C, Fu Y, Wang R, Wang Q, Yu H, Zhang J. Quercetin Attenuates the Combined Effects of Zearalenone and Lipopolysaccharide on IPEC-J2 Cell Injury through Activating the Nrf2 Signaling Pathway. Toxins (Basel) 2023; 15:679. [PMID: 38133183 PMCID: PMC10748267 DOI: 10.3390/toxins15120679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Zearalenone (ZEA) is a mycotoxin with an estrogen-like effect that is widely found in feed. Lipopolysaccharides (LPS) derived from Gram-negative bacteria are a common endotoxin, and both toxins have effects on human and livestock health. During animal feeding, ZEA as an exotoxin and LPS as an endotoxin have the potential to co-exist in organisms. At present, other studies have only focused on the hazards of single toxins, but there are fewer studies on the coexistence and interaction between ZEA and LPS. Therefore, a further study to investigate the combined toxic effects of different concentrations of ZEA and LPS is warranted. Quercetin (QUE) is a natural flavonoid compound with strong antioxidant and anti-inflammatory properties. It is unclear whether QUE can mitigate the combined effects of ZEA and LPS. IPEC-J2, isolated from the jejunum of non-breastfed neonatal piglets, is an ideal model for the study of epithelial cell transport, intestinal bacterial interactions, and the nutrient modulation of intestinal function. Therefore, the purpose of the present study was to demonstrate the effect of QUE in alleviating the combined toxic effect of ZEA and LPS on IPEC-J2 cell damage. Cell viability was measured after treating IPEC-J2 cells sequentially with 10, 20, 30, 40, 60, 80, and 100 μM ZEA, 1, 10, 50, and 100 μg/mL LPS, and 20, 40, 60, 80, 100, and 200 μM QUE for 24 h. Based on the cell viability results, 20 μM ZEA and 1 μg/mL LPS were selected as the most suitable concentrations for further analysis. For QUE, 20 μM increased the cell viability, while 40-200 μM QUE decreased the cell viability. Therefore, for the subsequent study, 20 μM QUE was selected in combination with 20 μM ZEA and 1 μg/mL LPS. The results showed that QUE increased the cellular viability and decreased the LDH content more compared to the effects of the ZEA+LPS group. At the gene level, QUE addition up-regulated the expression of Nrf2, HO-1, SOD2, and NQO1 at the gene or protein level compared to those of the ZEA+LPS group. The measurement of tight junction-related genes and proteins showed QUE up-regulated the expression of Claudin, ZO-1, and Occludin genes and proteins more than in the ZEA+LPS group. QUE addition reduced the rate of apoptosis more than that in the ZEA+LPS group. The expressions of Bcl-2 and Bax were examined at the gene level, and QUE addition significantly reduced the Bax gene expression level compared to that of the ZEA+LPS group, but there was no apparent variation in the expression level of Bcl-2. In summary, QUE can alleviate the combined toxic effects of ZEA and LPS on IPEC-J2 cells via modulating the Nrf2 signaling pathway, up-regulating the expression of antioxidative genes, and enhancing the intestinal barrier.
Collapse
Affiliation(s)
- Chuanqi Wang
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China; (C.W.); (R.W.); (Q.W.); (H.Y.)
| | - Yurong Fu
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Hebei Key Laboratory of Crop Cultivation Physiology and Green Production, Shijiazhuang 050035, China;
| | - Ruqi Wang
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China; (C.W.); (R.W.); (Q.W.); (H.Y.)
| | - Qiyuan Wang
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China; (C.W.); (R.W.); (Q.W.); (H.Y.)
| | - Hao Yu
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China; (C.W.); (R.W.); (Q.W.); (H.Y.)
| | - Jing Zhang
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China; (C.W.); (R.W.); (Q.W.); (H.Y.)
| |
Collapse
|
4
|
Guan H, Ma W, Wu Q, Cai J, Zhang Z. Exploring the Toxic Effects of ZEA on IPEC-J2 Cells from the Inflammatory Response and Apoptosis. Animals (Basel) 2023; 13:2731. [PMID: 37684994 PMCID: PMC10487149 DOI: 10.3390/ani13172731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Zearalenone (ZEA) is the most common fungal toxin contaminating livestock and poultry feeding, especially in pigs, causing severe toxic effects and economic losses. However, the mechanism of ZEA damage to the intestine is unknown. We constructed an in vitro model of ZEA toxicity in a porcine small intestinal epithelial cell (IPEC-J2) line. ZEA causes severe oxidative stress in porcine small intestine cells, such as the production of ROS and a significant decrease in the levels of antioxidant enzymes GSH, CAT, SOD, and T-AOC. ZEA also caused apoptosis in porcine small intestine cells, resulting in a significant reduction in protein and/or mRNA expression of apoptosis-related pathway factors such as P53, caspase 3, caspase 9, Bax, and Cyt-c, which in turn caused a significant decrease in protein and/or mRNA expression of inflammatory-related factors such as IL-1β, IL-2, Cox-2, NF-κD, NLRP3, IL-6, and IL -18, which in turn caused a significant increase in protein and/or mRNA expression levels. The final results suggest that ZEA can cause a severe toxic response in porcine small intestine cells, with oxidative stress, apoptotic cell death and inflammatory damage.
Collapse
Affiliation(s)
- Haoyue Guan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.G.); (W.M.); (J.C.)
- College of Animal Science and Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenxue Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.G.); (W.M.); (J.C.)
| | - Qiong Wu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100096, China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.G.); (W.M.); (J.C.)
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.G.); (W.M.); (J.C.)
| |
Collapse
|
5
|
Balló A, Busznyákné Székvári K, Czétány P, Márk L, Török A, Szántó Á, Máté G. Estrogenic and Non-Estrogenic Disruptor Effect of Zearalenone on Male Reproduction: A Review. Int J Mol Sci 2023; 24:ijms24021578. [PMID: 36675103 PMCID: PMC9862602 DOI: 10.3390/ijms24021578] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
According to some estimates, at least 70% of feedstuffs and finished feeds are contaminated with one or more mycotoxins and, due to its significant prevalence, both animals and humans are highly likely to be exposed to these toxins. In addition to health risks, they also cause economic issues. From a healthcare point of view, zearalenone (ZEA) and its derivatives have been shown to exert many negative effects. Specifically, ZEA has hepatotoxicity, immunotoxicity, genotoxicity, carcinogenicity, intestinal toxicity, reproductive toxicity and endocrine disruption effects. Of these effects, male reproductive deterioration and processes that lead to this have been reviewed in this study. Papers are reviewed that demonstrate estrogenic effects of ZEA due to its analogy to estradiol and how these effects may influence male reproductive cells such as spermatozoa, Sertoli cells and Leydig cells. Data that employ epigenetic effects of ZEA are also discussed. We discuss literature data demonstrating that reactive oxygen species formation in ZEA-exposed cells plays a crucial role in diminished spermatogenesis; reduced sperm motility, viability and mitochondrial membrane potential; altered intracellular antioxidant enzyme activities; and increased rates of apoptosis and DNA fragmentation; thereby resulting in reduced pregnancy.
Collapse
Affiliation(s)
- András Balló
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | | | - Péter Czétány
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - László Márk
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
| | - Attila Török
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Árpád Szántó
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Gábor Máté
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
6
|
Ekwomadu TI, Akinola SA, Mwanza M. Fusarium Mycotoxins, Their Metabolites (Free, Emerging, and Masked), Food Safety Concerns, and Health Impacts. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11741. [PMID: 34831498 PMCID: PMC8618243 DOI: 10.3390/ijerph182211741] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 01/14/2023]
Abstract
The genus Fusarium produces a number of mycotoxins of diverse chemical structures. Fusariotoxins are secondary metabolites produced by toxigenic fungi of the genus Fusarium. The important and commonly encountered fusariotoxins are trichothecenes, fumonisins, and zearalenone. Fusarium mycotoxins pose varying toxicities to humans and/or animals after consumption of contaminated grain. They can cause acute or chronic illness and, in some cases, death. For instance, a range of Fusarium mycotoxins can alter different intestinal defense mechanisms, such as the epithelial integrity, cell proliferation, mucus layer, immunoglobulins, and cytokine production. Of recent concern is the occurrence of emerging and masked Fusarium mycotoxins in agricultural commodities, which may contribute to toxic health effects, although the metabolic fate of masked mycotoxins still remains a matter of scientific discussion. These mycotoxins have attracted attention worldwide because of their impact on human and animal health, animal productivity, and the associated economic losses. In this paper, we review Fusarium mycotoxins and their metabolites with the aim of summarizing the baseline information on the types, occurrence, and health impacts of these mycotoxins in order to encourage much-needed research on integrated management of this unavoidable food contaminant as concerns for food safety continues to grow worldwide.
Collapse
Affiliation(s)
- Theodora I. Ekwomadu
- Department of Animal Health, Faculty of Natural and Agriculture, Sciences, Northwest University, Private Bag X2046, Mmabatho 2735, South Africa; (S.A.A.); (M.M.)
- Food Security and Food Safety Niche Area, Northwest University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Stephen A. Akinola
- Department of Animal Health, Faculty of Natural and Agriculture, Sciences, Northwest University, Private Bag X2046, Mmabatho 2735, South Africa; (S.A.A.); (M.M.)
- Food Security and Food Safety Niche Area, Northwest University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Mulunda Mwanza
- Department of Animal Health, Faculty of Natural and Agriculture, Sciences, Northwest University, Private Bag X2046, Mmabatho 2735, South Africa; (S.A.A.); (M.M.)
- Food Security and Food Safety Niche Area, Northwest University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
7
|
Pierzgalski A, Bryła M, Kanabus J, Modrzewska M, Podolska G. Updated Review of the Toxicity of Selected Fusarium Toxins and Their Modified Forms. Toxins (Basel) 2021; 13:768. [PMID: 34822552 PMCID: PMC8619142 DOI: 10.3390/toxins13110768] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
Mycotoxins are one of the most dangerous food and feed contaminants, hence they have significant influence on human and animal health. This study reviews the information reported over the last few years on the toxic effects of the most relevant and studied Fusarium toxins and their modified forms. Deoxynivalenol (DON) and its metabolites can induce intracellular oxidative stress, resulting in DNA damage. Recent studies have also revealed the capability of DON and its metabolites to disturb the cell cycle and alter amino acid expression. Several studies have attempted to explore the mechanism of action of T-2 and HT-2 toxins in anorexia induction. Among other findings, two neurotransmitters associated with this process have been identified, namely substance P and serotonin (5-hydroxytryptamine). For zearalenone (ZEN) and its metabolites, the literature points out that, in addition to their generally acknowledged estrogenic and oxidative potentials, they can also modify DNA by altering methylation patterns and histone acetylation. The ability of the compounds to induce alterations in the expression of major metabolic genes suggests that these compounds can contribute to the development of numerous metabolic diseases, including type 2 diabetes.
Collapse
Affiliation(s)
- Adam Pierzgalski
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (J.K.); (M.M.)
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (J.K.); (M.M.)
| | - Joanna Kanabus
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (J.K.); (M.M.)
| | - Marta Modrzewska
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (J.K.); (M.M.)
| | - Grażyna Podolska
- Department of Cereal Crop Production, Institute of Soil Science and Plant Cultivation–State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland;
| |
Collapse
|
8
|
Balázs A, Faisal Z, Csepregi R, Kőszegi T, Kriszt B, Szabó I, Poór M. In Vitro Evaluation of the Individual and Combined Cytotoxic and Estrogenic Effects of Zearalenone, Its Reduced Metabolites, Alternariol, and Genistein. Int J Mol Sci 2021; 22:6281. [PMID: 34208060 PMCID: PMC8230625 DOI: 10.3390/ijms22126281] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/04/2022] Open
Abstract
Mycotoxins are toxic metabolites of filamentous fungi. Previous studies demonstrated the co-occurrence of Fusarium and Alternaria toxins, including zearalenone (ZEN), ZEN metabolites, and alternariol (AOH). These xenoestrogenic mycotoxins appear in soy-based meals and dietary supplements, resulting in the co-exposure to ZEN and AOH with the phytoestrogen genistein (GEN). In this study, the cytotoxic and estrogenic effects of ZEN, reduced ZEN metabolites, AOH, and GEN are examined to evaluate their individual and combined impacts. Our results demonstrate that reduced ZEN metabolites, AOH, and GEN can aggravate ZEN-induced toxicity; in addition, the compounds tested exerted mostly synergism or additive combined effects regarding cytotoxicity and/or estrogenicity. Therefore, these observations underline the importance and the considerable risk of mycotoxin co-exposure and the combined effects of mycoestrogens with phytoestrogens.
Collapse
Affiliation(s)
- Adrienn Balázs
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (A.B.); (I.S.)
| | - Zelma Faisal
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary;
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary;
| | - Rita Csepregi
- Lab-on-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary;
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13, H-7624 Pécs, Hungary
| | - Tamás Kőszegi
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary;
- Lab-on-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary;
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13, H-7624 Pécs, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary;
| | - István Szabó
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (A.B.); (I.S.)
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary;
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary;
| |
Collapse
|
9
|
Agahi F, Juan C, Font G, Juan-García A. In silico methods for metabolomic and toxicity prediction of zearalenone, α-zearalenone and β-zearalenone. Food Chem Toxicol 2020; 146:111818. [PMID: 33098936 PMCID: PMC7576377 DOI: 10.1016/j.fct.2020.111818] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Zearalenone (ZEA), α-zearalenol (α-ZEL) and β-zearalenol (β-ZEL) (ZEA's metabolites) are co/present in cereals, fruits or their products. All three with other compounds, constitute a cocktail-mixture that consumers (and also animals) are exposed and never entirely evaluated, nor in vitro nor in vivo. Effect of ZEA has been correlated to endocrine disruptor alterations as well as its metabolites (α-ZEL and β-ZEL); however, toxic effects associated to metabolites generated once ingested are unknown and difficult to study. The present study defines the metabolomics profile of all three mycotoxins (ZEA, α-ZEL and β-ZEL) and explores the prediction of their toxic effects proposing an in silico workflow by using three programs of predictions: MetaTox, SwissADME and PASS online. Metabolomic profile was also defined and toxic effect evaluated for all metabolite products from Phase I and II reaction (a total of 15 compounds). Results revealed that products describing metabolomics profile were: from O-glucuronidation (1z and 2z for ZEA and 1 ab, 2 ab and 3 ab for ZEA's metabolites), S-sulfation (3z and 4z for ZEA and 4 ab, 5 ab and 6 ab for ZEA's metabolites) and hydrolysis (5z and 7 ab for ZEA's metabolites, respectively). Lipinsky's rule-of-five was followed by all compounds except those coming from O-glucuronidation (HBA>10). Metabolite products had better properties to reach blood brain barrier than initial mycotoxins. According to Pa values (probability of activation) order of toxic effects studied was carcinogenicity > nephrotoxic > hepatotoxic > endocrine disruptor > mutagenic (AMES TEST) > genotoxic. Prediction of inhibition, induction and substrate function on different isoforms of Cytochrome P450 (CYP1A1, CYP1A2, CYP2C9 and CYP3A4) varied for each compounds analyzed; similarly, for activation of caspases 3 and 8. Relying to our findings, the metabolomics profile of ZEA, α-ZEL and β-ZEL analyzed by in silico programs predicts alteration of systems/pathways/mechanisms that ends up causing several toxic effects, giving an excellent sight and direct studies before starting in vitro or in vivo assays contributing to 3Rs principle; however, confirmation can be only demonstrated by performing those assays.
Collapse
Affiliation(s)
- Fojan Agahi
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| |
Collapse
|
10
|
Zhang W, Zhang S, Wang J, Shan A, Xu L. Changes in intestinal barrier functions and gut microbiota in rats exposed to zearalenone. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111072. [PMID: 32758694 DOI: 10.1016/j.ecoenv.2020.111072] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 05/10/2023]
Abstract
Zearalenone (ZEN) is a mycotoxin that causes serious health problems in humans and animals. However, few studies have focused on the destruction of the intestinal barrier caused by ZEN. In this study, rats were exposed to different dosages of ZEN (0, 0.2, 1.0 and 5.0 mg/kg bw) by gavage for 4 weeks. The results showed that 1.0 and 5.0 mg/kg ZEN impaired gut morphology, induced the inflammatory response, reduced mucin expression, increased intestinal permeability, decreased the expression of TJ proteins and activated the RhoA/ROCK pathway. However, 0.2 mg/kg ZEN had no significant effect on intestinal barrier except for reducing the expression of some TJ proteins and mucins. Moreover, exposure to ZEN led to slight imbalance in microbiota. In conclusion, ZEN exposure resulted in intestinal barrier dysfunction by inducing intestinal microbiota dysbiosis, decreasing the expression of TJ proteins, activating the RhoA/ROCK pathway, and inducing the inflammatory response.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Shihua Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Jingjing Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Li Xu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
11
|
Agahi F, Álvarez-Ortega N, Font G, Juan-García A, Juan C. Oxidative stress, glutathione, and gene expression as key indicators in SH-SY5Y cells exposed to zearalenone metabolites and beauvericin. Toxicol Lett 2020; 334:44-52. [DOI: 10.1016/j.toxlet.2020.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
|
12
|
Virk P, Al-Mukhaizeem NAR, Bin Morebah SH, Fouad D, Elobeid M. Protective effect of resveratrol against toxicity induced by the mycotoxin, zearalenone in a rat model. Food Chem Toxicol 2020; 146:111840. [PMID: 33137427 DOI: 10.1016/j.fct.2020.111840] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
Abstract
Contamination of cereal crops with zearalenone (ZEA), a mycotoxin produced by Fusarium fungi, is a worldwide health concern. The study assessed the ameliorative potential of resveratrol (RSV), a potent antioxidant against ZEA induced toxicity in adult male Wistar rats. Rats (n = 40), with an average weight of 100-150 g were used for the exposure study for three weeks. The animals were divided into four groups (I to IV) each comprising 10 rats. Group I was kept as negative control and was administered normal saline. Group II and III were exposed to 2 mg/kg of the mycotoxin, ZEA administered intraperitoneally once every week. Group III was treated with resveratrol (RSV) orally (5 mg/kg) daily. Group IV was treated only with resveratrol (5 mg/kg/daily) as a positive control. The protective effect of resveratrol was evaluated on; biochemical variables, biomarkers of oxidative stress, markers of immunotoxicity, and DNA damage. The findings showed that exposure to ZEA elicited oxidative stress and modulated the antioxidant enzyme activities. A disarray in the lipid profile, parameters of the humoral and cellular immune response; serum cytokines and immunoglobulins was also observed. Further, COMET assay showed detectable DNA lesions. Taken together, RSV was efficacious in reducing and/or reversing the ZEA induced toxicity.
Collapse
Affiliation(s)
- Promy Virk
- Department of Zoology, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11459, Saudi Arabia.
| | | | - Sara Hamad Bin Morebah
- Department of Zoology, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11459, Saudi Arabia
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11459, Saudi Arabia; Department of Zoology and Entomology Department, Faculty of Science, Helwan University, Ein Helwan, Cairo, Egypt
| | - Mai Elobeid
- Department of Zoology, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11459, Saudi Arabia
| |
Collapse
|
13
|
Agahi F, Font G, Juan C, Juan-García A. Individual and Combined Effect of Zearalenone Derivates and Beauvericin Mycotoxins on SH-SY5Y Cells. Toxins (Basel) 2020; 12:E212. [PMID: 32230869 PMCID: PMC7232440 DOI: 10.3390/toxins12040212] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Beauvericin (BEA) and zearalenone derivatives, α-zearalenol (α-ZEL), and β-zearalenol (β-ZEL), are produced by several Fusarium species. Considering the impact of various mycotoxins on human's health, this study determined and evaluated the cytotoxic effect of individual, binary, and tertiary mycotoxin treatments consisting of α-ZEL, β-ZEL, and BEA at different concentrations over 24, 48, and 72 h on SH-SY5Y neuronal cells, by using the MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazoliumbromide). Subsequently, the isobologram method was applied to elucidate if the mixtures produced synergism, antagonism, or additive effects. Ultimately, we determined the amount of mycotoxin recovered from the media after treatment using liquid chromatography coupled with electrospray ionization-quadrupole time-of-flight mass spectrometry (LC-ESI-qTOF-MS). The IC50 values detected at all assayed times ranged from 95 to 0.2 μM for the individual treatments. The result indicated that β-ZEL was the most cytotoxic mycotoxin when tested individually. The major effect detected for all combinations assayed was synergism. Among the combinations assayed, α-ZEL + β-ZEL + BEA and α-ZEL + BEA presented the highest cytotoxic potential with respect to the IC value. At all assayed times, BEA was the mycotoxin recovered at the highest concentration in individual form, and β-ZEL + BEA was the combination recovered at the highest concentration.
Collapse
Affiliation(s)
| | | | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain; (F.A.); (G.F.); (A.J.-G.)
| | | |
Collapse
|
14
|
Marin DE, Pistol GC, Bulgaru CV, Taranu I. Cytotoxic and inflammatory effects of individual and combined exposure of HepG2 cells to zearalenone and its metabolites. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:937-947. [PMID: 30919009 DOI: 10.1007/s00210-019-01644-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/11/2019] [Indexed: 12/20/2022]
Abstract
Zearalenone (ZEA), a mycotoxin produced by several Fusarium spp., is most commonly found as a contaminant in stored grain. ZEA derivatives (α-zearalenol (α-ZOL), β-zearalenol (β-ZOL)) can also be produced by Fusarium spp. in corn stems infected by fungi in the field. Also, following oral exposure, zearalenone is metabolized in various tissues, particularly in the liver, the major metabolites being α-ZOL and β-ZOL. The co-exposure of cells to mixture of a combination of mycotoxins may cause an increase of toxicity produced by these mycotoxins. In this in vitro study, we investigated the combined effects of ZEA, α-ZOL, β-ZOL in binary mixtures on the viability and inflammatory response of human liver cancer cell line (HepG2). Cell viability was assessed after 72 h using a neutral red assay. Effect of the toxins and their binary combinations on the expression of genes involved in inflammation (IL-1β, TNF-α, and IL-8) were assessed through qPCR. Our viability data showed that irrespective of the toxin combinations, the toxins have synergistic effect. ZEA + α-ZOL and ZEA + β-ZOL mixtures have induced a slight to high antagonistic response on inflammatory cytokines at low concentrations that have turned into strong synergism for high concentrations. α-ZOL + β-ZOL showed antagonistic effects on inflammation for IL-1β and TNF-α, but act synergic for IL-8 at high toxin concentrations. This study clearly shows that co-contamination of food and feed with ZEA metabolites should be taken into consideration, as the co-exposure to mycotoxins might result in stronger adverse effect than resulted from the exposure to individual toxin.
Collapse
Affiliation(s)
- D E Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, 077015, Balotesti, Ilfov, Romania.
| | - G C Pistol
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, 077015, Balotesti, Ilfov, Romania
| | - C V Bulgaru
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, 077015, Balotesti, Ilfov, Romania
| | - I Taranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, 077015, Balotesti, Ilfov, Romania
| |
Collapse
|
15
|
Khezri A, Herranz-Jusdado JG, Ropstad E, Fraser TW. Mycotoxins induce developmental toxicity and behavioural aberrations in zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:500-506. [PMID: 30005262 DOI: 10.1016/j.envpol.2018.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/20/2018] [Accepted: 07/03/2018] [Indexed: 05/19/2023]
Abstract
Mycotoxins are secondary metabolites produced by varieties of fungi that contaminate food and feed resources and are capable of inducing a wide range of toxicity. In the current study, we investigated developmental and behavioural toxicity in zebrafish larvae after exposure to six different mycotoxins; ochratoxin A (OTA), type A trichothecenes mycotoxin (T-2 toxin), type B trichothecenes mycotoxin (deoxynivalenol - DON), and zearalenone (ZEN) and its metabolites alpha-zearalenol (α-ZOL) and beta-zearalenol (β-ZOL). Developmental defects, hatching time, and survival were monitored until 96 h post fertilisation (hpf). The EC50, LC50, and IC50 values were calculated. Subsequently, to assess behavioural toxicity, new sets of embryos were exposed to a series of non-lethal doses within the range of environmental and/or developmental concern. Results indicated that all the tested mycotoxins were toxic, they all induced developmental defects, and with the exception of OTA, all affected hatching time. Behavioural effects were only observed following exposure to OTA and ZEN and its metabolites, α ZOL and β ZOL. These results demonstrate that mycotoxins are teratogenic and can influence behaviour in a vertebrate model.
Collapse
Affiliation(s)
- Abdolrahman Khezri
- Department of Basic Science and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Science, Pb. 8146 Dep, 0033, Oslo, Norway.
| | | | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Science, Pb. 8146 Dep, 0033, Oslo, Norway
| | - Thomas Wk Fraser
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Science, Pb. 8146 Dep, 0033, Oslo, Norway
| |
Collapse
|
16
|
Wang J, Li M, Zhang W, Gu A, Dong J, Li J, Shan A. Protective Effect of N-Acetylcysteine against Oxidative Stress Induced by Zearalenone via Mitochondrial Apoptosis Pathway in SIEC02 Cells. Toxins (Basel) 2018; 10:E407. [PMID: 30304829 PMCID: PMC6215273 DOI: 10.3390/toxins10100407] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 01/06/2023] Open
Abstract
Zearalenone (ZEN), a nonsteroidal estrogen mycotoxin, is widely found in feed and foodstuffs. Intestinal cells may become the primary target of toxin attack after ingesting food containing ZEN. Porcine small intestinal epithelial (SIEC02) cells were selected to assess the effect of ZEN exposure on the intestine. Cells were exposed to ZEN (20 µg/mL) or pretreated with (81, 162, and 324 µg/mL) N-acetylcysteine (NAC) prior to ZEN treatment. Results indicated that the activities of glutathione peroxidase (Gpx) and glutathione reductase (GR) were reduced by ZEN, which induced reactive oxygen species (ROS) and malondialdehyde (MDA) production. Moreover, these activities increased apoptosis and mitochondrial membrane potential (ΔΨm), and regulated the messenger RNA (mRNA) expression of Bax, Bcl-2, caspase-3, caspase-9, and cytochrome c (cyto c). Additionally, NAC pretreatment reduced the oxidative damage and inhibited the apoptosis induced by ZEN. It can be concluded that ZEN-induced oxidative stress and damage may further induce mitochondrial apoptosis, and pretreatment of NAC can degrade this damage to some extent.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Mengmeng Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Wei Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Aixin Gu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Jiawen Dong
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Jianping Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
17
|
Zearalenone Changes the Diversity and Composition of Caecum Microbiota in Weaned Rabbit. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3623274. [PMID: 30402473 PMCID: PMC6196994 DOI: 10.1155/2018/3623274] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/16/2018] [Indexed: 12/13/2022]
Abstract
Mycotoxins exhibit several severe effects on intestinal health, but few studies have assessed mycotoxins effect on the intestinal microflora and its repercussions to humans and animals. In this study, we evaluated the effect of zearalenone (ZEA), one of the most harmful mycotoxins on the structure of caecal microbiota in rabbits. Twenty-eight male weaned rabbits were randomly divided into four groups and orally given different concentrations of ZEA (400, 800, and 1600 μg/kg.b.w). Microbial communities in caecum samples of rabbits were analyzed for 16S rRNA by Illumina sequencing through Illumina Miseq platform after being fed for 28 days. The results showed that increasing ZEA doses increased the species richness but did not significantly increased the species diversity of the caecum microbiota in the rabbits. In addition, the caecum microbiota from the samples in different ZEA-treated groups was clustered according to their dosing regimens. At the phylum level, ZEA decreased the abundance of Actinobacteria and significantly increased the abundance of Cyanobacteria, Synergistetes, and Proteobacteria. At the genus level, there were declines in the abundance of Adlercreutzia, Blautia, Desulfitobacter, Lactobacillus, Oxalobacter, and p-75-a5. The decrease of abundance in Lactobacillus, Desulfitobacter, and p-75-a5 was particularly noticeable. In conclusion, zearalenone could increase α-diversity but significantly decrease the abundance of some bacteria with the important metabolic functions. These findings suggested that ZEA could modify the caecum microbiota.
Collapse
|
18
|
Comparative Analysis of Zearalenone Effects on Thyroid Receptor Alpha (TRα) and Beta (TRβ) Expression in Rat Primary Cerebellar Cell Cultures. Int J Mol Sci 2018; 19:ijms19051440. [PMID: 29751674 PMCID: PMC5983839 DOI: 10.3390/ijms19051440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/20/2018] [Accepted: 05/09/2018] [Indexed: 12/22/2022] Open
Abstract
Thyroid receptors play an important role in postnatal brain development. Zearalenone (ZEN), a major mycotoxin of Fusarium fungi, is well known to cause serious health problems in animals and humans through various mechanisms, including the physiological pathways of thyroid hormone (TH). In the present study, we aimed to investigate the expression of thyroid receptors α (TRα) and β (TRβ) in primary cerebellar neurons in the presence or absence of glia and following ZEN treatment, using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. Primary cerebellar granule cells were treated with low doses of ZEN (0.1 nM) in combination with physiologically relevant concentrations of l-thyroxine (T4), 3,3′,5-triiodo-l-thyronine (T3) and 17β-estradiol (E2). Expression levels of TRα and TRβ at mRNA and protein levels were slightly modified by ZEN administered alone; however, along with thyroid and steroid hormones, modelling the physiological conditions, expression levels of TRs varied highly depending on the given treatment. Gene expression levels were also highly modulated by the presence or absence of glial cells, with mostly contrasting effects. Our results demonstrate divergent transcriptional and translational mechanisms involved in the expression of TRs implied by ZEN and hormonal milieu, as well as culturing conditions.
Collapse
|
19
|
Bryła M, Waśkiewicz A, Ksieniewicz-Woźniak E, Szymczyk K, Jędrzejczak R. Modified Fusarium Mycotoxins in Cereals and Their Products-Metabolism, Occurrence, and Toxicity: An Updated Review. Molecules 2018; 23:E963. [PMID: 29677133 PMCID: PMC6017960 DOI: 10.3390/molecules23040963] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/05/2018] [Accepted: 04/17/2018] [Indexed: 02/03/2023] Open
Abstract
Mycotoxins are secondary fungal metabolites, toxic to humans, animals and plants. Under the influence of various factors, mycotoxins may undergo modifications of their chemical structure. One of the methods of mycotoxin modification is a transformation occurring in plant cells or under the influence of fungal enzymes. This paper reviews the current knowledge on the natural occurrence of the most important trichothecenes and zearalenone in cereals/cereal products, their metabolism, and the potential toxicity of the metabolites. Only very limited data are available for the majority of the identified mycotoxins. Most studies concern biologically modified trichothecenes, mainly deoxynivalenol-3-glucoside, which is less toxic than its parent compound (deoxynivalenol). It is resistant to the digestion processes within the gastrointestinal tract and is not absorbed by the intestinal epithelium; however, it may be hydrolysed to free deoxynivalenol or deepoxy-deoxynivalenol by the intestinal microflora. Only one zearalenone derivative, zearalenone-14-glucoside, has been extensively studied. It appears to be more reactive than deoxynivalenol-3-glucoside. It may be readily hydrolysed to free zearalenone, and the carbonyl group in its molecule may be easily reduced to α/β-zearalenol and/or other unspecified metabolites. Other derivatives of deoxynivalenol and zearalenone are poorly characterised. Moreover, other derivatives such as glycosides of T-2 and HT-2 toxins have only recently been investigated; thus, the data related to their toxicological profile and occurrence are sporadic. The topics described in this study are crucial to ensure food and feed safety, which will be assisted by the provision of widespread access to such studies and obtained results.
Collapse
Affiliation(s)
- Marcin Bryła
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland.
| | - Edyta Ksieniewicz-Woźniak
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| | - Krystyna Szymczyk
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| | - Renata Jędrzejczak
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| |
Collapse
|
20
|
Reddy KE, Song J, Lee HJ, Kim M, Kim DW, Jung HJ, Kim B, Lee Y, Yu D, Kim DW, Oh YK, Lee SD. Effects of High Levels of Deoxynivalenol and Zearalenone on Growth Performance, and Hematological and Immunological Parameters in Pigs. Toxins (Basel) 2018. [PMID: 29518941 PMCID: PMC5869402 DOI: 10.3390/toxins10030114] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background: Deoxynivalenol (DON) and zearalenone (ZEN) are common food contaminants produced by Fusarium sp. Mycotoxins are a potential health hazard because of their toxicological effects on both humans and farmed animals. Methods: We analyzed three groups of pigs: a control group (fed a standard diet), and the DON and ZEN groups, fed a diet containing 8 mg/kg DON and 0.8 mg/kg ZEN respectively, for four weeks. Results: DON and ZEN exposure decreased body weight (BW), average daily feed intake (ADFI), food conversion rate (FCR), and the serum levels of immunoglobulin (Ig)G and IgM. The total antioxidant levels significantly decreased in serum and increased in urine samples of both treatment groups. Additionally, DON and ZEN exposure increased serotonin levels in urine. Hematological parameters were not affected by the investigated toxins. Microscopic lesions were evident in sections of kidneys from either treatment group: we found sporadic interstitial nephritis in the DON group and renal glomerulus atrophy in the ZEN group. The expression levels of inflammatory cytokines and chemokine marker genes were reduced in tissues from DON- and ZEN-exposed pigs. Conclusions: chronic ingestion of high doses of DON and ZEN alters the immune response and causes organs damage, and might be associated with various diseases in pigs.
Collapse
Affiliation(s)
- Kondreddy Eswar Reddy
- Animal Nutritional & Physiology Team, National Institute of Animal Science, Rural Development Administration, (55365)#1500 Kongjwipatjwi-ro, Iseo-myeon, Wanju 55365, Korea; (K.E.R.), (J.S.); (H.-J.L.); (M.K.); (D.-Wook.K.); (H.J.J.); (Y.L.); (D.-Woon.K.); (Y.K.O.)
| | - Jaeyong Song
- Animal Nutritional & Physiology Team, National Institute of Animal Science, Rural Development Administration, (55365)#1500 Kongjwipatjwi-ro, Iseo-myeon, Wanju 55365, Korea; (K.E.R.), (J.S.); (H.-J.L.); (M.K.); (D.-Wook.K.); (H.J.J.); (Y.L.); (D.-Woon.K.); (Y.K.O.)
| | - Hyun-Jeong Lee
- Animal Nutritional & Physiology Team, National Institute of Animal Science, Rural Development Administration, (55365)#1500 Kongjwipatjwi-ro, Iseo-myeon, Wanju 55365, Korea; (K.E.R.), (J.S.); (H.-J.L.); (M.K.); (D.-Wook.K.); (H.J.J.); (Y.L.); (D.-Woon.K.); (Y.K.O.)
| | - Minseok Kim
- Animal Nutritional & Physiology Team, National Institute of Animal Science, Rural Development Administration, (55365)#1500 Kongjwipatjwi-ro, Iseo-myeon, Wanju 55365, Korea; (K.E.R.), (J.S.); (H.-J.L.); (M.K.); (D.-Wook.K.); (H.J.J.); (Y.L.); (D.-Woon.K.); (Y.K.O.)
| | - Dong-Wook Kim
- Animal Nutritional & Physiology Team, National Institute of Animal Science, Rural Development Administration, (55365)#1500 Kongjwipatjwi-ro, Iseo-myeon, Wanju 55365, Korea; (K.E.R.), (J.S.); (H.-J.L.); (M.K.); (D.-Wook.K.); (H.J.J.); (Y.L.); (D.-Woon.K.); (Y.K.O.)
| | - Hyun Jung Jung
- Animal Nutritional & Physiology Team, National Institute of Animal Science, Rural Development Administration, (55365)#1500 Kongjwipatjwi-ro, Iseo-myeon, Wanju 55365, Korea; (K.E.R.), (J.S.); (H.-J.L.); (M.K.); (D.-Wook.K.); (H.J.J.); (Y.L.); (D.-Woon.K.); (Y.K.O.)
| | - Bumseok Kim
- College of Veterinary Medicine, Chonbuk National University, Ilsan 54596, Korea;
| | - Yookyung Lee
- Animal Nutritional & Physiology Team, National Institute of Animal Science, Rural Development Administration, (55365)#1500 Kongjwipatjwi-ro, Iseo-myeon, Wanju 55365, Korea; (K.E.R.), (J.S.); (H.-J.L.); (M.K.); (D.-Wook.K.); (H.J.J.); (Y.L.); (D.-Woon.K.); (Y.K.O.)
| | - Dongjo Yu
- Swine Science Division, National Institute of Animal Science, RDA, Chungnam 31000, Korea;
| | - Dong-Woon Kim
- Animal Nutritional & Physiology Team, National Institute of Animal Science, Rural Development Administration, (55365)#1500 Kongjwipatjwi-ro, Iseo-myeon, Wanju 55365, Korea; (K.E.R.), (J.S.); (H.-J.L.); (M.K.); (D.-Wook.K.); (H.J.J.); (Y.L.); (D.-Woon.K.); (Y.K.O.)
| | - Young Kyoon Oh
- Animal Nutritional & Physiology Team, National Institute of Animal Science, Rural Development Administration, (55365)#1500 Kongjwipatjwi-ro, Iseo-myeon, Wanju 55365, Korea; (K.E.R.), (J.S.); (H.-J.L.); (M.K.); (D.-Wook.K.); (H.J.J.); (Y.L.); (D.-Woon.K.); (Y.K.O.)
| | - Sung Dae Lee
- Animal Nutritional & Physiology Team, National Institute of Animal Science, Rural Development Administration, (55365)#1500 Kongjwipatjwi-ro, Iseo-myeon, Wanju 55365, Korea; (K.E.R.), (J.S.); (H.-J.L.); (M.K.); (D.-Wook.K.); (H.J.J.); (Y.L.); (D.-Woon.K.); (Y.K.O.)
- Correspondence: ; Tel.: +82-63-238-7454; Fax: +82-63-238-7497
| |
Collapse
|
21
|
Zheng N, Gao YN, Liu J, Wang HW, Wang JQ. Individual and combined cytotoxicity assessment of zearalenone with ochratoxin A or α-zearalenol by full factorial design. Food Sci Biotechnol 2018; 27:251-259. [PMID: 30263747 PMCID: PMC6049762 DOI: 10.1007/s10068-017-0197-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/26/2017] [Accepted: 08/30/2017] [Indexed: 11/30/2022] Open
Abstract
The combined mycotoxins zearalenone (ZEA) with ochratoxin A (OTA) or α-zearalenol (α-ZOL) are frequently found together in milk. Toxicological data concerning the combined effects of these mycotoxins are sparse. In present study, individual and combined ZEA, OTA and α-ZOL caused cytotoxicity and oxidative damage, including reductions in intracellular superoxide dismutase and glutathione peroxidase activities and glutathione content, along with increases in malonaldehyde content on human Hep G2 cells after 48 h of exposure. Among individual mycotoxins, OTA had the greatest cytotoxic effect followed by α-ZOL. Compared with individual mycotoxins, combinations produced more serious negative effects, more importantly, ZEA + OTA was antagonistic for these effects, whereas ZEA + α-ZOL was antagonistic at low concentrations, but synergistic at high concentrations of ZEA, which were evaluated by 3 × 3 full factorial analysis and estimated marginal means plots. Our results also demonstrated a significant correlation between cytotoxicity and oxidative damage in response to these combinations.
Collapse
Affiliation(s)
- N. Zheng
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 People’s Republic of China
| | - Y. N. Gao
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 People’s Republic of China
| | - J. Liu
- China National Research Institute of Food and Fermentation Industries, Beijing, 100027 People’s Republic of China
| | - H. W. Wang
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - J. Q. Wang
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 People’s Republic of China
| |
Collapse
|
22
|
Tatay E, Espín S, García-Fernández AJ, Ruiz MJ. Oxidative damage and disturbance of antioxidant capacity by zearalenone and its metabolites in human cells. Toxicol In Vitro 2017; 45:334-339. [PMID: 28477956 DOI: 10.1016/j.tiv.2017.04.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/14/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
Abstract
Mycotoxin contamination of foods and feeds represent a serious problem worldwide. Zearalenone (ZEA) is a secondary metabolite produced by Fusarium species. This study explores oxidative cellular damage and intracellular defense mechanisms (enzymatic and non-enzymatic) in the hepatoma cell line HepG2 after exposure to ZEA and its metabolites (α-zearalenol, α-ZOL; β-zearalenol, β-ZOL). Our results demonstrated that HepG2 cells exposed to ZEA, α-ZOL or β-ZOL at different concentrations (0, 6.25, 12.5 and 25μM) showed: (i) elevated ROS levels (1.5- to 7-fold) based on the formation of the highly fluorescent 2',7'-dichlorofluorescein (DCF), (ii) increased DNA damage measured by the comet assay (9-45% higher), (iii) decreased GSH levels and CAT activity (decreased by 54%-25% and by 62%-25% for GSH and CAT, respectively) and (iv) increased GPx and SOD activities (increased by 50%-90% and by 26%-70%, respectively), compared to untreated cells. Our results suggest that mycotoxin-induced oxidative stress and damage may play a major role in the cytotoxic effects of ZEA and its metabolites. GSH and endogenous enzymes function together in protecting cells from ROS and the consequent damage after mycotoxin exposure. ZEA has a lower capacity to induce oxidative stress and damage in HepG2 cells than its metabolites at the tested concentrations.
Collapse
Affiliation(s)
- Elena Tatay
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, (Valencia), Spain
| | - Silvia Espín
- Laboratory of Toxicology, Department of Health Sciences, Biomedical Research Institute of Murcia (IMIB-UM-Arrixaca), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; Department of Biology, University of Turku, 20014 Turku, Finland
| | - Antonio-Juan García-Fernández
- Laboratory of Toxicology, Department of Health Sciences, Biomedical Research Institute of Murcia (IMIB-UM-Arrixaca), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - María-José Ruiz
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, (Valencia), Spain.
| |
Collapse
|
23
|
Chilaka CA, De Boevre M, Atanda OO, De Saeger S. The Status of Fusarium Mycotoxins in Sub-Saharan Africa: A Review of Emerging Trends and Post-Harvest Mitigation Strategies towards Food Control. Toxins (Basel) 2017; 9:E19. [PMID: 28067768 PMCID: PMC5308251 DOI: 10.3390/toxins9010019] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/28/2016] [Accepted: 01/02/2017] [Indexed: 02/01/2023] Open
Abstract
Fusarium fungi are common plant pathogens causing several plant diseases. The presence of these molds in plants exposes crops to toxic secondary metabolites called Fusarium mycotoxins. The most studied Fusarium mycotoxins include fumonisins, zearalenone, and trichothecenes. Studies have highlighted the economic impact of mycotoxins produced by Fusarium. These arrays of toxins have been implicated as the causal agents of wide varieties of toxic health effects in humans and animals ranging from acute to chronic. Global surveillance of Fusarium mycotoxins has recorded significant progress in its control; however, little attention has been paid to Fusarium mycotoxins in sub-Saharan Africa, thus translating to limited occurrence data. In addition, legislative regulation is virtually non-existent. The emergence of modified Fusarium mycotoxins, which may contribute to additional toxic effects, worsens an already precarious situation. This review highlights the status of Fusarium mycotoxins in sub-Saharan Africa, the possible food processing mitigation strategies, as well as future perspectives.
Collapse
Affiliation(s)
- Cynthia Adaku Chilaka
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
- Department of Food Science and Technology, College of Applied Food Science and Tourism, Michael Okpara University of Agriculture, Umuahia-Ikot Ekpene Road, Umudike, Umuahia PMB 7267, Abia State, Nigeria.
| | - Marthe De Boevre
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| | - Olusegun Oladimeji Atanda
- Department of Biological Sciences, McPherson University, KM 96 Lagos-Ibadan Expressway, 110117 Seriki Sotayo, Ogun State, Nigeria.
| | - Sarah De Saeger
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| |
Collapse
|
24
|
Shi B, Su Y, Chang S, Sun Y, Meng X, Shan A. Vitamin C protects piglet liver against zearalenone-induced oxidative stress by modulating expression of nuclear receptors PXR and CAR and their target genes. Food Funct 2017; 8:3675-3687. [DOI: 10.1039/c7fo01301a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zearalenone (ZEN), a common mycotoxin found in human food and animal feed, is effectively detoxified by vitamin C by modulation of the nuclear receptor signaling pathway.
Collapse
Affiliation(s)
- Baoming Shi
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Yang Su
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Siying Chang
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Yuchen Sun
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Xiangyu Meng
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P. R. China
| |
Collapse
|
25
|
Gao YN, Wang JQ, Li SL, Zhang YD, Zheng N. Aflatoxin M1 cytotoxicity against human intestinal Caco-2 cells is enhanced in the presence of other mycotoxins. Food Chem Toxicol 2016; 96:79-89. [PMID: 27470613 DOI: 10.1016/j.fct.2016.07.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 07/13/2016] [Accepted: 07/19/2016] [Indexed: 11/26/2022]
Abstract
Aflatoxin M1 (AFM1), a class 2B human carcinogen, is the only mycotoxin with established maximum residue limits (MRLs) in milk. Toxicological data for other mycotoxins in baby food, containing cereals and milk, either in isolation or in combination with AFM1, are sparse. The aim of this study was to investigate the cytotoxicity of AFM1, ochratoxin A (OTA), zearalenone (ZEA), and α-zearalenol (α-ZOL), individually and in combinations, in human Caco-2 cells. The tetrazolium salt (MTT) assay demonstrated that (i) OTA and AFM1 had similar cytotoxicity, which was higher than that of ZEA and α-ZOL, after a 72 h exposure; and (ii) the quaternary combination had the highest cytotoxicity, followed by tertiary and binary combinations and individual mycotoxins. Isobologram analysis indicated that the presence of OTA, ZEA, and/or α-ZOL with AFM1 led to additive and synergistic cytotoxicity in most combinations. The cytotoxicity of OTA was similar to that of AFM1, suggesting that OTA in food poses a health risk to consumers. Furthermore, AFM1 cytotoxicity increased dramatically in the presence of OTA, ZEA, and/or α-ZOL (p < 0.01), indicating that the established MRLs for AFM1 should be re-evaluated considering its frequent co-occurrence with other mycotoxins in baby food which contains milk and cereals.
Collapse
Affiliation(s)
- Y N Gao
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - J Q Wang
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - S L Li
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Y D Zhang
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - N Zheng
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| |
Collapse
|
26
|
Tatay E, Font G, Ruiz MJ. Cytotoxic effects of zearalenone and its metabolites and antioxidant cell defense in CHO-K1 cells. Food Chem Toxicol 2016; 96:43-9. [PMID: 27465603 DOI: 10.1016/j.fct.2016.07.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/22/2016] [Accepted: 07/23/2016] [Indexed: 12/15/2022]
Abstract
Zearalenone (ZEA) and its metabolites (α-zearalenol; α-ZOL, β-zearalenol; β-ZOL) are secondary metabolites of Fusarium fungi that produce cell injury. The present study explores mycotoxin-induced cell damage and cellular protection mechanisms in CHO-K1 cells. Cytotoxicity has been determined by reactive oxygen species (ROS) production and DNA damage. ROS production was determined using the fluorescein assay and DNA strand breakage by comet assay. Intracellular protection systems were glutathione (GSH), glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD). The results demonstrated that all mycotoxins increased the ROS levels up to 5.3-fold the control levels in CHO-K1 cells. Zearalenone metabolites, but not ZEA, increased DNA damage 43% (α-ZOL) and 28% (β-ZOL) compared to control cells. The GSH levels decreased from 18% to 36%. The GPx and SOD activities respectively increased from 26% to 62% and from 23% to 69% in CHO-K1 cells, whereas CAT activity decreased from 14% to 52%. In addition, intracellular ROS production was induced by ZEA and its metabolites. The endogenous antioxidant system components GSH, GPx and SOD were activated against ZEA and its metabolites. These antioxidant system components thus could contribute to decrease cell injury by ZEA and its metabolites.
Collapse
Affiliation(s)
- Elena Tatay
- Laboratory of Toxicology, Dep. Preventive Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - Guillermina Font
- Laboratory of Toxicology, Dep. Preventive Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - Maria-Jose Ruiz
- Laboratory of Toxicology, Dep. Preventive Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
27
|
Vejdovszky K, Hahn K, Braun D, Warth B, Marko D. Synergistic estrogenic effects of Fusarium and Alternaria mycotoxins in vitro. Arch Toxicol 2016; 91:1447-1460. [PMID: 27401186 PMCID: PMC5316405 DOI: 10.1007/s00204-016-1795-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/05/2016] [Indexed: 12/05/2022]
Abstract
Mycotoxins are toxic secondary metabolites formed by various fungal species that are found as natural contaminants in food. This very heterogeneous group of compounds triggers multiple toxic mechanisms, including endocrine disruptive potential. Current risk assessment of mycotoxins, as for most chemical substances, is based on the effects of single compounds. However, concern on a potential enhancement of risks by interactions of single substances in naturally occurring mixtures has greatly increased recently. In this study, the combinatory effects of three mycoestrogens were investigated in detail. This includes the endocrine disruptors zearalenone (ZEN) and α-zearalenol (α-ZEL) produced by Fusarium fungi and alternariol (AOH), a cytotoxic and estrogenic mycotoxin formed by Alternaria species. For evaluation of effects, estrogen-dependent activation of alkaline phosphatase (AlP) and cell proliferation were tested in the adenocarcinoma cell line Ishikawa. The estrogenic potential varied among the single substances. Half maximum effect concentrations (EC50) for AlP activation were evaluated for α-ZEL, ZEN and AOH as 37 pM, 562 pM and 995 nM, respectively. All three mycotoxins were found to act as partial agonists. The majority of binary combinations, even at very low concentrations in the case of α-ZEL, showed strong synergism in the AlP assay. These potentiating phenomena of mycotoxin mixtures highlight the urgent need to incorporate combinatory effects into future risk assessment, especially when endocrine disruptors are involved. To the best of our knowledge, this study presents the first investigation on synergistic effects of mycoestrogens.
Collapse
Affiliation(s)
- Katharina Vejdovszky
- Department of Food Chemistry and Toxicology, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria
| | - Kathrin Hahn
- Department of Food Chemistry and Toxicology, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria
| | - Dominik Braun
- Department of Food Chemistry and Toxicology, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria.
| |
Collapse
|
28
|
Jakimiuk E, Radwińska J, Pomianowski A, Woźny M, Obremski K, Gajęcka M, Brzuzan P, Gajęcki M. Evaluation of selected serum biochemical and haematological parameters in gilts exposed per os to 100 ppb of zearalenone. Pol J Vet Sci 2016; 18:865-72. [PMID: 26812831 DOI: 10.1515/pjvs-2015-0112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Zearalenone (ZEN) widely contaminates animal feed of plant origin. The recommended safe concentrations of ZEN in feeds for various animal species are set mainly based on the mycotoxin's hormonal properties (NOEL). Our growing knowledge about biologically active concentrations of ZEN, molecular mechanisms and cells/tissues targeted by ZEN indicates that the harmful effects exerted by this mycotoxin on animals may be far greater than previously believed. This experiment was performed on pre-pubertal gilts divided into a control group (n=9) and an experimental group (ZEN, n=9). The control group received placebo, whereas the experimental group was administered ZEN at a dose of 0.1 mg/kg feed (equivalent to 5 μg/kg BW/day) for 42 days. On days 14, 28 and 42 blood samples were collected from the animals to determine the concentrations of selected zearalenols, serum biochemical and haematological parameters. Conjugated ZEN was found in the blood serum of the experimental gilts. Changes in the analysed biochemical parameters included a transient increase in albumin and cholesterol levels. A statistically significant increase in the concentrations of neutrophilic and acidophilic granulocytes was observed in the white blood cell system. The results indicate that long-term per os exposure of pre-pubertal gilts to low doses of ZEN (below NOEL) has a modulatory effect on liver function and white blood cells.
Collapse
|
29
|
Chen F, Lin P, Wang N, Yang D, Wen X, Zhou D, Wang A, Jin Y. Herp depletion inhibits zearalenone-induced cell death in RAW 264.7 macrophages. Toxicol In Vitro 2015; 32:115-22. [PMID: 26723276 DOI: 10.1016/j.tiv.2015.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 11/26/2015] [Accepted: 12/18/2015] [Indexed: 12/14/2022]
Abstract
Herp is an endoplasmic reticulum (ER) membrane protein and strongly induced by the ER stress that not only participates in the unfolded protein response (UPR) under the ER stress, but also in cell autophagy under glucose starvation (GS). However, we do not know whether Herp plays any roles in other responses, such as zearalenone (ZEA). In this study, we constructed recombinant lentiviral vectors for Herp shRNA expression and generated stable Herp knockdown RAW 264.7 macrophages. Flow cytometry analysis showed Herp depletion could inhibit cell death induced by ZEA. Western blot analysis revealed that Herp depletion could up-regulate autophagy-related protein LC3-I conversion into LC3-II and the expression of ER stress-related protein CHOP. These results suggest that Herp depletion inhibits cell death by up-regulating autophagy.
Collapse
Affiliation(s)
- Fenglei Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nan Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Diqi Yang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Wen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dong Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
30
|
Liang Z, Ren Z, Gao S, Chen Y, Yang Y, Yang D, Deng J, Zuo Z, Wang Y, Shen L. Individual and combined effects of deoxynivalenol and zearalenone on mouse kidney. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:686-691. [PMID: 26407231 DOI: 10.1016/j.etap.2015.08.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/28/2015] [Accepted: 08/30/2015] [Indexed: 06/05/2023]
Abstract
This study was performed to investigate the individual and combined toxic effects of deoxynivalenol (DON) and zearalenone (ZEA) on mouse kidney. A total of 360 female mice were divided into nine groups. Each group received intraperitoneal injection of solvent (control), DON, ZEA, or DON+ZEA four times for 12d. Results showed that ZEA and/or DON increased the apoptosis rate in the kidney, as well as the levels of serum creatinine and blood urea nitrogen. DON and/or ZEA also induced renal oxidative stress as indicated by increased malondialdehyde concentration and nitric oxide level and reduced superoxide dismutase enzyme activity and hydroxyl radical inhibiting capacity. The observed changes were dose and time dependent. This study reports that DON and/or ZEA induced apoptosis, dysfunction, and oxidative stress in mouse kidney. Furthermore, the combination of DON+ZEA exhibited a sub-additive nephrotoxic effect.
Collapse
Affiliation(s)
- Zhen Liang
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China
| | - Shuang Gao
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China
| | - Yun Chen
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China
| | - Yanyi Yang
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China
| | - Dan Yang
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China.
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China
| | - Ya Wang
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China
| | - Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China
| |
Collapse
|
31
|
Endoplasmic Reticulum Stress Cooperates in Zearalenone-Induced Cell Death of RAW 264.7 Macrophages. Int J Mol Sci 2015; 16:19780-95. [PMID: 26307968 PMCID: PMC4581325 DOI: 10.3390/ijms160819780] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 11/17/2022] Open
Abstract
Zearalenone (ZEA) is a fungal mycotoxin that causes cell apoptosis and necrosis. However, little is known about the molecular mechanisms of ZEA toxicity. The objective of this study was to explore the effects of ZEA on the proliferation and apoptosis of RAW 264.7 macrophages and to uncover the signaling pathway underlying the cytotoxicity of ZEA in RAW 264.7 macrophages. This study demonstrates that the endoplasmic reticulum (ER) stress pathway cooperated in ZEA-induced cell death of the RAW 264.7 macrophages. Our results show that ZEA treatment reduced the viability of RAW 264.7 macrophages in a dose- and time-dependent manner as shown by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay (MTT) and flow cytometry assay. Western blots analysis revealed that ZEA increased the expression of glucose-regulated protein 78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP), two ER stress-related marker genes. Furthermore, treating the cells with the ER stress inhibitors 4-phenylbutyrate (4-PBA) or knocking down CHOP, using lentivirus encoded short hairpin interfering RNAs (shRNAs), significantly diminished the ZEA-induced increases in GRP78 and CHOP, and cell death. In summary, our results suggest that ZEA induces the apoptosis and necrosis of RAW 264.7 macrophages in a dose- and time-dependent manner via the ER stress pathway in which the activation of CHOP plays a critical role.
Collapse
|
32
|
Jia Z, Yin S, Liu M, Zhang Y, Gao R, Shi B, Shan A, Chen Z. Modified halloysite nanotubes and the alleviation of kidney damage induced by dietary zearalenone in swine. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:1312-21. [DOI: 10.1080/19440049.2015.1048748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
33
|
Modified Fusarium mycotoxins unmasked: From occurrence in cereals to animal and human excretion. Food Chem Toxicol 2015; 80:17-31. [DOI: 10.1016/j.fct.2015.02.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/19/2022]
|
34
|
Wang HW, Wang JQ, Zheng BQ, Li SL, Zhang YD, Li FD, Zheng N. Cytotoxicity induced by ochratoxin A, zearalenone, and α-zearalenol: effects of individual and combined treatment. Food Chem Toxicol 2014; 71:217-24. [PMID: 24952310 DOI: 10.1016/j.fct.2014.05.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 05/20/2014] [Accepted: 05/29/2014] [Indexed: 11/17/2022]
Abstract
This study investigated the cytotoxicity of combined mycotoxins of ochratoxin A (OTA), zearalenone (ZEA), and/or α-zearalenol (α-ZOL). The cytotoxicity of two mycotoxin combinations (two two-toxin combinations and one three-toxin combination) on human Hep G2 cells was evaluated using a tetrazolium salt (MTT) assay and isobologram analysis. Our results demonstrated significant cytotoxic effects of the two-toxin combination and the three-toxin combination on Hep G2 cells in a time- and concentration-dependent manner. The combination indexes (CI) were 2.73-7.67 for the OTA+ZEA combination and 1.23-17.82 for the OTA+α-ZOL combination after 24 h, 48 h, and 72 h of exposure at all inhibit concentration (IC) levels (IC10-IC90), indicating an antagonism. The CIs of the ZEA+α-ZOL combination were 1.29-2.55 after 24 h and 72 h of exposure (IC10-IC90), indicating an antagonism. The CIs of the ZEA+α-ZOL combination were 0.74-1.68 after 48 h of exposure, indicating synergism (IC80-IC90), additive effects (IC50-IC70), or antagonism (IC10-IC40). For the OTA+ZEA+α-ZOL combination, the CIs were 1.41-14.65 after 24 h, 48 h, and 72 h of exposure (IC10-IC90), indicating an antagonism.
Collapse
Affiliation(s)
- H W Wang
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - J Q Wang
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - B Q Zheng
- Tangshan Livestock and Aquatic Products Quality Monitoring Center, Tangshan 06300, PR China
| | - S L Li
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Y D Zhang
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - F D Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - N Zheng
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
35
|
Pietsch C, Noser J, Wettstein FE, Burkhardt-Holm P. Unraveling the mechanisms involved in zearalenone-mediated toxicity in permanent fish cell cultures. Toxicon 2014; 88:44-61. [PMID: 24950048 DOI: 10.1016/j.toxicon.2014.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/30/2014] [Accepted: 06/10/2014] [Indexed: 11/29/2022]
Abstract
The world-wide occurrence of zearalenone (ZEN) as a contaminant in feed for farm animals and fish requires the evaluation of toxicity mechanisms of action of ZEN. The present study investigates possible metabolization of ZEN in fish cell lines suggesting that mainly glucuronidation takes place. It demonstrates that concentrations up to 20,000 ng ml(-1) ZEN are capable of influencing cell viability in permanent fish cell cultures in a dose-response manner with different response patterns between the five tested cell lines, whereby lysosomes appeared to be the main target of ZEN. ZEN toxicity is often discussed in the context of oxidative stress. Our study shows a biphasic response of the cell lines when reactive oxygen species (ROS) production is monitored. Damage in cells was observed by measuring lipid peroxidation, DNA strand breaks, and alterations of intracellular glutathione levels. Metabolization of ZEN, especially at concentrations above 7500 ng ml(-1) ZEN, does not prevent cytotoxicity. ZEN as an estrogenic compound may involve processes mediated by binding to estrogen receptors (ER). Since one cell line showed no detectable expression of ER, an ER-mediated pathway seems to be unlikely in these cells. This confirms a lysosomal pathway as a main target of ZEN in fish cells.
Collapse
Affiliation(s)
- Constanze Pietsch
- Zurich University of Applied Sciences (ZHAW), Institute of Natural Resource Sciences (IUNR), Gruental, P.O. Box, CH-8820 Waedenswil, Switzerland; Programm Man - Society - Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland.
| | - Jürg Noser
- Kantonales Laboratorium Basel, Gräubernstrasse 12, CH-4410 Liestal, Switzerland
| | - Felix E Wettstein
- Agroscope Reckenholz-Tänikon (ART), Research Station ART, Reckenholzstrasse 191, CH-8046 Zürich, Switzerland
| | - Patricia Burkhardt-Holm
- Programm Man - Society - Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland; Department of Biological Sciences, University of Alberta, CW 405 Biological Sciences Building, T6G 2E9, Edmonton, AB, Canada
| |
Collapse
|
36
|
Zhou C, Zhang Y, Yin S, Jia Z, Shan A. Biochemical changes and oxidative stress induced by zearalenone in the liver of pregnant rats. Hum Exp Toxicol 2014; 34:65-73. [DOI: 10.1177/0960327113504972] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The aim of the present research was to examine the toxic influence of different doses of zearalenone (ZEN) on the liver, especially oxidative stress induced by ZEN on the liver. A total of 48 pregnant Sprague-Dawley rats were randomly assigned into 4 treatments groups with 12 animals in each. The rats were fed with a normal diet treated with 0 mg/kg (control), 50 mg/kg (treatment 1), 100 mg/kg (treatment 2), or 150 mg/kg (treatment 3) ZEN in feed on gestation days (GDs) 0–7 and then all the rats were fed with a normal diet on GDs 8–20. The experimental period lasted 21 days. The results showed that exposure to ZEN induced increase in aspartate amino transferase, alanine aminotransferase, and alkaline phosphatase activities and decrease in total protein and albumin content in a dose-dependent manner and also induce decrease in superoxide dismutase and glutathione peroxidase activities and increase in malondialdehyde content in a dose-dependent manner in the serum and the liver. The increased transcription of cytochrome P450 2E1 (CYP2E1) was detected in the liver after exposure to ZEN. These results suggested that ZEN not only caused damage in the liver of pregnant rats in a dose-dependent manner but also induced the messenger RNA expression of CYP2E1 in the liver.
Collapse
Affiliation(s)
- C Zhou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Y Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People’s Republic of China
| | - S Yin
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Z Jia
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People’s Republic of China
| | - A Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People’s Republic of China
| |
Collapse
|
37
|
Jia Z, Liu M, Qu Z, Zhang Y, Yin S, Shan A. Toxic effects of zearalenone on oxidative stress, inflammatory cytokines, biochemical and pathological changes induced by this toxin in the kidney of pregnant rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:580-591. [PMID: 24562056 DOI: 10.1016/j.etap.2014.01.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 12/28/2013] [Accepted: 01/13/2014] [Indexed: 06/03/2023]
Abstract
An experiment was conducted to determine the toxic effects of zearalenone (ZEN) on oxidative stress, inflammatory cytokines, biochemical and pathological changes in the kidney of pregnant rats, and to explore the possible mechanism in ZEN induced kidney damage. The rats were fed a normal diet treated with 0.3, 48.5, 97.6 or 146 mg/kg ZEN in feed on gestation days (GDs) 0 through 7, and then all the rats were fed with a normal diet on GDs 8 through 20. The results showed that ZEN induced kidney dysfunction, oxidative damage, pathological changes and increased mRNA and protein expression of TLR4 and inflammatory cytokines in kidney in dose-dependent manner. The results indicated that ZEN caused kidney damage of pregnant rats and TLR4-mediated inflammatory reactions signal pathway was one of the mechanisms of ZEN mediated toxicity in kidney.
Collapse
Affiliation(s)
- Zhiqiang Jia
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Min Liu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhe Qu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuanyuan Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Shutong Yin
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
38
|
Natural feed contaminant zearalenone decreases the expressions of important pro- and anti-inflammatory mediators and mitogen-activated protein kinase/NF-κB signalling molecules in pigs. Br J Nutr 2013; 111:452-64. [DOI: 10.1017/s0007114513002675] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Zearalenone (ZEA) is an oestrogenic mycotoxin produced byFusariumspecies, considered to be a risk factor from both public health and agricultural perspectives. In the presentin vivostudy, a feeding trial was conducted to evaluate thein vivoeffect of a ZEA-contaminated diet on immune response in young pigs. The effect of ZEA on pro-inflammatory (TNF-α, IL-8, IL-6, IL-1β and interferon-γ) and anti-inflammatory (IL-10 and IL-4) cytokines and other molecules involved in inflammatory processes (matrix metalloproteinases (MMP)/tissue inhibitors of matrix metalloproteinases (TIMP), nuclear receptors: PPARγ and NF-κB1, mitogen-activated protein kinases (MAPK): mitogen-activated protein kinase kinase kinase 7 (TAK1)/mitogen-activated protein kinase 14 (p38α)/mitogen-activated protein kinase 8 (JNK1)/ mitogen-activated protein kinase 9 (JNK2)) in the liver of piglets was investigated. The present results showed that a concentration of 316 parts per billion ZEA leads to a significant decrease in the levels of pro- and anti-inflammatory cytokines at both gene expression and protein levels, correlated with a decrease in the levels of other inflammatory mediators, MMP and TIMP. The results also showed that dietary ZEA induces a dramatic reduction in the expressions ofNF-κB1andTAK1/p38αMAPK genes in the liver of the experimentally intoxicated piglets, and has no effect on the expression ofPPARγmRNA. The present results suggest that the toxic action of ZEA begins in the upstream of the MAPK signalling pathway by the inhibition of TAK1, a MAPK/NF-κB activator. In conclusion, the present study shows that ZEA alters several important parameters of the hepatic cellular immune response. From an economic point of view, these data suggest that, in pigs, ZEA is not only a powerful oestrogenic mycotoxin but also a potential hepatotoxin when administered through the oral route. Therefore, the present results represent additional data from cellular and molecular levels that could be taken into account in the determination of the regulation limit of the tolerance to ZEA.
Collapse
|
39
|
Tatay E, Meca G, Font G, Ruiz MJ. Interactive effects of zearalenone and its metabolites on cytotoxicity and metabolization in ovarian CHO-K1 cells. Toxicol In Vitro 2013; 28:95-103. [PMID: 23850742 DOI: 10.1016/j.tiv.2013.06.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 05/18/2013] [Accepted: 06/26/2013] [Indexed: 11/18/2022]
Abstract
Zearalenone (ZEA) is a non-steroidal estrogen mycotoxin with high binding affinity to estrogen receptors. ZEA is rapidly absorbed and metabolized in vivo to α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL). So, mixtures of them may be present in biological systems and suppose a hazard to animals and human health. The aims of this study were to determine the cytotoxic effects of ZEA and its metabolites, alone and in combination in ovarian (CHO-K1) cells during 24, 48 and 72h by the MTT assay; and to investigate the metabolism of the CHO-K1 cells on ZEA, and its conversion into α-ZOL and β-ZOL by CHO-K1 cell after 24 and 48h of exposure. The IC50 value obtained for individual mycotoxins range from 60.3 to >100.0μM, from 30.0 to 33.0μM and from 55.0 to >75.0μM for ZEA, α-ZOL and β-ZOL, respectively. Cytotoxic interactions were assayed by the isobologram method, which provides a combination index (CI) value as a quantitative measure of the degree of the three mycotoxin interaction. The CI values for binary combinations ranged from 0.56±0.15 (synergism at low concentrations) to 5.25±5.10 (addition at high concentrations) and tertiary combinations from 2.95±0.75 (antagonism at low concentrations) to 0.41±0.23 (synergism at high concentrations). The concentration of ZEA and its metabolites was determined with liquid chromatography coupled to the mass spectrometer detector-linear ion trap (LC-MS-LIT). The percentage of ZEA degradation ranged from 4% (24h) to 81% (48h). In the same conditions, α-ZOL and β-ZOL concentration decreased from 8% to 85%. No conversion of ZEA in α-ZOL and β-ZOL was detected. However, at 24h of exposure other degradation products of ZEA and its derived were detected.
Collapse
Affiliation(s)
- Elena Tatay
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | | | | | | |
Collapse
|
40
|
Marin DE, Pistol GC, Neagoe IV, Calin L, Taranu I. Effects of zearalenone on oxidative stress and inflammation in weanling piglets. Food Chem Toxicol 2013; 58:408-15. [PMID: 23727178 DOI: 10.1016/j.fct.2013.05.033] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/30/2013] [Accepted: 05/18/2013] [Indexed: 02/02/2023]
Abstract
Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by the fungi of Fusarium genera. Piglets were fed for 18 days with a control or a ZEN (316 ppb) contaminated diet. At the end of the experiment tissue samples were taken for assessment of: lymphocyte proliferation, monocytes and granulocytes respiratory burst, inflammatory cytokine synthesis in blood and liver, expression of genes involved in oxidative stress or in inflammation, plasma biochemical parameters, total antioxidant status and nitric oxide synthesis. In blood, ZEN increases the respiratory burst of monocytes and the inflammatory cytokine (TNF alpha, IL-1 beta, IFN gamma) synthesis, while in liver, ZEN decreases the synthesis of all inflammatory cytokines investigated. In liver and spleen, different effect on the expression of genes involved in oxidative stress and inflammation was observed. While in liver, ZEN decrease the expression of cyclooxigenase gene, but increase the expression of glutathione peroxydase and catalase genes; in spleen, ZEN induces a decrease of the superoxide dismutase gene expression together with an increase of the cyclooxigenase. In conclusion, our results showed that liver, spleen and blood may also be target tissues in weanling piglets fed ZEN contaminated diet, with different effects on oxidative stress and inflammation.
Collapse
Affiliation(s)
- Daniela E Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov 077015, Romania.
| | | | | | | | | |
Collapse
|
41
|
Lu J, Yu JY, Lim SS, Son YO, Kim DH, Lee SA, Shi X, Lee JC. Cellular mechanisms of the cytotoxic effects of the zearalenone metabolites α-zearalenol and β-zearalenol on RAW264.7 macrophages. Toxicol In Vitro 2013; 27:1007-17. [PMID: 23376438 DOI: 10.1016/j.tiv.2013.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 12/17/2012] [Accepted: 01/07/2013] [Indexed: 11/28/2022]
Abstract
Zearalenone (ZEN) and its metabolites are commonly found in many food commodities and are known to cause reproductive disorders and genotoxic effects. The major ZEN metabolites are α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL). Although many studies have demonstrated the cytotoxic effects of these metabolites, the mechanisms by which α-ZOL or β-ZOL mediates their cytotoxic effects appear to differ according to cell type and the exposed toxins. We evaluated the toxicity of α-ZOL and β-ZOL on RAW264.7 macrophages and investigated the underlying mechanisms. β-ZOL not only more strongly reduced the viability of cells than did α-ZOL, but it also induced cell death mainly by apoptosis rather than necrosis. The ZEN metabolites induced loss of mitochondrial membrane potential (MMP), mitochondrial changes in Bcl-2 and Bax proteins, and cytoplasmic release of cytochrome c and apoptosis-inducing factor (AIF). Use of an inhibitor specific to c-Jun N-terminal kinase (JNK), p38 kinase or p53, but not pan-caspase or caspase-8, decreased the toxin-induced generation of reactive oxygen species (ROS) and also attenuated the α-ZOL- or β-ZOL-induced decrease of cell viability. Antioxidative enzyme or compounds such as catalase, acteoside, and (E)-1-(3,4-dihydroxyphenethyl)-3-(4-hydroxystyryl)urea suppressed the ZEN metabolite-mediated reduction of cell viability. Further, knockdown of AIF via siRNA transfection diminished the ZEN metabolite-induced cell death. Collectively, these results suggest that the activation of p53, JNK or p38 kinase by ZEN metabolites is the main upstream signal required for the mitochondrial alteration of Bcl-2/Bax signaling pathways and intracellular ROS generation, while MMP loss and nuclear translocation of AIF are the critical downstream events for ZEN metabolite-mediated apoptosis in macrophages.
Collapse
Affiliation(s)
- Jia Lu
- Research Center of Bioactive Materials and Institute of Oral Biosciences (BK21 Program), Chonbuk National University, Jeonju 561-756, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Estrogenic effects of fusarielins in human breast cancer cell lines. Toxicol Lett 2012; 214:259-62. [DOI: 10.1016/j.toxlet.2012.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 11/22/2022]
|
43
|
Abid-Essefi S, Zaied C, Bouaziz C, Salem IB, Kaderi R, Bacha H. Protective effect of aqueous extract of Allium sativum against zearalenone toxicity mediated by oxidative stress. ACTA ACUST UNITED AC 2012; 64:689-95. [DOI: 10.1016/j.etp.2010.12.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 12/04/2010] [Accepted: 12/22/2010] [Indexed: 01/13/2023]
|
44
|
Skwarczynski M, Dougall AM, Khoshnejad M, Chandrudu S, Pearson MS, Loukas A, Toth I. Peptide-based subunit vaccine against hookworm infection. PLoS One 2012; 7:e46870. [PMID: 23056500 PMCID: PMC3463534 DOI: 10.1371/journal.pone.0046870] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/06/2012] [Indexed: 11/18/2022] Open
Abstract
Hookworms infect more people than HIV and malaria combined, predominantly in third world countries. Treatment of infection with chemotherapy can have limited efficacy and re-infections after treatment are common. Heavy infection often leads to debilitating diseases. All these factors suggest an urgent need for development of vaccine. In an attempt to develop a vaccine targeting the major human hookworm, Necator americanus, a B-cell peptide epitope was chosen from the apical enzyme in the hemoglobin digestion cascade, the aspartic protease Na-APR-1. The A(291)Y alpha helical epitope is known to induce neutralizing antibodies that inhibit the enzymatic activity of Na-APR-1, thus reducing the capacity for hookworms to digest hemoglobin and obtain nutrients. A(291)Y was engineered such that it was flanked on both termini by a coil-promoting sequence to maintain native conformation, and subsequently incorporated into a Lipid Core Peptide (LCP) self-adjuvanting system. While A(291)Y alone or the chimeric epitope with or without Freund's adjuvants induced negligible IgG responses, the LCP construct incorporating the chimeric peptide induced a strong IgG response in mice. Antibodies produced were able to bind to and completely inhibit the enzymatic activity of Na-APR-1. The results presented show that the new chimeric LCP construct can induce effective enzyme-neutralising antibodies in mice, without the help of any additional toxic adjuvants. This approach offers promise for the development of vaccines against helminth parasites of humans and their livestock and companion animals.
Collapse
Affiliation(s)
- Mariusz Skwarczynski
- The University of Queensland, School of Chemistry and Molecular Biosciences, St. Lucia, Queensland, Australia
| | - Annette M. Dougall
- Centre for Biodiscovery and Molecular Development of Therapeutics, Queensland Tropical Health Alliance, James Cook University, Cairns, Queensland, Australia
| | - Makan Khoshnejad
- The University of Queensland, School of Chemistry and Molecular Biosciences, St. Lucia, Queensland, Australia
| | - Saranya Chandrudu
- The University of Queensland, School of Chemistry and Molecular Biosciences, St. Lucia, Queensland, Australia
| | - Mark S. Pearson
- Centre for Biodiscovery and Molecular Development of Therapeutics, Queensland Tropical Health Alliance, James Cook University, Cairns, Queensland, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Queensland Tropical Health Alliance, James Cook University, Cairns, Queensland, Australia
| | - Istvan Toth
- The University of Queensland, School of Chemistry and Molecular Biosciences, St. Lucia, Queensland, Australia
- The University of Queensland, School of Pharmacy, Wooloongabba, Queensland, Australia
| |
Collapse
|
45
|
Possible role for glutathione-S-transferase in the oligozoospermia elicited by acute zearalenone administration in Swiss albino mice. Toxicon 2012; 60:358-66. [DOI: 10.1016/j.toxicon.2012.04.353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 11/22/2022]
|
46
|
Sørensen JL, Hansen FT, Sondergaard TE, Staerk D, Lee TV, Wimmer R, Klitgaard LG, Purup S, Giese H, Frandsen RJN. Production of novel fusarielins by ectopic activation of the polyketide synthase 9 cluster in Fusarium graminearum. Environ Microbiol 2012; 14:1159-70. [DOI: 10.1111/j.1462-2920.2011.02696.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Ayed Y, Ayed-Boussema I, Ouanes Z, Bacha H. In vitro and in vivo induction of chromosome aberrations by alpha- and beta-zearalenols: comparison with zearalenone. Mutat Res 2011; 726:42-6. [PMID: 21889607 DOI: 10.1016/j.mrgentox.2011.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/29/2011] [Accepted: 08/15/2011] [Indexed: 10/17/2022]
Abstract
Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by Fusarium fungi. It contaminates different components of the food chain and can cause serious economic and public health problems. The major metabolites of ZEN in various animal species are alpha- and beta-zearalenol (α-, β-ZOL). Some in vivo studies have shown that these two metabolites are as toxic as the mother molecule (ZEN), but other investigations have demonstrated that α- and β-ZOL are less toxic than ZEN. Thus, the aim of the present study was to evaluate cytotoxicity and genotoxicity of α- and β-ZOL in vivo, in mouse bone-marrow cells and in vitro, in cultured HeLa cells, and to compare it with ZEN. ZEN showed the same cytotoxicity as α-ZOL and both are more cytotoxic than β-ZOL. Genotoxicity of ZEN and its derivatives was assessed by the chromosome aberration assay. Our results show that ZEN as well as α- and β-ZOL increased the percentage of chromosome aberrations in mouse bone-marrow cells and in HeLa cells. In the two systems, ZEN and α-ZOL exhibited the same range of genotoxicity and both were more genotoxic than β-ZOL. Furthermore, our results show that either ZEN or its two metabolites inhibited cell viability in a dose-dependent manner. We conclude that biotransformation of ZEN may be considered as only a partial detoxification pathway since the resulting metabolites remain relatively toxic.
Collapse
Affiliation(s)
- Yosra Ayed
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia
| | | | | | | |
Collapse
|
48
|
Sondergaard T, Hansen F, Purup S, Nielsen A, Bonefeld-Jørgensen E, Giese H, Sørensen J. Fusarin C acts like an estrogenic agonist and stimulates breast cancer cells in vitro. Toxicol Lett 2011; 205:116-21. [DOI: 10.1016/j.toxlet.2011.05.1029] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/11/2011] [Accepted: 05/17/2011] [Indexed: 11/30/2022]
|
49
|
Frizzell C, Ndossi D, Verhaegen S, Dahl E, Eriksen G, Sørlie M, Ropstad E, Muller M, Elliott CT, Connolly L. Endocrine disrupting effects of zearalenone, alpha- and beta-zearalenol at the level of nuclear receptor binding and steroidogenesis. Toxicol Lett 2011; 206:210-7. [PMID: 21803136 DOI: 10.1016/j.toxlet.2011.07.015] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/14/2011] [Accepted: 07/15/2011] [Indexed: 11/28/2022]
Abstract
The mycotoxin zearalenone (ZEN) is a secondary metabolite of fungi which is produced by certain species of the genus Fusarium and can occur in cereals and other plant products. Reporter gene assays incorporating natural steroid receptors and the H295R steroidogenesis assay have been implemented to assess the endocrine disrupting activity of ZEN and its metabolites α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL). α-ZOL exhibited the strongest estrogenic potency (EC(50) 0.022±0.001 nM), slightly less potent than 17-β estradiol (EC(50) 0.015±0.002 nM). ZEN was ~70 times less potent than α-ZOL and twice as potent as β-ZOL. Binding of progesterone to the progestagen receptor was shown to be synergistically increased in the presence of ZEN, α-ZOL or β-ZOL. ZEN, α-ZOL or β-ZOL increased production of progesterone, estradiol, testosterone and cortisol hormones in the H295R steroidogenesis assay, with peak productions at 10 μM. At 100 μM, cell viability decreased and levels of hormones were significantly reduced except for progesterone. β-ZOL increased estradiol concentrations more than α-ZOL or ZEN, with a maximum effect at 10 μM, with β-ZOL (562±59 pg/ml)>α-ZOL (494±60 pg/ml)>ZEN (375±43 pg/ml). The results indicate that ZEN and its metabolites can act as potential endocrine disruptors at the level of nuclear receptor signalling and by altering hormone production.
Collapse
Affiliation(s)
- C Frizzell
- Institute of Agri-food and Land Use, School of Biological Sciences, Queen's University Belfast, Northern Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Scientific Opinion on the risks for public health related to the presence of zearalenone in food. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2197] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|