1
|
Zhang Q, Zhu L, Gong X, Ruan Y, Yu J, Jiang H, Wang Y, Qi X, Lu L, Liu Z. Sulfonation Disposition of Acacetin: In Vitro and in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4921-4931. [PMID: 28540728 DOI: 10.1021/acs.jafc.7b00854] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Acacetin, an important component of acacia honey, exerts extensive therapeutic effects on many cancers. However, the sulfonation disposition of acacetin has rarely been reported. Therefore, this study aimed to investigate the sulfonation disposition of acacetin systematically. The results showed that acacetin-7-sulfate was the main metabolite mediated primarily by sulfotransferases (SULT) 1A1. Dog liver S9 presented the highest formation rate of acacetin-7-sulfate. Compared with that in wild-type Friend Virus B (FVB) mice, plasma exposure of acacetin-7-sulfate decreased significantly in multidrug resistance protein 1 knockout (Mrp1-/-) mice vut increased clearly in breast cancer resistance protein knockout (Bcrp-/-) mice. In Caco-2 monolayers, the efflux and clearance of acacetin-7-sulfate was reduced distinctly by the BCRP inhibitor Ko143 on the apical side and by the MRP1 inhibitor MK571 on the basolateral side. In conclusion, acacetin sulfonation was mediated mostly by SULT1A1. Acacetin-7-sulfate was found to be transported mainly by BCRP and MRP1. Hence, SULT1A1, BCRP, and MRP1 are responsible for acacetin-7-sulfate exposure in vivo.
Collapse
Affiliation(s)
- Qisong Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou, Guangdong 510515, China
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Lijun Zhu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Xia Gong
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Yanjiao Ruan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Jia Yu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Huangyu Jiang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - XiaoXiao Qi
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Zhongqiu Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou, Guangdong 510515, China
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| |
Collapse
|
2
|
Yu J, Zhu L, Zheng H, Gong X, Jiang H, Chen J, Li Y, Zheng H, Qi X, Wang Y, Hu M, Lu L, Liu Z. Sulfotransferases and Breast Cancer Resistance Protein Determine the Disposition of Calycosin in Vitro and in Vivo. Mol Pharm 2017; 14:2917-2929. [DOI: 10.1021/acs.molpharmaceut.7b00042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jia Yu
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Lijun Zhu
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Haihui Zheng
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xia Gong
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Huangyu Jiang
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jiamei Chen
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yuhuan Li
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Hongming Zheng
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xiaoxiao Qi
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ying Wang
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ming Hu
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- Department of Pharmacological
and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, Texas 77030, United States
| | - Linlin Lu
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zhongqiu Liu
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- State Key Laboratory
of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
3
|
Liu JE, Ren B, Tang L, Tang QJ, Liu XY, Li X, Bai X, Zhong WP, Meng JX, Lin HM, Wu H, Chen JY, Zhong SL. The independent contribution of miRNAs to the missing heritability in CYP3A4/5 functionality and the metabolism of atorvastatin. Sci Rep 2016; 6:26544. [PMID: 27211076 PMCID: PMC4876377 DOI: 10.1038/srep26544] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/03/2016] [Indexed: 12/14/2022] Open
Abstract
To evaluate the independent contribution of miRNAs to the missing heritability in CYP3A4/5 functionality and atorvastatin metabolism, the relationships among three levels of factors, namely (1) clinical characteristics, CYP3A4/5 genotypes, and miRNAs, (2) CYP3A4 and CYP3A5 mRNAs, and (3) CYP3A activity, as well as their individual impacts on atorvastatin metabolism, were assessed in 55 human liver tissues. MiR-27b, miR-206, and CYP3A4 mRNA respectively accounted for 20.0%, 5.8%, and 9.5% of the interindividual variations in CYP3A activity. MiR-142 was an independent contributor to the expressions of CYP3A4 mRNA (partial R(2) = 0.12, P = 0.002) and CYP3A5 mRNA (partial R(2) = 0.09, P = 0.005) but not CYP3A activity or atorvastatin metabolism. CYP3A activity was a unique independent predictor of variability of atorvastatin metabolism, explaining the majority of the variance in reduction of atorvastatin (60.0%) and formation of ortho-hydroxy atorvastatin (78.8%) and para-hydroxy atorvastatin (83.9%). MiR-27b and miR-206 were found to repress CYP3A4 gene expression and CYP3A activity by directly binding to CYP3A4 3'-UTR, while miR-142 was found to indirectly repress CYP3A activity. Our study indicates that miRNAs play significant roles in bridging the gap between epigenetic effects and missing heritability in CYP3A functionality.
Collapse
Affiliation(s)
- Ju-E Liu
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Medical Research Center, Guangdong General Hospital, Guangzhou, Guangdong 510080, China
| | - Bin Ren
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lan Tang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qian-Jie Tang
- Medical Research Center, Guangdong General Hospital, Guangzhou, Guangdong 510080, China
- Institute of Chinese medical science, Guangdong TCM key Laboratory for metabolism, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiao-Ying Liu
- Medical Research Center, Guangdong General Hospital, Guangzhou, Guangdong 510080, China
| | - Xin Li
- Medical Research Center, Guangdong General Hospital, Guangzhou, Guangdong 510080, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xue Bai
- Medical Research Center, Guangdong General Hospital, Guangzhou, Guangdong 510080, China
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Wan-Ping Zhong
- Medical Research Center, Guangdong General Hospital, Guangzhou, Guangdong 510080, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jin-Xiu Meng
- Medical Research Center, Guangdong General Hospital, Guangzhou, Guangdong 510080, China
| | - Hao-Ming Lin
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Hong Wu
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ji-Yan Chen
- Medical Research Center, Guangdong General Hospital, Guangzhou, Guangdong 510080, China
- Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Shi-Long Zhong
- Medical Research Center, Guangdong General Hospital, Guangzhou, Guangdong 510080, China
- Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| |
Collapse
|
4
|
Jones GP, Watson TG, Sinclair AJ, Birkett A, Dunt N, Nair SS, Tonkin SY. Santalbic acid from quandong kernels and oil fed to rats affects kidney and liver P450. Asia Pac J Clin Nutr 2014; 8:211-5. [PMID: 24394165 DOI: 10.1046/j.1440-6047.1999.00112.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Kernels of the plant Santalum acuminatum (quandong) are eaten as Australian 'bush foods'. They are rich in oil and contain relatively large amounts of the acetylenic fatty acid, santalbic acid (trans-11-octadecen-9-ynoic acid), whose chemical structure is unlike that of normal dietary fatty acids. When rats were fed high fat diets in which oil from quandong kernels supplied 50% of dietary energy, the proportion of santalbic acid absorbed was more than 90%. Feeding quandong oil elevated not only total hepatic cytochrome P450 but also the cytochrome P450 4A subgroup of enzymes as shown by a specific immunoblotting technique. A purified methyl santalbate preparation isolated from quandong oil was fed to rats at 9% of dietary energy for 4 days and this also elevated cytochrome P450 4A in both kidney and liver microsomes in comparison with methyl esters from canola oil. Santalbic acid appears to be metabolized differently from the usual dietary fatty acids and the consumption of oil from quandong kernels may cause perturbations in normal fatty acid biochemistry.
Collapse
Affiliation(s)
- G P Jones
- School of Health Sciences, Deakin University, Geelong, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
5
|
Tang L, Feng Q, Zhao J, Dong L, Liu W, Yang C, Liu Z. Involvement of UDP-glucuronosyltranferases and sulfotransferases in the liver and intestinal first-pass metabolism of seven flavones in C57 mice and humans in vitro. Food Chem Toxicol 2012; 50:1460-7. [DOI: 10.1016/j.fct.2012.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 11/29/2022]
|
6
|
Tang L, Zhou J, Yang CH, Xia BJ, Hu M, Liu ZQ. Systematic studies of sulfation and glucuronidation of 12 flavonoids in the mouse liver S9 fraction reveal both unique and shared positional preferences. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3223-33. [PMID: 22352802 PMCID: PMC3409651 DOI: 10.1021/jf201987k] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sulfation and glucuronidation are the principal metabolic pathways of flavonoids, and extensive phase II metabolism is the main reason for their poor bioavailabilities. The purpose of this study was to compare the similarities and differences in the positional preference of glucuronidation versus sulfation in the mouse liver S9 fraction. The conjugating rates of seven monohydroxyflavones (HFs) (i.e., 2'-, 3'-, 4'-, 3-, 5-, 6-, and 7-HF), and five dihydroxyflavones (diHFs) (i.e., 6,7-, 4',7-, 3,7-, 5,7-, and 3,4'-diHF) were determined in three separate enzymatic reaction systems: (A) sulfation only, (B) glucuronidation only, or (C) simultaneous sulfation and glucuronidation (i.e., Sult-Ugt coreaction). In general, glucuronidation rates were much faster than sulfation rates. Among the HFs, 7-HF was the best substrate for both conjugation reactions, whereas 3-HF was rapidly glucuronidated but was not sulfated. As a result, the rank order of sulfation was very different from that of glucuronidation. Among the diHFs, regiospecific glucuronidation was limited to 7-OH and 3-OH positions, whereas regiospecific sulfation was limited to 7-OH and 4'-OH positions. Other positions (i.e., 6-OH and 5-OH) in diHFs were not conjugated. The positional preferences were essentially maintained in a Sult-Ugt coreaction system, although sulfation was surprisingly enhanced. Lastly, sulfation and glucuronidation displayed different regiospecific- and substrate-dependent characteristics. In conclusion, glucuronidation and sulfation shared the same preference for 7-OH position (of flavonoids) but displayed unique preference in other positions in that glucuronidation preferred the 3-OH position whereas sulfation preferred the 4'-OH position.
Collapse
Affiliation(s)
- Lan Tang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China, 510515
| | - Juan Zhou
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China, 510515
| | - Cai-Hua Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China, 510515
| | - Bi-Jun Xia
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China, 510515
| | - Ming Hu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China, 510515
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, TX77030, USA
- Corresponding authors: Ming Hu, Ph.D. 1441 Moursund Street, Department of Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030. Tel: (713)-795-8320. or Zhongqiu Liu, Ph.D. 1838 North Guangzhou Avenue, Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China, 510515. Tel: +86-20-61648596,
| | - Zhong-Qiu Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China, 510515
- Corresponding authors: Ming Hu, Ph.D. 1441 Moursund Street, Department of Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030. Tel: (713)-795-8320. or Zhongqiu Liu, Ph.D. 1838 North Guangzhou Avenue, Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China, 510515. Tel: +86-20-61648596,
| |
Collapse
|
7
|
Hirata-Koizumi M, Matsuyama T, Imai T, Hirose A, Kamata E, Ema M. Disappearance of gender-related difference in the toxicity of benzotriazole ultraviolet absorber in juvenile rats. Congenit Anom (Kyoto) 2009; 49:247-52. [PMID: 20021483 DOI: 10.1111/j.1741-4520.2009.00248.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
2-(2'-hydroxy-3',5'-di-tert-butylphenyl)benzotriazole (HDBB) is an ultraviolet absorber used in plastic resin products, such as building materials and automobile components. In oral repeated dose toxicity studies using 5- or 6-week-old rats, this chemical induced hepatic histopathological changes, such as hypertrophy accompanied with eosinophilic granular changes and focal necrosis of hepatocytes, and male rats showed nearly 25 times higher susceptibility to the toxic effects than females. Castration at approximately 4 weeks of age markedly reduced the sex-related variation in HDBB toxicity, but some difference, less than five times, remained between male and female castrated rats. Following oral HDBB administration to male and female juvenile rats from postnatal days 4-21, such gender-related difference in toxic susceptibility was not detected; therefore, it is speculated that the determinants of susceptibility to HDBB toxicity are differentiated between sexes after weaning. In young rats given HDBB, there was no gender-related difference in plasma HDBB concentration, and no metabolites were detected in the plasma of either sex. HDBB induced lauric acid 12-hydroxylase activity in the liver and this change was more pronounced in males than in females. These findings indicate that HDBB could show hepatic peroxisome proliferation activity, and the difference in the susceptibility of male and female rats to this effect might lead to marked gender-related differences in toxicity.
Collapse
Affiliation(s)
- Mutsuko Hirata-Koizumi
- Division of Risk Assessment, Biological Safety Research Center, National Institute of Health Sciences, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
Hirata-Koizumi M, Matsuno K, Kawabata M, Yajima K, Matsuyama T, Hirose A, Kamata E, Ema M. Gender-related difference in the toxicity of 2-(2′-hydroxy-3′,5′-di-tert-butylphenyl)benzotriazole in rats: Relationship to the plasma concentration,in vitrohepatic metabolism, and effects on hepatic metabolizing enzyme activity. Drug Chem Toxicol 2009; 32:204-14. [DOI: 10.1080/01480540902862244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Clewell RA, Kremer JJ, Williams CC, Campbell JL, Sochaski MA, Andersen ME, Borghoff SJ. Kinetics of selected di-n-butyl phthalate metabolites and fetal testosterone following repeated and single administration in pregnant rats. Toxicology 2009; 255:80-90. [DOI: 10.1016/j.tox.2008.10.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/26/2008] [Accepted: 10/15/2008] [Indexed: 11/28/2022]
|
10
|
Wang SWJ, Chen J, Jia X, Tam VH, Hu M. Disposition of flavonoids via enteric recycling: structural effects and lack of correlations between in vitro and in situ metabolic properties. Drug Metab Dispos 2006; 34:1837-48. [PMID: 16882763 DOI: 10.1124/dmd.106.009910] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study is to determine the importance of coupling of efflux transporters and metabolic enzymes in the intestinal disposition of six isoflavones (genistein, daidzein, formononetin, glycitein, biochanin A, and prunetin), and to determine how isoflavone structural differences affect the intestinal disposition. A rat intestinal perfusion model was used, together with rat intestinal and liver microsomes. In the intestinal perfusion model, significant absorption and excretion differences were found between isoflavones and their respective glucuronides (p <0.05), with prunetin being the most rapidly absorbed and formononetin glucuronides being the most excreted in the small intestine. In contrast, glucuronides were excreted very little in the colon. In an attempt to account for the differences, we measured the glucuronidation rates of six isoflavones in microsomes prepared from rat intestine and liver. Using multiple regression analysis, intrinsic clearance (CL(int)) and other enzyme kinetic parameters (V(max) and K(m)) were determined using appropriate kinetic models based on Akaike's information criterion. The kinetic parameters were dependent on the isoflavone used and the types of microsomes. To determine how metabolite excretion rates are controlled, we plotted excretion rates versus calculated microsomal rates (at 10 microM), CL(int) values, K(m) values, or V(max) values, and the results indicated that excretion rates were not controlled by any of the kinetic parameters. In conclusion, coupling of intestinal metabolic enzymes and efflux transporters affects the intestinal disposition of isoflavones, and structural differences of isoflavones, such as having methoxyl groups, significantly influenced their intestinal disposition.
Collapse
Affiliation(s)
- Stephen W J Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | | | | | | | | |
Collapse
|
11
|
Horn TL, Long L, Cwik MJ, Morrissey RL, Kapetanovic IM, McCormick DL. Modulation of hepatic and renal drug metabolizing enzyme activities in rats by subchronic administration of farnesol. Chem Biol Interact 2005; 152:79-99. [PMID: 15840382 DOI: 10.1016/j.cbi.2005.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 02/18/2005] [Accepted: 02/18/2005] [Indexed: 11/23/2022]
Abstract
Farnesol demonstrates antitumor activity in several animal models for human cancer and was being considered for development as a cancer chemopreventive agent. This study was performed to characterize the effects of minimally toxic doses of farnesol on the activity of phase I and II drug metabolizing enzymes. CD((R)) rats (20/sex/group) received daily gavage exposure to farnesol doses of 0, 500, or 1000 mg/kg/day for 28 days; 10 rats/sex/group were necropsied at the termination of farnesol exposure; remaining animals were necropsied after a 28-day recovery period. No deaths occurred during the study, and farnesol had no significant effects on body weight, food consumption, clinical signs, or hematology/coagulation parameters. Modest but statistically significant alterations in several clinical chemistry parameters were observed at the termination of farnesol exposure; all clinical pathology effects were reversed during the recovery period. At the termination of dosing, the activities of CYP1A, CYP2A1-3, CYP2B1/2, CYP2C11/12, CYP2E1, CYP3A1/2, CYP4A1-3, CYP19, glutathione reductase, NADPH/quinone oxidoreductase and UDP-glucuronosyltransferase were significantly increased in the livers of farnesol-treated rats; farnesol also increased the activity of glutathione S-transferase in the kidney. The effects of farnesol on hepatic and renal enzymes were reversed during the recovery period. At the end of the dosing period, increases in absolute and relative liver and kidney weights were seen in farnesol-treated rats. These increases may be secondary to induction of drug metabolizing enzymes, since organ weight increases were not associated with histopathologic alterations and were reversed upon discontinuation of farnesol exposure. Administration of farnesol at doses of up to 1000 mg/kg/day induced reversible increases in the activities of several hepatic and renal drug metabolizing enzymes in rats, while inducing only minimal toxicity. It is concluded that non-toxic or minimally toxic doses of farnesol could alter the metabolism, efficacy, and/or toxicity of drugs with which it is co-administered.
Collapse
Affiliation(s)
- Thomas L Horn
- Life Sciences Group, IIT Research Institute, Chicago, IL 60616, USA
| | | | | | | | | | | |
Collapse
|
12
|
Chen J, Halls SC, Alfaro JF, Zhou Z, Hu M. Potential beneficial metabolic interactions between tamoxifen and isoflavones via cytochrome P450-mediated pathways in female rat liver microsomes. Pharm Res 2005; 21:2095-104. [PMID: 15587933 DOI: 10.1023/b:pham.0000048202.92930.61] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE This study aims to evaluate a cytochrome P450-based tamoxifen-isoflavone interaction and to determine the mechanisms responsible for inhibitory effects of isoflavones (e.g., genistein) on the formation of alpha-hydroxytamoxifen. METHODS Metabolism studies were performed in vitro using female rat liver microsomes. The effects of genistein and an isoflavone mixture on tamoxifen metabolism and the inhibition mechanism were determined using standard kinetic analysis, preincubation, and selective chemical inhibitors of P450. RESULTS Metabolism of tamoxifen was saturable with Km values of 4.9+/-0.6, 14.6+/-2.2, 25+/-5.9 microM and Vmax values of 34.7+/-1.4, 297.5+/-19.2, 1867+/-231 pmol min(-1) mg(-1) for a-hydroxylation, N-desmethylation, and N-oxidation, respectively. Genistein (25 microM) inhibited alpha-hydroxylation at 2.5 microM tamoxifen by 64% (p < 0.001) but did not affect the 4-hydroxylation, N-desmethylation, and N-oxidation. A combination of three (genistein, daidzein, and glycitein) to five isoflavones (plus biochanin A and formononetin) inhibited tamoxifen alpha-hydroxylation to a greater extent but did not decrease the formation of identified metabolites. The inhibition on alpha-hydroxylation by genistein was mixed-typed with a Ki, value of 10.6 microM. Studies using selective chemical inhibitors showed that tamoxifen alpha-hydroxylation was mainly mediated by rat CYP1A2 and CYP3A1/2 and that genistein 3'-hydroxylation was mainly mediated by rat CYP1A2, CYP2C6 and CYP2D1. CONCLUSIONS Genistein and its isoflavone analogs have the potential to decrease side effects of tamoxifen through metabolic interactions that inhibit the formation of a-hydroxytamoxifen via inhibition of CYP1A2.
Collapse
Affiliation(s)
- Jun Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | |
Collapse
|
13
|
. RCZ. Alterations in Hepatic Cholesterol Levels in Response to Drugs That Induce
Cytochrome P450 3A23. INT J PHARMACOL 2005. [DOI: 10.3923/ijp.2005.172.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Bhattacharya N, Dufour JM, Vo MN, Okita J, Okita R, Kim KH. Differential Effects of Phthalates on the Testis and the Liver1. Biol Reprod 2005; 72:745-54. [PMID: 15564602 DOI: 10.1095/biolreprod.104.031583] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Phthalates have been shown to elicit contrasting effects on the testis and the liver, causing testicular degeneration and promoting abnormal hepatocyte proliferation and carcinogenesis. In the present study, we compared the effects of phthalates on testicular and liver cells to better understand the mechanisms by which phthalates cause testicular degeneration. In vivo treatment of rats with di-(2-ethylhexyl) phthalate (DEHP) caused a threefold increase of germ cell apoptosis in the testis, whereas apoptosis was not changed significantly in livers from the same animals. Western blot analyses revealed that peroxisome proliferator-activated receptor (PPAR) alpha is equally abundant in the liver and the testis, whereas PPAR gamma and retinoic acid receptor (RAR) alpha are expressed more in the testis. To determine whether the principal metabolite of DEHP, mono-(2-ethylhexyl) phthalate (MEHP), or a strong peroxisome proliferator, 4-chloro-6(2,3-xylindino)-2-pyrimidinylthioacetic acid (Wy-14,643), have a differential effect in Sertoli and liver cells by altering the function of RAR alpha and PPARs, their nuclear trafficking patterns were compared in Sertoli and liver cells after treatment. Both MEHP and Wy-14,643 increased the nuclear localization of PPAR alpha and PPAR gamma in Sertoli cells, but they decreased the nuclear localization of RAR alpha, as previously shown. Both PPAR alpha and PPAR gamma were in the nucleus and cytoplasm of liver cells, but RAR alpha was predominant in the cytoplasm, regardless of the treatment. At the molecular level, MEHP and Wy-14,643 reduced the amount of phosphorylated mitogen-activated protein kinase (activated MAPK) in Sertoli cells. In comparison, both MEHP and Wy-14,643 increased phosphorylated MAPK in liver cells. These results suggest that phthalates may cause contrasting effects on the testis and the liver by differential activation of the MAPK pathway, RAR alpha, PPAR alpha, and PPAR gamma in these organs.
Collapse
Affiliation(s)
- Nandini Bhattacharya
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | | | |
Collapse
|
15
|
Nannelli A, De Rubertis A, Longo V, Gervasi PG. Effects of dioxane on cytochrome P450 enzymes in liver, kidney, lung and nasal mucosa of rat. Arch Toxicol 2004; 79:74-82. [PMID: 15490126 DOI: 10.1007/s00204-004-0590-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Accepted: 06/14/2004] [Indexed: 01/09/2023]
Abstract
The effect of acute and chronic dioxane administration on hepatic, renal, pulmonary and nasal mucosa P450 enzymes and liver toxicity were investigated in male rats. The acute treatment consisted of two doses (2 g/kg) of dioxane given for 2 days by gavage, whereas the chronic treatment consisted of 1.5% of dioxane in drinking water for 10 days. Both the acute and chronic dioxane treatments induced cytochrome P450 2B1/2- and P450 2E1-dependent microsomal monooxygenase activities (pentoxyresorufin O-depentylase and p-nitrophenol hydroxylase) in the liver, whereas in the kidney and nasal mucosa, only the 2E1 marker activities were enhanced. In addition in the liver, an induction of 2alpha-testosterone hydroxylase (associated with the constitutive and hormone-dependent P450 2C11) was also revealed, whereas the hepatic P450 4A-dependent omega-lauric acid hydroxylase was not enhanced by any dioxane treatment. These inductions were mostly confirmed by western blot analysis of liver, kidney and nasal mucosa microsomes. In the lung, no alteration of P450 activities was observed. To assess the mechanism of 2E1 induction, the hepatic, renal and nasal mucosa 2E1 mRNA levels were also examined. Following two kinds of dioxane administration, in the liver the 2E1 induction was not accompanied by a significant alteration of 2E1 mRNA levels, while both in the kidney and nasal mucosa the 2E1 mRNA increased about 2- to 3-fold, indicating an organ-specific regulation of this P450 isoform. Furthermore, dioxane was unable to alter the plasma alanine aminotransferase activity and hepatic glutathione (GSH) content, examined as an index of toxicity, when it was administered into rats with P450 2B1/2 and 2E1 preinduced by phenobarbital or fasting pretreatment. These results support the lack of or a poor formation of reactive and toxic intermediates during the biotrasformation of this solvent, even when its metabolism was enhanced by P450 inducers. The chronic administration of dioxane was also unable to induce the palmitoyl CoA oxidase, a marker of peroxisome proliferation, excluding this as a way to explain its toxicity. Thus, although the mechanism of dioxane carcinogenicity remains unclear, the present results suggest that the induction of 2E1 following a prolonged administration of dioxane might provide oxygen radical species, and thereby contribute to its organ-specific toxicity.
Collapse
Affiliation(s)
- A Nannelli
- Area della Ricerca CNR, Istituto di Fisiologia Clinica, via Moruzzi 1, 56100 Pisa, Italy
| | | | | | | |
Collapse
|
16
|
Zangar RC, Fan YY, Chapkin RS. Interactions of phospholipase D and cytochrome P450 protein stability. Biochem Pharmacol 2004; 68:503-12. [PMID: 15242816 DOI: 10.1016/j.bcp.2004.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 04/13/2004] [Indexed: 10/26/2022]
Abstract
Previous studies have suggested a relationship between cytochrome P450 (P450) 3A (CYP3A) conformation and the phospholipid composition of the associated membrane. In this study, we utilized a novel microsomal incubation system that mimics many of the characteristics of CYP3A degradation pathway that have been observed in vivo and in cultured cells to study the effects of phospholipid composition on protein stability. We found that addition of phosphatidylcholine-specific phospholipase D (PLD) stabilized CYP3A in this system, but that phosphatidylinositol-specific phospholipase C (PLC) was without effect. Addition of phosphatidic acid also stabilized CYP3A protein in the microsomes. The use of 1,10-phenanthroline (phenanthroline), an inhibitor of PLD activity, decreased CYP3A stability in incubated microsomes. Similarly, 6-h treatment of primary cultures of rat hepatocytes with phenanthroline resulted in nearly complete loss of CYP3A protein. Treatment of rats with nicardipine or dimethylsulfoxide (DMSO), which have been shown to affect CYP3A stability, altered the phospholipid composition of hepatic microsomes. It did not appear, though, that the changes in phospholipid composition that resulted from these in vivo treatments accounted for the change in CYP3A stability observed in hepatic microsomes from these animals.
Collapse
|
17
|
Jia X, Chen J, Lin H, Hu M. Disposition of Flavonoids via Enteric Recycling: Enzyme-Transporter Coupling Affects Metabolism of Biochanin A and Formononetin and Excretion of Their Phase II Conjugates. J Pharmacol Exp Ther 2004; 310:1103-13. [PMID: 15128864 DOI: 10.1124/jpet.104.068403] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The purpose of this study was to continue our effort to determine how enzyme-transporter coupling affect disposition of flavonoids. The rat intestinal perfusion and Caco-2 cell models were used together with relevant microsomes. In perfusion model, isoflavone (i.e., formononetin and biochanin A) absorption and subsequent excretion of its metabolites were always site-dependent. Maximal amounts of intestinal and biliary conjugates excreted per 30 min were 31 and 51 nmol for formononetin, more than that for pure biochanin A (12 and 20 nmol). When a standardized red clover extract (biochanin A/formononetin = 10:7) was used, the results indicated that more metabolites of biochanin A than formononetin were found in the perfusate (36.9 versus 22.8 nmol) and bile (78 versus 51 nmol). In metabolism studies, rat intestinal and liver microsomes always glucuronidated biochanin A faster (p < 0.05) than formononetin, whereas intestinal microsomes glucuronidated both isoflavones faster (p < 0.05) than liver microsomes. However, rapid metabolism in the microsomes did not translate into more efficient excretion in either the rat perfusion model as shown previously or in the Caco-2 model. In the Caco-2 model, both isoflavones were rapidly absorbed, efficiently conjugated, and the conjugates excreted apically and basolaterally. More formononetin conjugates were excreted than biochanin A when used alone, but much more biochanin A conjugates were found when using the isoflavone mixture. In conclusion, efficiency of enzyme-transporter coupling controls the amounts of metabolites excreted by the intestine and liver and determines the relative contribution of enteric and enterohepatic recycling to the in vivo disposition of isoflavones.
Collapse
Affiliation(s)
- Xiaobin Jia
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, WA 99164-6510, USA
| | | | | | | |
Collapse
|
18
|
Kimzey AL, Weitz KK, Guengerich FP, Zangar RC. Hydroperoxy-10,12-Octadecadienoic Acid Stimulates Cytochrome P450 3A Protein Aggregation by a Mechanism That Is Inhibited by Substrate. Biochemistry 2003; 42:12691-9. [PMID: 14580217 DOI: 10.1021/bi0349975] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We recently demonstrated that microsomes from nicardipine-treated rats will form cytochrome P450 3A (CYP3A) aggregates when incubated at 37 degrees C. CYP3A substrates inhibited the protein aggregation and subsequent degradation, suggesting that this process is important in substrate-mediated stabilization of CYP3A. In this paper, we demonstrate that oxidative stress is a key factor in the formation of CYP3A aggregates in incubated microsomes and in a reconstituted system with purified enzymes. Our data further suggest that the effects of oxidative stress are mediated by lipid hydroperoxides, which are efficiently metabolized by CYP3A. In the presence of substrate, the CYP3A-mediated lipid hydroperoxide metabolism is inhibited along with the associated protein aggregation. Therefore, these studies provide a mechanistic model of why CYP3A has a relatively short half-life and how substrates stabilize CYP3A.
Collapse
Affiliation(s)
- Amy L Kimzey
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | |
Collapse
|
19
|
Thier R, Brüning T, Roos PH, Rihs HP, Golka K, Ko Y, Bolt HM. Markers of genetic susceptibility in human environmental hygiene and toxicology: the role of selected CYP, NAT and GST genes. Int J Hyg Environ Health 2003; 206:149-71. [PMID: 12872524 DOI: 10.1078/1438-4639-00209] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inherited genetic traits co-determine the susceptibility of an individual to a toxic chemical. Special emphasis has been put on individual responses to environmental and industrial carcinogens, but other chronic diseases are of increasing interest. Polymorphisms of relevant xenobiotic metabolising enzymes may be used as toxicological susceptibility markers. A growing number of genes encoding enzymes involved in biotransformation of toxicants and in cellular defence against toxicant-induced damage to the cells has been identified and cloned, leading to increased knowledge of allelic variants of genes and genetic defects that may result in a differential susceptibility toward environmental toxicants. "Low penetrating" polymorphisms in metabolism genes tend to be much more common in the population than allelic variants of "high penetrating" cancer genes, and are therefore of considerable importance from a public health point of view. Positive associations between cancer and CYP1A1 alleles, in particular the *2C I462V allele, were found for tissues following the aerodigestive tract. Again, in most cases, the effect of the variant CYP1A1 allele becomes apparent or clearer in connection with the GSTM1 null allele. The CYP1B1 codon 432 polymorphism (CYP1B1*3) has been identified as a susceptibility factor in smoking-related head-and-neck squameous cell cancer. The impact of this polymorphic variant of CYP1B1 on cancer risk was also reflected by an association with the frequency of somatic mutations of the p53 gene. Combined genotype analysis of CYP1B1 and the glutathione transferases GSTM1 or GSTT1 has also pointed to interactive effects. Of particular interest for the industrial and environmental field is the isozyme CYP2E1. Several genotypes of this isozyme have been characterised which seem to be associated with different levels of expression of enzyme activity. The acetylator status for NAT2 can be determined by genotyping or by phenotyping. In the pathogenesis of human bladder cancer due to occupational exposure to "classical" aromatic amines (benzidine, 4-aminodiphenyl, 1-naphthylamine) acetylation by NAT2 is regarded as a detoxication step. Interestingly, the underlying European findings of a higher susceptibility of slow acetylators towards aromatic amines are in contrast to findings in Chinese workers occupationally exposed to aromatic amines which points to different mechanisms of susceptibility between European and Chinese populations. Regarding human bladder cancer, the hypothesis has been put forward that genetic polymorphism of GSTM1 might be linked with the occurrence of this tumour type. This supports the hypothesis that exposure to PAH might causally be involved in urothelial cancers. The human polymorphic GST catalysing conjugation of halomethanes, dihalomethanes, ethylene oxide and a number of other industrial compounds could be characterised as a class theta enzyme (GSTT1) by means of molecular biology. "Conjugator" and "non-conjugator" phenotypes are coincident with the presence and absence of the GSTT1 gene. There are wide variations in the frequencies of GSTT1 deletion (GSTT1*0/0) among different ethnicities. Human phenotyping is facilitated by the GST activity towards methyl bromide or ethylene oxide in erythrocytes which is representative of the metabolic GSTT1 competence of the entire organism. Inter-individual variations in xenobiotic metabolism capacities may be due to polymorphisms of the genes coding for the enzymes themselves or of the genes coding for the receptors or transcription factors which regulate the expression of the enzymes. Also, polymorphisms in several regions of genes may cause altered ligand affinity, transactivation activity or expression levels of the receptor subsequently influencing the expression of the downstream target genes. Studies of individual susceptibility to toxicants and gene-environment interaction are now emerging as an important component of molecular epidemiology.
Collapse
Affiliation(s)
- Ricarda Thier
- School of Biomedical Sciences, Department of Physiology and Pharmacology, University of Queensland, St. Lucia, Australia
| | | | | | | | | | | | | |
Collapse
|
20
|
Chen J, Lin H, Hu M. Metabolism of flavonoids via enteric recycling: role of intestinal disposition. J Pharmacol Exp Ther 2003; 304:1228-35. [PMID: 12604700 DOI: 10.1124/jpet.102.046409] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to determine the importance of intestinal disposition in the first-pass metabolism of flavonoids. A four-site perfused rat intestinal model, rat liver and intestinal microsomes, Caco-2 cell microsomes, and the Caco-2 cell culture model were used. In the four-site model, approximately 28% of perfused aglycones are absorbed (approximately 450 nmol/30 min). Both absorption and subsequent excretion of metabolites were rapid and site-dependent (p < 0.05). Maximal amounts of intestinal conjugates excreted per 30 min were 61 and 150 nmol for genistein and apigenin, respectively. Maximal amounts of biliary conjugates excreted per 30 min were 50 and 30 nmol for genistein and apigenin, respectively. Microsomes, prepared from Caco-2 cells, rat intestine, and rat liver, always glucuronidated apigenin faster than genistein (p < 0.05). In addition, rat jejunal microsomes glucuronidated both flavonoids faster (p < 0.05) than rat intestinal microsomes prepared from other regions. When comparing glucuronidation in different organs, jejunal microsomes often but not always glucuronidated both flavonoids faster than liver microsomes. In the Caco-2 model, both flavonoids were rapidly absorbed and rapidly conjugated, and the conjugates were excreted apically and basolaterally. Similar to the four-site perfusion model, apigenin conjugates were excreted much faster than genistein conjugates (>2.5 times for glucuronic acid, >4.5 times for sulfate; p < 0.05). In conclusion, intestinal disposition may be more important than hepatic disposition in the first-pass metabolism of flavonoids such as apigenin. In conjunction with enterohepatic recycling, enteric recycling may be used to explain why flavonoids have poor systemic bioavailabilities.
Collapse
Affiliation(s)
- Jun Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, Washington, USA
| | | | | |
Collapse
|
21
|
Abstract
Biological markers (biomarkers) are used to recognize, characterize and monitor treatment-related responses following exposure to xenobiotics. Biomarkers serve three primary applications in toxicology: 1) to confirm exposure to a deleterious agent, 2) to provide a system for monitoring individual susceptibility to a toxicant, and 3) to quantitatively assess deleterious effects of a toxicant to an organism or individual. Because the liver is a general target for adverse effects of drugs and other chemicals, biomarkers of untoward hepatic response to xenobiotics are of particular interest to the pharmaceutical toxicologist. General requirements for the latter category of biomarkers are sample availability, target organ specificity, sensitivity for the toxicity of interest, accessibility, a relatively short half-life, and available detection systems. Biomarkers that can be assayed in biological fluids from both human and animal subjects are particularly desirable. Histologically, acute and subacute hepatic toxicity commonly involves necrosis, steatosis, cholestasis, vascular disorders, or multiple lesions. The purpose of this review is to summarize reported applications using clinical analytes and biochemical indicators of hepatic dysfunction with emphasis on those that show promise of supplementing or improving upon standard laboratory procedures. Liver function markers refer to peripheral indicators of hepatic synthetic and secretory activities, enterohepatic function, or perturbations of the hepatic uptake and clearance of circulating biomolecules. Liver injury biomarkers include various peripheral proteins released in response to a cellular damage or locally, proteins that are significantly altered within the liver. These include both circulating cytosolic, mitochondrial, or canalicular membrane markers, and the up-regulation or depletion of radical scavengers, modulators, and stabilizers of intracellular damage. Subsequent recovery from a toxic insult involves repair, regenerative, and proliferative responses that constitute the third class of biomarkers. Of these, protein markers found either in sera, plasma, or urine either during or just prior to the early manifestation of histological hepatic lesions are of greatest interest. Examples of a number of these markers, their documented applications in humans or animals, and potential advantages as well as limitations are presented.
Collapse
Affiliation(s)
- D E Amacher
- Drug Safety Evaluation, Pfizer Global Research and Development, Groton, Connecticut 06340, USA.
| |
Collapse
|
22
|
Zangar RC, Kimzey AL, Okita JR, Wunschel DS, Edwards RJ, Kim H, Okita RT. Cytochrome P450 3A conjugation to ubiquitin in a process distinct from classical ubiquitination pathway. Mol Pharmacol 2002; 61:892-904. [PMID: 11901229 DOI: 10.1124/mol.61.4.892] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We characterize a novel microsome system that forms high-molecular-mass (HMM) CYP3A, CYP2E1, and ubiquitin conjugates, but does not alter CYP4A or most other microsomal proteins. The formation of the HMM bands was observed in hepatic microsomes isolated from rats treated 1 week or more with high doses (50 mg/kg/day) of nicardipine, clotrimazole, or pregnenolone 16alpha-carbonitrile, but not microsomes from control, dexamethasone-, nifedipine-, or diltiazem-treated rats. Extensive washing of the microsomes to remove loosely attached proteins or cytosolic contaminants did not prevent the conjugation reaction. In contrast to prototypical ubiquitination pathways, this reaction did not require addition of ubiquitin, ATP, Mg(2+), or cytosol. Addition of cytosol did result in the degradation of the HMM CYP3A bands in a process that was not blocked by proteasome inhibitors. Immunoprecipitated CYP3A contained HMM ubiquitin. Even so, mass spectrometric analysis of tryptic peptides indicated that the HMM CYP3A was in molar excess to ubiquitin, suggesting that the formation of the HMM CYP3A may have resulted from conjugation to itself or a diffuse pool of ubiquitinated proteins already present in the microsomes. Addition of CYP3A substrates inhibited the formation of the HMM CYP3A and the cytosol-dependent degradation of HMM CYP3A. These results suggest that after extended periods of elevated CYP3A expression, microsomal factors are induced that catalyze the formation of HMM CYP3A conjugates that contain ubiquitin. This conjugation reaction, however, seems to be distinct from the classical ubiquitination pathway but may be related to the substrate-dependent stabilization of CYP3A observed in vivo.
Collapse
Affiliation(s)
- R C Zangar
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Bleicher KB, Pippert TR, Glaab WE, Skopek TR, Sina JF, Umbenhauer DR. Use of real-time gene-specific polymerase chain reaction to measure RNA expression of three family members of rat cytochrome P450 4A. J Biochem Mol Toxicol 2001; 15:133-42. [PMID: 11424223 DOI: 10.1002/jbt.10] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Exposure of rats to peroxisome proliferators induces members of the cytochrome P450 4A (CYP4A) family. In rats, the CYP4A family consists of four related genes, CYP4A1, CYP4A2, CYP4A3, and CYP4A8. We are specifically interested in examining CYP4A1, CYP4A2, and CYP4A3, each of which is expressed in a tissue-dependent and sex-dependent manner. While CYP4A1 is sufficiently different from the other two members to enable relatively easy specific quantitation, the close similarity between CYP4A2 and CYP4A3 makes quantitative discrimination difficult. We have combined a fluorescent real-time PCR assay (TaqMan) with the sequence-specific mismatch amplification mutation assay (MAMA) to allow us to carry out specific quantitation of all three members of this family. The assay is designed such that a single fluorescent TaqMan(R) probe binds to all three gene products, while specificity is conferred by sequence-specific primers. This specific MAMA technique takes advantage of the ability of Taq polymerase to distinguish between the two cDNAs based on mismatches at the 3' end of a PCR primer. In the 84-base PCR product used for this assay, there is only a single-base difference between CYP4A2 and CYP4A3. Despite this similarity, there is at least a 1000-fold discrimination between the two sequences, using CYP4A2 or CYP4A3 specific standards. Analysis of rat liver RNA from both sexes demonstrates that this discrimination is also achieved in complex RNA mixtures. This technique should be broadly applicable to other areas of research such as allelic discrimination, detecting mutational hotspots in tumors, and discrimination among closely related members of other gene families.
Collapse
Affiliation(s)
- K B Bleicher
- Department of Safety Assessment, Merck Research Laboratories, WP45-310, West Point, PA 19486, USA
| | | | | | | | | | | |
Collapse
|
24
|
Kertai E, Hollósi G, Kovács J, Varga V. Effect of glycerol-induced acute renal failure and di-2-ethylhexyl phthalate on the enzymes involved in biotransformation of xenobiotixs. ACTA PHYSIOLOGICA HUNGARICA 2001; 87:253-65. [PMID: 11428750 DOI: 10.1556/aphysiol.87.2000.3.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of di-(2-ethylhexyl)-phthalate (DEPH) on the levels of cytochrome P-450 and b5 monooxygenases were studied in the rat kidney and liver in acute renal failure induced by glycerol. Intramuscular injection of glycerol (50%,10 ml x kg(-1)) to rats produced proximal tubular damage and acute renal failure. The indicators of renal function, serum urea and creatinine significantly increased (480 and 350 percent, respectively). In control and glycerol-treated animals DEPH had no significant effect on the concentrations of serum urea and creatinine. Twenty-four hours after glycerol injection the total amount of cytochrome P-450 and b5 significantly decreased in renal but increased in liver microsomal fractions. Moreover, 48 and 72 hours after glycerol injection the level of cytochrome P-450 and b5 significantly increased in both organs. A single dose of DEPH (2 ml x kg(-1), i.p.) also elevated the total cytochrome P-450 and b5 in control animals. This enhancing effect of DEPH was additive to that of glycerol in glycerol-induced acute renal failure. These results indicate that DEPH and glycerol evoked pathological changes may affect the metabolism of xenobiotics plus endogenous hormones in the liver and in kidney.
Collapse
Affiliation(s)
- E Kertai
- Department of Pharmaceutical Technology, University of Debrecen, Hungary
| | | | | | | |
Collapse
|
25
|
Ozaki K, Mahler JF, Haseman JK, Moomaw CR, Nicolette ML, Nyska A. Unique renal tubule changes induced in rats and mice by the peroxisome proliferators 2,4-dichlorophenoxyacetic acid (2,4-D) and WY-14643. Toxicol Pathol 2001; 29:440-50. [PMID: 11560249 DOI: 10.1080/01926230152499791] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Peroxisome proliferators are non-mutagenic carcinogens in the liver of rodents, acting both as initiators and promoters. The National Toxicology Program (NTP) conducted a study of several peroxisome proliferators (PPs), including Wyeth (WY)-14643 as a prototypical PP and 2,4-dichlorophenoxyacetic acid (2,4-D) as a weak PP, in Sprague-Dawley rats. B6C3F1 mice, and Syrian hamsters. In the kidney, an unusual change was observed in the outer stripe of the outer medulla, especially in rats treated with 2,4-D or WY-14643. This change was characterized by foci of tubules that were partially or completely lined by basophilic epithelial cells with decreased cytoplasm and high nuclear density. Changes typical of chronic nephropathy such as interstitial fibrosis or basement membrane thickening were not associated with these foci. Results of immunohistochemical staining for catalase and cytochrome P-450 4A in the kidney indicated increased staining intensity in renal tubular epithelial cells primarily in the region where the affected tubules were observed: however, the altered cells were negative for both immunohistochemical markers. Ultrastructurally, affected cells had long brush borders typical of the P3 tubule segment. The most distinguishing ultrastructural change was a decreased amount of electronlucent cytoplasm that contained few differentiated organelles and, in particular, a prominent reduced volume and number of mitochondria; changes in peroxisomes were not apparent. In addition to the lesion in rats, mice treated with the highest dose of 2,4-D, but not WY-14643, manifested similar renal tubular changes as seen by light microscopy. Neither chemical induced renal tubular lesions in hamsters. Hepatocellular changes characteristic of PPs were present in all 3 species treated with WY-14643, but not 2,4-D. These results indicate that the rat is the species most sensitive to the nephrotoxic effects of PPs and there is a site specificity to this toxicity related to areas of PP-related enzyme induction. Although 2,4-D is considered a weak PP for the liver, it was the most effective at inducing renal lesions, indicating that the toxic potency of various PPs will depend on the target organ.
Collapse
Affiliation(s)
- K Ozaki
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
26
|
Oyekan AO, Youseff T, Fulton D, Quilley J, McGiff JC. Renal cytochrome P450 omega-hydroxylase and epoxygenase activity are differentially modified by nitric oxide and sodium chloride. J Clin Invest 1999; 104:1131-7. [PMID: 10525052 PMCID: PMC408575 DOI: 10.1172/jci6786] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Renal function is perturbed by inhibition of nitric oxide synthase (NOS). To probe the basis of this effect, we characterized the effects of nitric oxide (NO), a known suppressor of cytochrome P450 (CYP) enzymes, on metabolism of arachidonic acid (AA), the expression of omega-hydroxylase, and the efflux of 20-hydroxyeicosatetraenoic acid (20-HETE) from the isolated kidney. The capacity to convert [(14)C]AA to HETEs and epoxides (EETs) was greater in cortical microsomes than in medullary microsomes. Sodium nitroprusside (10-100 microM), an NO donor, inhibited renal microsomal conversion of [(14)C]AA to HETEs and EETs in a dose-dependent manner. 8-bromo cGMP (100 microM), the cell-permeable analogue of cGMP, did not affect conversion of [(14)C]AA. Inhibition of NOS with N(omega)-nitro-L-arginine-methyl ester (L-NAME) significantly increased conversion of [(14)C]AA to HETE and greatly increased the expression of omega-hydroxylase protein, but this treatment had only a modest effect on epoxygenase activity. L-NAME induced a 4-fold increase in renal efflux of 20-HETE, as did L-nitroarginine. Oral treatment with 2% sodium chloride (NaCl) for 7 days increased renal epoxygenase activity, both in the cortex and the medulla. In contrast, cortical omega-hydroxylase activity was reduced by treatment with 2% NaCl. Coadministration of L-NAME and 2% NaCl decreased conversion of [(14)C]AA to HETEs without affecting epoxygenase activity. Thus, inhibition of NOS increased omega-hydroxylase activity, CYP4A expression, and renal efflux of 20-HETE, whereas 2% NaCl stimulated epoxygenase activity.
Collapse
Affiliation(s)
- A O Oyekan
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA.
| | | | | | | | | |
Collapse
|
27
|
Oyekan AO, McAward K, Conetta J, Rosenfeld L, McGiff JC. Endothelin-1 and CYP450 arachidonate metabolites interact to promote tissue injury in DOCA-salt hypertension. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:R766-75. [PMID: 10070137 DOI: 10.1152/ajpregu.1999.276.3.r766] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inhibition of cytochrome P-450 (CYP450) enzymes with cobalt chloride (CoCl2) prevented hypertension, organ hypertrophy, and renal injury induced by DOCA and salt (1% NaCl) in uninephrectomized (UNx) rats. Systolic blood pressure (SBP) rose to 193 +/- 6 mmHg by day 21 from control levels of 150 +/- 7 mmHg in response to DOCA-salt treatment, a rise that was prevented by CoCl2 (24 mg. kg-1. 24 h-1). The effects of DOCA-salt treatment, which increased protein excretion to 88.3 +/- 6.9 mg/24 h on day 21 from 9.0 +/- 1.1 mg/24 h on day 3, were prevented by CoCl2. CoCl2 also attenuated the renal and left ventricular hypertrophy and the increase in media-to-lumen ratio in hypertensive rats. DOCA-salt treatment increased excretion of endothelin (ET)-1 from 81 +/- 17 to 277 +/- 104 pg. 100 g body wt-1. 24 h-1 associated with a fourfold increase in 20-hydroxyeicosatetraenoic acid (20-HETE) excretion from 3.0 +/- 1.1 to 12.2 +/- 1.9 ng. 100 g body wt-1. 24 h-1 (days 3 vs. 21). CoCl2 blunted these increases by 58 and 72%, respectively. In aortic rings pulsed with [3H]thymidine, ET-1 increased its incorporation. Dibromododec-11-enoic acid, an inhibitor of 20-HETE synthesis, attenuated ET-1-induced increases in [3H]thymidine incorporation. We distinguished effects of CoCl2 acting via CO generation vs. suppression of CYP450-arachidonic acid metabolism by treating UNx-salt-DOCA rats with 1-aminobenzotriazole (ABT), which suppresses CYP450 enzyme activity, and compared these results to those produced by CoCl2. ABT reduced hypertension, as did CoCl2. Unlike CoCl2, ABT did not prevent organ hypertrophy and proteinuria, suggesting that these effects were partially related to CO formation. Blockade of the ETA receptor with BMS-182874 reduced SBP, organ hypertrophy, and proteinuria, indicating the importance of ET-initiated abnormalities to the progression of lesions in UNx-salt-DOCA.
Collapse
Affiliation(s)
- A O Oyekan
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | |
Collapse
|
28
|
Kroetz DL, Yook P, Costet P, Bianchi P, Pineau T. Peroxisome proliferator-activated receptor alpha controls the hepatic CYP4A induction adaptive response to starvation and diabetes. J Biol Chem 1998; 273:31581-9. [PMID: 9813074 DOI: 10.1074/jbc.273.47.31581] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The hepatic CYP4A enzymes are important fatty acid and prostaglandin omega-hydroxylases that are highly inducible by fibric acid hypolipidemic agents and other peroxisome proliferators. Induction of the CYP4A enzymes by peroxisome proliferators is mediated through the nuclear peroxisome proliferator-activated receptor alpha (PPARalpha). Fatty acids have recently been identified as endogenous ligands of PPARalpha, and this receptor has been implicated in the regulation of lipid homeostasis. In the present report we characterized the induction of the hepatic CYP4A genes in rats during the altered lipid metabolism associated with starvation and diabetes. The mRNA levels of CYP4A1, CYP4A2, and CYP4A3 were induced 7-17-fold in the livers of fasted animals and 3-8-fold in the livers of diabetic animals. This was accompanied by corresponding changes in CYP4A protein levels and arachidonic and lauric acid omega-hydroxylase activity. Interestingly, feeding animals after the fasting period caused as much as an 80% suppression of CYP4A mRNA levels, whereas CYP4A protein levels and functional activity returned to control values. A second PPARalpha-responsive gene, acyl-CoA oxidase, was also induced in rat liver by diabetes and fasting. By using PPARalpha-deficient mice, we unambiguously demonstrated that PPARalpha is strictly required for hepatic CYP4A induction by starvation and diabetes. Similarly, induction of hepatic thiolase and bifunctional enzyme also required expression of PPARalpha. This represents the first evidence for the pathophysiologically induced activation of a nuclear receptor.
Collapse
MESH Headings
- 3-Hydroxyacyl CoA Dehydrogenases/biosynthesis
- Acetyl-CoA C-Acetyltransferase/biosynthesis
- Adaptation, Physiological
- Animals
- Arachidonic Acid/metabolism
- Cytochrome P-450 CYP4A
- Cytochrome P-450 Enzyme System/biosynthesis
- Cytochrome P-450 Enzyme System/genetics
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Enoyl-CoA Hydratase/biosynthesis
- Enzyme Induction
- Food
- Isomerases
- Lauric Acids/metabolism
- Liver/enzymology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Microsomes, Liver/enzymology
- Mixed Function Oxygenases/biosynthesis
- Mixed Function Oxygenases/genetics
- Multienzyme Complexes/biosynthesis
- Peroxisomal Bifunctional Enzyme
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Starvation/complications
- Starvation/metabolism
- Streptozocin
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- D L Kroetz
- Department of Biopharmaceutical Sciences, School of Pharmacy, University of California, San Francisco, California 94143, USA.
| | | | | | | | | |
Collapse
|
29
|
Adinehzadeh M, Reo NV. Effects of peroxisome proliferators on rat liver phospholipids: sphingomyelin degradation may be involved in hepatotoxic mechanism of perfluorodecanoic acid. Chem Res Toxicol 1998; 11:428-40. [PMID: 9585473 DOI: 10.1021/tx970155t] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Perfluorooctanoic acid (PFOA), perfluorodecanoic acid (PFDA), clofibrate, di(2-ethylhexyl)phthalate (DEHP), and Wy-14,643 represent a class of compounds known as peroxisome proliferators (PPs). Such compounds induce biogenesis of liver peroxisomes and cause a varying degree of hepatotoxicity and carcinogenesis in rodents. We examined the effects of these PPs on rat hepatic lipids and phospholipid profiles using phosphorus-31 NMR spectroscopy. All PPs caused a 25-57% increase in hepatic phospholipid content, while all but clofibrate increased the total lipid content by 26-156%. Treatments also influenced the composition of liver phospholipids. Phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEth) contents were significantly increased in all treatment groups. Most notably, PFDA caused the largest increase in PtdCho and PtdEth content (ca. 70%), while PFOA and Wy-14,643 were the only test compounds that influenced the PtdCho:PtdEth ratio. PFDA also caused an ca. 30% decrease in sphingomyelin (SphM) from 24 to 120 h postdose. SphM is a key lipid in signal transduction processes involved in apoptosis. Hydrolysis of SphM can be mediated through the action of tumor necrosis factor (TNF-alpha). We measured the TNF-alpha concentrations in rat sera at 24 h post-PFDA-exposure and found an 8-fold increase relative to vehicle-treated controls. These data demonstrate that an increase in the serum TNF-alpha level correlates with the time frame for the observed reduction in hepatic SphM. PFOA, a structurally similar compound, had no effect on hepatic SphM content, nor did it affect the serum TNF-alpha concentration. These effects may be related to differences in the tumorigenicity associated with these compounds. We postulate that PFDA activates the SphM signal transduction pathway via the release of TNF-alpha. This then stimulates cytotoxic responses and processes of apoptosis and may suppress cell proliferative and mitogenic responses.
Collapse
Affiliation(s)
- M Adinehzadeh
- Departments of Biochemistry and Molecular Biology and of Physics, WSU Magnetic Resonance Laboratory, Wright State University, Cox Institute, Dayton, Ohio 45429, USA
| | | |
Collapse
|
30
|
Amet Y, Lucas D, Zhang-Gouillon ZQ, French SW. P-450 -Dependent Metabolism of Laurie Acid in Alcoholic Liver Disease: Comparison between Rat Liver and Kidney Microsomes. Alcohol Clin Exp Res 1998. [DOI: 10.1111/j.1530-0277.1998.tb03673.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Gonzalez-Leon A, Schultz IR, Xu G, Bull RJ. Pharmacokinetics and metabolism of dichloroacetate in the F344 rat after prior administration in drinking water. Toxicol Appl Pharmacol 1997; 146:189-95. [PMID: 9344886 DOI: 10.1006/taap.1997.8232] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of prior administration of dichloroacetate (DCA) in drinking water on the pharmacokinetics of DCA in male F344 rats was studied. Rats were provided with DCA in their drinking water at 0.2 and 2.0 g/liter for 14 days and then challenged with iv bolus iv or gavage doses of [14C1,2]DCA, 16 hr after pretreatment withdrawal. The blood concentration-time profiles of DCA and the disposition of 14C was characterized and compared with controls. The effect of pretreatment on the in vitro metabolism of DCA in hepatic cytosol was also evaluated. Pretreatment caused a significant increase in the blood concentration and AUC0-->infinity of DCA (433.3 versus 2406 microg ml-1 hr). Pharmacokinetic analysis indicated that pretreatment significantly decreased total body clearance (267.4 versus 42.7 ml hr-1 kg-1), which was largely due to decreased metabolism since only modest differences in the urinary clearance of DCA were observed. Pretreatment significantly decreased the formation of 14CO2 after both iv and oral doses of [14C]DCA. The decrease in CO2 formation was also observed after pretreatment with DCA at 0.2 g/liter. Pretreatment also increased the urinary elimination of DCA and several metabolites, particularly glycolate. The in vitro experiments demonstrated that DCA pretreatment inhibited the conversion of DCA to glyoxylate, oxalate, and glycolate in hepatic cytosol. These results indicate that DCA has an auto-inhibitory effect on its metabolism and that pharmacokinetic studies using single doses in naïve rats will underestimate the concentration of DCA at the target tissue during chronic or repeated exposures.
Collapse
Affiliation(s)
- A Gonzalez-Leon
- Pharmacology/Toxicology Graduate Program, Washington State University, Pullman, Washington 99164, USA
| | | | | | | |
Collapse
|
32
|
Induction of cytochrome P4501 A1 and P4504A1 activities andperoxisomal proliferation by furnonisin B1. Toxicol Appl Pharmacol 1996. [DOI: 10.1016/s0041-008x(96)80024-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Parrish JM, Austin EW, Stevens DK, Kinder DH, Bull RJ. Haloacetate-induced oxidative damage to DNA in the liver of male B6C3F1 mice. Toxicology 1996; 110:103-11. [PMID: 8658551 DOI: 10.1016/0300-483x(96)03342-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Brominated and chlorinated haloacetates (HAs) are by-products of drinking water disinfection. Dichloroacetate (DCA) and trichloroacetate (TCA) are hepatocarcinogenic in rodents, but the brominated analogs have received little study. Prior work has indicated that acute doses of the brominated derivatives are more potent inducers of oxidative stress and increase the 8-hydroxydeoxyguanosine (8-OH-dG) content of the nuclear DNA in the liver. Since, DCA and TCA are also known as weak peroxisome proliferators, the present study was intended to determine whether this activity might be exacerbated by peroxisomal proliferation. Classical responses to peroxisome proliferators, cyanide-insensitive acyl-CoA oxidase activity and increased 12-hydroxylation of lauric acid, were elevated in a dose-related manner in mice maintained on TCA and clofibric acid (positive control), but not with DCA, dibromoacetate (DBA) or bromochloroacetate (BCA). Administration of the HAs in drinking water to male B6C3F1 mice for periods from 3 to 10 weeks resulted in dose-related increases in 8-OH-dG in nuclear DNA of the liver with DBA and BCA, but not with TCA or DCA. These findings indicate that oxidative damage induced by the haloacetates is, at least in part, independent of peroxisome proliferation. In addition, these data suggest that oxidative damage to DNA may play a more important role in the chronic toxicology of brominated compared to the chlorinated haloacetates.
Collapse
Affiliation(s)
- J M Parrish
- Pharmacology/Toxicology Graduate Program, Washington State University, Pullman, USA
| | | | | | | | | |
Collapse
|
34
|
Huber WW, Grasl-Kraupp B, Schulte-Hermann R. Hepatocarcinogenic potential of di(2-ethylhexyl)phthalate in rodents and its implications on human risk. Crit Rev Toxicol 1996; 26:365-481. [PMID: 8817083 DOI: 10.3109/10408449609048302] [Citation(s) in RCA: 227] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The plasticizer di(2-ethylhexyl) phthalate (DEHP), to which humans are extensively exposed, was found to be hepatocarcinogenic in rats and mice. DEHP is potentially set free from objects made of synthetic materials (e.g., those used in medicine). Chronically, the greatest amounts are transferred to persons undergoing hemodialysis (up to 3.1 mg/kg b.w. per day) who would thus be considered the individuals most endangered by tumorigenesis. Although toxicokinetics seem to play a certain unclear role in the course of DEHP-related toxicity, toxicodynamic factors appear more decisive. DEHP is a representative of "peroxisome proliferators" (PP), a distinct group of substances that, in rodents, do not only induce peroxisomes but also specific enzymes in other organelles, organ growth, and DNA synthesis. The cluster of the characteristic effects of PP is generally, although perhaps not quite appropriately summarized as "peroxisome proliferation," and is strongest in the liver. The lowest observed effect level (LOEL) and the no observed effect level (NOEL) of peroxisome proliferation in the rat, as determined by the induction of specific enzymes (peroxisomal beta-oxidation, carnitine-acetyl-transferase, cytochrome P-452), DNA synthesis, and hepatomegaly, may be assumed as 50 and 25 mg/kg b.w. per day, respectively. DEHP and other carcinogenic PP are neither genotoxic nor tumor initiators, but they appear to be tumor promoters, also implicating a threshold level for the carcinogenic effect. Although a causal relationship between a particular effect of peroxisome proliferation and hepatocarcinogenesis is as yet unknown, peroxisome proliferation as a whole phenomenon appears to be associated with the potential of tumor induction, as shown by comparison of the relative strength of individual PP and by comparison of species and organ specificities. Likewise, LOEL and NOEL of rodent carcinogenesis, that is, 300 and 50 to 100 mg/kg b.w. per day, respectively, are above but not too far from the corresponding values for the investigated parameters of peroxisome proliferation. Thus, with respect to dose alone, worst-case exposure in hemodialysis patients is at least 16-fold below the LOEL of any characterized PP-specific effect of DEHP and approximately 100-fold below that of DEHP-related tumorigenesis. Also, primates are less responsive to PP than rats with respect to the investigated biochemical and morphological parameters. If this lower primate responsiveness is extrapolated to estimate carcinogenicity in humans, we might thus arrive at an even larger safety margin than when based on exposure alone. Doses of PP hypolipidemics that had clearly induced several indicators of peroxisome proliferation in rats did not cause any clear-cut enhancements in the peroxisomes of patients, even though most of these hypolipidemics were considerably stronger PP than DEHP. Thus, an actual threat to humans by DEHP seems rather unlikely. Accordingly, hepatocarcinogenesis was neither enhanced in workers exposed to DEHP nor in patients treated with hypolipidemics.
Collapse
Affiliation(s)
- W W Huber
- Institut für Tumorbiologie und Krebsforschung, University of Vienna, Austria
| | | | | |
Collapse
|
35
|
Witzmann F, Coughtrie M, Fultz C, Lipscomb J. Effect of structurally diverse peroxisome proliferators on rat hepatic sulfotransferase. Chem Biol Interact 1996; 99:73-84. [PMID: 8620580 DOI: 10.1016/0009-2797(95)03661-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Exposure to perfluorocarboxylic acids, pthalate esters, and some hypolipidemic agents results in the proliferation of peroxisomes in the rodent liver. The structural diversity of these compounds suggests mechanistic diversity in their toxicity as well. To establish reliable biomarkers of peroxisome proliferation (PP) in compounds with distinct chemical toxicities, this study investigated the effect of in vivo exposure to perfluoro-n-octanoic acid, perfluoro-n-decanoic acid, di(2-ethylhexyl)phthalate (DEHP) and clofibrate on two-dimensional electrophoretic protein patterns of rat hepatic sulfotransferases, ST1A1, ST1C1 and ST2A1. After exposure to peroxisome proliferative doses, both ST1A1 and ST1C1 abundance in whole liver homogenates was significantly reduced, but only as a result of perfluorocarboxylic and exposure. The well-established PPs, DEHP and clofibrate had no effect on sulfotransferase expression whatsoever. The observed down-regulation of these STs is significant with respect to their normal detoxication activities and its potential correlation to carcinogenesis warrants further study. The present investigation supports previous studies that demonstrate the unique features of perfluorocarboxylic acid toxicity, relative to classic peroxisome proliferators and endorses the continued use of 2D protein-mapping of Sts and other proteins as biomarkers of chemical toxicity.
Collapse
Affiliation(s)
- F Witzmann
- Department of Biology, Indiana University Purdue University, Columbus 47203, USA
| | | | | | | |
Collapse
|
36
|
Zanelli U, Puccini P, Acerbi D, Ventura P, Gervasi PG. Induction of peroxisomal beta-oxidation and P-450 4A-dependent activities by pivalic and trichloroacetic acid in rat liver and kidney. Arch Toxicol 1996; 70:145-9. [PMID: 8825670 DOI: 10.1007/s002040050253] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The influence of pivalic acid (PIV), a compound often used to make pro-drugs, and of the structurally related trichloroacetic acid (TCA), on several hepatic and renal enzymes was investigated in Sprague-Dawley rats, following a 4-day treatment period. The PIV and TCA treatments resulted in a similar and selective induction (2-3 times) of peroxisomal palmitoyl-CoA oxidase and the cytochrome P-450 4A dependent microsomal (omega)- and (omega-1)-lauric acid activities, both in liver and kidney. Western blot analysis of liver and kidney microsomes from PIV- and TCA-treated rats, using antibody to the P-450 4A1, revealed induction of members of the P-450 4A subfamily. These results suggest that PIV, like TCA, is a renal and hepatic peroxisome proliferator in rats, and further support the previously indicated close association between the peroxisomal fatty acid beta-oxidation enzymes and microsomal P-450 4A sub-family enzymes.
Collapse
Affiliation(s)
- U Zanelli
- Istituto di Mutagenesi e Differenziamento, Consiglio Nazionale delle Richerche, Pisa, Italy
| | | | | | | | | |
Collapse
|
37
|
Nims RW, Lubet RA. Induction of cytochrome P-450 in the Norway rat, Rattus norvegicus, following exposure to potential environmental contaminants. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH 1995; 46:271-92. [PMID: 7473857 DOI: 10.1080/15287399509532035] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cytochrome P-450 (CYP) induction (consisting of increases in cellular RNA and protein content and associated catalytic activities) occurs predominantly in the liver, but also in small intestine, lung, kidney, and placenta, of Norway rats (Rattus norvegicus) exposed to certain types of potential environmental contaminants. The specific isoform(s) induced in the rat and the magnitudes of the increases observed depend upon the chemical nature of the xenobiotic. For instance, the predominant isoforms induced by nonhalogenated polycyclic aromatic hydrocarbons, such as petroleum derivatives and coal-tar constituents such as the benzopyrenes and the anthracenes, are those of the CYP1A subfamily. Polyhalogenated aromatic hydrocarbons, such as the halogenated dibenzodioxins, dibenzofurans, and biphenyls, may cause the induction of predominantly the CYP1A subfamily, predominantly the CYP2B subfamily, or mixed CYP1A- and CYP2B-type induction, depending upon the halogen substitution pattern. In contrast, the chlorinated hydrocarbon pesticides, such as DDT, dieldrin, chlordane, and mirex, cause almost exclusively the induction of isoforms of the CYP2B (and to a lesser extent the CYP3A) subfamilies. The commonly employed plasticizing agent di-(2-ethylhexyl)phthalate elicits predominantly induction of the CYP4A subfamily. Those xenobiotics that would be expected to be the most pervasive environmental contaminants are typically those that have also been found to cause the most profound CYP induction responses. Such chemicals are extremely lipophilic and tend to accumulate in animal tissues, especially fatty tissues such as the liver. The hepatic CYP induction response to such potential environmental contaminants is typical of the animals' response to lipophilic xenobiotics in general, and serves as a mechanism by which the excretion of such compounds from the body is facilitated.
Collapse
Affiliation(s)
- R W Nims
- In Vitro Toxicology, Microbiological Associates, Inc., Rockville, Maryland 20850, USA
| | | |
Collapse
|
38
|
Sato T, Murayama N, Yamazoe Y, Kato R. Suppression of clofibrate-induction of peroxisomal and microsomal fatty acid-oxidizing enzymes by growth hormone and thyroid hormone in primary cultures of rat hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1256:327-33. [PMID: 7786895 DOI: 10.1016/0005-2760(95)00040-j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Using primary cultures of rat hepatocytes on a matri-gel, effects of peroxisome proliferator and omega-hydroxydodecanoic acid on cellular levels of acyl-CoA oxidase and CYP4A have been studied to determine the hormonal influence in serum-free media. Peroxisomal acyl-CoA oxidation, microsomal CYP4A content and laurate omega-hydroxylation were increased in rat hepatocytes by the addition of 100 microM clofibrate or Wy14,643 for two days. omega-Hydroxydodecanoic acid (100 microM) also increased peroxisomal acyl-CoA oxidation, but had no clear effect on microsomal CYP4A level and laurate omega-hydroxylation. CYP4A-mediated laurate omega-hydroxylation in hepatocytes was suppressed by the addition of pituitary growth hormone (0.05 mU/ml), but was not altered by the addition of triiodothyronine (30 nM). In contrast, clofibrate-mediated induction of acyl-CoA oxidase activity was decreased by the addition of either one of the hormones in hepatocytes. Suppression by those hormones was also observed with omega-hydroxydodecanoic acid-mediated induction of acyl-CoA oxidase activity. These results indicate the possibility that GH and T3 exert the suppressive effects on peroxisomal acyl-CoA oxidation through plural mechanisms with and without the alteration of CYP4A levels in livers.
Collapse
Affiliation(s)
- T Sato
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | |
Collapse
|
39
|
Austin EW, Okita JR, Okita RT, Larson JL, Bull RJ. Modification of lipoperoxidative effects of dichloroacetate and trichloroacetate is associated with peroxisome proliferation. Toxicology 1995; 97:59-69. [PMID: 7716793 DOI: 10.1016/0300-483x(94)02926-l] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pretreatment of male B6C3F1 mice with clofibric acid (CFA) or trichloroacetic acid (TCA) in the drinking water results in a marked decrease in the lipoperoxidative response as measured by the production of thiobarbituric acid reactive substances (TBARS) in mouse liver homogenates following acute dosing with TCA or dichloroacetic acid (DCA). Pretreatment with TCA or CFA also increased palmitoyl-CoA oxidase activity, microsomal 12-(omega) hydroxylation of lauric acid and expression of P450 4A isoforms. At the doses utilized, DCA-pretreatment did not increase the level of P450 4A protein, or markers of peroxisome proliferation. However, DCA-pretreatment did result in enhanced levels of TBARS, following acute dosing with DCA, compared to controls. Pretreatment with DCA, TCA, or CFA did not alter p-nitrophenol hydroxylation (an assay specific for P450 2E1), and no increases in immunodetectable P450 2E1, 4A, 1A1/2, 2B1/2 or 3A1 protein were observed. Assays from CFA- and TCA-pretreated mice suggest that the reduction in the TBARS response seen in TCA-pretreated animals results from activities associated with peroxisome proliferation. This might result from the induction of systems efficient in scavenging of peroxide intermediates or detoxification of aldehyde by-products of lipid peroxidation.
Collapse
Affiliation(s)
- E W Austin
- Pharmacology/Toxicology Graduate Program, College of Pharmacy, Washington State University, Pullman 99164-6510, USA
| | | | | | | | | |
Collapse
|
40
|
Lin F, Abraham NG, Schwartzman ML. Cytochrome P450 arachidonic acid omega-hydroxylation in the proximal tubule of the rat kidney. Ann N Y Acad Sci 1994; 744:11-24. [PMID: 7529972 DOI: 10.1111/j.1749-6632.1994.tb52719.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
20-Hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE) is a major cytochrome P450-dependent arachidonate metabolite in the rat kidney. In the present study we characterized the formation of 20-HETE in the proximal tubule, the nephron segment with the highest concentration of cytochrome P450 activities, including P450 arachidonic acid metabolism. Freshly isolated tubules showed a basal formation of 20-HETE, implying that it is an endogenous constituent of the proximal tubule. Conversion of exogenous arachidonic acid to 20-HETE in proximal tubule homogenates was enzymatic and NADPH-dependent (i.e., 0 and 65.5 +/- 1.1 pmol/mg/min in the absence and presence of NADPH, respectively). That its formation was not affected by indomethacin but inhibited following preincubation with 17-ODYA (17-octadecynoic acid) and 7-ER (7-ethoxyresorufin) suggested that a P450 monooxygenase activity was involved in its synthesis. This was further strengthened by the demonstration that antibody raised against the rat cytochrome P450 4A1, a major fatty acid omega-hydroxylase isozyme, inhibited 20-HETE formation, suggesting the involvement of a P450 4A1 or P450 4A1-like activity in this reaction. Pretreatment of rats with clofibrate and dexamethasone, inducers of the P450 4A gene family, yielded a twofold increase in the proximal tubular synthesis of 20-HETE as well as an increase in P450 4A1 mRNA. These results, together with previous demonstrations that 20-HETE vasoconstricts isolated blood vessels, namely, renal microvessels, and affects tubular ion transport, suggest a role for 20-HETE in the regulation of renal vascular tone and transport functions and further stress the importance of understanding the regulation of 20-HETE synthesis in the kidney.
Collapse
Affiliation(s)
- F Lin
- Department of Pharmacology, New York Medical College, Valhalla 10595
| | | | | |
Collapse
|