1
|
Gormally BMG, Bridgette K, Emmi A, Schuerman D, Lopes PC. Female presence does not increase testosterone but still ameliorates sickness behaviours in male Japanese quail. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220450. [PMID: 35620017 PMCID: PMC9128847 DOI: 10.1098/rsos.220450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/04/2022] [Indexed: 05/03/2023]
Abstract
Infections can dramatically modify animal behaviour. The extent of these changes depends on an animal's environment. It has been proposed that testosterone modulates the suppression of behavioural symptoms of sickness under certain reproductive contexts. To further understand the role played by testosterone in modulating sickness behaviours under reproductive contexts, we studied a species, the Japanese quail, in which female exposure rapidly decreases circulating testosterone in males. Males received either an immune challenge (lipopolysaccharide - LPS) or a control injection and their behaviours, mass change and testosterone levels were quantified in the presence or absence of a female. Both the presence of a female and LPS treatment reduced testosterone levels. LPS-treated males maintained in isolation expressed expected sickness behaviours, including increased resting (quantified as crouching) and decreased food and water intake. Despite the reduction in testosterone, when paired with females LPS-treated males showed similar amounts of mating behaviours to controls and reduced crouching. In sum, even under very low levels of testosterone, male quail had reduced sickness behaviours when exposed to females, indicating that testosterone may not be key in modulating sickness behaviours, at least in this species.
Collapse
Affiliation(s)
- Brenna M. G. Gormally
- Department of Biology, Chapman University, Orange, 1 University Drive, CA 92866, USA
| | - Kaelyn Bridgette
- Department of Biology, Chapman University, Orange, 1 University Drive, CA 92866, USA
| | - Aubrey Emmi
- Department of Biology, Chapman University, Orange, 1 University Drive, CA 92866, USA
| | - Delilah Schuerman
- Department of Biology, Chapman University, Orange, 1 University Drive, CA 92866, USA
| | - Patricia C. Lopes
- Department of Biology, Chapman University, Orange, 1 University Drive, CA 92866, USA
| |
Collapse
|
2
|
Lee JS, O’Connell EM, Pacher P, Lohoff FW. PCSK9 and the Gut-Liver-Brain Axis: A Novel Therapeutic Target for Immune Regulation in Alcohol Use Disorder. J Clin Med 2021; 10:1758. [PMID: 33919550 PMCID: PMC8074019 DOI: 10.3390/jcm10081758] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Alcohol use disorder (AUD) is a chronic relapsing disorder characterized by an impaired ability to control or stop alcohol intake and is associated with organ damage including alcohol-associated liver disease (ALD) and progressive neurodegeneration. The etiology of AUD is complex, but organ injury due to chronic alcohol use can be partially attributed to systemic and local inflammation along the gut-liver-brain axis. Excessive alcohol use can result in translocation of bacterial products into circulation, increased expression of pro-inflammatory cytokines, and activation of immune cells, including macrophages and/or microglia in the liver and brain. One potential mediator of this alcohol-induced inflammation is proprotein convertase subtilisin/kexin type 9 (PCSK9). PCSK9 is primarily known for its regulation of plasma low-density lipoprotein cholesterol but has more recently been shown to influence inflammatory responses in the liver and brain. In rodent and post-mortem brain studies, chronic alcohol use altered methylation of the PCSK9 gene and increased expression of PCSK9 in the liver and cerebral spinal fluid. Additionally, PCSK9 inhibition in a rat model of ALD attenuated liver inflammation and steatosis. PCSK9 may play an important role in alcohol-induced pathologies along the gut-liver-brain axis and may be a novel therapeutic target for AUD-related liver and brain inflammation.
Collapse
Affiliation(s)
- Ji Soo Lee
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (J.S.L.)
| | - Emma M. O’Connell
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (J.S.L.)
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20852, USA;
| | - Falk W. Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (J.S.L.)
| |
Collapse
|
3
|
Saied NM, Georgy GS, Hussien RM, Hassan WA. Neuromodulatory effect of curcumin on catecholamine systems and inflammatory cytokines in ovariectomized female rats. Clin Exp Pharmacol Physiol 2021; 48:337-346. [PMID: 33098686 DOI: 10.1111/1440-1681.13427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022]
Abstract
Anti-inflammatory products may represent the future for depressive disorder therapies. Curcumin (CUR) is a polyphenol and an active component of the turmeric plant Curcuma longa. The aim of this study was to investigate the impact of CUR, as a natural anti-inflammatory agent, on neuro-inflammation related to depression and compare it with the effects of fluoxetine (FLX) and estradiol (E2 ) in ovariectomized (OVX) rats. The experimental animals were divided into the following five treatment groups (n = 10): sham-operated, OVX, OVX-E2 (100 μg/kg, im, every other day), OVX-FLX (20 mg/kg, ip, daily), and OVX-CUR (100 mg/kg, po, daily). The results indicated that CUR improved the animals' performances in the open field test and modulated dopamine (DA) and norepinephrine levels in several brain regions compared with the OVX group. CUR resulted in the down-regulation of monoamine oxidase b and up-regulation of tyrosine hydroxylase, as well asDA receptor mRNA in the limbic region. In addition, CUR significantly attenuated the production of serum corticosterone hormone, tumour necrosis factor-alpha, interleukin-β1, interleukin-6, and nitric oxide in the limbic system. Furthermore, CUR normalized malondialdehyde levels and led to a significant upsurge in total antioxidant capacity, compared with the OVX group. Consequently, CUR, besides being harmless, was efficient against inflammation and oxidative-nitrosative stress, showing a greater effect on DA receptor expression than FLX and E2 in OVX rats.
Collapse
Affiliation(s)
- Nashwa M Saied
- Department of Hormone, National Organization for Drug Control and Research, Giza, Egypt
| | - Gehan S Georgy
- Department of Pharmacology, National Organization for Drug Control and Research, Giza, Egypt
| | - Rokaya M Hussien
- Department of Hormone, National Organization for Drug Control and Research, Giza, Egypt
| | - Wafaa A Hassan
- Department of Hormone, National Organization for Drug Control and Research, Giza, Egypt
| |
Collapse
|
4
|
Kongsui R, Sriraksa N, Thongrong S. The Neuroprotective Effect of Zingiber cassumunar Roxb. Extract on LPS-Induced Neuronal Cell Loss and Astroglial Activation within the Hippocampus. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4259316. [PMID: 32596307 PMCID: PMC7273477 DOI: 10.1155/2020/4259316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 12/23/2022]
Abstract
The systemic administration of lipopolysaccharide (LPS) has been recognized to induce neuroinflammation which plays a significant role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. In this study, we aimed to determine the protective effect of Zingiber cassumunar (Z. cassumunar) or Phlai (in Thai) against LPS-induced neuronal cell loss and the upregulation of glial fibrillary acidic protein (GFAP) of astrocytes in the hippocampus. Adult male Wistar rats were orally administered with Z. cassumunar extract at various doses (50, 100, and 200 mg/kg body weight) for 14 days before a single injection of LPS (250 μg/kg/i.p.). The results indicated that LPS-treated animals exhibited neuronal cell loss and the activation of astrocytes and also increased proinflammatory cytokine interleukin- (IL-) 1β in the hippocampus. Pretreatment with Z. cassumunar markedly reduced neuronal cell loss in the hippocampus. In addition, Z. cassumunar extract at a dose of 200 mg/kg BW significantly suppressed the inflammatory response by reducing the expression of GFAP and IL-1ß in the hippocampus. Therefore, the results suggested that Z. cassumunar extract might be valuable as a neuroprotective agent in neuroinflammation-induced brain damage. However, further investigations are essential to validate the possible active ingredients and mechanisms of its neuroprotective effect.
Collapse
Affiliation(s)
- Ratchaniporn Kongsui
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Napatr Sriraksa
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Sitthisak Thongrong
- Division of Anatomy, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
5
|
Sroor HM, Hassan AM, Zenz G, Valadez-Cosmes P, Farzi A, Holzer P, El-Sharif A, Gomaa FAZM, Kargl J, Reichmann F. Experimental colitis reduces microglial cell activation in the mouse brain without affecting microglial cell numbers. Sci Rep 2019; 9:20217. [PMID: 31882991 PMCID: PMC6934553 DOI: 10.1038/s41598-019-56859-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022] Open
Abstract
Inflammatory bowel disease (IBD) patients frequently suffer from anxiety disorders and depression, indicating that altered gut-brain axis signalling during gastrointestinal inflammation is a risk factor for psychiatric disease. Microglia, immune cells of the brain, is thought to be involved in a number of mental disorders, but their role in IBD is largely unknown. In the current work, we investigated whether colitis induced by dextran sulphate sodium (DSS), a murine model of IBD, alters microglial phenotypes in the brain. We found that colitis caused a reduction of Iba-1 and CD68 immunoreactivity, microglial activation markers, in specific brain regions of the limbic system such as the medial prefrontal cortex (mPFC), while other areas remained unaffected. Flow cytometry showed an increase of monocyte-derived macrophages during colitis and gene expression analysis in the mPFC showed pronounced changes of microglial markers including cluster of differentiation 86 (CD86), tumour necrosis factor-α, nitric oxide synthase 2, CD206 and chitinase-like protein 3 consistent with both M1 and M2 activation. Taken together, these findings suggest that experimental colitis-induced inflammation is propagated to the brain altering microglial function.
Collapse
Affiliation(s)
- Hoda M Sroor
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
- Microbiology and Immunology Department, Faculty of Pharmacy-Girls, Al-Azar University, Cairo, Egypt
| | - Ahmed M Hassan
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Geraldine Zenz
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Paulina Valadez-Cosmes
- Division of Pharmacology, Otto Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Amany El-Sharif
- Microbiology and Immunology Department, Faculty of Pharmacy-Girls, Al-Azar University, Cairo, Egypt
| | - Fatma Al-Zahraa M Gomaa
- Microbiology and Immunology Department, Faculty of Pharmacy-Girls, Al-Azar University, Cairo, Egypt
- Pharmacognosy and Medicinal Herbs Department, Faculty of Clinical Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria.
| |
Collapse
|
6
|
Savage JC, St-Pierre MK, Hui CW, Tremblay ME. Microglial Ultrastructure in the Hippocampus of a Lipopolysaccharide-Induced Sickness Mouse Model. Front Neurosci 2019; 13:1340. [PMID: 31920505 PMCID: PMC6932978 DOI: 10.3389/fnins.2019.01340] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Sickness behavior is a set of behavioral changes induced by infections and mediated by pro-inflammatory cytokines. It is characterized by fatigue, decreased appetite and weight loss, changes in sleep patterns, cognitive functions, and lost interest in social activity. It can expedite recovery by conserving energy to mount an immune response involving innate immunity. To provide insights into microglial implication in sickness behavior with special focus on cognitive and social impairment, we investigated changes in their ultrastructure and interactions with synapses using a toxemia mouse model. Adult mice were injected with 1 mg/kg lipopolysaccharide (LPS) or saline, and assayed for signs of sickness behavior. LPS treated mice displayed reduced activity in open-field tests 24 h post-injection, while social avoidance and weight gain/loss were not significantly different between treatment groups. Microglia were investigated using electron microscopy to describe changes in their structure and function at nanoscale resolution. Microglial cell bodies and processes were investigated in the hippocampus CA1, a region responsible for learning and memory that is often impacted after peripheral LPS administration. Microglia in LPS treated animals displayed larger cell bodies as well as less complex processes at the time point examined. Strikingly, microglial processes in LPS injected animals were also more likely to contact excitatory synapses and contained more phagocytic material compared with saline injected controls. We have identified at the ultrastructural level significant changes in microglia-synapse interactions shortly after LPS administration, which draws attention to studying the roles of microglia in synaptic rewiring after inflammatory stimuli.
Collapse
Affiliation(s)
- Julie C Savage
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Départment de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Marie-Kim St-Pierre
- Départment de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Chin Wai Hui
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Départment de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, QC, Canada.,Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Départment de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| |
Collapse
|