1
|
Fraiz GM, Bonifácio DB, Lacerda UV, Cardoso RR, Corich V, Giacomini A, Martino HSD, Echeverría SE, de Barros FAR, Milagro FI, Bressan J. Green Tea Kombucha Impacts Inflammation and Salivary Microbiota in Individuals with Excess Body Weight: A Randomized Controlled Trial. Nutrients 2024; 16:3186. [PMID: 39339787 PMCID: PMC11435194 DOI: 10.3390/nu16183186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Green tea kombucha (GTK) is a fermented beverage with promising health benefits, but few studies proved its impact on human health. Thus, we aimed to investigate the impact of GTK on weight loss, inflammation, and salivary microbiota in individuals with excess body weight. METHODS This is a randomized controlled clinical trial that lasted 10 weeks with two groups of individuals with excess body weight: control (CG; n = 29; caloric restriction) and kombucha (KG; n = 30; caloric restriction + 200 mL GTK). Body composition, anthropometry, saliva, and blood collection were performed in the beginning and end of the intervention. Plasma interleukins were determined by flow cytometry. Salivary microbiota was analyzed by 16S rRNA sequencing. RESULTS Both groups decreased weight, BMI, and body fat (p < 0.001) after the intervention, but there were no differences between groups. The KG reduced lipid accumulation product (LAP) (p = 0.029). Both groups decreased IL-1β and IL-8, but IL-6 increased in the CG (p = 0.023) compared to the kombucha group. Alpha and beta diversity of salivary microbiota increased in the KG. Moreover, the KG presented lower Bacillota/Bacteroidota ratio (p = 0.028), and BMI was positively associated with the Bacillota phylum. CONCLUSIONS GTK did not enhance weight loss, but it decreased the LAP. GTK helped in the inflammatory profile and induced positive changes in oral microbiota composition.
Collapse
Affiliation(s)
- Gabriela Macedo Fraiz
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (G.M.F.); (D.B.B.); (H.S.D.M.)
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain (F.I.M.)
| | - Dandara Baia Bonifácio
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (G.M.F.); (D.B.B.); (H.S.D.M.)
| | - Udielle Vermelho Lacerda
- Department of Food and Technology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (U.V.L.); (R.R.C.); (F.A.R.d.B.)
| | - Rodrigo Rezende Cardoso
- Department of Food and Technology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (U.V.L.); (R.R.C.); (F.A.R.d.B.)
| | - Viviana Corich
- Department of Agronomy, Food Natural Resources, and Environment (DAFNAE), Università degli Studi di Padova, 35020 Legnaro, Italy; (V.C.); (A.G.)
| | - Alessio Giacomini
- Department of Agronomy, Food Natural Resources, and Environment (DAFNAE), Università degli Studi di Padova, 35020 Legnaro, Italy; (V.C.); (A.G.)
| | - Hércia Stampini Duarte Martino
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (G.M.F.); (D.B.B.); (H.S.D.M.)
| | - Sergio Esteban Echeverría
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain (F.I.M.)
| | | | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain (F.I.M.)
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (G.M.F.); (D.B.B.); (H.S.D.M.)
| |
Collapse
|
2
|
Ayyadurai VAS, Deonikar P, Fields C. Mechanistic Understanding of D-Glucaric Acid to Support Liver Detoxification Essential to Muscle Health Using a Computational Systems Biology Approach. Nutrients 2023; 15:733. [PMID: 36771439 PMCID: PMC9921405 DOI: 10.3390/nu15030733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/10/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
Liver and muscle health are intimately connected. Nutritional strategies that support liver detoxification are beneficial to muscle recovery. Computational-in silico-molecular systems' biology analysis of supplementation of calcium and potassium glucarate salts and their metabolite D-glucaric acid (GA) reveals their positive effect on mitigation of liver detoxification via four specific molecular pathways: (1) ROS production, (2) deconjugation, (3) apoptosis of hepatocytes, and (4) β-glucuronidase synthesis. GA improves liver detoxification by downregulating hepatocyte apoptosis, reducing glucuronide deconjugates levels, reducing ROS production, and inhibiting β-Glucuronidase enzyme that reduces re-absorption of toxins in hepatocytes. Results from this in silico study provide an integrative molecular mechanistic systems explanation for the mitigation of liver toxicity by GA.
Collapse
Affiliation(s)
- V. A. Shiva Ayyadurai
- Systems Biology Group, CytoSolve Research Division, CytoSolve, Inc., Cambridge, MA 02138, USA
| | - Prabhakar Deonikar
- Systems Biology Group, CytoSolve Research Division, CytoSolve, Inc., Cambridge, MA 02138, USA
| | - Christine Fields
- Applied Food Sciences Inc., 8708 South Congress Suite 290, Austin, TX 78745, USA
| |
Collapse
|
3
|
Eddie-Amadi BF, Ezejiofor AN, Orish CN, Orisakwe OE. Zn and Se abrogate heavy metal mixture induced ovarian and thyroid oxido-inflammatory effects mediated by activation of NRF2-HMOX-1 in female albino rats. Curr Res Toxicol 2022; 4:100098. [PMID: 36624872 PMCID: PMC9823124 DOI: 10.1016/j.crtox.2022.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The thyroid is vital for the proper functioning of the female reproductive system since it regulates the metabolism and development of ovary. This is an evaluation of the essential trace elements ETE on the heavy metals mixture HMM mediated oxido-inflammatory effects in the ovary and thyroid of female albino rats. Eight groups (5 female rats /group) were treated as follows for 60 days: Group 1: Deionized water only; Group 2: (Pb, Hg, Mn and Al); Group 3: HMM + ZnCl2, 0.80 mg/kg; Group 4: HMM + Na2SeO3, 1.50 mg/kg; Group 5: HMM + ZnCl2, 0.80 mg/kg and Na2SeO3, 1.50 mg/kg combined. On day 60 animals were euthanized, ovary and thyroid were harvested and used for, MDA, NO, antioxidants, TNF-α, IL-6, HMOX-1, Caspase-3, NF-KB, NRF2, HM and histopathology. There was significant bioaccumulation of Pb, Al, Hg and MN; elevated IL-6 and TNF-α, MDA and NO, caspase-3 and NRF2, NFKB and HMOX-1 with significant decrease in antioxidants in the HMM only group in comparison to the control. Co-treatment with ETE reversed most of these effects. ETE may ameliorate HMM -induced ovarian and thyrotoxicity in female albino rats by blunting oxido-inflammatory activities.
Collapse
Affiliation(s)
- Boma F. Eddie-Amadi
- World Bank Africa Centre of Excellence in Oilfield Chemicals Research (ACE-CEFOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria
| | - Anthonet N. Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria
| | - Chinna N. Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria
| | - Orish E. Orisakwe
- World Bank Africa Centre of Excellence in Oilfield Chemicals Research (ACE-CEFOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria
| |
Collapse
|
4
|
Sharifudin SA, Ho WY, Yeap SK, Abdullah R, Koh SP. Fermentation and characterisation of potential kombucha cultures on papaya-based substrates. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Comparison of Phenolic Contents and Scavenging Activities of Miang Extracts Derived from Filamentous and Non-Filamentous Fungi-Based Fermentation Processes. Antioxidants (Basel) 2021; 10:antiox10071144. [PMID: 34356376 PMCID: PMC8301141 DOI: 10.3390/antiox10071144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
The study investigated the impact of the fermentation process on the phenolic contents and antioxidant and anti-inflammatory activities in extracts of Miang, an ethnic fermented tea product of northern Thailand. The acetone (80%) extraction of Miang samples fermented by a non-filamentous fungi-based process (NFP) and filamentous fungi-based process (FFP) had elevated levels of total polyphenols, total tannins, and condensed tannins compared to young and mature tea leaves. The antioxidant studies also showed better the half-maximal inhibitory concentration (IC50) values for fermented leaves in both 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity assays as well as improved ferric reducing antioxidant power (FRAP) compared to young and mature tea leaves. Extracts of NFP and FFP samples at concentrations of 50 and 100 ppm showed better protective effects against hydrogen peroxide (H2O2)-induced intracellular reactive oxygen species (ROS) production in HT-29 colorectal cells without exerting cytotoxicity. Additionally, lipopolysaccharide (LPS)-induced production of nitric oxide (a proinflammatory mediator as well as a reactive nitrogen species) was also inhibited by these fermented Miang extracts with an IC50 values of 17.15 μg/mL (NFP), 20.17 μg/mL (FFP), 33.96 μg/mL (young tea leaves), and 31.33 μg/mL (mature tea leaves). Therefore, both NFP-Miang and FFP-Miang showed the potential to be targeted as natural bioactive functional ingredients with preventive properties against free radical and inflammatory-mediated diseases.
Collapse
|
6
|
Taha M, Ismail NH, Imran S, Wadood A, Rahim F, Al Muqarrabin LMR, Zaki HM, Ahmat N, Nasir A, Khan F. Synthesis of novel disulfide and sulfone hybrid scaffolds as potent β-glucuronidase inhibitor. Bioorg Chem 2016; 68:15-22. [PMID: 27414468 DOI: 10.1016/j.bioorg.2016.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 11/24/2022]
Abstract
Novel series of disulfide and sulfone hybrid analogs (1-20) were synthesized and characterized through EI-MS and (1)H NMR and evaluated for β-glucuronidase inhibitory potential. All synthesized analogs except 13 and 15 showed excellent β-glucuronidase inhibitory potential with IC50 value ranging in between 2.20-88.16μM as compared to standard d-saccharic acid 1,4 lactone (48.4±1.25μM). Analogs 19, 16, 4, 1, 17, 6, 10, 3, 18, 2, 11, 14 and 5 showed many fold potent activity against β-glucuronidase inhibitor. Structure activity relationship showed that substitution of electron withdrawing groups at ortho as well as para position on phenyl ring increase potency. Electron withdrawing groups at meta position on phenyl ring showed slightly low potency as compared to ortho and para position. The binding interactions were confirmed through molecular docking studies.
Collapse
Affiliation(s)
- Muhammad Taha
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia; Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Selangor D.E., Malaysia.
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia; Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Selangor D.E., Malaysia
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia; Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Selangor D.E., Malaysia
| | - Abdul Wadood
- Depatment of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Fazal Rahim
- Depatment of Chemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Laode Muhammad Ramadhan Al Muqarrabin
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia; Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Selangor D.E., Malaysia
| | - Hamizah Mohd Zaki
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia; Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Selangor D.E., Malaysia
| | - Norizan Ahmat
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia; Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Selangor D.E., Malaysia
| | - Abdul Nasir
- Depatment of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Fahad Khan
- Depatment of Chemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
7
|
Saha S, Sadhukhan P, Sinha K, Agarwal N, Sil PC. Mangiferin attenuates oxidative stress induced renal cell damage through activation of PI3K induced Akt and Nrf-2 mediated signaling pathways. Biochem Biophys Rep 2016; 5:313-327. [PMID: 28955838 PMCID: PMC5600319 DOI: 10.1016/j.bbrep.2016.01.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/28/2015] [Accepted: 01/12/2016] [Indexed: 12/19/2022] Open
Abstract
Background Mangiferin is a polyphenolic xanthonoid with remarkable antioxidant activity. Oxidative stress plays the key role in tert-butyl hydroperoxide (tBHP) induced renal cell damage. In this scenario, we consider mangiferin, as a safe agent in tBHP induced renal cell death and rationalize its action systematically, in normal human kidney epithelial cells (NKE). Methods NKE cells were exposed to 20 µM mangiferin for 2 h followed by 50 µM tBHP for 18 h. The effect on endogenous ROS production, antioxidant status (antioxidant enzymes and thiols), mitochondrial membrane potential, apoptotic signaling molecules, PI3K mediated signaling cascades and cell cycle progression were examined using various biochemical assays, FACS and immunoblot analyses. Results tBHP exposure damaged the NKE cells and decreased its viability. It also elevated the intracellular ROS and other oxidative stress-related biomarkers within the cells. However, mangiferin dose dependently, exhibited significant protection against this oxidative cellular damage. Mangiferin inhibited tBHP induced activation of different pro-apoptotic signals and thus protected the renal cells against mitochondrial permeabilization. Further, mangiferin enhanced the expression of cell proliferative signaling cascade molecules, Cyclin d1, NFκB and antioxidant molecules HO-1, SOD2, by PI3K/Akt dependent pathway. However, the inhibitor of PI3K abolished mangiferin's protective activity. Conclusions Results show Mangiferin maintains the intracellular anti-oxidant status, induces the expression of PI3K and its downstream molecules and shields NKE cells against the tBHP induced cytotoxicity. General significance Mangiferin can be indicated as a therapeutic agent in oxidative stress-mediated renal toxicity. This protective action of mangiferin primarily attributes to its potent antioxidant and antiapoptotic nature. Mangiferin relives oxidative stress on tBHP induced renal cytotoxicity. Mangiferin reduces tBHP-induced renal cell apoptosis. PI3K has been found to be the pivotal target of mangiferin. Mangiferin positively regulates cell cycle by modulating GSK3β and cyclin D1.
Collapse
Affiliation(s)
- Sukanya Saha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Pritam Sadhukhan
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Krishnendu Sinha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Namrata Agarwal
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| |
Collapse
|
8
|
Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes 2015; 6:456-480. [PMID: 25897356 PMCID: PMC4398902 DOI: 10.4239/wjd.v6.i3.456] [Citation(s) in RCA: 730] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/21/2014] [Accepted: 01/12/2015] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress is increased in metabolic syndrome and type 2 diabetes mellitus (T2DM) and this appears to underlie the development of cardiovascular disease, T2DM and diabetic complications. Increased oxidative stress appears to be a deleterious factor leading to insulin resistance, dyslipidemia, β-cell dysfunction, impaired glucose tolerance and ultimately leading to T2DM. Chronic oxidative stress, hyperglycemia and dyslipidemia are particularly dangerous for β-cells from lowest levels of antioxidant, have high oxidative energy requirements, decrease the gene expression of key β-cell genes and induce cell death. If β-cell functioning is impaired, it results in an under production of insulin, impairs glucose stimulated insulin secretion, fasting hyperglycemia and eventually the development of T2DM.
Collapse
|
9
|
Rashid K, Sinha K, Sil PC. An update on oxidative stress-mediated organ pathophysiology. Food Chem Toxicol 2013; 62:584-600. [PMID: 24084033 DOI: 10.1016/j.fct.2013.09.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/29/2013] [Accepted: 09/19/2013] [Indexed: 12/29/2022]
Abstract
Exposure to environmental pollutants and drugs can result in pathophysiological situations in the body. Research in this area is essential as the knowledge on cellular survival and death would help in designing effective therapeutic strategies that are needed for the maintenance of the normal physiological functions of the body. In this regard, naturally occurring bio-molecules can be considered as potential therapeutic targets as they are normally available in commonly consumed foodstuffs and are thought to have minimum side effects. This review article describes the detailed mechanisms of oxidative stress-mediated organ pathophysiology and the ultimate fate of the cells either to survive or to undergo necrotic or apoptotic death. The mechanisms underlying the beneficial role of a number of naturally occurring bioactive molecules in oxidative stress-mediated organ pathophysiology have also been included in the review. The review provides useful information about the recent progress in understanding the mechanism(s) of various types of organ pathophysiology, the complex cross-talk between these pathways, as well as their modulation in stressed conditions. Additionally, it suggests possible therapeutic applications of a number of naturally occurring bioactive molecules in conditions involving oxidative stress.
Collapse
Affiliation(s)
- Kahkashan Rashid
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Calcutta 700054, West Bengal, India
| | | | | |
Collapse
|
10
|
Bhattacharya S, Manna P, Gachhui R, Sil PC. D-saccharic acid 1,4-lactone protects diabetic rat kidney by ameliorating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via NF-κB and PKC signaling. Toxicol Appl Pharmacol 2013; 267:16-29. [PMID: 23261973 DOI: 10.1016/j.taap.2012.12.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/04/2012] [Accepted: 12/06/2012] [Indexed: 12/16/2022]
Abstract
Increasing evidence suggests that oxidative stress is involved in the pathogenesis of diabetic nephropathy (DN) and this can be attenuated by antioxidants. D-Saccharic acid 1,4-lactone (DSL) is known for its detoxifying and antioxidant properties. Our early investigation showed that DSL can ameliorate alloxan (ALX) induced diabetes mellitus and oxidative stress in rats by inhibiting pancreatic β-cell apoptosis. In the present study we, therefore, investigated the protective role of DSL against renal injury in ALX induced diabetic rats. ALX exposure (at a dose of 120 mg/kg body weight, i. p., once) elevated the blood glucose level, serum markers related to renal injury, the production of reactive oxygen species (ROS), and disturbed the intra-cellular antioxidant machineries. Oral administration of DSL (80 mg/kg body weight) restored all these alterations close to normal. In addition, DSL could also normalize the aldose reductase activity which was found to increase in the diabetic rats. Investigating the mechanism of its protective activity, we observed the activation of different isoforms of PKC along with the accumulation of matrix proteins like collagen and fibronectin. The diabetic rats also showed nuclear translocation of NF-κB and increase in the concentration of inflammatory cytokines in the renal tissue. The activation of mitochondria dependent apoptotic pathway was observed in the diabetic rat kidneys. However, treatment of diabetic rats with DSL counteracted all these changes. These findings, for the first time, demonstrated that DSL could ameliorate renal dysfunction in diabetic rats by suppressing the oxidative stress related signalling pathways.
Collapse
Affiliation(s)
- Semantee Bhattacharya
- Department of Life Sciences & Biotechnology, Jadavpur University, 188, Raja S C Mullick Road, Kolkata 700 032, India
| | | | | | | |
Collapse
|
11
|
Bhattacharya S, Gachhui R, Sil PC. The prophylactic role of D-saccharic acid-1,4-lactone against hyperglycemia-induced hepatic apoptosis via inhibition of both extrinsic and intrinsic pathways in diabetic rats. Food Funct 2013; 4:283-296. [PMID: 23138840 DOI: 10.1039/c2fo30145h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Sustained hyperglycemia and increased oxidative stress play major roles in the development of secondary complications in diabetes including liver injury. Dietary supplement of antioxidants is effective in preventing oxidative stress mediated tissue damage in diabetic pathophysiology. D-Saccharic acid 1,4-lactone (DSL), a derivative of D-glucaric acid, is present in many dietary plants and is known for its detoxifying and antioxidant properties. Our early investigation showed that DSL can ameliorate alloxan (ALX) induced diabetes mellitus and oxidative stress in rats by inhibiting pancreatic β-cell apoptosis. In the present study we investigated the protective role of DSL against hepatic dysfunction in ALX induced diabetic rats. ALX exposure elevated the blood glucose, serum ALP and ALT levels, the production of reactive oxygen species (ROS), and disturbed the intra-cellular antioxidant machineries. Oral administration of DSL restored all these alterations close to normal. By investigating the mechanism of its protective activity, we observed that DSL prevented hyperglycemia induced hepatic apoptosis by inhibiting both extrinsic and intrinsic pathways. Results showed that in the liver tissue, diabetes promoted a significant increase of TNF-α/TNF-R1 and led to the activation of caspase-8 and t-Bid. In addition, ALX exposure reciprocally regulated Bcl-2 family protein expression, disturbed mitochondrial membrane potential, and subsequently released cytochrome c from mitochondria to cytosol. As a consequence, a significant increase in caspase-3 expression was observed in the liver of diabetic animals. However, treatment of diabetic rats with DSL counteracted these changes, making it a promising approach in lessening diabetes mediated tissue damage.
Collapse
|
12
|
Rashid K, Bhattacharya S, Sil PC. Protective role of D-saccharic acid-1,4-lactone in alloxan induced oxidative stress in the spleen tissue of diabetic rats is mediated by suppressing mitochondria dependent apoptotic pathway. Free Radic Res 2012; 46:240-52. [PMID: 22239106 DOI: 10.3109/10715762.2011.650694] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The present study investigated the role of D-saccharic acid 1,4-lactone (DSL) in the spleen tissue of alloxan (ALX) induced diabetic rats. Diabetes was induced in rats by injecting ALX (at a dose of 120 mg/kg body weight) intraperitoneally in sterile normal saline. Elevated levels of blood glucose, glycosylated Hb and TNFα decreased levels of plasma insulin and disturbed intra-cellular antioxidant machineries were detected in ALX exposed animals. Oral administration of DSL at a dose of 80 mg/kg body weight, however, restored these alterations in diabetic rats. Studies on the mechanism of ALX-induced diabetes showed that hyperglycemia caused disruption of mitochondrial membrane potential in the spleen, released cytochrome C in the cytosol, activated caspase 3 and ultimately led to apoptotic cell death. Results suggest that DSL possesses the ability of protecting the spleen tissue from ALX-induced hyperglycemia and thus could act as an anti-diabetic agent in lessening diabetes associated spleen dysfunction.
Collapse
Affiliation(s)
- Kahkashan Rashid
- Division of molecular medicine, Bose Institute, P-1/12, CIT Scheme VII M, Calcutta, West Bengal, India
| | | | | |
Collapse
|
13
|
d-saccharic acid-1,4-lactone ameliorates alloxan-induced diabetes mellitus and oxidative stress in rats through inhibiting pancreatic beta-cells from apoptosis via mitochondrial dependent pathway. Toxicol Appl Pharmacol 2011; 257:272-83. [PMID: 21982801 DOI: 10.1016/j.taap.2011.09.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/05/2011] [Accepted: 09/16/2011] [Indexed: 11/18/2022]
|